
403/593

Subtyping

G. Castagna (CNRS) Cours de Programmation Avancée 403 / 593

404/593

Outline

35 Simple Types

36 Recursive Types

37 Bibliography

G. Castagna (CNRS) Cours de Programmation Avancée 404 / 593

405/593

Outline

35 Simple Types

36 Recursive Types

37 Bibliography

G. Castagna (CNRS) Cours de Programmation Avancée 405 / 593

406/593

Simply Typed λ-calculus

Syntax

Types T ::“ T Ñ T function types

Bool | Int | Real | ... basic types

Terms a,b ::“ true | false | 1 | 2 | ... constants

| x variable

| ab application

| λx :T .a abstraction

Reduction

Contexts Cr s ::“ rs | ar s | r sa | λx :T .r s

BETA

pλx :T .aqb ÝÑ arb{xs

CONTEXT

a ÝÑ b

Cras ÝÑ Crbs

G. Castagna (CNRS) Cours de Programmation Avancée 406 / 593

407/593

Type system

Typing

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

(plus the typing rules for constants).

G. Castagna (CNRS) Cours de Programmation Avancée 407 / 593

407/593

Type system

Typing

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

(plus the typing rules for constants).

Theorem (Subject Reduction)

If Γ $ a : T and a ÝÑ˚ b, then Γ $ b : T .

G. Castagna (CNRS) Cours de Programmation Avancée 407 / 593

407/593

Type system

Typing

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

(plus the typing rules for constants).

Theorem (Subject Reduction)

If Γ $ a : T and a ÝÑ˚ b, then Γ $ b : T .

We will essentially focus on the subject reduction property (a.k.a. type

preservation), though well-typed programs also satisfy progress:

Theorem (Progress)

If ∅ $ a : T and a ­ÝÑ, then a is a value

where a value is either a constant or a lambda abstraction

v ::“ λx :T .a | true | false | 1 | 2 | ...
G. Castagna (CNRS) Cours de Programmation Avancée 407 / 593

408/593

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property.

As such it describes a deterministic algorithm.

G. Castagna (CNRS) Cours de Programmation Avancée 408 / 593

408/593

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property.

As such it describes a deterministic algorithm.

let rec typecheck gamma = function

| x -> gamma(x) (* Var rule *)

| λx :T .a -> T Ñ (typecheck (gamma, x : T) a) (* Intro rule *)

| ab -> let T1ÑT2 = typecheck gamma a in (* Elim rule *)

let T3 = typecheck gamma b in

if T1==T3 then T2 else fail

G. Castagna (CNRS) Cours de Programmation Avancée 408 / 593

408/593

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property.

As such it describes a deterministic algorithm.

let rec typecheck gamma = function

| x -> gamma(x) (* Var rule *)

| λx :T .a -> T Ñ (typecheck (gamma, x : T) a) (* Intro rule *)

| ab -> let T1ÑT2 = typecheck gamma a in (* Elim rule *)

let T3 = typecheck gamma b in

if T1==T3 then T2 else fail

Exercise. Write the typecheck function for the following definitions:

type stype = Int | Bool | Arrow of stype * stype

type term =
Num of int | BVal of bool | Var of string

| Lam of string * stype * term | App of term * term

exception Error

Use List.assoc for environments.
G. Castagna (CNRS) Cours de Programmation Avancée 408 / 593

409/593

Subtyping

The rule for application requires the argument of the function to be exactly of

the same type as the domain of the function:

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

So, for instance, we cannot:

G. Castagna (CNRS) Cours de Programmation Avancée 409 / 593

409/593

Subtyping

The rule for application requires the argument of the function to be exactly of

the same type as the domain of the function:

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

So, for instance, we cannot:

Apply a function of type Int Ñ Int to an argument of type Odd even

though every odd number is an integer number, too.

G. Castagna (CNRS) Cours de Programmation Avancée 409 / 593

409/593

Subtyping

The rule for application requires the argument of the function to be exactly of

the same type as the domain of the function:

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

So, for instance, we cannot:

Apply a function of type Int Ñ Int to an argument of type Odd even

though every odd number is an integer number, too.

If we have records, apply the function λx :tℓ : Intu.p3 ` x .ℓq to a record of

type tℓ : Int, ℓ1 : Boolu

G. Castagna (CNRS) Cours de Programmation Avancée 409 / 593

409/593

Subtyping

The rule for application requires the argument of the function to be exactly of

the same type as the domain of the function:

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

So, for instance, we cannot:

Apply a function of type Int Ñ Int to an argument of type Odd even

though every odd number is an integer number, too.

If we have records, apply the function λx :tℓ : Intu.p3 ` x .ℓq to a record of

type tℓ : Int, ℓ1 : Boolu

If we are in OOP, send a message defined for objects of the class

Persons to an instance of the subclass Students.

G. Castagna (CNRS) Cours de Programmation Avancée 409 / 593

409/593

Subtyping

The rule for application requires the argument of the function to be exactly of

the same type as the domain of the function:

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

So, for instance, we cannot:

Apply a function of type Int Ñ Int to an argument of type Odd even

though every odd number is an integer number, too.

If we have records, apply the function λx :tℓ : Intu.p3 ` x .ℓq to a record of

type tℓ : Int, ℓ1 : Boolu

If we are in OOP, send a message defined for objects of the class

Persons to an instance of the subclass Students.

Subtyping polymorphism

We need a kind of polymorphism different from the ML one (parametric

polymorphism).

