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Concurrent vs parallel

Concurrency

Do many unrelated things “at once”

Goals are expressiveness, responsiveness, and multitasking

Parallelism

Get a faster answer with multiple CPUs
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Concurrent vs parallel

Concurrency

Do many unrelated things “at once”

Goals are expressiveness, responsiveness, and multitasking

Parallelism

Get a faster answer with multiple CPUs

Here we will focus on the concurrency part
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Threads

Thread

Threads are sequential computations that share memory.

Threads of control (aka lightweight process) execute concurrently in the same

memory space. Threads communicate by in-place modifications of shared data

structures, or by sending and receiving data on communication channels.
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Thread

Threads are sequential computations that share memory.

Threads of control (aka lightweight process) execute concurrently in the same

memory space. Threads communicate by in-place modifications of shared data

structures, or by sending and receiving data on communication channels.

Two kinds of threads
1 Native threads (a.k.a. OS Threads). They are directly handled by the OS.

Compatible with multiprocessors and low level processor capabilities

Better handling of input/output.

Compatible with native code.
2 Green threads (a.k.a. light threads or user space threads). They are

handled by the virtual machine.

More lightweight: context switch is much faster, much more threads can

coexist.

They are portable but must be executed in the VM.

Input/outputs must be asynchronous since a blocking system call blocks all

the threads within the process.
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Which threads for whom

Green threads To be used if:

Don’t want to wait for user input or blocking operations

Need a lot of threads and need to switch from one to another rapidly

Don’t care about about using multiple CPUs, since "the machine

spends most of its time waiting on the user anyway".

Typical usage: a web server.
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Which threads for whom

Green threads To be used if:

Don’t want to wait for user input or blocking operations

Need a lot of threads and need to switch from one to another rapidly

Don’t care about about using multiple CPUs, since "the machine

spends most of its time waiting on the user anyway".

Typical usage: a web server.

Native threads To be used if:

Don’t want to wait for long running computations

Either long running computation must advance “at the same time” or,

better, run in parallel on multiple processors and actually finish faster

Typical usage: heavy computations

G. Castagna (CNRS) Cours de Programmation Avancée 562 / 648



563/648

Haskell mixed solution

Native threads: 1:1 Threre is a one-to-one correspondence between the

application-level threads and the kernel threads

Green threads: N:1 the program threads are managed in the user space. The

kernel is not aware of them, so all application-level threads are mapped to

a single kernel thread.
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Haskell mixed solution

Native threads: 1:1 Threre is a one-to-one correspondence between the

application-level threads and the kernel threads

Green threads: N:1 the program threads are managed in the user space. The

kernel is not aware of them, so all application-level threads are mapped to

a single kernel thread.

Haskell and Erlang solution:

Hybrid threads: N:M (with N ě M ) Intermediate solution: spawn a whole

bunch of lightweight green threads, but the interpreter schedules these

threads onto a smaller number of native threads.

‘ Can exploit multi-core, multi-processor architectures

‘ Avoids to block all the threads on a blocking call

a Hard to implement in particular the scheduling.

a When using blocking system calls you actually need to notify

somehow kernel to block only one green thread and not kernel one.
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Multi-threading

Two kinds of multi-threading

1 Preemptive threading: A scheduler handles thread executions. Each

thread is given a maximum time quantum and it is interrupted either

because it finished its time slice or because it requests a “slow” operation

(e.g., I/O, page-faulting memory access ...)

2 Cooperative threading: Each thread keeps control until either it explicitly

handles it to another thread or it execute an asynchronous operation (e.g.

I/O).
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Two kinds of multi-threading

1 Preemptive threading: A scheduler handles thread executions. Each

thread is given a maximum time quantum and it is interrupted either

because it finished its time slice or because it requests a “slow” operation

(e.g., I/O, page-faulting memory access ...)

2 Cooperative threading: Each thread keeps control until either it explicitly

handles it to another thread or it execute an asynchronous operation (e.g.

I/O).

Possible combinations

1 Green threads are mostly preemptive, but several implementations of

cooperative green threads are available (eg, the Lwt library in OCaml and

the Coro module in Perl).

2 OS threads are nearly always preemptive since on a cooperative OS all

applications must be programmed “fairly” and pass the hand to other

applications from time to time
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Shared memory model/ Process synchronization

Threads/processes are defined to achieve together a common goal

therefore they do not live in isolation:
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Threads/processes are defined to achieve together a common goal

therefore they do not live in isolation:

To ensure that the goal is achieved threads/processes must synchronize.

The purpose of process synchronization is to enforce constraints such as:

Serialization: this part of thread A must happen before this part of thread B.

Mutual exclusion: no two threads can execute this concurrently.
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Shared memory model/ Process synchronization

Threads/processes are defined to achieve together a common goal

therefore they do not live in isolation:

To ensure that the goal is achieved threads/processes must synchronize.

The purpose of process synchronization is to enforce constraints such as:

Serialization: this part of thread A must happen before this part of thread B.

Mutual exclusion: no two threads can execute this concurrently.

Several software tools are available to build synchronization policies for

shared memory accesses:

Semaphores

Locks / Mutexes / Spinlocks

Condition variables

Barriers

Monitors

G. Castagna (CNRS) Cours de Programmation Avancée 566 / 648



567/648

Concurrent events

Two events are concurrent if we cannot tell by

looking at the program which will happen first.
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a2 print x
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b1 x = 7
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Two events are concurrent if we cannot tell by

looking at the program which will happen first.

