
166/593

Program transformations

G. Castagna (CNRS) Cours de Programmation Avancée 166 / 593

167/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 167 / 593

168/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 168 / 593

169/593

The fuss about purity

High level features (stores, exceptions, I/O, . . .) are essential:

A program execution has a raison d’être only if it has I/O

Processors have registers not functions

Databases store persistent data

Efficiency and clarity can be more easily achieved with exceptions

G. Castagna (CNRS) Cours de Programmation Avancée 169 / 593

169/593

The fuss about purity

High level features (stores, exceptions, I/O, . . .) are essential:

A program execution has a raison d’être only if it has I/O

Processors have registers not functions

Databases store persistent data

Efficiency and clarity can be more easily achieved with exceptions

Question

Why some widespread languages, such as Haskell, insists on purity?

G. Castagna (CNRS) Cours de Programmation Avancée 169 / 593

170/593

Advantages of a pure functional framework

Much easier static analysis and correctness proofs

Lazy evaluation

Program optimizations

G. Castagna (CNRS) Cours de Programmation Avancée 170 / 593

171/593

Static analysis: some examples

Dependence analysis:

control dependencies: the evaluation of a program’s expressions depends

on the result of a previous expression (eg, if_then_else)

data dependencies: the result of a program’s expressions depends on the

result of a previous expression (eg, let-expression)

Dependence analysis determines whether or not it is safe to reorder or parallelize

the evaluation of expressions.

Data-flow analysis:

reaching definitions: determines which definitions may reach a given point

in the code (eg, registers allocation)

live variable analysis: calculate for each program point the variables that

may be potentially read (eg, use for dead-code elimination)

Data-flow analysis gathers information about the possible set of values calculated

at various points.

Type systems

G. Castagna (CNRS) Cours de Programmation Avancée 171 / 593

172/593

Exercises

1 Try to imagine why the presence of impure expressions can make both

dependence and data-flow analysis more difficult

2 Try to think about the problems of implementing a static type system to

ensure that there won’t be any uncaught exception.

Check also Appel’s book

G. Castagna (CNRS) Cours de Programmation Avancée 172 / 593

173/593

Lazy evaluation (1)

In lazy (as opposed to strict/eager) evaluation an expression passed as

argument:

is only evaluated if the result is required by the calling function (delayed

evaluation)

is only evaluated to the extent that is required by the calling function,

called (short-circuit evaluation).

is never evaluated more than once (as in applicative-order evaluation)

G. Castagna (CNRS) Cours de Programmation Avancée 173 / 593

173/593

Lazy evaluation (1)

In lazy (as opposed to strict/eager) evaluation an expression passed as

argument:

is only evaluated if the result is required by the calling function (delayed

evaluation)

is only evaluated to the extent that is required by the calling function,

called (short-circuit evaluation).

is never evaluated more than once (as in applicative-order evaluation)

Example

pλx .pfst x , fst xqqppλy .p3` y ,eqq5q

G. Castagna (CNRS) Cours de Programmation Avancée 173 / 593

173/593

Lazy evaluation (1)

In lazy (as opposed to strict/eager) evaluation an expression passed as

argument:

is only evaluated if the result is required by the calling function (delayed

evaluation)

is only evaluated to the extent that is required by the calling function,

called (short-circuit evaluation).

is never evaluated more than once (as in applicative-order evaluation)

Example

pλx .pfst x , fst xqqppλy .p3` y ,eqq5q

Ñ pfst ppλy .p3` y ,eqq5q, fst ppλy .p3` y ,eqq5qqq

G. Castagna (CNRS) Cours de Programmation Avancée 173 / 593

173/593

Lazy evaluation (1)

In lazy (as opposed to strict/eager) evaluation an expression passed as

argument:

is only evaluated if the result is required by the calling function (delayed

evaluation)

is only evaluated to the extent that is required by the calling function,

called (short-circuit evaluation).

is never evaluated more than once (as in applicative-order evaluation)

Example

pλx .pfst x , fst xqqppλy .p3` y ,eqq5q

Ñ pfst ppλy .p3` y ,eqq5q, fst ppλy .p3` y ,eqq5qqq
Ñ pfst p3`5,eq, fst p3`5,eqq

G. Castagna (CNRS) Cours de Programmation Avancée 173 / 593

173/593

Lazy evaluation (1)

In lazy (as opposed to strict/eager) evaluation an expression passed as

argument:

is only evaluated if the result is required by the calling function (delayed

evaluation)

is only evaluated to the extent that is required by the calling function,

called (short-circuit evaluation).

is never evaluated more than once (as in applicative-order evaluation)

Example

pλx .pfst x , fst xqqppλy .p3` y ,eqq5q

Ñ pfst ppλy .p3` y ,eqq5q, fst ppλy .p3` y ,eqq5qqq
Ñ pfst p3`5,eq, fst p3`5,eqq
Ñ p3`5,3`5q

(The last reduction is an optimization: common subexpressions elimination)

G. Castagna (CNRS) Cours de Programmation Avancée 173 / 593

174/593

Lazy evaluation (2)

In OCaml lazy evaluation can be implemented by memoization:
let rec boucle = function 0 -> () | n -> boucle (n-1);;
val boucle : int -> unit = <fun>
let gros_calcul () = boucle 100000000; 4;;
val gros_calcul : unit -> int = <fun>
let v = gros_calcul ();; (* it is slow *)
val v : int = 4
v + 1;; (* it is fast *)
- : int = 5
let v () = gros_calcul ();; (* it is fast *)
val v : unit -> int = <fun>
v () + 1;; (* it is slow *)
- : int = 5
v () + 1;; (* it is slow *)
- : int = 5
let v =

let r = ref None in
fun () -> match !r with

| Some v -> v
| None -> let v = (gros_calcul ()) in r := Some v; v;;

val v : unit -> int = <fun>
v () + 1;; (* it is slow *)
- : int = 5
v () + 1;; (* it is fast *)
- : int = 5

G. Castagna (CNRS) Cours de Programmation Avancée 174 / 593

175/593

The Lazy module in OCaml

This is so frequent that OCaml provides this behavior natively via the special

syntax lazy and the module Lazy:

let v = lazy (gros_calcul ());;
val v : int lazy_t = <lazy>

Lazy.force v;; (* it is slow *)
- : int = 4

Lazy.force v;; (* it is fast *)
- : int = 4

G. Castagna (CNRS) Cours de Programmation Avancée 175 / 593

176/593

Lazy evaluation (3)

Advantages

Lazy data structures: possibly infinite, efficient copy, low memory footprint

Better performance due to avoiding unnecessary calculations (?),

Maintains purity (!)

G. Castagna (CNRS) Cours de Programmation Avancée 176 / 593

176/593

Lazy evaluation (3)

Advantages

Lazy data structures: possibly infinite, efficient copy, low memory footprint

Better performance due to avoiding unnecessary calculations (?),

Maintains purity (!)

Rationale

Since also strict languages can be endowed with laziness (see Lazy library in

OCaml) then the clear advantage of pervasive lazy evaluation is to keep purity

and, thus, referential transparency (not the other way round).

G. Castagna (CNRS) Cours de Programmation Avancée 176 / 593

177/593

Optimizations

Purity makes important optimizations possible

1 Obvious program transformations. In Haskell

map f (map g lst) = map (f.g) lst

What if f and g had side effects?

This is called “deforestation” and works for non-strict languages (in strict

languages it may transform a function that does not terminates into one

that terminates).

2 Function inlining, partial evaluation

3 Memoization

4 Common subexpressions elimination

5 Parallelization

6 Speculative evaluation

7 Other optimizations (see CPS part later on)

G. Castagna (CNRS) Cours de Programmation Avancée 177 / 593

178/593

Program transformations

Previous optimizations are implemented by program transformations.

G. Castagna (CNRS) Cours de Programmation Avancée 178 / 593

178/593

Program transformations

Previous optimizations are implemented by program transformations.

Meaning:

In the broadest sense: all translations between programming languages that

preserve the meaning of programs.

G. Castagna (CNRS) Cours de Programmation Avancée 178 / 593

178/593

Program transformations

Previous optimizations are implemented by program transformations.

Meaning:

In the broadest sense: all translations between programming languages that

preserve the meaning of programs.

Usage:

Typically used as passes in a compiler. Progressively bridge the gap between

high-level source languages and machine code.

G. Castagna (CNRS) Cours de Programmation Avancée 178 / 593

178/593

Program transformations

Previous optimizations are implemented by program transformations.

Meaning:

In the broadest sense: all translations between programming languages that

preserve the meaning of programs.

Usage:

Typically used as passes in a compiler. Progressively bridge the gap between

high-level source languages and machine code.

In this course:

We focus on translations between different languages. Translations within the

same language are for optimization and studied in compiler courses.

G. Castagna (CNRS) Cours de Programmation Avancée 178 / 593

178/593

Program transformations

Previous optimizations are implemented by program transformations.

Meaning:

In the broadest sense: all translations between programming languages that

preserve the meaning of programs.

Usage:

Typically used as passes in a compiler. Progressively bridge the gap between

high-level source languages and machine code.

In this course:

We focus on translations between different languages. Translations within the

same language are for optimization and studied in compiler courses.

The interest is twofold:

1 Eliminate high-level features of a language and target a smaller or

lower-level language.

2 To program in languages that lack a desired feature. E.g. use higher-order

functions or objects in C; use imperative programming in Haskell or Coq.

G. Castagna (CNRS) Cours de Programmation Avancée 178 / 593

179/593

Transformations

Considered transformations

We will show how to get rid of higher level features:

High-order functions

“Impure” features: exceptions, state, call/cc

G. Castagna (CNRS) Cours de Programmation Avancée 179 / 593

179/593

Transformations

Considered transformations

We will show how to get rid of higher level features:

High-order functions

“Impure” features: exceptions, state, call/cc

Note

In order to simulate higher level features we first have to formally define their

semantics.