G. Castagna (CNRS) Cours de Programmation Avancée 409 / 593

410/593

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ď on

types: ď Ă Types ˆ Types (some literature uses the notation <:)

G. Castagna (CNRS) Cours de Programmation Avancée 410 / 593

410/593

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ď on

types: ď Ă Types ˆ Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

G. Castagna (CNRS) Cours de Programmation Avancée 410 / 593

410/593

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ď on

types: ď Ă Types ˆ Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ď T , then every value of type S is also of type T .

For instance an odd number is also an integer, a student is also a

person.

Sometimes called a “is_a” relation.

G. Castagna (CNRS) Cours de Programmation Avancée 410 / 593

410/593

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ď on

types: ď Ă Types ˆ Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ď T , then every value of type S is also of type T .

For instance an odd number is also an integer, a student is also a

person.

Sometimes called a “is_a” relation.

Substitutability: If S ď T , then every value of type S can be safely used

where a value of type T is expected.

Where “safely” means, without disrupting type preservation and

progress.

G. Castagna (CNRS) Cours de Programmation Avancée 410 / 593

410/593

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ď on

types: ď Ă Types ˆ Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ď T , then every value of type S is also of type T .

For instance an odd number is also an integer, a student is also a

person.

Sometimes called a “is_a” relation.

Substitutability: If S ď T , then every value of type S can be safely used

where a value of type T is expected.

Where “safely” means, without disrupting type preservation and

progress.

We’ll see how each interpretation has a formal counterpart.

G. Castagna (CNRS) Cours de Programmation Avancée 410 / 593

411/593

Subtyping for simply typed λ-calculus

We suppose to have a predefined preorder B Ă Basic ˆ Basic for basic

types (given by the language designer).

For instance take the reflexive and transitive closure of

tpOdd,Intq,pEven,Intq,pInt,Realqu

G. Castagna (CNRS) Cours de Programmation Avancée 411 / 593

411/593

Subtyping for simply typed λ-calculus

We suppose to have a predefined preorder B Ă Basic ˆ Basic for basic

types (given by the language designer).

For instance take the reflexive and transitive closure of

tpOdd,Intq,pEven,Intq,pInt,Realqu

To extend it to function types, we resort to the sustitutability interpretation.

We will try to deduce when we can safely replace a function of some type

by a term of a different type

G. Castagna (CNRS) Cours de Programmation Avancée 411 / 593

412/593

Subtyping of arrows: intuition

Problem

Determine for which type S we have S ď T1 Ñ T2

Let g : S and f : T1 Ñ T2. Let us follow the substitutability interpretation:

G. Castagna (CNRS) Cours de Programmation Avancée 412 / 593

412/593

Subtyping of arrows: intuition

Problem

Determine for which type S we have S ď T1 Ñ T2

Let g : S and f : T1 Ñ T2. Let us follow the substitutability interpretation:

1 If a : T1, then we can apply f to a. If S ď T1 Ñ T2, then we can apply g to

a, as well.

ñ g is a function, therefore S “ S1 Ñ S2

G. Castagna (CNRS) Cours de Programmation Avancée 412 / 593

412/593

Subtyping of arrows: intuition

Problem

Determine for which type S we have S ď T1 Ñ T2

Let g : S and f : T1 Ñ T2. Let us follow the substitutability interpretation:

1 If a : T1, then we can apply f to a. If S ď T1 Ñ T2, then we can apply g to

a, as well.

ñ g is a function, therefore S “ S1 Ñ S2

2 If a : T1, then f paq is well typed. If S1 Ñ S2 ď T1 Ñ T2, then also gpaq is

well-typed. g expects arguments of type S1 but a is of type T1

ñ we can safely use T1 where S1 is expected, ie T1 ď S1

G. Castagna (CNRS) Cours de Programmation Avancée 412 / 593

412/593

Subtyping of arrows: intuition

Problem

Determine for which type S we have S ď T1 Ñ T2

Let g : S and f : T1 Ñ T2. Let us follow the substitutability interpretation:

1 If a : T1, then we can apply f to a. If S ď T1 Ñ T2, then we can apply g to

a, as well.

ñ g is a function, therefore S “ S1 Ñ S2

2 If a : T1, then f paq is well typed. If S1 Ñ S2 ď T1 Ñ T2, then also gpaq is

well-typed. g expects arguments of type S1 but a is of type T1

ñ we can safely use T1 where S1 is expected, ie T1 ď S1

3 f paq : T2, but since g returns results in S2, then gpaq : S2. If I use g where

f is expected, then it must be safe to use S2 results where T2 results are

expected

ñ S2 ď T2 must hold.

G. Castagna (CNRS) Cours de Programmation Avancée 412 / 593

412/593

Subtyping of arrows: intuition

Problem

Determine for which type S we have S ď T1 Ñ T2

Let g : S and f : T1 Ñ T2. Let us follow the substitutability interpretation:

1 If a : T1, then we can apply f to a. If S ď T1 Ñ T2, then we can apply g to

a, as well.

ñ g is a function, therefore S “ S1 Ñ S2

2 If a : T1, then f paq is well typed. If S1 Ñ S2 ď T1 Ñ T2, then also gpaq is

well-typed. g expects arguments of type S1 but a is of type T1

ñ we can safely use T1 where S1 is expected, ie T1 ď S1

3 f paq : T2, but since g returns results in S2, then gpaq : S2. If I use g where

f is expected, then it must be safe to use S2 results where T2 results are

expected

ñ S2 ď T2 must hold.