Thread A

a1 x = 5
a2 print x

Thread B

b1 x = 7

Possible outcomes:

output 5 and final value for x = 7 (eg, a1Ña2Ñb1)

output 7 and final value for x = 7 (eg, a1Ñb1Ña2)

output 5 and final value for x = 5 (eg, b1Ña1Ña2)
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Thread B

b1 x = 7
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output 5 and final value for x = 7 (eg, a1Ña2Ñb1)

output 7 and final value for x = 7 (eg, a1Ñb1Ña2)

output 5 and final value for x = 5 (eg, b1Ña1Ña2)

Thread A

x = x + 1

Thread A

x = x + 1

If initially x = 0 then both x = 1 and x = 2 are possible outcomes
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Concurrent events

Two events are concurrent if we cannot tell by

looking at the program which will happen first.

Thread A

a1 x = 5
a2 print x

Thread B

b1 x = 7

Possible outcomes:

output 5 and final value for x = 7 (eg, a1Ña2Ñb1)

output 7 and final value for x = 7 (eg, a1Ñb1Ña2)

output 5 and final value for x = 5 (eg, b1Ña1Ña2)

Thread A

x = x + 1

Thread A

x = x + 1

If initially x = 0 then both x = 1 and x = 2 are possible outcomes

Reason: The increment may be not atomic: (t Ð read x ;x Ð read tq

For instance, in some assembler, LDA $44; ADC #$01; STA $44 instead of INC $44
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Model of execution

We must define the model of execution

On some machines x++ is atomic

But let us not count on it: we do not want to write specialized code for

each different hardware.

Assume (rather pessimistically) that:

Result of concurrent writes is undefined.

Result of concurrent read-write is undefined.

Concurrent reads are ok.

Threads can be interrupted at any time (preemptive multi-threading).
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Model of execution

We must define the model of execution

On some machines x++ is atomic

But let us not count on it: we do not want to write specialized code for

each different hardware.

Assume (rather pessimistically) that:

Result of concurrent writes is undefined.

Result of concurrent read-write is undefined.

Concurrent reads are ok.

Threads can be interrupted at any time (preemptive multi-threading).

To solve synchronization problems let us first consider a very simple and

universal software synchronization tool: semaphores
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Semaphore

Semaphores are

‘ Simple. The concept is just a little bit harder than that of a variable.

‘ Versatile. You can pretty much solve all synchronization problems by

semaphores.

a Error-prone. They are so low level that they tend to be error-prone.
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‘ Versatile. You can pretty much solve all synchronization problems by

semaphores.

a Error-prone. They are so low level that they tend to be error-prone.

We start by them because:

They are good for learning to think about synchronization

However:

They are not the best choice for common use-cases (you’d better use

specialized tools for specific problems, such as mutexes, conditionals,

monitors, etc).

G. Castagna (CNRS) Cours de Programmation Avancée 569 / 648



569/648

Semaphore

Semaphores are

‘ Simple. The concept is just a little bit harder than that of a variable.

‘ Versatile. You can pretty much solve all synchronization problems by

semaphores.

a Error-prone. They are so low level that they tend to be error-prone.

We start by them because:

They are good for learning to think about synchronization

However:

They are not the best choice for common use-cases (you’d better use

specialized tools for specific problems, such as mutexes, conditionals,

monitors, etc).

Definition (Dijkstra 1965)

A semaphore is an integer sě 0 with two operations P and S:

• Ppsq : if s>0 then s-- else the caller is suspended

• Spsq : if there is a suspended process, then resume it else s++
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Semaphore object

In Python:

A semaphore is a class encapsulating an integer with two methods:

Semaphore(n) initialize the counter to n (default is 1).

acquire() if the internal counter is larger than zero on entry, decrement

it by one and return immediately. If it is zero on entry, block, waiting until

some other thread has called release(). The order in which blocked

threads are awakened is not specified.

release() If another thread is waiting for it to become larger than zero

again, wake up that thread otherwise increment the internal counter
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In Python:

A semaphore is a class encapsulating an integer with two methods:

Semaphore(n) initialize the counter to n (default is 1).

acquire() if the internal counter is larger than zero on entry, decrement

it by one and return immediately. If it is zero on entry, block, waiting until

some other thread has called release(). The order in which blocked

threads are awakened is not specified.

release() If another thread is waiting for it to become larger than zero

again, wake up that thread otherwise increment the internal counter

Variations that can be met in other languages:

wait(), signal() (I will use this pair, because of the signaling pattern).

negative counter to count the process awaiting at the semaphore.
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Semaphore object

In Python:

A semaphore is a class encapsulating an integer with two methods:

Semaphore(n) initialize the counter to n (default is 1).

acquire() if the internal counter is larger than zero on entry, decrement

it by one and return immediately. If it is zero on entry, block, waiting until

some other thread has called release(). The order in which blocked

threads are awakened is not specified.

release() If another thread is waiting for it to become larger than zero

again, wake up that thread otherwise increment the internal counter

Variations that can be met in other languages:

wait(), signal() (I will use this pair, because of the signaling pattern).

negative counter to count the process awaiting at the semaphore.

Notice: no get method (to return the value of the counter). Why?
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Semaphores to enforce Serialization

Problem:

Thread A
statement a1

Thread B
statement b1

How do we enforce the constraint: « a1 before b1 » ?
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Semaphores to enforce Serialization

Problem:

Thread A
statement a1

Thread B
statement b1

How do we enforce the constraint: « a1 before b1 » ?

The signaling pattern:

sem = Semaphore(0)

Thread A
statement a1
sem.signal()

Thread B
sem.wait()
statement b1

You can think of Semaphore(0) as a locked lock.
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Semaphores to enforce Mutual Exclusion

Problem:

Thread A
x = x + 1

Thread B
x = x + 1

Concurrent execution is non-deterministic

How can we avoid concurrent access?
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Semaphores to enforce Mutual Exclusion

Problem:

Thread A
x = x + 1

Thread B
x = x + 1

Concurrent execution is non-deterministic

How can we avoid concurrent access?

