
Advanced Networks — Laboratory 9

Juliusz Chroboczek

22 April 2025

Opportunistic encryption consists in enrypting data without authenticating the peer. Oppor-
tunistic encryption is vulnerable to man-in-the-middle (MiTM) attacks, but it effectively and
cheaply prevents passive attacks.

The goal of this lab is to implement a TCP client that performs an opportunistic Diffie-Hellman
exchange and then receives an encrypted message. These techniques are easy to adapt to UDP:
it will be enough to manually implement reliable communication of the Diffie-Hellman key ex-
change.

The protocol proposed in this lab does not conform to current best practices:

– it performs a Diffie-Hellman exchange on 768-bit integers, while at least 2048 bits should
be used in 2025;

– it performs a Diffie-Hellman exchange on amodular group, one would use an elliptic curve
group nowadays.

Exercice 1 (Preliminary questions).

1. Opportunistic encryption is sometimes called better than nothing cryptography (BTN). What
are the weaknesses of opportunistic encryption? Why is it still useful?

2. When a HTTPS server’s certificate cannot be validated, the browser displays a big red scary
warning; it does not display a warning when connecting to an unencrypted HTTP server.
Opinions? (You are exceptionally allowed to develop a conspiracy theory.)

3. What are the advantages of ECDH over DH?

Exercice 2 (Diffie-Hellman key exchange). Run a local copy of the supplied TCP server with the
option -verbose. Write a program that connects to the server then:

– draws a ranom string of 768 bits and converts it into an integer a < 2786 (use the functions
crypto/rand.Read and the method SetBytes of the type math/big.Int);

– computes A = ga mod p (the values p and g are given in the fil supplied);
– sends A to the server, as a string of 768/8 bytes;
– receives a string of 768/8 bytes from the server, which it interprets as an integer B < 2768;
– verifies that B is not a trivial element of the group Z/pZ (the trivial elements are 0, 1 and

p − 1);
– computes the integer s = Ba mod p.

1



Verify at each step that your program produces the same values as thee server (put Printf state-
ments all over the place).

Exercice 3 (Encryption). The value s computed by your program is shared between the client
and the server and is not known to a passive observer; it can therefore be used to generate an
opportunistic encryption key.

We cannot use value s directly as an input to a block cipher, for at least two reasons. First of all,
block ciphers take a key of a fixed size, which is not necessarily equal to 768/8; we reduce the size
of the key using a hashing function.

Second, using the same key with multiple messages would allow a passive observer to detect
that two messages are identical. To avoid this, we combine the key with a random initialization
vector (IV), which is transmitted in clear over the socket.

After the Diffie-Hellman key exchange has competed, the server sends::

– 16 random bytes that serve as an initialization vector (IV);
– the ciphertext.

It then closes the connection. (Which is bad practice: the server should be using a proper protocol
based onTLVs rather than relying on a transport-layer indication to determine the end of the data.
Oh, well.)

Modify your program so that, after the Diffie-Hellman key exchange, it:

– computes h = SHA256([s]), where [s] is the value of s represented as a string of bytes;
– sets k to be the first 16 bytes of h; k will be the shared key;
– reads 16 bytes, which will serve as the initialization vector (IV);
– reads the remainder of the data sent by the server; this is the cyphertext;
– decrypts the ciphertext using the AES-128 block cipher in CTR mode with the key and IV

obtained above, and displays the result as a string.

2