Solution

S1 Ñ S2 ď T1 Ñ T2 ô T1 ď S1 ^ S2 ď T2

G. Castagna (CNRS) Cours de Programmation Avancée 412 / 593

413/593

Covariance and contravariance

S1 Ñ S2 ď T1 Ñ T2 ô T1 ď S1 ^ S2 ď T2

Notice the different orientation of containment on domains and co-domains.

We say that the type constructor Ñ is

covariant on codomains, since it preserves the direction of the relation;

contravariant on domains, since it reverses the direction of the relation.

G. Castagna (CNRS) Cours de Programmation Avancée 413 / 593

413/593

Covariance and contravariance

S1 Ñ S2 ď T1 Ñ T2 ô T1 ď S1 ^ S2 ď T2

Notice the different orientation of containment on domains and co-domains.

We say that the type constructor Ñ is

covariant on codomains, since it preserves the direction of the relation;

contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by

the substitutability interpretation. For instance a function that maps integers to

integers ...

G. Castagna (CNRS) Cours de Programmation Avancée 413 / 593

413/593

Covariance and contravariance

S1 Ñ S2 ď T1 Ñ T2 ô T1 ď S1 ^ S2 ď T2

Notice the different orientation of containment on domains and co-domains.

We say that the type constructor Ñ is

covariant on codomains, since it preserves the direction of the relation;

contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by

the substitutability interpretation. For instance a function that maps integers to

integers ...

is also a function that maps integers to reals: it returns results in Int so

they will be also in Real.

IntÑIntď IntÑReal (covariance of the codomains)

G. Castagna (CNRS) Cours de Programmation Avancée 413 / 593

413/593

Covariance and contravariance

S1 Ñ S2 ď T1 Ñ T2 ô T1 ď S1 ^ S2 ď T2

Notice the different orientation of containment on domains and co-domains.

We say that the type constructor Ñ is

covariant on codomains, since it preserves the direction of the relation;

contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by

the substitutability interpretation. For instance a function that maps integers to

integers ...

is also a function that maps integers to reals: it returns results in Int so

they will be also in Real.

IntÑIntď IntÑReal (covariance of the codomains)

is also a function that maps odds to integers: when fed with integers it

returns integers, so will do the same when fed with odd numbers.

IntÑIntď OddÑInt (contravariance of the codomains)
G. Castagna (CNRS) Cours de Programmation Avancée 413 / 593

414/593

Subtyping deduction system

BASIC
pB1,B2q P B

B1 ď B2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

REFL
T ď T

TRANS
T1 ď T2 T2 ď T3

T1 ď T3

G. Castagna (CNRS) Cours de Programmation Avancée 414 / 593

414/593

Subtyping deduction system

BASIC
pB1,B2q P B

B1 ď B2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

REFL
T ď T

TRANS
T1 ď T2 T2 ď T3

T1 ď T3

This system is neither syntax directed nor satisfies the subformula property

G. Castagna (CNRS) Cours de Programmation Avancée 414 / 593

414/593

Subtyping deduction system

BASIC
pB1,B2q P B

B1 ď B2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

REFL
T ď T

TRANS
T1 ď T2 T2 ď T3

T1 ď T3

This system is neither syntax directed nor satisfies the subformula property

How do we define an algorithm to check the subtyping relation?

G. Castagna (CNRS) Cours de Programmation Avancée 414 / 593

414/593

Subtyping deduction system

BASIC
pB1,B2q P B

B1 ď B2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

How do we define an algorithm to check the subtyping relation?

G. Castagna (CNRS) Cours de Programmation Avancée 414 / 593

414/593

Subtyping deduction system

BASIC
pB1,B2q P B

B1 ď B2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

These rules describe a deterministic and terminating algorithm (we say that the

system is algorithmic).

How do we define an algorithm to check the subtyping relation?

G. Castagna (CNRS) Cours de Programmation Avancée 414 / 593

414/593

Subtyping deduction system

BASIC
pB1,B2q P B

B1 ď B2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

These rules describe a deterministic and terminating algorithm (we say that the

system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)

In the system composed just by the rules Arrow and Basic:

1) T ď T is provable for all types T

2) If T1 ď T2 and T2 ď T3 are provable, so is T1 ď T3.

The rules Refl and Trans are admissible
G. Castagna (CNRS) Cours de Programmation Avancée 414 / 593

415/593

Type system

We defined the subtyping relation and we know how to decide it. How do we

use it for typing our programs?

G. Castagna (CNRS) Cours de Programmation Avancée 415 / 593

415/593

Type system

We defined the subtyping relation and we know how to decide it. How do we

use it for typing our programs?

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

G. Castagna (CNRS) Cours de Programmation Avancée 415 / 593

415/593

Type system

We defined the subtyping relation and we know how to decide it. How do we

use it for typing our programs?

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

G. Castagna (CNRS) Cours de Programmation Avancée 415 / 593

415/593

Type system

We defined the subtyping relation and we know how to decide it. How do we

use it for typing our programs?

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

This corresponds to the containment relation:

if S ď T and a is of type S then a is also of type T

G. Castagna (CNRS) Cours de Programmation Avancée 415 / 593

415/593

Type system

We defined the subtyping relation and we know how to decide it. How do we

use it for typing our programs?

VAR

Γ $ x : Γpxq

ÑINTRO

Γ,x : S $ a : T

Γ $ λx :S.a : S Ñ T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

This corresponds to the containment relation:

if S ď T and a is of type S then a is also of type T

Subject reduction: If Γ $ a : T and a ÝÑ˚ b, then Γ $ b : T .