Let us take a refresher course on operational semantics and reduction

strategies

G. Castagna (CNRS) Cours de Programmation Avancée 179 / 593

180/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 180 / 593

181/593

Syntax and small-step semantics

Syntax

Terms a,b ::“ N Numeric constant

| x Variable

| ab Application

| λx .a Abstraction

Values v ::“ λx .a | N

G. Castagna (CNRS) Cours de Programmation Avancée 181 / 593

181/593

Syntax and small-step semantics

Syntax

Terms a,b ::“ N Numeric constant

| x Variable

| ab Application

| λx .a Abstraction

Values v ::“ λx .a | N

Small step semantics for strict functional languages

Evaluation Contexts E ::“ r s | E a | v E

BETAv

pλx .aqv Ñ arx{vs

CONTEXT

aÑ b

Eras Ñ Erbs

G. Castagna (CNRS) Cours de Programmation Avancée 181 / 593

182/593

Strategy and big-step semantics

Characteristics of the reduction strategy

Weak reduction: We cannot reduce under λ-abstractions;

Call-by-value: In an application pλx .aqb, the argument b must be fully reduced

to a value before β-reduction can take place.

Left-most reduction: In an application ab, we must reduce a to a value first

before we can start reducing b.

Deterministic: For every term a, there is at most one b such that aÑ b .

G. Castagna (CNRS) Cours de Programmation Avancée 182 / 593

182/593

Strategy and big-step semantics

Characteristics of the reduction strategy

Weak reduction: We cannot reduce under λ-abstractions;

Call-by-value: In an application pλx .aqb, the argument b must be fully reduced

to a value before β-reduction can take place.

Left-most reduction: In an application ab, we must reduce a to a value first

before we can start reducing b.

Deterministic: For every term a, there is at most one b such that aÑ b .

Big step semantics for strict functional languages

N ñ N λx .añ λx .a
añ λx .c bñ v˝ crx{v˝s ñ v

abñ v

G. Castagna (CNRS) Cours de Programmation Avancée 182 / 593

183/593

Interpreter

The big step semantics induces an efficient implementation
type term =

Const of int | Var of string | Lam of string * term | App of term * term

exception Error

let rec subst x v = function (* assumes v is closed *)
| Const n -> Const n
| Var y -> if x = y then v else Var y
| Lam(y, b) -> if x = y then Lam(y, b) else Lam(y, subst x v b)
| App(b, c) -> App(subst x v b, subst x v c)

let rec eval = function
| Const n -> Const n
| Var x -> raise Error
| Lam(x, a) -> Lam(x, a)
| App(a, b) ->

match eval a with
| Lam(x, c) -> let v = eval b in eval (subst x v c)
| _ -> raise Error

G. Castagna (CNRS) Cours de Programmation Avancée 183 / 593

184/593

Exercises

1 Define the small-step and big-step semantics for the call-by-name

2 Deduce from the latter the interpreter

3 Use the technique introduced for the type ’a delayed earlier in the

course to implement an interpreter with lazy evaluation.

G. Castagna (CNRS) Cours de Programmation Avancée 184 / 593

185/593

Improving implementation

Environments

Implementing textual substitution arx{vs is inefficient. This is why

compilers and interpreters do not implement it.

Alternative: record the binding x ÞÑ v in an environment e

epxq “ v

e $ x ñ v
e $ N ñ N e $ λx .añ λx .a

e $ añ λx .c e $ bñ v˝ e;x ÞÑ v˝ $ c ñ v

e $ abñ v

G. Castagna (CNRS) Cours de Programmation Avancée 185 / 593

185/593

Improving implementation

Environments

Implementing textual substitution arx{vs is inefficient. This is why

compilers and interpreters do not implement it.

Alternative: record the binding x ÞÑ v in an environment e

epxq “ v

e $ x ñ v
e $ N ñ N e $ λx .añ λx .a

e $ añ λx .c e $ bñ v˝ e;x ÞÑ v˝ $ c ñ v

e $ abñ v

Giving up substitutions in favor of environments does not come for free

G. Castagna (CNRS) Cours de Programmation Avancée 185 / 593

185/593

Improving implementation

Environments

Implementing textual substitution arx{vs is inefficient. This is why

compilers and interpreters do not implement it.

Alternative: record the binding x ÞÑ v in an environment e

epxq “ v

e $ x ñ v
e $ N ñ N e $ λx .añ λx .a

e $ añ λx .c e $ bñ v˝ e;x ÞÑ v˝ $ c ñ v

e $ abñ v

Giving up substitutions in favor of environments does not come for free

Lexical scoping requires careful handling of environments
let x = 1 in
let f = λy.(x+1) in
let x = "foo" in
f 2

In the environment used to evaluate f 2 the variable x is bound to 1.
G. Castagna (CNRS) Cours de Programmation Avancée 185 / 593

186/593

Exercise

Try to evaluate
let x = 1 in
let f = λy.(x+1) in
let x = "foo" in
f 2

by the big-step semantics in the previous slide,

where let x = a in b is syntactic sugar for pλx .bqa

let us outline it together

G. Castagna (CNRS) Cours de Programmation Avancée 186 / 593

187/593

Function closures

To implement lexical scoping in the presence of environments, function

abstractions λx .a must not evaluate to themselves, but to a function closure: a

pair pλx .aqres (ie, the function and the environment of its definition)

Big step semantics with environments and closures

Values v ::“ N | pλx .aqres

Environments e ::“ x1 ÞÑ v1; ...;xn ÞÑ vn

epxq “ v

e $ x ñ v
e $ N ñ N e $ λx .añ pλx .aqres

e $ añ pλx .cqre˝s e $ bñ v˝ e˝;x ÞÑ v˝ $ c ñ v

e $ abñ v

G. Castagna (CNRS) Cours de Programmation Avancée 187 / 593

188/593

De Bruijn indexes

Identify variable not by names but by the number n of λ’s that separate the

variable from its binder in the syntax tree.

λx .pλy .y xqx is λ.pλ.01q0

n is the variable bound by the n-th enclosing λ. Environments become sequen-

ces of values, the n-th value of the sequence being the value of variable n´1.

Terms a,b ::“ N | n | λ.a | ab

Values v ::“ N | pλ.aqres
Environments e ::“ v0;v1; ...;vn

e “ v0; ...;vn; ...;vm

e $ nñ vn

e $ N ñ N e $ λ.añ pλ.aqres

e $ añ pλ.cqre˝s e $ bñ v˝ v˝;e˝ $ c ñ v

e $ abñ v

G. Castagna (CNRS) Cours de Programmation Avancée 188 / 593

189/593

The canonical, efficient interpreter

type term = Const of int | Var of int | Lam of term | App of term * term
and value = Vint of int | Vclos of term * environment
and environment = value list (* use Vec instead *)

exception Error

let rec eval e a =
match a with
| Const n -> Vint n
| Var n -> List.nth e n (* will fail for open terms *)
| Lam a -> Vclos(Lam a, e)
| App(a, b) ->

match eval e a with
| Vclos(Lam c, e’) ->

let v = eval e b in
eval (v :: e’) c

| _ -> raise Error

eval [] (App (Lam (Var 0), Const (2)));; (* (λx.x)2 Ñ 2 *)
- : value = Vint 2

Note:To obtain improved performance one should implement environments by

persistent extensible arrays: for instance by the Vec library by Luca de Alfaro.

G. Castagna (CNRS) Cours de Programmation Avancée 189 / 593

190/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 190 / 593

191/593

Closure conversion

Goal: make explicit the construction of closures and the accesses to the

environment part of closures.

Input: a fully-fledged functional programming language, with general functions

(possibly having free variables) as first-class values.

Output: the same language where only closed functions (without free

variables) are first-class values. Such closed functions can be represented

at run-time as code pointers, just as in C for instance.

Idea: every function receives its own closure as an extra argument, from which

it recovers values for its free variables. Such functions are closed.

Function closures are explicitly represented as a tuple (closed function,

values of free variables).

Uses: compilation; functional programming in Java (pre-8), ANSI C (nested

functions are allowed in Gnu C), ...

G. Castagna (CNRS) Cours de Programmation Avancée 191 / 593

192/593

Definition of closure conversion

JxK “ x

Jλx .aK “ tuplepλpc,xq.let x1 “ field1pcq in
...

let xn “ fieldnpcq in

JaK,

x1, . . . ,xnq

where x1 , . . . , xn are the free variables of λx .a

Ja bK “ let c “ JaK in field0pcqpc,JbKq

G. Castagna (CNRS) Cours de Programmation Avancée 192 / 593

192/593

Definition of closure conversion

JxK “ x

Jλx .aK “ tuplepλpc,xq.let x1 “ field1pcq in
...

let xn “ fieldnpcq in

JaK,

x1, . . . ,xnq

where x1 , . . . , xn are the free variables of λx .a

Ja bK “ let c “ JaK in field0pcqpc,JbKq

The translation extends homomorphically to other constructs, e.g.

Jlet x “ a in bK “ let x “ JaK in JbK

Ja`bK “ JaK` JbK

G. Castagna (CNRS) Cours de Programmation Avancée 192 / 593

193/593

Example of closure conversion

Source program in Caml:

fun x lst ->
let rec map f l =

match l with
[] -> []

| hd :: tl -> f hd :: map f tl
in

map (fun y -> x + y) lst

- : int -> int list -> int list = <fun>

G. Castagna (CNRS) Cours de Programmation Avancée 193 / 593

193/593

Example of closure conversion

Source program in Caml:

fun x lst ->
let rec map f l =

match l with
[] -> []

| hd :: tl -> f hd :: map f tl
in

map (fun y -> x + y) lst

- : int -> int list -> int list = <fun>

Result of partial closure conversion for the f argument of map:

fun x lst ->
let rec map f lst =

match lst with
[] -> []

| hd :: tl -> field0(f)(f,hd) :: map f tl
in

map tuple(λ(c,y). let x = field1(c) in x + y,
x)

lst

G. Castagna (CNRS) Cours de Programmation Avancée 193 / 593

194/593

Closure conversion for recursive functions

In a recursive function µf .λx .a, the body a needs access to f , that is, the

closure for itself. This closure can be found in the extra function parameter that

closure conversion introduces.

Jµf .λx .aK “ tuplepλpf ,xq.let x1 “ field1pf q in
...

let xn “ fieldnpf q in

JaK,

x1, . . . ,xnq

where x1 , . . . , xn are the free variables of µf .λx .a

Notice that f is free in a and thus in JaK, but bound in Jµf .λx .aK.

In other terms, regular functions λx .a are converted exactly like

pseudo-recursive functions µc.λx .a where c is a variable not free in a.

