Advanced Networks — Laboratory 5

Juliusz Chroboczek

26 March 2025

Exercice 1.

1. Write a Go program that downloads a file from the URL given as a command-line param-
eter and saves it to disk.

2. Modify your program so that it downloads the file by making sequential range requests for
pieces of the size given by the -c command-line option (default 16 kB). Note that you will
need to treat the first piece specially. Make sure that your program behaves correctly if the
server doesn't obey range requests.

3. Modify your program so that it downloads the file in a single request unless the server
provides a strong ETag on the first piece.

4. Modify your program so that it uses the If-Match header to avoid corrupting the data if
the file changes on the server. Ensure that your program does the right thing even if the
server doesn't honour If-Match.

5. How much slower is piece-wise downloading? Why does it depend on the location of the
server?

Exercice 2. Modify your program so that it downloads multiple pieces in parallel. Your program
will first download the first piece. If the server provides a strong ETag and obeys range requests,
then it will download the file using #n simultaneous threads (goroutines), where n is the value of
the command-line parameter —-n (default 4).

You may structure your program as follows:

- amain program, that fetches the first piece then produces a stream of piece descriptions to
download which it sends over a channel;
- n threads, that compete to read a piece description from the channel.

The main program may signal that there are no pieces left to download by closing the channel.
You may use the (*File) .WriteAt method to avoid concurrency issues when writing data to
disk. You may use a sync.WaitGroup in order to determine when the worker threads have
terminated.

Verify that your program does use the expected number of connections, using either tcpdump,
Wireshark, or simply netstat.