Progress property: If ∅ $ a : T and a ­ÝÑ, then a is a value

G. Castagna (CNRS) Cours de Programmation Avancée 415 / 593

416/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : S Ñ T

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

G. Castagna (CNRS) Cours de Programmation Avancée 416 / 593

416/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : S Ñ T

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have

to apply subsumption which T shall we choose?

G. Castagna (CNRS) Cours de Programmation Avancée 416 / 593

416/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : S Ñ T

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have

to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

G. Castagna (CNRS) Cours de Programmation Avancée 416 / 593

416/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : S Ñ T

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

ÑELIM

Γ $ a : S Ñ T Γ $ b : S

Γ $ ab : T

SUBSUMPTION

Γ $ a : S S ď T

Γ $ a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have

to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

G. Castagna (CNRS) Cours de Programmation Avancée 416 / 593

417/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : SÑT

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:

program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an

expression of a subtype U where a supertype S is expected

(note “use” = elimination rule).

G. Castagna (CNRS) Cours de Programmation Avancée 417 / 593

417/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : SÑT

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:

program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an

expression of a subtype U where a supertype S is expected

(note “use” = elimination rule).

How do we relate the two systems?

G. Castagna (CNRS) Cours de Programmation Avancée 417 / 593

417/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : SÑT

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:

program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an

expression of a subtype U where a supertype S is expected

(note “use” = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove

the same judgements. Here it is no longer true. For instance:

∅ $ λx :Int.x : Odd Ñ Real but ∅ ­$A λx :Int.x : Odd Ñ Real.

G. Castagna (CNRS) Cours de Programmation Avancée 417 / 593

417/593

Typing algorithm

VAR

Γ $A x : Γpxq

ÑINTRO

Γ,x : S $A a : T

Γ $A λx :S.a : SÑT

ÑELIMď

Γ $A a : SÑT Γ $A b : U UďS

Γ $A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:

program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an

expression of a subtype U where a supertype S is expected

(note “use” = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove

the same judgements. Here it is no longer true. For instance:

∅ $ λx :Int.x : Odd Ñ Real but ∅ ­$A λx :Int.x : Odd Ñ Real.

This is expected: Algorithm = one type returned for each typable term.

G. Castagna (CNRS) Cours de Programmation Avancée 417 / 593

418/593

Soundness and completeness of the typing algorithm

a is typable by $ ô a is typable by $A

ð = soundness

ñ = completeness

G. Castagna (CNRS) Cours de Programmation Avancée 418 / 593

418/593

Soundness and completeness of the typing algorithm

a is typable by $ ô a is typable by $A

ð = soundness

ñ = completeness

Theorem (Soundness)

If Γ $A a : T , then Γ $ a : T

Theorem (Completeness)

If Γ $ a : T , then Γ $A a : S with S ď T

G. Castagna (CNRS) Cours de Programmation Avancée 418 / 593

419/593

Minimum type and soundness

Corollary (Minimum type)

If Γ $A a : T then T “ mintS | Γ $ a : Su

Proof. Let S “ tS | Γ $ a : Su. Soundness ensures that S is not empty.

Completeness states that T is a lower bound of S . Minimality follows by using

soundness once more.

G. Castagna (CNRS) Cours de Programmation Avancée 419 / 593

419/593

Minimum type and soundness

Corollary (Minimum type)

If Γ $A a : T then T “ mintS | Γ $ a : Su

Proof. Let S “ tS | Γ $ a : Su. Soundness ensures that S is not empty.

Completeness states that T is a lower bound of S . Minimality follows by using

soundness once more.

The corollary above explains that the typing algorithm works with the minimum

types of the terms. It keeps track of the best type information available

G. Castagna (CNRS) Cours de Programmation Avancée 419 / 593

419/593

Minimum type and soundness

Corollary (Minimum type)

If Γ $A a : T then T “ mintS | Γ $ a : Su

Proof. Let S “ tS | Γ $ a : Su. Soundness ensures that S is not empty.

Completeness states that T is a lower bound of S . Minimality follows by using

soundness once more.

The corollary above explains that the typing algorithm works with the minimum

types of the terms. It keeps track of the best type information available

Theorem (Algorithmic subject reduction)

If Γ $A a : T and a ÝÑ˚ b, then Γ $A b : S with S ď T .

The theorem above explains that the computation reduces the minimum type of

a program. As such it increases the type information about it.

G. Castagna (CNRS) Cours de Programmation Avancée 419 / 593

420/593

Summary for simply-typed λ-calculs + ď

The containment interpretation of the subtyping relation corresponds to

the “logical” view of the type system embodied by subsumption.

The substitutability interpretation of the subtyping relation corresponds to

the “algorithmic” view of the type system.

G. Castagna (CNRS) Cours de Programmation Avancée 420 / 593

420/593

Summary for simply-typed λ-calculs + ď

The containment interpretation of the subtyping relation corresponds to

the “logical” view of the type system embodied by subsumption.

The substitutability interpretation of the subtyping relation corresponds to

the “algorithmic” view of the type system.

To define the type system one usually starts from the “logical” system,

which is simpler since subtyping is concentrated in the subsumption rule

To implement the type system one passes to the substitutability view.

Subsumption is eliminated and the check of the subtyping relation is

distributed in the places where values are used/consumed. This in

general corresponds to embed subtype checking into elimination rules.