G. Castagna (CNRS) Cours de Programmation Avancée 194 / 593

195/593

Closure conversion in object-oriented style

If the target of the conversion is an object-oriented language in the style of

Java, C#, we can use the following variant of closure conversion:

JxK “ x

Jλx .aK “ new Cλx .apx1, ...,xnq

where x1, . . . ,xn are the free variables of λx .a

JabK “ JaK.applypJbKq

G. Castagna (CNRS) Cours de Programmation Avancée 195 / 593

196/593

Closure conversion in object-oriented style

The class Cλx .a (one for each λ-abstraction in the source) is defined (in C#) as

follows:

1 public class Cλx .a {
2 protected internal Object x1, ..., xn;
3 public Cλx .a(Object x1 , ... , Object xn) {
4 this.x1 = x1 ; ...; this.xn = xn ;
5 }
6 public Object apply(Object x) {
7 return JaK ;
8 }
9 }

G. Castagna (CNRS) Cours de Programmation Avancée 196 / 593

196/593

Closure conversion in object-oriented style

The class Cλx .a (one for each λ-abstraction in the source) is defined (in C#) as

follows:

1 public class Cλx .a {
2 protected internal Object x1, ..., xn;
3 public Cλx .a(Object x1 , ... , Object xn) {
4 this.x1 = x1 ; ...; this.xn = xn ;
5 }
6 public Object apply(Object x) {
7 return JaK ;
8 }
9 }

Typing

In order to have a more precise typing the static types of the variables and of

the function should be used instead of Object. In particular the method apply

should be given the same input and return types as the encoded function.

G. Castagna (CNRS) Cours de Programmation Avancée 196 / 593

197/593

Closures and objects

In more general terms:

Closure « Object with a single apply method

Object « Closure with multiple entry points

Both function application and method invocation compile down to self

application:

Jfun argK “ let c “ JfunK in field0pcqpc,JargKq

Jobj.methpargqK “ let o “ JobjK in o.methpo,JargKq

Where an object is interpreted as a record whose fields are methods which are

parametrized by self.

G. Castagna (CNRS) Cours de Programmation Avancée 197 / 593

198/593

First class closure

Modern OOL such as Scala and C# (added much later for Java in JDK 8)

provide syntax to define closures, without the need to encode them.

G. Castagna (CNRS) Cours de Programmation Avancée 198 / 593

198/593

First class closure

Modern OOL such as Scala and C# (added much later for Java in JDK 8)

provide syntax to define closures, without the need to encode them.

For instance C# provides a delegate modifier to define closures:

public delegate int DComparer (Object x, Object y)

Defines a new distinguished type DComparer whose instances are functions

from two objects to int (i.e., DComparer ” (Object*Object)Ñint)

G. Castagna (CNRS) Cours de Programmation Avancée 198 / 593

198/593

First class closure

Modern OOL such as Scala and C# (added much later for Java in JDK 8)

provide syntax to define closures, without the need to encode them.

For instance C# provides a delegate modifier to define closures:

public delegate int DComparer (Object x, Object y)

Defines a new distinguished type DComparer whose instances are functions

from two objects to int (i.e., DComparer ” (Object*Object)Ñint)

Instances are created by passing to new a static or instance method (with

compatible types):

DComparer mycomp = new DComparer(String.Comparer)

The closure mycomp can be passed around (wherever an argument of type

DComparer is expected), or applied as in mycomp("Scala","Java")

G. Castagna (CNRS) Cours de Programmation Avancée 198 / 593

199/593

First class closure

Actually in C# it is possible to define “lambda expressions”:

Here how to write pλpx ,yq.x` yq in C#:

(x,y) => x + y

G. Castagna (CNRS) Cours de Programmation Avancée 199 / 593

199/593

First class closure

Actually in C# it is possible to define “lambda expressions”:

Here how to write pλpx ,yq.x` yq in C#:

(x,y) => x + y

Lambda expressions can be used to instantiate closures:

DComparer myComp = (x,y) => x + y

G. Castagna (CNRS) Cours de Programmation Avancée 199 / 593

199/593

First class closure

Actually in C# it is possible to define “lambda expressions”:

Here how to write pλpx ,yq.x` yq in C#:

(x,y) => x + y

Lambda expressions can be used to instantiate closures:

DComparer myComp = (x,y) => x + y

Delegates (roughly, function types) can be polymorphic:

public delegate TResult Func<TArg0, TResult>(TArg0 arg0)

The delegate can be instantiated as Func<int,bool> myFunc where int is

an input parameter and bool is the return value. The return value is always

specified in the last type parameter. Func<int, string, bool> defines a

delegate with two input parameters, int and string, and a return type of

bool.

Func<int, bool> myFunc = x => x == 5;

bool result = myFunc(4); // returns false of course

G. Castagna (CNRS) Cours de Programmation Avancée 199 / 593

200/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 200 / 593

201/593

Defunctionalization

Goal: like closure conversion, make explicit the construction of closures and

the accesses to the environment part of closures. Unlike closure

conversion, do not use closed functions as first-class values.

Input: a fully-fledged functional programming language, with general functions

(possibly having free variables) as first-class values.

Output: any first-order language (no functions as values). Idea: represent

each function value λx .a as a data structure C(v1,...,vn) where the

constructor C uniquely identifies the function, and the constructor

arguments v1,..., vn are the values of the variables x1, ...,xn free in the

body of the function.

Uses: functional programming in Pascal, Ada, Basic, . . .

G. Castagna (CNRS) Cours de Programmation Avancée 201 / 593

202/593

Definition of defunctionalization

JxK “ x

Jλx .aK “ Cλx .apx1, ...,xnq

where x1, ...,xn are the free variables of λx .a

Jµf .λx .aK “ Cµf .λx .apx1, ...,xnq

where x1, ...,xn are the free variables of µf .λx .a

JabK “ applypJaK,JbKq

The difference between recursive and non-recursive functions is made in the

definition of apply

(Other constructs: homomorphically.)

G. Castagna (CNRS) Cours de Programmation Avancée 202 / 593

203/593

Definition of defunctionalization

The apply function collects the bodies of all functions and dispatches on its

first argument. There is one case per function occurring in the source program.

let rec apply(fun ,arg) =
match fun with
| Cλx .a(x1,...,xn) -> let x = arg in J a K
| Cµf .λy .b(x1,...,xm) -> let f = fun in let y = arg in J b K
| ...

in Jprogram K

G. Castagna (CNRS) Cours de Programmation Avancée 203 / 593

203/593

Definition of defunctionalization

The apply function collects the bodies of all functions and dispatches on its

first argument. There is one case per function occurring in the source program.

let rec apply(fun ,arg) =
match fun with
| Cλx .a(x1,...,xn) -> let x = arg in J a K
| Cµf .λy .b(x1,...,xm) -> let f = fun in let y = arg in J b K
| ...

in Jprogram K

Note

Unlike closure conversion, this is a whole-program transformation.

G. Castagna (CNRS) Cours de Programmation Avancée 203 / 593

204/593

Example

Defunctionalization of pλx .λy .xq12:

let rec apply (fun, arg) =
match fun with
| C1() -> let x = arg in C2(x)
| C2(x) -> let y = arg in x

in
apply(apply(C1(), 1), 2)

We write C1 for Cλx .λy .x and C2 for Cλy .x .

G. Castagna (CNRS) Cours de Programmation Avancée 204 / 593

205/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 205 / 593

206/593

Syntax

Terms a,b ::“ N Numeric constant

| x Variable

| ab Application

| λx .a Abstraction

| raise a Raise

| try a with x Ñ b Try

Values v ::“ λx .a | N

G. Castagna (CNRS) Cours de Programmation Avancée 206 / 593

207/593

Small step semantics for exceptions

ptry v with x Ñ bq Ñ v

ptry raise v with x Ñ bq Ñ brx{vs

Prraise vs Ñ raise v if P ‰ r s

aÑ b

Eras Ñ Erbs

Exception propagation contexts P are like reduction contexts E but do not allow

skipping past a try ... with

Reduction contexts:

E ::“ r s | E a | v E | raise E | try E with x Ñ a | ...

Exception propagation contexts: (no try_with)

P ::“ r s | P a | v P | raise P | ...

G. Castagna (CNRS) Cours de Programmation Avancée 207 / 593

208/593

Reduction semantics for exceptions

Assume the current program is p “ Erraise vs, that is, we are about to raise

an exception. If there is a try...with that encloses the raise, the program will

be decomposed as

p “ E 1rtry Prraise vs with x Ñ bs

where P does not contain any try...with constructs (that encloses the hole).

Prraise vs head-reduces to raise v , and E 1rtry r s with x Ñ bs is an

evaluation context. The reduction sequence is therefore:

p “ E 1rtry Prraise vs with x Ñ bs Ñ E 1rtry raise v with x Ñ bs

Ñ E 1rbrx{vss

If there are no try ... with around the raise, E is a propagation context and

the reduction is therefore

p “ Erraise vs Ñ raise v

G. Castagna (CNRS) Cours de Programmation Avancée 208 / 593

209/593

Reduction semantics for exceptions

When considering reduction sequences, a fourth possible outcome of

evaluation appears: termination on an uncaught exception.

Termination: aÑ˚ v

Uncaught exception: aÑ raise v

Divergence: aÑ˚ a1 Ñ ...

Error: aÑ a1 Û where a‰ v and a‰ raise v .

G. Castagna (CNRS) Cours de Programmation Avancée 209 / 593

210/593

Big step semantics for exception

In big step semantics, the evaluation relation becomes añ r where evaluation

results are r ::“ v | raise v . Add the following rules for try...with:

añ v

try a with x Ñ bñ v

añ raise v brx{vs ñ r

try a with x Ñ bñ r

as well as exception propagation rules such as:

añ raise v

abñ raise v

añ v 1 bñ raise v

abñ raise v

G. Castagna (CNRS) Cours de Programmation Avancée 210 / 593

211/593

Conversion to exception-returning style

Goal: get rid of exceptions.

Input: a functional language featuring exceptions (raise and try...with).

Output: a functional language with pattern-matching but no exceptions.

Idea: every expression a evaluates to either Valpvq if a evaluates normally, or

to Exnpvq if a terminates early by raising exception v . Val,Exn are

datatype constructors.

Uses: giving semantics to exceptions; programming with exceptions in Haskell;

reasoning about exceptions in theorem provers.