Solution:

mutex = Semaphore(1)

Thread A
mutex.wait()

x = x + 1
mutex.signal()

Thread B
mutex.wait()

x = x + 1
mutex.signal()

Code between wait and signal is atomic.
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More synch problems: readers and writers

Problem:

Threads are either writers or readers:

Only one writer can write concurrently

A reader cannot read concurrently with a writer

Any number of readers can read concurrently
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More synch problems: readers and writers

Problem:

Threads are either writers or readers:

Only one writer can write concurrently

A reader cannot read concurrently with a writer

Any number of readers can read concurrently

Solution:
readers = 0
mutex = Semaphore(1)
roomEmpty = Semaphore(1)

Writer threads

roomEmpty.wait()
critical section for writers

roomEmpty.signal()

Reader threads

mutex.wait()
readers += 1
if readers == 1:

roomEmpty.wait() # first in lock
mutex.signal()

critical section for readers
mutex.wait()

readers -= 1
if readers == 0:

roomEmpty.signal() # last out unlk
mutex.signal()
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Readers and writers

Let us look for some common patterns

The scoreboard pattern (readers)

Check in

Update state on the scoreboard (number of readers)

make some conditional behavior

check out

The turnstile pattern (writer)

Threads go through the turnstile serially

One blocks, all wait

It passes, it unblocks

Other threads (ie, the readers) can lock the turnstile
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Readers and writers

Readers while checking in/out implement the lightswitch pattern:

The first person that enters the room switch the light on (acquires the lock)

The last person that exits the room switch the light off (releases the lock)
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Readers and writers

Readers while checking in/out implement the lightswitch pattern:

The first person that enters the room switch the light on (acquires the lock)

The last person that exits the room switch the light off (releases the lock)

Implementation:

class Lightswitch:
def __init__(self):

self.counter = 0
self.mutex = Semaphore(1)

def lock(self, semaphore):
self.mutex.wait()

self.counter += 1
if self.counter == 1:

semaphore.wait()
self.mutex.signal()

def unlock(self, semaphore):
self.mutex.wait()

self.counter -= 1
if self.counter == 0:

semaphore.signal()
self.mutex.signal()
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Before:

readers = 0
mutex = Semaphore(1)
roomEmpty = Semaphore(1)

Writer threads

roomEmpty.wait()
critical section for writers

roomEmpty.signal()

Reader threads

mutex.wait()
readers += 1
if readers == 1:

roomEmpty.wait() # first in lock
mutex.signal()

critical section for readers
mutex.wait()

readers -= 1
if readers == 0:

roomEmpty.signal() # last out unlk
mutex.signal()
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Before:

readers = 0
mutex = Semaphore(1)
roomEmpty = Semaphore(1)

Writer threads

roomEmpty.wait()
critical section for writers

roomEmpty.signal()

Reader threads

mutex.wait()
readers += 1
if readers == 1:

roomEmpty.wait() # first in lock
mutex.signal()

critical section for readers
mutex.wait()

readers -= 1
if readers == 0:

roomEmpty.signal() # last out unlk
mutex.signal()

After:

readLightswitch = Lightswitch()
roomEmpty = Semaphore(1)

Writer threads

roomEmpty.wait()
critical section for writers

roomEmpty.signal()

Reader threads

readLightswitch.lock(roomEmpty)
critical section for readers

readLightswitch.unlock(roomEmpty)
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Programming golden rules

When programming becomes too complex then:

1 Abstract common patterns

2 Split it in more elementary problems

The previous case was an example of abstraction. Next we are going to see an

example of modularization, where we combine our elementary patterns to

solve more complex problems
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The unisex bathroom problem

A women at Xerox was working in a cubicle in the basement, and the nearest

women’s bathroom was two floors up. She proposed to the Uberboss that they

convert the men’s bathroom on her floor to a unisex bathroom.

The Uberboss agreed, provided that the following synchronization constraints

can be maintained:

1 There cannot be men and women in the bathroom at the same time.

2 There should never be more than three employees squandering company

time in the bathroom.

You may assume that the bathroom is equipped with all the semaphores you

need.
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The unisex bathroom problem

Solution hint:

empty = Semaphore(1)
maleSwitch = Lightswitch()
femaleSwitch = Lightswitch()
maleMultiplex = Semaphore(3)
femaleMultiplex = Semaphore(3)

empty is 1 if the room is empty and 0 otherwise.

maleSwitch allows men to bar women from the room. When the first

male enters, the lightswitch locks empty, barring women; When the last

male exits, it unlocks empty, allowing women to enter. Women do likewise

using femaleSwitch.

maleMultiplex and femaleMultiplex ensure that there are no more

than three men and three women in the system at a time (they are

semaphores used as locks).
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The unisex bathroom problem

A solution:

Female Threads

femaleSwitch.lock(empty)
femaleMultiplex.wait()

bathroom code here
femaleMultiplex.signal()

femaleSwitch.unlock(empty)

Male Threads

maleSwitch.lock(empty)
maleMultiplex.wait()

bathroom code here
maleMultiplex.signal()

maleSwitch.unlock(empty)
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A solution:

Female Threads

femaleSwitch.lock(empty)
femaleMultiplex.wait()

bathroom code here
femaleMultiplex.signal()

femaleSwitch.unlock(empty)

Male Threads

maleSwitch.lock(empty)
maleMultiplex.wait()

bathroom code here
maleMultiplex.signal()

maleSwitch.unlock(empty)

Any problem with this solution?
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The unisex bathroom problem

A solution:

Female Threads

femaleSwitch.lock(empty)
femaleMultiplex.wait()

bathroom code here
femaleMultiplex.signal()

femaleSwitch.unlock(empty)

Male Threads

maleSwitch.lock(empty)
maleMultiplex.wait()

bathroom code here
maleMultiplex.signal()

maleSwitch.unlock(empty)

Any problem with this solution?