G. Castagna (CNRS) Cours de Programmation Avancée 420 / 593

420/593

Summary for simply-typed λ-calculs + ď

The containment interpretation of the subtyping relation corresponds to

the “logical” view of the type system embodied by subsumption.

The substitutability interpretation of the subtyping relation corresponds to

the “algorithmic” view of the type system.

To define the type system one usually starts from the “logical” system,

which is simpler since subtyping is concentrated in the subsumption rule

To implement the type system one passes to the substitutability view.

Subsumption is eliminated and the check of the subtyping relation is

distributed in the places where values are used/consumed. This in

general corresponds to embed subtype checking into elimination rules.

The obtained algorithm works on the minimum types of the logical system

Computation reduces the (algorithmic) type thus increasing type

information (the result of a computation represents the best possible type

information: it is the singleton type containing the result).

The last point makes dynamic dispatch (aka, dynamic binding)

meaningful.

G. Castagna (CNRS) Cours de Programmation Avancée 420 / 593

421/593

Products I

Syntax

Types T ::“ ... | T ˆ T product types

Terms a,b ::“ ...

| pa,aq pair

| πipaq pi“1,2q projection

Reduction

πippa1,a2qq ÝÑ ai pi“1,2q

Typing

ˆINTRO

Γ $ a1 : T1 Γ $ a2 : T2

Γ $ pa1,a2q : T1 ˆ T2

ˆELIMi

Γ $ a : T1 ˆ T2

Γ $ πipaq : Ti

pi“1,2q

G. Castagna (CNRS) Cours de Programmation Avancée 421 / 593

422/593

Products II

Subtyping
PROD

S1 ď T1 S2 ď T2

S1 ˆ S2 ď T1 ˆ T2

Exercise: Check whether the above rule is compatible with the containement

and/or the substitutability interpretation of the subtyping relation.

The subtyping rule above is also algorithmic. Similarly, for the typing rules there

is no need to embed subtyping in the elimination rules since πi is an operator

that works on all products, not a particular one (cf. with the application of a

function, which requires a particular domain).

Of course subject reduction and progress still hold.

Exercise: Define values and reduction contexts for this extension.

G. Castagna (CNRS) Cours de Programmation Avancée 422 / 593

423/593

Records

Up to now subtyping rules « lift » the subtyping relation B on basic types to

constructed types. But if B is the identity relation, so is the whole subtyping

relation. Record subtyping is non-trivial even when B is the identity relation.

Syntax

Types T ::“ ... | tℓ : T , ..., ℓ : T u record types

Terms a,b ::“ ...

| tℓ “ a, ..., ℓ “ au record

| a.ℓ field selection

Reduction

t..., ℓ “ a, ...u.ℓ ÝÑ a

Typing

{}INTRO

Γ $ a1 : T1 ... Γ $ an : Tn

Γ $ tℓ1 “ a1, ..., ℓn “ anu : tℓ1 : T1, ..., ℓn : Tnu

{}ELIM

Γ $ a : t..., ℓ : T , ...u

Γ $ a.ℓ : T

G. Castagna (CNRS) Cours de Programmation Avancée 423 / 593

424/593

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A

record is “used” by selecting one of its labels.

G. Castagna (CNRS) Cours de Programmation Avancée 424 / 593

424/593

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A

record is “used” by selecting one of its labels.

We can replace some record by a record of different type if in the latter we can

select the same fields as in the former and their contents can substitute the

respective contents in the former.

Subtyping

RECORD

S1 ď T1 ... Sn ď Tn

tℓ1:S1, ..., ℓn:Sn, ..., ℓn`k :Sn`k u ď tℓ1:T1, ..., ℓn:Tnu

Exercise. Which are the algorithmic typing rules?

G. Castagna (CNRS) Cours de Programmation Avancée 424 / 593

425/593

Outline

35 Simple Types

36 Recursive Types

37 Bibliography

G. Castagna (CNRS) Cours de Programmation Avancée 425 / 593

426/593

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:

X « pIntˆ Xq _Nil

also written as µX .ppIntˆ Xq _Nilq

Two different approaches according to whether « is interpreted as an

isomorphism or an equality:

Iso-recursive types: µX .ppIntˆ Xq _Nilq is considered isomorphic to its

one-step unfolding pIntˆ µX .ppIntˆ Xq _Nilqq _Nilq. Terms include

a pair of built-in coercion functions for each recursive type µX .T :

unfold :µX .T Ñ T rµX .T{X s fold :T rµX .T {X s Ñ µX .T

Equi-recursive types: µX .ppIntˆ Xq _Nilq is considered equal to its

one-step unfolding pIntˆ µX .ppIntˆ Xq _Nilqq _Nilq. The two types

are completely interchangeable. No support needed from terms.

G. Castagna (CNRS) Cours de Programmation Avancée 426 / 593

426/593

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:

X « pIntˆ Xq _Nil

also written as µX .ppIntˆ Xq _Nilq

Two different approaches according to whether « is interpreted as an

isomorphism or an equality:

Iso-recursive types: µX .ppIntˆ Xq _Nilq is considered isomorphic to its

one-step unfolding pIntˆ µX .ppIntˆ Xq _Nilqq _Nilq. Terms include

a pair of built-in coercion functions for each recursive type µX .T :

unfold :µX .T Ñ T rµX .T{X s fold :T rµX .T {X s Ñ µX .T

Equi-recursive types: µX .ppIntˆ Xq _Nilq is considered equal to its

one-step unfolding pIntˆ µX .ppIntˆ Xq _Nilqq _Nilq. The two types

are completely interchangeable. No support needed from terms.