G. Castagna (CNRS) Cours de Programmation Avancée 211 / 593

212/593

Definition of the transformation

Jraise aK “ match JaK with

| Exnpxq Ñ Exnpxq

| Valpxq Ñ Exnpxq

Jtry a with x Ñ bK “ match JaK with

| Exnpxq Ñ JbK

| Valpyq Ñ Valpyq

G. Castagna (CNRS) Cours de Programmation Avancée 212 / 593

213/593

Definition of the transformation

JNK “ ValpNq

JxK “ Valpxq

Jλx .aK “ Valpλx .JaKq

Jlet x “ a in bK “ match JaK with Exnpxq Ñ Exnpxq | Valpxq Ñ JbK

JabK “ match JaK with

| Exnpxq Ñ Exnpxq

| Valpxq Ñ match JbK with

| Exnpyq Ñ Exnpyq

| Valpyq Ñ x y

Effect on types: if a : τ then JaK : JτK where Jτ1 Ñ τ2K“ pτ1 Ñ Jτ2Kq outcome
and JτK“ τ outcome otherwise and where type ’a outcome = Val of ’a

| Exn of exn.

G. Castagna (CNRS) Cours de Programmation Avancée 213 / 593

214/593

Example of conversion

Let fun and arg be two variables, then:

J try fun arg with w -> 0 K =
match

match Val(fun) with
| Exn(x) -> Exn(x)
| Val(x) ->

match Val(arg) with
| Exn(y) -> Exn(y)
| Val(y) -> x y

with
| Val(z) -> Val(z)
| Exn(w) -> Val(0)

Notice that the two inner match can be simplified yielding

J try fun arg with w -> 0 K =
match fun arg with
| Val(z) -> Val(z)
| Exn(w) -> Val(0)

This transformation can be generalized by defining administrative reductions.

G. Castagna (CNRS) Cours de Programmation Avancée 214 / 593

215/593

Administrative reductions

The naive conversion generates many useless match constructs over

arguments whose shape Valp...q or Exnp...q is known at compile-time.

These can be eliminated by performing administrative reductionsÑ at

compile-time, just after the conversion:

Administrative reduction

pmatch Exnpvq with Exnpxq Ñ b | Valpxq Ñ cq
adm
ÝÑ brx{vs

pmatch Valpvq with Exnpxq Ñ b | Valpxq Ñ cq
adm
ÝÑ crx{vs

G. Castagna (CNRS) Cours de Programmation Avancée 215 / 593

215/593

Administrative reductions

The naive conversion generates many useless match constructs over

arguments whose shape Valp...q or Exnp...q is known at compile-time.

These can be eliminated by performing administrative reductionsÑ at

compile-time, just after the conversion:

Administrative reduction

pmatch Exnpvq with Exnpxq Ñ b | Valpxq Ñ cq
adm
ÝÑ brx{vs

pmatch Valpvq with Exnpxq Ñ b | Valpxq Ñ cq
adm
ÝÑ crx{vs

Correctness of the conversion

Define the conversion of a value V pvq as V pNq “ N and V pλx .aq “ λx .JaK.

Theorem

1. If añ v , then JaKñ ValpV pvqq.
2. If añraise v , then JaKñ ExnpV pvqq.
3. If a ò, then JaK ò.

G. Castagna (CNRS) Cours de Programmation Avancée 215 / 593

216/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 216 / 593

217/593

State (imperative programming)

The word state in programming language theory refers to the distinguishing

feature of imperative programming: the ability to assign (change the value of)

variables after their definition, and to modify data structures in place after their

construction.

G. Castagna (CNRS) Cours de Programmation Avancée 217 / 593

218/593

References

A simple yet adequate way to model state is to introduce references:

indirection cells / one-element arrays that can be modified in place.

The basic operations over references are:

ref a

Create a new reference containing initially the value of a.

deref a also written !a

Return the current contents of reference a.

assign a b also written a :“ b

Replace the contents of reference a with the value of b.

Subsequent deref a operations will return this value.

G. Castagna (CNRS) Cours de Programmation Avancée 218 / 593

219/593

Semantics of references

Semantics based on substitutions fail to account for sharing between

references:

let r = ref 1 in r := 2; !r ­Ñ (ref 1) := 2; !(ref 1)

G. Castagna (CNRS) Cours de Programmation Avancée 219 / 593

219/593

Semantics of references

Semantics based on substitutions fail to account for sharing between

references:

let r = ref 1 in r := 2; !r ­Ñ (ref 1) := 2; !(ref 1)

Left: the same reference r is shared between assignment and reading;

result is 2.

Right: two distinct references are created, one is assigned, the other read;

result is 1.

To account for sharing, we must use an additional level of indirection:

ref a expressions evaluate to locations ℓ : a new kind of variable

identifying references uniquely. (Locations ℓ are values.)

A global environment called the store associates values to references.

G. Castagna (CNRS) Cours de Programmation Avancée 219 / 593

220/593

Reduction semantics for references

The one-step reduction relation becomes a2 sÑ a1 2 s1

(read: in initial store s, a reduces to a1 and updates the store to s1)

pλx .aqv 2 s Ñ arx{vs2 s

ref v 2 s Ñ ℓ2 ps` ℓ ÞÑ vq where ℓ R Dompsq

deref ℓ2 s Ñ spℓq2 s

assign ℓ v 2 s Ñ pq2 ps` ℓ ÞÑ vq

CONTEXT

a2 sÑ a1 2 s1

Epaq2 sÑ Epa1q2 s1

G. Castagna (CNRS) Cours de Programmation Avancée 220 / 593

220/593

Reduction semantics for references

The one-step reduction relation becomes a2 sÑ a1 2 s1

(read: in initial store s, a reduces to a1 and updates the store to s1)

pλx .aqv 2 s Ñ arx{vs2 s

ref v 2 s Ñ ℓ2 ps` ℓ ÞÑ vq where ℓ R Dompsq

deref ℓ2 s Ñ spℓq2 s

assign ℓ v 2 s Ñ pq2 ps` ℓ ÞÑ vq

CONTEXT

a2 sÑ a1 2 s1

Epaq2 sÑ Epa1q2 s1

Notice that we also added a new value, (), the result of a side-effect.

G. Castagna (CNRS) Cours de Programmation Avancée 220 / 593

220/593

Reduction semantics for references

The one-step reduction relation becomes a2 sÑ a1 2 s1

(read: in initial store s, a reduces to a1 and updates the store to s1)

pλx .aqv 2 s Ñ arx{vs2 s

ref v 2 s Ñ ℓ2 ps` ℓ ÞÑ vq where ℓ R Dompsq

deref ℓ2 s Ñ spℓq2 s

assign ℓ v 2 s Ñ pq2 ps` ℓ ÞÑ vq

CONTEXT

a2 sÑ a1 2 s1

Epaq2 sÑ Epa1q2 s1

Notice that we also added a new value, (), the result of a side-effect.

Exercise: define the evaluation contexts Epq

G. Castagna (CNRS) Cours de Programmation Avancée 220 / 593

221/593

Example of reduction sequence

Let us reduce the following term

let r “ ref 3 in r :“!r `1; !r

that is

let r “ ref 3 in let _“ r :“!r `1 in !r

(recall that e1; e2 is syntactic sugar for let _ = e1 in e2)

In red: the active redex at every step.

let r “ ref 3 in let _“ r :“!r `1 in !r 2∅

Ñ let r “ ℓ in let _“ r :“!r `1 in !r 2 ℓ ÞÑ 3

Ñ let _“ ℓ :“ !ℓ`1 in !ℓ2 ℓ ÞÑ 3

Ñ let _“ ℓ :“ 3`1 in !ℓ2 ℓ ÞÑ 3

Ñ let _“ ℓ :“ 4 in !ℓ2 ℓ ÞÑ 3

Ñ let _“ pq in !ℓ2 ℓ ÞÑ 4

Ñ !ℓ2 ℓ ÞÑ 4

Ñ 42 ℓ ÞÑ 4

G. Castagna (CNRS) Cours de Programmation Avancée 221 / 593

222/593

Conversion to state-passing style

Goal: get rid of state.

Input: a functional language featuring references.

Output: a pure functional language.

Idea: every expression a becomes a function that

takes a run-time representation of the current store and

returns a pair (result value, updated store).

Uses: give semantics to references; program imperatively in Haskell; reason

about imperative code in theorem provers.

G. Castagna (CNRS) Cours de Programmation Avancée 222 / 593

223/593

Definition of the conversion

Core constructs

JNK “ λs.pN,sq

JxK “ λs.px ,sq

Jλx .aK “ λs.pλx .JaK,sq

Jlet x “ a in bK “ λs.match JaKs with px ,s1q Ñ JbKs1

JabK “ λs.match JaKs with pxa,s
1q Ñ

match JbKs1 with pxb,s
2q Ñ xa xb s2

G. Castagna (CNRS) Cours de Programmation Avancée 223 / 593

223/593

Definition of the conversion

Core constructs

JNK “ λs.pN,sq

JxK “ λs.px ,sq

Jλx .aK “ λs.pλx .JaK,sq

Jlet x “ a in bK “ λs.match JaKs with px ,s1q Ñ JbKs1

JabK “ λs.match JaKs with pxa,s
1q Ñ

match JbKs1 with pxb,s
2q Ñ xa xb s2

Notice in particular that in the application we return xa xb s2 and not just xa xb.

The reason is that λ-abstractions have their body translated. For instance

Jpλx .aq5K reduces to λs.ppλx .JaKq5sq. The application pλx .JaKq5 thus returns

the translation of a term, JaK, that is a function that expects a state.

G. Castagna (CNRS) Cours de Programmation Avancée 223 / 593

224/593

Definition of the conversion

Constructs specific to references

Jref aK “ λs.match JaKs with px ,s1q Ñ store_allocx s1

J!aK “ λs.match JaKs with px ,s1q Ñ pstore_readx s1,s1q

Ja :“ bK “ λs.match JaKs with pxa,s
1q Ñ

match JbKs1 with pxb,s
2q Ñ pε,store_writexa xb s2q

The operations store_alloc, store_read and store_write provide a

concrete implementation of the store. Any implementation of the data structure

known as persistent extensible arrays will do.

Here ε represents the () value.

G. Castagna (CNRS) Cours de Programmation Avancée 224 / 593

225/593

For instance we can use Vec, a library of extensible functional arrays by Luca

de Alfaro. In that case we have that locations are natural numbers, a store is a

vector s created by Vec.empty, a fresh location for the store s is returned by

Vec.length s. Precisely, we have

store_alloc v s “ p Vec.length s , Vec.append v s q

store_read ℓ s “ Vec.get ℓ s

store_write ℓ v s “ Vec.set ℓ v s

Typing (assuming all values stored in references are of the same type sval):

store_alloc : svalÑ storeÑ locationˆstore

store_read : locationÑ storeÑ sval

store_write : locationÑ svalÑ storeÑ store
where location is int and store is Vec.t.