This solution allows starvation. A long line of women can arrive and

enter while there is a man waiting, and vice versa.

Find a solution

Hint: Use a turnstile to access to the lightswitches: when a man arrives and the

bathroom is already occupied by women, block turnstile so that more women

cannot check the light and enter.
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The no-starve unisex bathroom problem

turnstile = Semaphore(1)turnstile = Semaphore(1)turnstile = Semaphore(1)
empty = Semaphore(1)
maleSwitch = Lightswitch()
femaleSwitch = Lightswitch()
maleMultiplex = Semaphore(3)
femaleMultiplex = Semaphore(3)

Female Threads

turnstile.wait()
femaleSwitch.lock(empty)

turnstile.signal()

femaleMultiplex.wait()
bathroom code here

femaleMultiplex.signal()

femaleSwitch.unlock (empty)

Male Threads

turnstile.wait()
maleSwitch.lock(empty)

turnstile.signal()

maleMultiplex.wait()
bathroom code here

maleMultiplex.signal()

maleSwitch.unlock (empty)
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The no-starve unisex bathroom problem

turnstile = Semaphore(1)turnstile = Semaphore(1)turnstile = Semaphore(1)
empty = Semaphore(1)
maleSwitch = Lightswitch()
femaleSwitch = Lightswitch()
maleMultiplex = Semaphore(3)
femaleMultiplex = Semaphore(3)

Female Threads

turnstile.wait()
femaleSwitch.lock(empty)

turnstile.signal()

femaleMultiplex.wait()
bathroom code here

femaleMultiplex.signal()

femaleSwitch.unlock (empty)

Male Threads

turnstile.wait()
maleSwitch.lock(empty)

turnstile.signal()

maleMultiplex.wait()
bathroom code here

maleMultiplex.signal()

maleSwitch.unlock (empty)

Actually we could have used the same

multiplex for both females and males.
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Summary so far

Solution composed of patterns

Patterns can be encapsulated as objects or modules

Unisex bathroom problem is a good example of use of both abstraction

and modularity (lightswitches and turnstiles)
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Solution composed of patterns

Patterns can be encapsulated as objects or modules

Unisex bathroom problem is a good example of use of both abstraction

and modularity (lightswitches and turnstiles)

Unfortunately, patterns often interact and interfere. Hard to be confident of

solutions (formal verification and test are not production-ready yet).

Especially true for semaphores which are very low level:

‘ They can be used to implement more complex synchronization patterns.

a This makes interference much more likely.
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Summary so far

Solution composed of patterns

Patterns can be encapsulated as objects or modules

Unisex bathroom problem is a good example of use of both abstraction

and modularity (lightswitches and turnstiles)

Unfortunately, patterns often interact and interfere. Hard to be confident of

solutions (formal verification and test are not production-ready yet).

Especially true for semaphores which are very low level:

‘ They can be used to implement more complex synchronization patterns.

a This makes interference much more likely.

Before discussing more general problems of shared memory synchronization,

let us introduced some higher-level and more specialized tools that, being more

specific, make interference less likely.

Locks

Conditional Variables

Monitors
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Outline

52 Concurrency

53 Preemptive multi-threading

54 Locks, Conditional Variables, Monitors

55 Doing without mutual exclusion

56 Cooperative multi-threading

57 Channeled communication

58 Software Transactional Memory
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Locks

Locks are like those on a room door:

Lock acquisition: A person enters the room and locks the door. Nobody

else can enter.

Lock release: The person in the room exits unlocking the door.

Persons are threads, rooms are critical regions.
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A person that finds a door locked can either wait or come later (somebody lets

it know that the room is available).
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Locks are like those on a room door:

Lock acquisition: A person enters the room and locks the door. Nobody

else can enter.

Lock release: The person in the room exits unlocking the door.

Persons are threads, rooms are critical regions.

A person that finds a door locked can either wait or come later (somebody lets

it know that the room is available).

Similarly there are two possibilities for a thread that failed to acquire a lock:

1 It keeps trying. This kind of lock is a spinlock. Meaningful only on

multi-processors, they are common in High performance computing

(where most of the time each thread is scheduled on its own processor

anyway).

2 It is suspended until somebody signals it that the lock is available. The

only meaningful lock for uniprocessor. This kind of lock is also called

mutex (but often mutex is used as a synonym for lock).
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Difference between a mutex and a binary semaphore

A mutex is different from a binary semaphore (ie, a semaphore initialized to 1),

since it combines the notion of exclusivity of manipulation (as for semaphores)

with others extra features such as exclusivity of possession (only the process

which has taken a mutex can free it) or priority inversion protection. The

differences between mutexes and semaphores are operating system/language

dependent, though mutexes are implemented by specialized, faster routines.
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Difference between a mutex and a binary semaphore

A mutex is different from a binary semaphore (ie, a semaphore initialized to 1),

since it combines the notion of exclusivity of manipulation (as for semaphores)

with others extra features such as exclusivity of possession (only the process

which has taken a mutex can free it) or priority inversion protection. The

differences between mutexes and semaphores are operating system/language

dependent, though mutexes are implemented by specialized, faster routines.

Example

What follows can be done with semaphore s but not with a mutex, since B

unlocks a lock of A (cf. the signaling pattern):

Thread A
...

some stuff
...

wait(s)
...

some other stuff
...