Subtyping for recursive types generalizes the equi-recursive approach.

The « relation corresponds to subtyping in both directions:

µX .T ď T rµX .T {X s T rµX .T {X s ď µX .T

G. Castagna (CNRS) Cours de Programmation Avancée 426 / 593

427/593

Recursive types are weird

To add (equi-)recursive types you do not need to add any new term

G. Castagna (CNRS) Cours de Programmation Avancée 427 / 593

427/593

Recursive types are weird

To add (equi-)recursive types you do not need to add any new term

You don’t even need to have recursion on terms:

µX .ppIntˆ Xq _Nilq

interpret the type above as the finite lists of integers.

Then µX .pIntˆ Xq is the empty type.

G. Castagna (CNRS) Cours de Programmation Avancée 427 / 593

427/593

Recursive types are weird

To add (equi-)recursive types you do not need to add any new term

You don’t even need to have recursion on terms:

µX .ppIntˆ Xq _Nilq

interpret the type above as the finite lists of integers.

Then µX .pIntˆ Xq is the empty type.

Actually if you have recursive terms and allow infinite values you can

easily jeopardize decidability of the subtyping relation (which resorts to

checking type emptiness)

This contrasts with their intuition which looks simple: we always informally

applied a rule such as:

A,X ď Y $ S ď T

A $ µX .S ď µY .T

G. Castagna (CNRS) Cours de Programmation Avancée 427 / 593

428/593

Subtyping recursive types

Syntax

Types T ::“ Any top type

| T Ñ T function types

| T ˆ T product types

| X type variables

| µX .T recursive types

where T is contractive, that is (two equivalent definitions):

1 T is contractive iff for every subexpression µX .µX1....µXn.S it holds

S ­“ X .

2 T is contractive iff every type variable X occurring in it is separated from

its binder by a Ñ or a ˆ.

G. Castagna (CNRS) Cours de Programmation Avancée 428 / 593

429/593

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

TOP
T ď Any

PROD
S1 ď T1 S2 ď T2

S1 ˆ S2 ď T1 ˆ T2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

UNFOLD LEFT
SrµX .S{X s ď T

µX .S ď T
UNFOLD RIGHT

S ď T rµX .T {X s

S ď µX .T

G. Castagna (CNRS) Cours de Programmation Avancée 429 / 593

429/593

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

TOP
T ď Any

PROD
S1 ď T1 S2 ď T2

S1 ˆ S2 ď T1 ˆ T2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

UNFOLD LEFT
SrµX .S{X s ď T

µX .S ď T
UNFOLD RIGHT

S ď T rµX .T {X s

S ď µX .T

Coinductive definition

1 Why coinduction?

2 Why no reflexivity/transitivity rules?

3 Why no rule to compare two µ-types?

G. Castagna (CNRS) Cours de Programmation Avancée 429 / 593

429/593

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

TOP
T ď Any

PROD
S1 ď T1 S2 ď T2

S1 ˆ S2 ď T1 ˆ T2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

UNFOLD LEFT
SrµX .S{X s ď T

µX .S ď T
UNFOLD RIGHT

S ď T rµX .T {X s

S ď µX .T

Coinductive definition

1 Why coinduction?

2 Why no reflexivity/transitivity rules?

3 Why no rule to compare two µ-types?

Short answers (more detailed answers to come):

1 Because we compare infinite expansions
2 Because it would be unsound
3 Useless since obtained by coinduction and unfold

G. Castagna (CNRS) Cours de Programmation Avancée 429 / 593

430/593

Example of coinductive derivation

ARROW
Even ď Int µX .Int Ñ X ď µY .Even Ñ Y

UNFOLD RIGHT
Int Ñ pµX .Int Ñ Xq ď Even Ñ pµY .Even Ñ Y q

UNFOLD LEFT
Int Ñ pµX .Int Ñ Xq ď µY .Even Ñ Y

µX .Int Ñ X ď µY .Even Ñ Y

G. Castagna (CNRS) Cours de Programmation Avancée 430 / 593

430/593

Example of coinductive derivation

ARROW
Even ď Int µX .Int Ñ X ď µY .Even Ñ Y

UNFOLD RIGHT
Int Ñ pµX .Int Ñ Xq ď Even Ñ pµY .Even Ñ Y q

UNFOLD LEFT
Int Ñ pµX .Int Ñ Xq ď µY .Even Ñ Y

µX .Int Ñ X ď µY .Even Ñ Y

Notice the use of coinduction

G. Castagna (CNRS) Cours de Programmation Avancée 430 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

Let A Ă Types ˆ Types

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

Determinization of the rules

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

Memoization

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

Determinization of the rules

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

Memoization

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

The rest is similar

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

431/593

Amadio and Cardelli’s subtyping algorithm

Let A Ă Types ˆ Types

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“ A

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 431 / 593

432/593

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. S ď T belongs the relation coinductively defined

by the rules in slide 374 if and only if ∅ $ S ď T is provable

G. Castagna (CNRS) Cours de Programmation Avancée 432 / 593

432/593

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. S ď T belongs the relation coinductively defined

by the rules in slide 374 if and only if ∅ $ S ď T is provable

To see the proof of the above theorem you can refer to the following reference

Pierce et al. Recursive types revealed, Journal of Functional Programming,

12(6):511-548, 2002.