G. Castagna (CNRS) Cours de Programmation Avancée 225 / 593

226/593

Example of conversion

Administrative reductions: (where x , y , s, and s1 are variables)

pmatch pa,sq with px ,s1q Ñ bq
adm
ÝÑ let x “ a in brs1{ss

pλs.bqs1 adm
ÝÑ brs{s1s

let x “ v in b
adm
ÝÑ brx{vs

let x “ y in b
adm
ÝÑ brx{ys

(the first reduction replaces only the store since replacing also a for x may change de

evaluation order: a must be evaluated before the evaluation of b)

G. Castagna (CNRS) Cours de Programmation Avancée 226 / 593

226/593

Example of conversion

Administrative reductions: (where x , y , s, and s1 are variables)

pmatch pa,sq with px ,s1q Ñ bq
adm
ÝÑ let x “ a in brs1{ss

pλs.bqs1 adm
ÝÑ brs{s1s

let x “ v in b
adm
ÝÑ brx{vs

let x “ y in b
adm
ÝÑ brx{ys

(the first reduction replaces only the store since replacing also a for x may change de

evaluation order: a must be evaluated before the evaluation of b)

Example of translation after administrative reductions:

Consider again the term

let r “ ref 3 in r :“!r `1; !r

We have
J let r = ref 3 in let x = r := !r + 1 in !r K =

λs. match store_alloc 3 s with (r, s1) ->
let t = store_ read r s1 in
let u = t + 1 in
match (ε , store_write r u s1) with (x, s2) -> (store_read r s2, s2)

G. Castagna (CNRS) Cours de Programmation Avancée 226 / 593

227/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 227 / 593

228/593

Notion of continuation

Given a program p and a subexpression a of p, the continuation of a is the com-

putation that remains to be done once a is evaluated to obtain the result of p.

G. Castagna (CNRS) Cours de Programmation Avancée 228 / 593

228/593

Notion of continuation

Given a program p and a subexpression a of p, the continuation of a is the com-

putation that remains to be done once a is evaluated to obtain the result of p.

It can be viewed as a function: (value of a) ÞÑ (value of p).

Example

Consider the program p “ p1`2q ˚ p3`4q.
The continuation of a“ p1`2q is λx .x ˚ p3`4q.
The continuation of a1 “ p3`4q is λx .3˚ x .

(Remember that 1 + 2 has already been evaluated to 3.)

The continuation of the whole program p is of course λx .x

G. Castagna (CNRS) Cours de Programmation Avancée 228 / 593

229/593

Continuations and reduction contexts

Continuations closely correspond with reduction contexts in small-step

operational semantics:

Nota Bene

If Eras is a reduct of p, then the continuation of a is λx .Erxs.

G. Castagna (CNRS) Cours de Programmation Avancée 229 / 593

229/593

Continuations and reduction contexts

Continuations closely correspond with reduction contexts in small-step

operational semantics:

Nota Bene

If Eras is a reduct of p, then the continuation of a is λx .Erxs.

Example

Consider again p “ p1`2q ˚ p3`4q.

p1`2q ˚ p3`4q “ E1r1`2s with E1 “ r s˚ p3`4q
Ñ 3˚ p3`4q “ E2r3`4s with E2 “ 3˚ r s
Ñ 3˚7 “ E3r3˚7s with E3 “ r s
Ñ 21

The continuation of 1`2 is λx .E1rxs “ λx .x ˚ p3`4q.
The continuation of 3`4 is λx .E2rxs “ λx .3˚ x .

The continuation of 3˚7 is λx .E3rxs “ λx .x .

G. Castagna (CNRS) Cours de Programmation Avancée 229 / 593

230/593

What continuations are for?

Historically continuations where introduced to define a denotational semantics

for the goto statement in imperative programming

Imagine we have a pure imperative programming language.

As suggested by the state passing translation a program p of this

language can be interpreted as a function that transforms states into

states:

JpK : S Ñ S

This works as long as we do not have GOTO.

G. Castagna (CNRS) Cours de Programmation Avancée 230 / 593

231/593

Consider the following spaghetti code in BASIC
10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

G. Castagna (CNRS) Cours de Programmation Avancée 231 / 593

231/593

Consider the following spaghetti code in BASIC
10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

Idea: add to the interpretation of programs a further parameter: a

continuation.

G. Castagna (CNRS) Cours de Programmation Avancée 231 / 593

231/593

Consider the following spaghetti code in BASIC
10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

Idea: add to the interpretation of programs a further parameter: a

continuation.

In this framework a continuation is a function of type S Ñ S since it takes

the result of a statement (i.e. a state) and returns a new result (new state).

JpK : S Ñ pS Ñ Sq Ñ S

G. Castagna (CNRS) Cours de Programmation Avancée 231 / 593

231/593

Consider the following spaghetti code in BASIC
10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

Idea: add to the interpretation of programs a further parameter: a

continuation.

In this framework a continuation is a function of type S Ñ S since it takes

the result of a statement (i.e. a state) and returns a new result (new state).

JpK : S Ñ pS Ñ Sq Ñ S

Every (interpretation of a) statement will do their usual modifications on

the state they received and then will pass the resulting state to the

continuations they received

G. Castagna (CNRS) Cours de Programmation Avancée 231 / 593

231/593

Consider the following spaghetti code in BASIC
10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

Idea: add to the interpretation of programs a further parameter: a

continuation.

In this framework a continuation is a function of type S Ñ S since it takes

the result of a statement (i.e. a state) and returns a new result (new state).

JpK : S Ñ pS Ñ Sq Ñ S

Every (interpretation of a) statement will do their usual modifications on

the state they received and then will pass the resulting state to the

continuations they received

Only the GOTO behaves differently: it throws away the received

continuation and use instead the continuation of the statement to go to.

G. Castagna (CNRS) Cours de Programmation Avancée 231 / 593

231/593

Consider the following spaghetti code in BASIC
10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

Idea: add to the interpretation of programs a further parameter: a

continuation.

In this framework a continuation is a function of type S Ñ S since it takes

the result of a statement (i.e. a state) and returns a new result (new state).

JpK : S Ñ pS Ñ Sq Ñ S

Every (interpretation of a) statement will do their usual modifications on

the state they received and then will pass the resulting state to the

continuations they received

Only the GOTO behaves differently: it throws away the received

continuation and use instead the continuation of the statement to go to.

For instance the statement in line 50 will receive a state and a continuation

and will pass the received state to the continuation of the instruction 20.

G. Castagna (CNRS) Cours de Programmation Avancée 231 / 593

232/593

Continuations for compiler optimizations

Explicit continuations are inserted by some compiler for optimization:

(* defines the product of all prime numbers <= n *)

let rec prodprime n = (* bear with this *)

if n = 1 (* horrible indentation *)

then

1

else if

isprime n (* receives k returns b *)

then n * prodprime (n-1) (* receives j returns p *)

else prodprime (n-1);; (* receives h returns q *)

The compiler adds (at function calls) points to control the flow of this function

G. Castagna (CNRS) Cours de Programmation Avancée 232 / 593

232/593

Continuations for compiler optimizations

Explicit continuations are inserted by some compiler for optimization:

(* defines the product of all prime numbers <= n *)

let rec prodprime n = (* bear with this *)

if n = 1 (* horrible indentation *)

then

1

else if

isprime n (* receives k returns b *)

then n * prodprime (n-1) (* receives j returns p *)

else prodprime (n-1);; (* receives h returns q *)

The compiler adds (at function calls) points to control the flow of this function

1 isprime is given a return address k and returns a boolean b to it

G. Castagna (CNRS) Cours de Programmation Avancée 232 / 593

232/593

Continuations for compiler optimizations

Explicit continuations are inserted by some compiler for optimization:

(* defines the product of all prime numbers <= n *)

let rec prodprime n = (* bear with this *)

if n = 1 (* horrible indentation *)

then

1

else if

isprime n (* receives k returns b *)

then n * prodprime (n-1) (* receives j returns p *)

else prodprime (n-1);; (* receives h returns q *)

The compiler adds (at function calls) points to control the flow of this function

1 isprime is given a return address k and returns a boolean b to it

2 The first prodprime call will return at point j an integer p

G. Castagna (CNRS) Cours de Programmation Avancée 232 / 593

232/593

Continuations for compiler optimizations

Explicit continuations are inserted by some compiler for optimization:

(* defines the product of all prime numbers <= n *)

let rec prodprime n = (* bear with this *)

if n = 1 (* horrible indentation *)

then

1

else if

isprime n (* receives k returns b *)

then n * prodprime (n-1) (* receives j returns p *)

else prodprime (n-1);; (* receives h returns q *)

The compiler adds (at function calls) points to control the flow of this function

1 isprime is given a return address k and returns a boolean b to it

2 The first prodprime call will return at point j an integer p

3 The second prodprime call will return at point h an integer q

G. Castagna (CNRS) Cours de Programmation Avancée 232 / 593

233/593

Continuations for compiler optimizations

let rec prodprime(n,c) =
if n = 1
then

c 1 (* pass 1 to the current continuation c *)
else

let k b = (* continuation of isprime *)
if b
then

let j p = (* continuation of prodprime *)
let a = n * p in c a in
let m = n - 1

in prodprime(m,j) (*call prodprime(n-1) with its continuation*)
else

let h q = (* continuation of prodprime *)
c q in
let i = n - 1

in prodprime(i,h) (*call prodprime(n-1) with its continuation*)
in isprime(n,k) (* call isprime(n) with its continuation k *)

Notice that we added variables m and i to store intermediate results

(this is called ANF, or A-normal form and was introduced by Sabry and Felleisen in ’92,

it simplifies CPS transformation since all function calls have either variables or

constants as arguments)

G. Castagna (CNRS) Cours de Programmation Avancée 233 / 593

234/593

Advantages

Explicit continuations bring several advantages:

Tail recursion: prodprime is now tail recursive. Also the call that was

already call recursive has trivial continuation (h is equivalent to c) that can

be simplified:

let h q =

c q in

let i = n - 1

in prodprime(i,h)

ñ
let i = n - 1

in prodprime(i,c)

G. Castagna (CNRS) Cours de Programmation Avancée 234 / 593

234/593

Advantages

Explicit continuations bring several advantages:

Tail recursion: prodprime is now tail recursive. Also the call that was

already call recursive has trivial continuation (h is equivalent to c) that can

be simplified:

let h q =

c q in

let i = n - 1

in prodprime(i,h)

ñ
let i = n - 1

in prodprime(i,c)

Inlining: In languages that are strict and/or have side effects inlining is

very difficult to do directly. Explicit continuations overcome all the

problems since all actual parameters to functions are either variables or

constants (never a non-trivial sub-expression)

G. Castagna (CNRS) Cours de Programmation Avancée 234 / 593

234/593

Advantages

Explicit continuations bring several advantages:

Tail recursion: prodprime is now tail recursive. Also the call that was

already call recursive has trivial continuation (h is equivalent to c) that can

be simplified:

let h q =

c q in

let i = n - 1

in prodprime(i,h)

ñ
let i = n - 1

in prodprime(i,c)

Inlining: In languages that are strict and/or have side effects inlining is

very difficult to do directly. Explicit continuations overcome all the

problems since all actual parameters to functions are either variables or

constants (never a non-trivial sub-expression)

Dataflow analysis describes static propagation of values. Continuation

make this flow explicit and easy this analysis (for detection of dead-code

or register allocation).