Thread B
...

some stuff
...

signal(s) (* A can continue *)
...
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Mutex

Since semaphores are for what concerns mutual exclusion a simplified version

of mutexes, it is clear that mutexes have operations very similar to the former:

A init or create operation.

A wait or lock operation that tries to acquire the lock and suspends the

thread if it is not available

A signal or unlock operation that releases the lock and possibly awakes

a thread waiting for the lock

Sometimes a trylock, that is, a non blocking locking operation that

returns an error or false if the lock is not available.
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Mutex

Since semaphores are for what concerns mutual exclusion a simplified version

of mutexes, it is clear that mutexes have operations very similar to the former:

A init or create operation.

A wait or lock operation that tries to acquire the lock and suspends the

thread if it is not available

A signal or unlock operation that releases the lock and possibly awakes

a thread waiting for the lock

Sometimes a trylock, that is, a non blocking locking operation that

returns an error or false if the lock is not available.

A mutex is reentrant if the same thread can acquire the lock multiple times.

However, the lock must be released the same number of times or else other

threads will be unable to acquire the lock.

Nota Bene: A reentrant mutex has some similarities to a counting semaphore:

the number of lock acquisitions is the counter, but only one thread can

successfully perform multiple locks (exclusivity of possession).
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Implementation of locks

Some examples of lock implementations:

Using hardware special instructions like test-and-set or

compare-and-swap

Peterson algorithm (spinlock, deadlock free) in Python:

flag=[0,0]
turn = 0 # initially the priority is for thread 0

Thread 0

flag[0] = 1
turn = 1
whilewhilewhile flag[1] andandand turn : passpasspass

critical section
flag[0] = 0

Thread 1

flag[1] = 1
turn = 0
whilewhilewhile flag[0] and notand notand not turn : passpasspass

critical section
flag[1] = 0

flag[i] == 1: Thread i wants to enter;

turn == i it is the turn of Thread i to enter, if it wishes.

Lamport’s bakery algorithm (deadlock and starvation free)

Every threads modifies only its own variables and accesses to other

variables only by reading.
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Condition Variables

Locks provides a passive form of synchronization: they allow waiting for shared

data to be free, but do not allow waiting for the data to have a particular state.

Condition variables are the solution to this problem.

Definition

A condition variable is an atomic waiting and signaling mechanism which

allows a process or thread to atomically stop execution and release a lock until

a signal is received.

Rationale

It allows a thread to sleep inside a critical region without risk of deadlock.

G. Castagna (CNRS) Cours de Programmation Avancée 588 / 648



588/648

Condition Variables

Locks provides a passive form of synchronization: they allow waiting for shared

data to be free, but do not allow waiting for the data to have a particular state.

Condition variables are the solution to this problem.

Definition

A condition variable is an atomic waiting and signaling mechanism which

allows a process or thread to atomically stop execution and release a lock until

a signal is received.

Rationale

It allows a thread to sleep inside a critical region without risk of deadlock.

Three main operations:

wait(lock) releases the lock, gives up the CPU until signaled and then

re-acquire the lock.

signal() wakes up a thread waiting on the condition variable, if any.

broadcast() wakes up all threads waiting on the condition.
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Condition Variables

Note: The term "condition variable" is misleading: it does not rely on a variable

but rather on signaling at the system level. The term comes from the fact that

condition variables are most often used to notify changes in the state of shared

variables, such as in

Notify a reader thread that a writer thread has filled its data set.

Notify consumer processes that a producer thread has updated a shared

data set.
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Condition Variables

Note: The term "condition variable" is misleading: it does not rely on a variable

but rather on signaling at the system level. The term comes from the fact that

condition variables are most often used to notify changes in the state of shared

variables, such as in

Notify a reader thread that a writer thread has filled its data set.

Notify consumer processes that a producer thread has updated a shared

data set.

Semaphores and Condition variables

semaphores and condition variables both use wait and signal as valid

operations,

the purpose of both is somewhat similar, but

they are different:

With a semaphore the signal operation increments the value of the

semaphore even if there is no blocked process. The signal is remembered.

If there are no processes blocked on the condition variable then the signal

function does nothing. The signal is not remembered.

With a semaphore you must be careful about deadlocks.
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Monitors

Motivation:

Semaphores are incredibly versatile.

The problem with them is that they are dual purpose: they can be used for

both mutual exclusion and scheduling constraints. This makes the code

hard to read, and hard to get right.

In the previous slides we have introduced two separate constructs for

each purpose: mutexes and conditional variables.

Monitors groups them together (keeping each disctinct from the other) to

protect some shared data:
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Motivation:

Semaphores are incredibly versatile.

The problem with them is that they are dual purpose: they can be used for

both mutual exclusion and scheduling constraints. This makes the code

hard to read, and hard to get right.

In the previous slides we have introduced two separate constructs for

each purpose: mutexes and conditional variables.

Monitors groups them together (keeping each disctinct from the other) to

protect some shared data:

Definition (Monitor)

a lock and zero or more condition variables for managing concurrent access to

shared data by defining some given operations.
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Monitors

Example: a synchronized queue

In pseudo-code:

monitormonitormonitor SynchQueue {
lock = Lock.create
condition = Condition.create

addToQueue(item) {
lock.acquire();
put item on queue;
condition.signal();
lock.release();

}

removeFromQueue() {
lock.acquire();
while nothing on queue do

condition.wait(lock) // release lock; go to
done // sleep; re-acquire lock
remove item from queue;
lock.release();
return item

}
}
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Different kinds of Monitors

Need to be careful about the precise definition of signal and wait:

Mesa-style: (Nachos, most real operating systems)

Signaler keeps lock, processor

Waiter simply put on ready queue, with no special priority. (in other

words, waiter may have to wait for lock)

Hoare-style: (most textbooks)

Signaler gives up lock, CPU to waiter; waiter runs immediately

Waiter gives lock, processor back to signaler when it exits critical

section or if it waits again.