G. Castagna (CNRS) Cours de Programmation Avancée 432 / 593

432/593

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. S ď T belongs the relation coinductively defined

by the rules in slide 374 if and only if ∅ $ S ď T is provable

To see the proof of the above theorem you can refer to the following reference

Pierce et al. Recursive types revealed, Journal of Functional Programming,

12(6):511-548, 2002.

Notice that the algorithm above is exponential. We will show how to define an

Opn2q algorithm to decide S ď T , where n is the total number of different

subexpressions of S ď T .

G. Castagna (CNRS) Cours de Programmation Avancée 432 / 593

433/593

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of

provable judgements) according to whether an inductive or a coinductive

approach is used.

G. Castagna (CNRS) Cours de Programmation Avancée 433 / 593

433/593

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of

provable judgements) according to whether an inductive or a coinductive

approach is used.

Let F be a deduction system on a universe U (i.e. a monotone function from

P pUq to P pUq). A set X P P pUq is:

F -closed if it contains all the elements that can be deduced by F with

hypothesis in X .

F -consistent if every element of X can be deduced by F from other elements

in X .

G. Castagna (CNRS) Cours de Programmation Avancée 433 / 593

433/593

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of

provable judgements) according to whether an inductive or a coinductive

approach is used.

Let F be a deduction system on a universe U (i.e. a monotone function from

P pUq to P pUq). A set X P P pUq is:

F -closed if it contains all the elements that can be deduced by F with

hypothesis in X .

F -consistent if every element of X can be deduced by F from other elements

in X .

Induction and coinduction

A deduction system

inductively defines the least F -closed set

coinductively defines the greatest F -consistent set

G. Castagna (CNRS) Cours de Programmation Avancée 433 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively:

tu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively:

tdu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively:

td ,eu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively:

td ,eu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:

td ,eu ta,b,c,d ,e, f ,gu “ U

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:

td ,eu ta,b,c,d ,e, f ,gu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:

td ,eu ta,b,c,d ,e,gu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:

td ,eu ta,b,c,d ,e,gu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:

td ,eu ta,b,c,d ,eu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

434/593

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,

and iterate.

coinduction: start from U, remove all elements that are not consequence of

other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the

two coincide. This is not true in general, due to the presence of self-justifying

sets, that is sets in which the deductions do not start just by axioms.

Example:

U “ ta,b,c,d ,e, f ,gu
a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively: Self-justifying set:

td ,eu ta,b,c,d ,eu ta,b,cu

G. Castagna (CNRS) Cours de Programmation Avancée 434 / 593

435/593

Exercises

1 Let U “ Z and take as deduction system all the instances of the rule

n

n ` 1

for n P Z. Which are the sets inductively and coinductively defined by it?

2 Same question but with U “ N.

3 Same question but with U “ N
2 and as deduction system all the rules

instance of
pm,nq pn,oq

pm,oq

for m,n,o P N

G. Castagna (CNRS) Cours de Programmation Avancée 435 / 593

436/593

Why Coinduction for Recursive types?

We want to use S “ µX .Int Ñ X where T “ µY .Even Ñ Y is expected.

G. Castagna (CNRS) Cours de Programmation Avancée 436 / 593

436/593

Why Coinduction for Recursive types?

We want to use S “ µX .Int Ñ X where T “ µY .Even Ñ Y is expected.

Use the substitutability interpretation.

Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...

G. Castagna (CNRS) Cours de Programmation Avancée 436 / 593

436/593

Why Coinduction for Recursive types?

We want to use S “ µX .Int Ñ X where T “ µY .Even Ñ Y is expected.

Use the substitutability interpretation.

Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...

Now consider f : S, then f :

1 waits for an Int number,
2 fed by an Int (or a Even) number returns a function that behaves

similarly: (1) wait for ...

G. Castagna (CNRS) Cours de Programmation Avancée 436 / 593

436/593

Why Coinduction for Recursive types?

We want to use S “ µX .Int Ñ X where T “ µY .Even Ñ Y is expected.

Use the substitutability interpretation.

Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...

Now consider f : S, then f :

1 waits for an Int number,
2 fed by an Int (or a Even) number returns a function that behaves

similarly: (1) wait for ...

S and T are in subtyping relation because

their infinite expansions are in subtyping relation.

S ď T ùñ Int Ñ S ď Even Ñ T ùñ S ď T ^Even ď Int

G. Castagna (CNRS) Cours de Programmation Avancée 436 / 593

437/593

This is exactly the proof we saw at the beginning:

ARROW
Even ď Int

S
hkkkkkkikkkkkkj

µX .Int Ñ X ď

T
hkkkkkkkikkkkkkkj

µY .Even Ñ Y

UNFOLD RIGHT
Int Ñ pµX .Int Ñ Xq ď Even Ñ pµY .Even Ñ Y q

UNFOLD LEFT
Int Ñ pµX .Int Ñ Xq ď µY .Even Ñ Y

µX .Int Ñ X
loooooomoooooon

S

ď µY .Even Ñ Y
looooooomooooooon

T

G. Castagna (CNRS) Cours de Programmation Avancée 437 / 593

437/593

This is exactly the proof we saw at the beginning:

ARROW
Even ď Int

S
hkkkkkkikkkkkkj

µX .Int Ñ X ď

T
hkkkkkkkikkkkkkkj

µY .Even Ñ Y

UNFOLD RIGHT
Int Ñ pµX .Int Ñ Xq ď Even Ñ pµY .Even Ñ Y q

UNFOLD LEFT
Int Ñ pµX .Int Ñ Xq ď µY .Even Ñ Y

µX .Int Ñ X
loooooomoooooon

S

ď µY .Even Ñ Y
looooooomooooooon

T

Coinduction

S ď T is not an axiom but tS ď T , Even ď Intu is a self-justifying set.