G. Castagna (CNRS) Cours de Programmation Avancée 234 / 593

235/593

Continuations as first-class values

The Scheme language offers a primitive callcc (call with current continuation)

that enables a subexpression a of the program to capture its continuation (as a

function ‘value of a’ ÞÑ ‘value of the program’) and manipulate this continuation

as a first-class value.

G. Castagna (CNRS) Cours de Programmation Avancée 235 / 593

235/593

Continuations as first-class values

The Scheme language offers a primitive callcc (call with current continuation)

that enables a subexpression a of the program to capture its continuation (as a

function ‘value of a’ ÞÑ ‘value of the program’) and manipulate this continuation

as a first-class value.

The expression callccpλk .aq evaluates as follows:

The continuation of this expression is passed as argument to λk .a.

Evaluation of a proceeds; its value is the value of callccpλk .aq.

If, during the evaluation of a or later (if we stored k somewhere or we

passed it along), we evaluate throw k v , evaluation continues as if

callccpλk .aq returned v .

That is, the continuation of the callcc expression is reinstalled and

restarted with v as the result provided by this expression.

G. Castagna (CNRS) Cours de Programmation Avancée 235 / 593

236/593

Using first-class continuations

Libraries for lists, sets, and other collection data types often provide an

imperative iterator iter, e.g.

(* list_iter: (’a -> unit) -> ’a list -> unit *)

let rec list_iter f l =
match l with

| [] -> ()
| head :: tail -> f head; list_iter f tail

G. Castagna (CNRS) Cours de Programmation Avancée 236 / 593

237/593

Using first-class continuations

Using first-class continuations, an existing imperative iterator can be turned into

a function that returns the first element of a collection satisfying a given

predicate pred (of type ’a -> bool).

let find pred lst =
callcc (λk.

list_iter
(λx. if pred x then throw k (Some x) else ())
lst;

None)

If an element x is found such that pred x = true, then the throw causes Some

x to be returned immediately as the result of find pred lst. If no such

element exists, list_iter terminates normally, and None is returned.

G. Castagna (CNRS) Cours de Programmation Avancée 237 / 593

238/593

Using first-class continuations

The previous example can also be implemented with exceptions. However,

callcc adds the ability to backtrack the search.

let find pred lst =
callcc (λk.

list_iter
(λx. if pred x

then callcc (λk’. throw k (Some(x, k’)))
else ())

lst;
None)

When x is found such that pred x = true, the function find returns not only x

but also a continuation k’ which, when thrown, will cause backtracking: the

search in lst restarts at the element following x. This is used as shown in the

next function.

G. Castagna (CNRS) Cours de Programmation Avancée 238 / 593

239/593

Using first-class continuations

The following use of find will print all list elements satisfying the predicate:

let printall pred lst =
match find pred list with
| None -> ()
| Some(x, k) -> print_string x; throw k ()

The throw k () restarts find pred list where it left the last time.

G. Castagna (CNRS) Cours de Programmation Avancée 239 / 593

240/593

First-class continuations

callcc and other control operators are difficult to use directly (“the goto of

functional languages”), but in combination with references, can implement a

variety of interesting control structures:

Exceptions (seen)

Backtracking (seen)

Generators for imperative iterators such as Python’s and C# yield (next

slides).

Coroutines / cooperative multithreading (few slides ahead).

Checkpoint/replay debugging (in order to save the intermediate state —ie,

a checkpoint— of a process you can save the continuation).

G. Castagna (CNRS) Cours de Programmation Avancée 240 / 593

241/593

Python’s yield

yield inside a function makes the function a generator that when called

returns an object of type generator. The object has a method next that

executes the function till the expression yield, returns the value of the yield,

and at the next call of next, starts again right after the yield.

>>> def gen_fibonacci(): # Generator of Fibonacci suite
... a, b = 1, 2
... while True:
... yield a
... a, b = b, a + b
...
>>> fib = gen_fibonacci()
>>> for i in range(4):
... print fib.next()
...
1
2
3
5
>>> fib.next()
8
>>> fib.next()
13

G. Castagna (CNRS) Cours de Programmation Avancée 241 / 593

242/593

Python’s yield

Actually the argument of a for loop is a generator object.

At each loop the for calls the next method of the generator. When the

generator does not find a next yield and exits, then it raises a exception that

makes the for exit.

>>> for i in fib:
... print i
...
21
34
55
89
144
233
377
610
987
...
...

G. Castagna (CNRS) Cours de Programmation Avancée 242 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () =

let a,b = ref 1, ref 2 in

while true do

yield !a;

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () =

let a,b = ref 1, ref 2 in

while true do

yield !a;

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

1 Use two references to store addresses to resume fib and return from it;

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () = callcc (fun kk -> return := kk;

let a,b = ref 1, ref 2 in

while true do

yield !a;

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

1 Use two references to store addresses to resume fib and return from it;

2 Save the return point in return

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () = callcc (fun kk -> return := kk;

let a,b = ref 1, ref 2 in

while true do

callcc (fun cc -> resume := cc; throw !return !a);

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

1 Use two references to store addresses to resume fib and return from it;

2 Save the return point in return
3 Save the resumption point in resume

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () = callcc (fun kk -> return := kk;

let a,b = ref 1, ref 2 in

while true do

callcc (fun cc -> resume := cc; throw !return !a);

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

1 Use two references to store addresses to resume fib and return from it;

2 Save the return point in return
3 Save the resumption point in resume
4 Exit fib() by “going to” return and returning the value of !a

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () = callcc (fun kk -> return := kk;

let a,b = ref 1, ref 2 in

while true do

callcc (fun cc -> resume := cc; throw !return !a);

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

1 Use two references to store addresses to resume fib and return from it;

2 Save the return point in return
3 Save the resumption point in resume
4 Exit fib() by “going to” return and returning the value of !a
5 Adjust the types (the function must return an int)

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

243/593

Simulate yield by callcc

let return = ref (Obj.magic None);;

let resume = ref (Obj.magic None);;

let fib () = callcc (fun kk -> return := kk;

let a,b = ref 1, ref 2 in

while true do

callcc (fun cc -> resume := cc; throw !return !a);

b := !a + !b; (* note: a,b Ð b,a+b *)

a := !b - !a;

done; 0

)

val fib : unit -> int = <fun>

1 Use two references to store addresses to resume fib and return from it;

2 Save the return point in return
3 Save the resumption point in resume
4 Exit fib() by “going to” return and returning the value of !a
5 Adjust the types (the function must return an int)
6 Use callcc(fun k -> return:=k; throw !resume ()) to resume

G. Castagna (CNRS) Cours de Programmation Avancée 243 / 593

244/593

Example

#load "callcc.cma";;
open Callcc;;
let return = ref (Obj.magic None);;
val return : ’_a ref = contents = <poly>
let resume = ref (Obj.magic None);;
val resume : ’_a ref = contents = <poly>
let fib() = callcc (fun kk -> return := kk;

let a,b = ref 1, ref 2 in
while true do

callcc(fun cc -> (resume := cc; (throw !return !a)));
b := !a + !b;
a := !b - !a;

done; 0) ;;
val fib : unit -> int = <fun>
fib();;
- : int = 1
callcc (fun k -> return:=k; throw !resume ());;
- : int = 2
callcc (fun k -> return:=k; throw !resume ());;
- : int = 3
callcc (fun k -> return:=k; throw !resume ());;
- : int = 5
callcc (fun k -> return:=k; throw !resume ());;
- : int = 8
callcc (fun k -> return:=k; throw !resume ());;
- : int = 13

G. Castagna (CNRS) Cours de Programmation Avancée 244 / 593

245/593

Exercise

Rewrite the previous program without the Object.magic so that the

references contain values of type ’a Callcc.cont option (verbose)

G. Castagna (CNRS) Cours de Programmation Avancée 245 / 593

246/593

#load "callcc.cma";;
open Callcc;;
let return = ref None;;
val return : ’_a option ref = contents = None
let resume = ref None;;
val resume : ’_a option ref = contents = None

let fib() = callcc (fun kk -> return := (Some kk);
let a,b = ref 1, ref 2 in
while true do
callcc(fun cc -> (

resume := (Some cc);
let Some k = !return in (throw k !a)));

b := !a + !b;
a := !b - !a;
done; 0);;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
None
val fib : unit -> int = <fun>

fib();;
- : int = 1
callcc (fun k -> return:= Some k; let Some k = !resume in throw k ());;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
None
- : int = 2
callcc (fun k -> return:= Some k; let Some k = !resume in throw k ());;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

G. Castagna (CNRS) Cours de Programmation Avancée 246 / 593

247/593

Loop and tail-recursion can be encoded by callcc

G. Castagna (CNRS) Cours de Programmation Avancée 247 / 593

247/593

Loop and tail-recursion can be encoded by callcc

let fib () = callcc (fun kk ->
return := kk;
let a,b = ref 1, ref 2 in
callcc(fun cc -> resume := cc);
b := !a + !b;
a := !b - !a;
throw !return !a)

G. Castagna (CNRS) Cours de Programmation Avancée 247 / 593

247/593

Loop and tail-recursion can be encoded by callcc

let fib () = callcc (fun kk ->
return := kk;
let a,b = ref 1, ref 2 in
callcc(fun cc -> resume := cc);
b := !a + !b;
a := !b - !a;
throw !return !a)

So for instance we can avoid to call multiple times the throw ... just do not

modify the return address

let x = fib () in
if x < 100 then (

print_int x; print_newline();
throw !resume ())

else ();;
1
2
3
5
8
13
21

G. Castagna (CNRS) Cours de Programmation Avancée 247 / 593

248/593

Let us do it in a more functional way by using variables for a and b

let resume = ref (Obj.magic None);;
val resume : ’_a ref = contents = <poly>
let fib () = callcc (fun kk ->

let a,b = callcc(fun cc -> resume := cc ; (1,1)) in
throw kk (b,a+b));;

val fib : unit -> int * int = <fun>
let x,y = fib () in

if x < 100 then (
print_int x; print_newline();
throw !resume (x,y))

else ();;
1
2
3
5
8
13
21
34
55
89
- : unit = ()

G. Castagna (CNRS) Cours de Programmation Avancée 248 / 593

248/593

Let us do it in a more functional way by using variables for a and b

let resume = ref (Obj.magic None);;
val resume : ’_a ref = contents = <poly>
let fib () = callcc (fun kk ->

let a,b = callcc(fun cc -> resume := cc ; (1,1)) in
throw kk (b,a+b));;

val fib : unit -> int * int = <fun>
let x,y = fib () in

if x < 100 then (
print_int x; print_newline();
throw !resume (x,y))

else ();;
1
2
3
5
8
13
21
34
55
89
- : unit = ()

Exercise

Modify fib() so as it does not need the reference resume for the continuation.