Above code for synchronized queuing happens to work with either style, but for

many programs it matters which one you are using. With Hoare-style, can

change "while" in removeFromQueue to an "if", because the waiter only gets

woken up if item is on the list. With Mesa-style monitors, waiter may need to

wait again after being woken up, because some other thread may have

acquired the lock, and removed the item, before the original waiting thread gets

to the front of the ready queue.
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Preemptive threads in OCaml

Four main modules:

Module Thread: lightweight threads (abstract type Thread.t)

Module Mutex: locks for mutual exclusion (abstract type Mutex.t)

Module Condition: condition variables to synchronize between threads

(abstract type Condition.t)

Module Event: first-class synchronous channels

(abstract types ’a Event.channel and ’a Event.event)
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Module Mutex: locks for mutual exclusion (abstract type Mutex.t)

Module Condition: condition variables to synchronize between threads

(abstract type Condition.t)

Module Event: first-class synchronous channels

(abstract types ’a Event.channel and ’a Event.event)

Two implementations:

System threads. Uses OS-provided threads: POSIX threads for Unix, and

Win32 threads for Windows. Supports both bytecode and native-code.

Green threads. Time-sharing and context switching at the level of the

bytecode interpreter. Works on OS without multi-threading but cannot be

used with native-code programs.
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Preemptive threads in OCaml

Four main modules:

Module Thread: lightweight threads (abstract type Thread.t)

Module Mutex: locks for mutual exclusion (abstract type Mutex.t)

Module Condition: condition variables to synchronize between threads

(abstract type Condition.t)

Module Event: first-class synchronous channels

(abstract types ’a Event.channel and ’a Event.event)

Two implementations:

System threads. Uses OS-provided threads: POSIX threads for Unix, and

Win32 threads for Windows. Supports both bytecode and native-code.

Green threads. Time-sharing and context switching at the level of the

bytecode interpreter. Works on OS without multi-threading but cannot be

used with native-code programs.

Nota Bene: Always work on a single processor (because of OCaml’s GC). No

advantage from multi-processors (apart from explicit execution of C code or

system calls): threads are just for structuring purposes.
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Module Thread

create : (’a -> ’b) -> ’a -> Thread.t

Thread.create f e creates a new thread of control, in which the

function application f(e) is executed concurrently with the other threads

of the program.

kill : Thread.t -> unit

kill p terminates prematurely the thread p

join : Thread.t -> unit

join p suspends the execution of the calling thread until the termination

of p

delay : float -> unit

delay d suspends the execution of the calling thread for d seconds.

1 # let f () = for i=0 to 10 do Printf.printf "(%d)" i done;;
2 val f : unit -> unit = <fun>
3 # Printf.printf "begin ";
4 Thread.join (Thread.create f ());
5 Printf.printf " end";;
6 begin (0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) end- : unit = ()
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Module Mutex

create : unit -> Mutex.t Return a new mutex.

lock : Mutex.t -> unit Lock the given mutex.

try_lock : Mutex.t -> bool Non blocking lock.

unlock : Mutex.t -> unit Unlock the given mutex.
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Module Mutex

create : unit -> Mutex.t Return a new mutex.

lock : Mutex.t -> unit Lock the given mutex.

try_lock : Mutex.t -> bool Non blocking lock.

unlock : Mutex.t -> unit Unlock the given mutex.

Dining philosophers

Five philosophers sitting at a table doing one of two things: eating or meditate.

While eating, they are not thinking, and while thinking, they are not eating. The

five philosophers sit at a circular table with a large bowl of rice in the center. A

chopstick is placed in between each pair of adjacent philosophers and to eat he

needs two chopsticks. Each philosopher can only use the chopstick on his

immediate left and immediate right.

1 # let b =
2 let b0 = Array.create 5 (Mutex.create()) in
3 for i=1 to 4 do b0.(i) <- Mutex.create() done;
4 b0 ;;
5 val b : Mutex.t array = [|<abstr>; <abstr>; <abstr>; <abstr>; <abstr>|]
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Dining philosophers

1 # let meditation = Thread.delay
2 and eating = Thread.delay ;;

1 let philosopher i =
2 let ii = (i+1) mod 5
3 in while true do
4 meditation 3. ;
5 Mutex.lock b.(i);
6 Printf.printf "Philo (%d) takes his left-hand chopstick" i ;
7 Printf.printf " and meditates a little while more\n";
8 meditation 0.2;
9 Mutex.lock b.(ii);

10 Printf.printf "Philo (%d) takes his right-hand chopstick\n" i;
11 eating 0.5;
12 Mutex.unlock b.(i);
13 Printf.printf "Philo (%d) puts down his left-hand chopstick" i;
14 Printf.printf " and goes back to meditating\n";
15 meditation 0.15;
16 Mutex.unlock b.(ii);
17 Printf.printf "Philo (%d) puts down his right-hand chopstick\n" i
18 done ;;

G. Castagna (CNRS) Cours de Programmation Avancée 596 / 648



597/648

Dining philosophers

We can test this little program by executing:

1 for i=0 to 4 do ignore (Thread.create philosopher i) done ;
2 while true do Thread.delay 5. done ;;

Problems:

Deadlock: all philosophers can take their left-hand chopstick, so the

program is stuck.