G. Castagna (CNRS) Cours de Programmation Avancée 437 / 593

437/593

This is exactly the proof we saw at the beginning:

ARROW
Even ď Int

S
hkkkkkkikkkkkkj

µX .Int Ñ X ď

T
hkkkkkkkikkkkkkkj

µY .Even Ñ Y

UNFOLD RIGHT
Int Ñ pµX .Int Ñ Xq ď Even Ñ pµY .Even Ñ Y q

UNFOLD LEFT
Int Ñ pµX .Int Ñ Xq ď µY .Even Ñ Y

µX .Int Ñ X
loooooomoooooon

S

ď µY .Even Ñ Y
looooooomooooooon

T

Coinduction

S ď T is not an axiom but tS ď T , Even ď Intu is a self-justifying set.

Observation:

1 The deduction above shows why a specific rule for µ is useless (apply

consecutively the two unfold rules).

2 If we added reflexivity and/or transitivity rules, then U would be

F -consistent (cf. the third exercise few slides before).

G. Castagna (CNRS) Cours de Programmation Avancée 437 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

if T “ Any then A0

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

if T “ Any then A0

else if S “ S1 ˆ S2 and T “ T1 ˆ T2 then

subtypepsubtypepA0,S1,T1q,S2,T2q

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

if T “ Any then A0

else if S “ S1 ˆ S2 and T “ T1 ˆ T2 then

subtypepsubtypepA0,S1,T1q,S2,T2q

else if S “ S1 Ñ S2 and T “ T1 Ñ T2 then

subtypepsubtypepA0,T1,S1q,S2,T2q

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

if T “ Any then A0

else if S “ S1 ˆ S2 and T “ T1 ˆ T2 then

subtypepsubtypepA0,S1,T1q,S2,T2q

else if S “ S1 Ñ S2 and T “ T1 Ñ T2 then

subtypepsubtypepA0,T1,S1q,S2,T2q

else if T “ µX .T1 then

subtypepA0,S,T1rµX .T1{X sq

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

if T “ Any then A0

else if S “ S1 ˆ S2 and T “ T1 ˆ T2 then

subtypepsubtypepA0,S1,T1q,S2,T2q

else if S “ S1 Ñ S2 and T “ T1 Ñ T2 then

subtypepsubtypepA0,T1,S1q,S2,T2q

else if T “ µX .T1 then

subtypepA0,S,T1rµX .T1{X sq

else if S “ µX .S1 then

subtypepA0,S1rµX .S1{X s,T q

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

438/593

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).

If we “thread” the computation of the memoization environments we obtain a

quadratic complexity. This is done as follows:

subtypepA,S,T q “ if pS,T q P A then A else

let A0 “ A Y tpS,T qu in

if T “ Any then A0

else if S “ S1 ˆ S2 and T “ T1 ˆ T2 then

subtypepsubtypepA0,S1,T1q,S2,T2q

else if S “ S1 Ñ S2 and T “ T1 Ñ T2 then

subtypepsubtypepA0,T1,S1q,S2,T2q

else if T “ µX .T1 then

subtypepA0,S,T1rµX .T1{X sq

else if S “ µX .S1 then

subtypepA0,S1rµX .S1{X s,T q

else fail

G. Castagna (CNRS) Cours de Programmation Avancée 438 / 593

439/593

Compare the previous algorithm with the Amadio-Cardelli algorithm:

A $ S ď T
pS,T q P A

A $ S ď Any
pS,Anyq R A

A1 $ S1 ď T1 A1 $ S2 ď T2

A $ S1 ˆ S2 ď T1 ˆ T2

A1 “ A Y pS1 ˆ S2,T1 ˆ T2q;A ­“ A1

A1 $ T1 ď S1 A1 $ S2 ď T2

A $ S1 Ñ S2 ď T1 Ñ T2

A1 “ A Y pS1 Ñ S2,T1 Ñ T2q;A ­“

A1 $ SrµX .S{X s ď T

A $ µX .S ď T
A1 “ A Y pµX .S,T q;A ­“ A1;T ­“ Any

A1 $ S ď T rµX .T {X s

A $ S ď µX .T
A1 “ A Y pS,µX .T q;A ­“ A1;S ­“ µY .U

G. Castagna (CNRS) Cours de Programmation Avancée 439 / 593

440/593

They both check containment in the relation coinductively defined by:

TOP
T ď Any

PROD
S1 ď T1 S2 ď T2

S1 ˆ S2 ď T1 ˆ T2

ARROW
T1 ď S1 S2 ď T2

S1 Ñ S2 ď T1 Ñ T2

UNFOLD LEFT
SrµX .S{X s ď T

µX .S ď T
UNFOLD RIGHT

S ď T rµX .T {X s

S ď µX .T

But the former is far more efficient.

G. Castagna (CNRS) Cours de Programmation Avancée 440 / 593

441/593

Outline

35 Simple Types

36 Recursive Types

37 Bibliography

G. Castagna (CNRS) Cours de Programmation Avancée 441 / 593

442/593

References

R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions

on Programming Languages and Systems, 14(4):575-631, 1993.

Pierce et al. Recursive types revealed, Journal of Functional

Programming, 12(6):511-548, 2002.

G. Castagna (CNRS) Cours de Programmation Avancée 442 / 593

	Subtyping
	Simple Types
	Recursive Types
	Bibliography