G. Castagna (CNRS) Cours de Programmation Avancée 248 / 593

249/593

Coroutines

Coroutines are more generic than subroutines.

Subroutines can return only once; coroutines can return (yield) several times.

Next time the coroutine is called, the execution just after the yield call.

G. Castagna (CNRS) Cours de Programmation Avancée 249 / 593

249/593

Coroutines

Coroutines are more generic than subroutines.

Subroutines can return only once; coroutines can return (yield) several times.

Next time the coroutine is called, the execution just after the yield call.

An example in pseudo-code

var q := new queue

coroutine produce
loop

while q is not full
create some new items
add the items to q

yield to consume

coroutine consume
loop

while q is not empty
remove some items from q
use the items

yield to produce

G. Castagna (CNRS) Cours de Programmation Avancée 249 / 593

250/593

Implementing coroutines with continuations

coroutine process1 n =
loop

print "1: received "; print_ln n
yield n+1 to process2

coroutine process2 n =
loop

print "2: received "; print_ln n
yield n+1 to process1

in process1 0

G. Castagna (CNRS) Cours de Programmation Avancée 250 / 593

250/593

Implementing coroutines with continuations

coroutine process1 n =
loop

print "1: received "; print_ln n
yield n+1 to process2

coroutine process2 n =
loop

print "2: received "; print_ln n
yield n+1 to process1

in process1 0

In OCaml with callcc
callcc (fun init_k ->

let curr_k = ref init_k in
let communicate x =

callcc (fun k ->
let old_k = !curr_k in curr_k := k; throw old_k x) in

let rec process1 n =
print_string "1: received "; print_int n; print_newline();
process1(communicate(n+1))

and process2 n =
print_string "2: received "; print_int n; print_newline();
process2(communicate(n+1)) in

process1(callcc(fun start1 ->
process2(callcc(fun start2 ->

curr_k := start2; throw start1 0)))))

G. Castagna (CNRS) Cours de Programmation Avancée 250 / 593

251/593

Coroutines and generators

Generators are also a generalization of subroutines to define iterators

They look less expressive since the yield statement in a generator does not

specify a coroutine to jump to: this is not the case:

generator produce
loop

while q is not full
create some new items
add the items to q

yield consume

generator consume
loop

while q is not empty
remove some items from q
use the items

yield produce

subroutine dispatcher
var d := new dictionary x generator Ñ iteratory
d[produce] := start produce
d[consume] := start consume
var current := produce
loop current := d[current].next()

G. Castagna (CNRS) Cours de Programmation Avancée 251 / 593

252/593

Rationale

It is possible to implement coroutines on top of a generator facility, with the aid

of a top-level dispatcher routine that passes control explicitly to child

generators identified by tokens passed back from the generators

Generators are a much more commonly found language feature

A number of implementations of coroutines for languages with generator

support but no native coroutines use this or a similar model: e.g. Perl 6, C#,

Ruby, Python (prior to 2.5),

In OCaml there is Jérôme Vouillon’s lightweight thread library (Lwt) that

provides cooperative multi-threading. This can be implemented by coroutines

(see the concurrency part of the course).

G. Castagna (CNRS) Cours de Programmation Avancée 252 / 593

253/593

Reduction semantics for continuations

Keep the same reductions “Ñ” and the same context rules as before, and add

the following rules for callcc and throw:

Ercallcc vs Ñ Ervpλx .Erxsqs

Erthrow k vs Ñ kv

(recall: the v argument of the callcc is a function that expects a continuation)

Same evaluation contexts E as before.

G. Castagna (CNRS) Cours de Programmation Avancée 253 / 593

254/593

Example of reductions

Ercallccpλk .1` throw k 0qs
Ñ Erpλk .1` throw k 0qpλx .Erxsqs
Ñ Er1` throw pλx .Erxsq 0s
Ñ pλx .Erxsq0
Ñ Er0s

Note how throw discards the current context Er1`r ss and reinstalls the

saved context E instead.

G. Castagna (CNRS) Cours de Programmation Avancée 254 / 593

255/593

Outline

13 The fuss about purity

14 A Refresher Course on Operational Semantics

15 Closure conversion

16 Defunctionalization

17 Exception passing style

18 State passing style

19 Continuations, generators, coroutines

20 Continuation passing style

G. Castagna (CNRS) Cours de Programmation Avancée 255 / 593

256/593

Conversion to continuation-passing style (CPS)

Goal: make explicit the handling of continuations.

Input: a call-by-value functional language with callcc.

Output: a call-by-value or call-by-name, pure functional language (no callcc).

Idea: every term a becomes a function λk that receives its continuation k as

an argument, computes the value v of a, and finishes by applying k to v .

Uses: compilation of callcc; semantics; programming with continuations in

Caml, Haskell, ...

G. Castagna (CNRS) Cours de Programmation Avancée 256 / 593

257/593

CPS conversion: Core constructs

JNK “ λk .kN

JxK “ λk .kx

Jλx .aK “ λk .kpλx .JaKq
Jlet x “ a in bK “ λk .JaKpλx .JbKkq

Ja bK “ λk .JaKpλx .JbKpλy .x y kqq

A function λx .a becomes a function of two arguments, x and the continuation k

that will receive the value of a.

G. Castagna (CNRS) Cours de Programmation Avancée 257 / 593

257/593

CPS conversion: Core constructs

JNK “ λk .kN

JxK “ λk .kx

Jλx .aK “ λk .kpλx .JaKq
Jlet x “ a in bK “ λk .JaKpλx .JbKkq

Ja bK “ λk .JaKpλx .JbKpλy .x y kqq

A function λx .a becomes a function of two arguments, x and the continuation k

that will receive the value of a.

In Ja bK, the variable x (which must not be free in b) will be bound to the value

returned by a and y to the value of b. As for the state passing conversion, x y

will return the translation of an expression, so a function that expects a

continuation, which is why we apply its result to k

G. Castagna (CNRS) Cours de Programmation Avancée 257 / 593

257/593

CPS conversion: Core constructs

JNK “ λk .kN

JxK “ λk .kx

Jλx .aK “ λk .kpλx .JaKq
Jlet x “ a in bK “ λk .JaKpλx .JbKkq

Ja bK “ λk .JaKpλx .JbKpλy .x y kqq

A function λx .a becomes a function of two arguments, x and the continuation k

that will receive the value of a.

In Ja bK, the variable x (which must not be free in b) will be bound to the value

returned by a and y to the value of b. As for the state passing conversion, x y

will return the translation of an expression, so a function that expects a

continuation, which is why we apply its result to k

Effect on types:

if a : τ then JaK : pJτKÑ answerq Ñ answer where

JbK “ pbÑ answerq Ñ answer for base types b

Jτ1 Ñ τ2K “ Jτ1KÑ pJτ2KÑ answerq Ñ answer

G. Castagna (CNRS) Cours de Programmation Avancée 257 / 593

258/593

CPS conversion: Continuation operators

Jcallcc aK “ λk .JaKk k

Jthrow a bK “ λk .JaKpλx .JbKpλy .x yqq

In callcc a, the function value returned by JaK receives the current

continuation k both as its argument (first occurrence of k) and as its

continuation (second occurrence of k).

In throw a b, we discard the current continuation k and apply directly the value

of a (which is a continuation captured by callcc) to the value of b (the former

being bound to x and the latter to y).

G. Castagna (CNRS) Cours de Programmation Avancée 258 / 593

259/593

Administrative reductions

The CPS translation J. . .K produces terms that are more verbose than those

one would naturally write by hand. For instance, in the case of an application of

a variable f to a variable x :

Jf xK“ λk .pλk1.k1f qpλy1.pλk2.k2xqpλy2.y1y2kqq

instead of the more natural λk .f x k . This clutter can be eliminated by

performing β reductions at transformation time to eliminate the “administrative

redexes” introduced by the translation. In particular, we have

pλk .kuqpλx .aq
adm
ÝÑ pλx .aqu

adm
ÝÑ arx{us

whenever u is a value or variable.

G. Castagna (CNRS) Cours de Programmation Avancée 259 / 593

260/593

Examples of CPS translation

Jf pf xqK
“ λk .fxpλy .f y kq

Jµ fact.λn.if n “ 0 then 1 else factpn´1q ˚nK
“ λk0.k0pµ fact.λn.λk .if n “ 0 then k 1 else factpn´1qpλv .kpv ˚nqqq

G. Castagna (CNRS) Cours de Programmation Avancée 260 / 593

260/593

Examples of CPS translation

Jf pf xqK
“ λk .fxpλy .f y kq

Jµ fact.λn.if n “ 0 then 1 else factpn´1q ˚nK
“ λk0.k0pµ fact.λn.λk .if n “ 0 then k 1 else factpn´1qpλv .kpv ˚nqqq

Notice that the factorial function has become tail-recursive

G. Castagna (CNRS) Cours de Programmation Avancée 260 / 593

261/593

Execution of CPS-converted programs

Execution of a program prog is achieved by applying its CPS conversion to the

initial continuation λx .x :

JprogKpλx .xq

Theorem (Soundness)

If aÑ˚ N, then JaKpλx .xq Ñ˚ N.