Starvation: To avoid deadlock, the philosophers can put down a chopstick

if they do not manage to take the second one. This is highly courteous,

but still allows two philosophers to gang up against a third to stop him

from eating.

Exercise

Think about solutions to avoid deadlock and starvation
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Module Condition

create : unit -> Condition.t returns a new condition variable.

wait : Condition.t -> Mutex.t -> unit

wait c m atomically unlocks the mutex m and suspends the calling

process on the condition variable c. The process will restart after the

condition variable c has been signaled. The mutex m is locked again

before wait returns.

signal : Condition.t -> unit

signal c restarts one of the processes waiting on the condition variable

c.

broadcast : Condition.t -> unit

broadcast c restarts all processes waiting on the condition variable c.
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create : unit -> Condition.t returns a new condition variable.

wait : Condition.t -> Mutex.t -> unit

wait c m atomically unlocks the mutex m and suspends the calling

process on the condition variable c. The process will restart after the

condition variable c has been signaled. The mutex m is locked again

before wait returns.

signal : Condition.t -> unit

signal c restarts one of the processes waiting on the condition variable

c.

broadcast : Condition.t -> unit

broadcast c restarts all processes waiting on the condition variable c.

Typical usage pattern:
Mutex.lock m;

while (* some predicate P over D is not satisfied *) do
Condition.wait c m // We put the wait in a while loop: why?

done;
(* Modify D *)
if (* the predicate P over D is now satisfied *) then Condition.signal

Mutex.unlock m
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before wait returns.

signal : Condition.t -> unit

signal c restarts one of the processes waiting on the condition variable

c.

broadcast : Condition.t -> unit

broadcast c restarts all processes waiting on the condition variable c.

Typical usage pattern:
Mutex.lock m;

while (* some predicate P over D is not satisfied *) do
Condition.wait c m // We put the wait in a while loop: why?
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(* Modify D *)
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Example: a Monitor

module SynchQueue = struct
type ’a t =

{ queue : ’a Queue.t; lock : Mutex.t; non_empty : Condition.t }

let create () = {
queue = Queue.create ();
lock = Mutex.create ();
non_empty = Condition.create ()

}

let add e q =
Mutex.lock q.lock;
if Queue.length q.queue = 0 then Condition.broadcast q.non_empty;
Queue.add e q.queue;
Mutex.unlock q.lock

let remove q =
Mutex.lock q.lock;
while Queue.length q.queue = 0 do

Condition.wait q.non_empty q.lock done;
let x = Queue.take q.queue in
Mutex.unlock q.lock; x

end
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Monitors

OCaml does not provide explicit constructions for monitors. They must be

implemented by using mutexes and condition variables. Other languages

provides monitors instead, for instance Java.

Monitors in Java:

In Java a monitor is any object in which at least one method is declared

synchronized

When a thread is executing a synchronized method of some object, then

the other threads are blocked if they call any synchronized method of that

object.
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Monitors

OCaml does not provide explicit constructions for monitors. They must be

implemented by using mutexes and condition variables. Other languages

provides monitors instead, for instance Java.

Monitors in Java:

In Java a monitor is any object in which at least one method is declared

synchronized

When a thread is executing a synchronized method of some object, then

the other threads are blocked if they call any synchronized method of that

object.

class Account{
float balance;
synchronized void deposit(float amt) {

balance += amt;
}
synchronized void withdraw(float amt) {

if (balance < amt)
throw new OutOfMoneyError();

balance -= amt;
}

}
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Outline
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57 Channeled communication

58 Software Transactional Memory
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What’s wrong with locking

Locking has many pitfalls for the inexperienced programmer

Priority inversion: a lower priority thread is preempted while holding a lock

needed by higher-priority threads.

Convoying: A thread holding a lock is descheduled due to a time-slice

interrupt or page fault causing other threads requiring that lock to

queue up. When rescheduled it may take some time to drain the

queue. The overhead of repeated context switches and

underutilization of scheduling quanta degrade overall performance.

Deadlock: threads that lock the same objects in different order. Deadlock

avoidance is difficult if many objects are accessed at the same time

and they are not statically known.

Debugging: Lock related problems are difficult to debug (since, being

time-related, they are difficult to reproduce).

Fault-tolerance If a thread (or process) is killed or fails while holding a

lock, what does happen? (cf. Thread.delete)
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Programming is not easy with locks and requires difficult decisions:

Taking too few locks — leads to race conditions.

Taking too many locks — inhibits concurrency

Locking at too coarse a level — inhibits concurrency

Taking locks in the wrong order — leads to deadlock

Error recovery is hard (eg, how to handle failure of threads holding locks?)

A major problem: Composition

Lock-based programs do not compose: For example, consider a hash table

with thread-safe insert and delete operations. Now suppose that we want to

delete one item A from table t1, and insert it into table t2; but the

intermediate state (in which neither table contains the item) must not be

visible to other threads. Unless the implementer of the hash table

anticipates this need, there is simply no way to satisfy this requirement.
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Locks are non-compositional

Consider the previous (correct) Java bank Account class:
class Account{

float balance;

synchronized void deposit(float amt) {
balance += amt;

}

synchronized void withdraw(float amt) {
if (balance < amt)

throw new OutOfMoneyError();
balance -= amt;

}
}

Now suppose we want to add the ability to transfer funds from one account to

another.
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Locks are non-compositional

Simply calling withdraw and deposit to implement transfer causes a race

condition:
class Account{

float balance;
...
void badTransfer(Acct other, float amt) {
other.withdraw(amt);
// here checkBalances sees bad total balance
this.deposit(amt);
}

}

class Bank {
Account[] accounts;
float global_balance;

checkBalances () {
return (sum(Accounts) == global_balance);

}
}
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Locks are non-compositional

Synchronizing transfer can cause deadlock:

class Account{
float balance;

synchronized void deposit(float amt) {
balance += amt;

}

synchronized void withdraw(float amt) {
if(balance < amt)

throw new OutOfMoneyError();
balance -= amt;

}

synchronized void badTrans(Acct other, float amt) {
// can deadlock with parallel reverse-transfer
this.deposit(amt);
other.withdraw(amt);

}
}
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Concurrency without locks

We need to synchronize threads without resorting to locks
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Concurrency without locks

1 Cooperative threading: The threads themselves relinquish control once

they are at a stopping point.