G. Castagna (CNRS) Cours de Programmation Avancée 261 / 593

262/593

CPS terms

The λ-terms produced by the CPS transformation have a very specific shape,

described by the following grammar:

atom ::“ x | N | λx .body | λx .λk .body CPS atom

body ::“ atom | atom1 atom2 | atom1 atom2 atom3 CPS body

JaK is an atom, and JaKpλx .xq is a body .

G. Castagna (CNRS) Cours de Programmation Avancée 262 / 593

263/593

Reduction of CPS terms

atom ::“ x | N | λv .body | λx .λk .body CPS atom

body ::“ atom | atom1 atom2 | atom1 atom2 atom3 CPS body

Note that all applications (unary or binary) are in tail-position and at

application-time, their arguments are closed atoms, that is, values.

G. Castagna (CNRS) Cours de Programmation Avancée 263 / 593

263/593

Reduction of CPS terms

atom ::“ x | N | λv .body | λx .λk .body CPS atom

body ::“ atom | atom1 atom2 | atom1 atom2 atom3 CPS body

Note that all applications (unary or binary) are in tail-position and at

application-time, their arguments are closed atoms, that is, values.

The following reduction rules suffice to evaluate CPS-converted programs:

pλx .λk .bodyqatom1 atom2 Ñ bodyrx{atom1,k{atom2s

pλx .bodyqatom Ñ bodyrx{atoms

These reductions are always applied at the top of the program—there is no

need for reduction under a context.

G. Castagna (CNRS) Cours de Programmation Avancée 263 / 593

263/593

Reduction of CPS terms

atom ::“ x | N | λv .body | λx .λk .body CPS atom

body ::“ atom | atom1 atom2 | atom1 atom2 atom3 CPS body

Note that all applications (unary or binary) are in tail-position and at

application-time, their arguments are closed atoms, that is, values.

The following reduction rules suffice to evaluate CPS-converted programs:

pλx .λk .bodyqatom1 atom2 Ñ bodyrx{atom1,k{atom2s

pλx .bodyqatom Ñ bodyrx{atoms

These reductions are always applied at the top of the program—there is no

need for reduction under a context.

CPS terms can be executed by a stackless abstract machine with three

registers, an environment and a code pointer.

We will see it in detail in the part on Abstract Machines.
See also [Compiling with continuations, A. Appel, Cambridge University Press, 1992].

G. Castagna (CNRS) Cours de Programmation Avancée 263 / 593

264/593

CPS conversion and reduction strategy

Theorem (Indifference (Plotkin 1975))

A closed CPS-converted program JaKpλx .xq evaluates in the same way in

call-by-name, in left-to-right call-by-value, and in right-to-left call-by-value.

G. Castagna (CNRS) Cours de Programmation Avancée 264 / 593

264/593

CPS conversion and reduction strategy

Theorem (Indifference (Plotkin 1975))

A closed CPS-converted program JaKpλx .xq evaluates in the same way in

call-by-name, in left-to-right call-by-value, and in right-to-left call-by-value.

CPS conversion encodes the reduction strategy in the structure of the

converted terms. The one we gave corresponds to left-to-right call-by-value.

Ja bK “ λk .JaKpλxa.JbKpλxb.xa xb kqq

Right-to-left call-by-value is obtained by taking

JabK “ λk .JbKpλxb.JaKpλxa.xa xb kqq

while call-by-name is achieved by taking

JxK “ λk .x k

JabK “ λk .JaKpλxa.xaJbKkq

G. Castagna (CNRS) Cours de Programmation Avancée 264 / 593

265/593

Control operators and classical logic

Control operators such as callcc extend the Curry-Howard correspondence

from intuitionistic logic to classical logic.

G. Castagna (CNRS) Cours de Programmation Avancée 265 / 593

265/593

Control operators and classical logic

Control operators such as callcc extend the Curry-Howard correspondence

from intuitionistic logic to classical logic.

The Pierce’s law ppP Ñ Qq Ñ Pq Ñ P is not derivable in the intuitionistic logic

while it is true in classical logic (in particular if we take Q ”K then it becomes

pp P Ñ Pq Ñ P: if from P we can deduce P, then P must be true).

In terms of Curry-Howard it means that no term of the simply-typed λ-calculus

has type ppP Ñ Qq Ñ Pq Ñ P.

G. Castagna (CNRS) Cours de Programmation Avancée 265 / 593

265/593

Control operators and classical logic

Control operators such as callcc extend the Curry-Howard correspondence

from intuitionistic logic to classical logic.

The Pierce’s law ppP Ñ Qq Ñ Pq Ñ P is not derivable in the intuitionistic logic

while it is true in classical logic (in particular if we take Q ”K then it becomes

pp P Ñ Pq Ñ P: if from P we can deduce P, then P must be true).

In terms of Curry-Howard it means that no term of the simply-typed λ-calculus

has type ppP Ñ Qq Ñ Pq Ñ P.

But notice that

callcc : ppαÑ βq Ñ αq Ñ α

callcc takes as argument a function f of type ppαÑ βq Ñ αq which can

either return a value of type α directly or apply an argument of type α to the

continuation of type (αÑ β). Since the existing context is deleted when the

continuation is applied, the type β (which is the type of the result of the whole

program) is never used and may be taken to be K.

G. Castagna (CNRS) Cours de Programmation Avancée 265 / 593

266/593

callcc is a proof for Pierce’s law. It extends the Curry-Howard

correspondence from intuitionistic logic to classical logic

G. Castagna (CNRS) Cours de Programmation Avancée 266 / 593

266/593

callcc is a proof for Pierce’s law. It extends the Curry-Howard

correspondence from intuitionistic logic to classical logic

It is therefore possible to “prove” the excluded middle axiom @P.P_ P.

Modulo Curry-Howard, this axiom corresponds to the type

@P.P`pP Ñ Falseq, where False is an empty type and A`B is a datatype

with two constructors

Left : AÑ A`B and Right : B Ñ A`B.

The following term “implements” (ie, it proves) excluded middle:

callccpλk .Rightpλp.throw kpLeftppqqqq

G. Castagna (CNRS) Cours de Programmation Avancée 266 / 593

266/593

callcc is a proof for Pierce’s law. It extends the Curry-Howard

correspondence from intuitionistic logic to classical logic

It is therefore possible to “prove” the excluded middle axiom @P.P_ P.

Modulo Curry-Howard, this axiom corresponds to the type

@P.P`pP Ñ Falseq, where False is an empty type and A`B is a datatype

with two constructors

Left : AÑ A`B and Right : B Ñ A`B.

The following term “implements” (ie, it proves) excluded middle:

callccpλk .Rightpλp.throw kpLeftppqqqq

Exercise

Check that the term above proves the excluded middle

G. Castagna (CNRS) Cours de Programmation Avancée 266 / 593

266/593

callcc is a proof for Pierce’s law. It extends the Curry-Howard

correspondence from intuitionistic logic to classical logic

It is therefore possible to “prove” the excluded middle axiom @P.P_ P.

Modulo Curry-Howard, this axiom corresponds to the type

@P.P`pP Ñ Falseq, where False is an empty type and A`B is a datatype

with two constructors

Left : AÑ A`B and Right : B Ñ A`B.

The following term “implements” (ie, it proves) excluded middle:

callccpλk .Rightpλp.throw kpLeftppqqqq

Exercise

Check that the term above proves the excluded middle

What about the CPS translation?

G. Castagna (CNRS) Cours de Programmation Avancée 266 / 593

267/593

CPS and double negation

Let A“ pAÑKq where K represent “false”. In intuitionistic logic

$ AÑ A

whose proof is λx :A.λf : A.fx .

G. Castagna (CNRS) Cours de Programmation Avancée 267 / 593

267/593

CPS and double negation

Let A“ pAÑKq where K represent “false”. In intuitionistic logic

$ AÑ A

whose proof is λx :A.λf : A.fx . On the other hand:

& AÑ A

[this is the “reductio ad absurdum”: if A implies K, then A; that is, p AÑKqÑ A]

It is not possible to define a closed λ-term of the type above.

G. Castagna (CNRS) Cours de Programmation Avancée 267 / 593

267/593

CPS and double negation

Let A“ pAÑKq where K represent “false”. In intuitionistic logic

$ AÑ A

whose proof is λx :A.λf : A.fx . On the other hand:

& AÑ A

[this is the “reductio ad absurdum”: if A implies K, then A; that is, p AÑKqÑ A]

It is not possible to define a closed λ-term of the type above.

However:

$ AÑ A

whose proof is: λf : A.λx : A.f pλg : A.gxq.
This suggests a double negation translation from classical to intuitionistic logic:

rrφss “ φ if φ is atomic (ie, a basic type)

rrAÑ Bss “ rrAss Ñ rrBss

G. Castagna (CNRS) Cours de Programmation Avancée 267 / 593

268/593

CPS and double negation

Theorem (Glivenko 1929)

$classic A iff $intuitionistic rrAss

G. Castagna (CNRS) Cours de Programmation Avancée 268 / 593

268/593

CPS and double negation

Theorem (Glivenko 1929)

$classic A iff $intuitionistic rrAss

In terms of the Curry Howard isomorphism

$classic M : A iff $intuitionistic rrMss : rrAss

where rrMss is (essentially) the CPS translation of M.

G. Castagna (CNRS) Cours de Programmation Avancée 268 / 593

268/593

CPS and double negation

Theorem (Glivenko 1929)

$classic A iff $intuitionistic rrAss

In terms of the Curry Howard isomorphism

$classic M : A iff $intuitionistic rrMss : rrAss

where rrMss is (essentially) the CPS translation of M.

So the CPS translation extends the Curry-Howard isomorphism to the “double

negation encoding” of the classical propositional logic

See A Formulæ-as-Types Notion of Control, T. Griffin, Symp. Principles of

Programming Languages 1990.

G. Castagna (CNRS) Cours de Programmation Avancée 268 / 593

269/593

References

A. Appel. Programming with continuations.

Slides of the course Functional Programming Languages by Xavier Leroy

(from which the slides of this and the following part heavily borrowed)

available on the web:

https://xavierleroy.org/mpri/2-4/transformations.2up.pdf

G. Castagna (CNRS) Cours de Programmation Avancée 269 / 593

	Program transformations
	The fuss about purity
	A Refresher Course on Operational Semantics
	Closure conversion
	Defunctionalization
	Exception passing style
	State passing style
	Continuations, generators, coroutines
	Continuation passing style