Pros: Programmer manage interleaving, no concurrent access happens

Cons: The burden is on the programmer: the system may not be

responsive (eg, Classic Mac OS 5.x to 9.x). Does not scale on

multi-processors. Not always compositional.
2 Channeled communication: The threads do not share memory. All data is

exchanged by explicit communications that take place on channels.

Pros: Compositional. Easily scales to multi-processor and distributed

programming (if asynchronous)

Cons: Awkward when threads concurrently work on complex and large

data-structures.
3 Software transactional memory: If the execution of an atomic block cause

any conflict, modification are rolled back and the block re-executed.

Pros: Very compositional. A no brainer for the programmer.

Cons: Very new, poorly mastered. Feasibility depends on conflict

likelihood.
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Concurrency without locks

Besides the previous solution there is also a more drastic solution

(not so general as the previous ones but composes with them):

Lock-free programming

Threads access to shared data without the use of synchronization

primitives such as mutexes. The operations to access the data ensure

the absence of conflicts.

Idea: instead of giving operations for mutual exclusion of accesses, define

the access operations so that they take into account concurrent accesses.

Pros: A no-brainer if the data structures available in your lock-free library

fit your problem. It has the granularity precisely needed (if you work

on a queue with locks, should you use a lock for the whole queue?)

Cons: requires to have specialized operations for each data structure.

Not modular since composition may require using a different more

complex data structure. Works with simple data structure but is hard

to generalize to complex operations. Hard to implement in the

absence of hardware support (e.g., compare_and_swap).
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

The linked list above is ordered
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

30

We want to insert a new element new at the right position
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

30

Find the right position pos and set to it the field next of the new element
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

30

Compare and swap: compare the two links pos and next
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

30

Compare and swap: compare the two links pos and next

If they are the same then no conflicting operation has been performed, so

atomically swap the successor of the second element with the pointer to

the new element.

G. Castagna (CNRS) Cours de Programmation Avancée 610 / 648



610/648

Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

30

Compare and swap: compare the two links pos and next

If they are the same then no conflicting operation has been performed, so

atomically swap the successor of the second element with the pointer to

the new element. comp_and_swap(pos, next, new)
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Lock-free programming: an example

Non blocking linked list:

Insertion:

10 20 40 50

Head Tail

30

Compare and swap: compare the two links pos and next (marked in red)

If they are the same then no conflicting operation has been performed, so

atomically swap the successor of the second element with the pointer to

the new element.

Otherwise, a conflicting modification was performed: retry the insert.
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

Imagine we want to delete the first element. First we try a naive solution
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

Put a pointer to where the next field of the 10 element will point
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

Use compare and swap to check whether in the meanwhile any update was

done between the 10 and 20 element:
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

Use compare and swap to check whether in the meanwhile any update was

done between the 10 and 20 element:

If the test suceeds then update the next field of the 10 element
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

Use compare and swap to check whether in the meanwhile any update was

done between the 10 and 20 element:

If the test suceeds then update the next field of the 10 element

(otherwise, restart).
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 40 50

Head Tail

Use compare and swap to check whether in the meanwhile any update was

done between the 10 and 20 element:

If the test suceeds then update the next field of the 10 element

(otherwise, restart).

Eventually, garbage collect the 20 element.
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

HOWEVER

If before the compare and swap another thread makes an insertion such

as the above, then:
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

30

HOWEVER

If before the compare and swap another thread makes an insertion such

as the above, then:
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

30

HOWEVER

If before the compare and swap another thread makes an insertion such

as the above, then:

The compare and swap succeeds
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

30

HOWEVER

If before the compare and swap another thread makes an insertion such

as the above, then:

The compare and swap succeeds

The insertion succeeds

(see the animation on the full slides)
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

30

lost insertion
HOWEVER

If before the compare and swap another thread makes an insertion such

as the above, then:

The compare and swap succeeds

The insertion succeeds

The insertion is lost

(see the animation on the full slides)
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Lock-free programming: Non blocking linked list:

Deletion is more difficult:

10 20 40 50

Head Tail

30

lost insertion

we need to modify this solution
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Lock-free programming: Non blocking linked list:

Deletion:

10 20 40 50

Head Tail

If we want to delete the first element then we must proceed as follows:
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Lock-free programming: Non blocking linked list:

Deletion:

10 20 40 50

Head Tail

*

If we want to delete the first element then we must proceed as follows:

1 Mark the element to delete: a marked point can still be traversed but

will be ignored by concurrent insertion/deletions
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Lock-free programming: Non blocking linked list:

Deletion:

10 20 40 50

Head Tail

*

If we want to delete the first element then we must proceed as follows:

1 Mark the element to delete: a marked point can still be traversed but

will be ignored by concurrent insertion/deletions

2 Record the pointer to the element next to the one to be deleted
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Lock-free programming: Non blocking linked list:

Deletion:

10 20 40 50

Head Tail

*

If we want to delete the first element then we must proceed as follows:

1 Mark the element to delete: a marked point can still be traversed but

will be ignored by concurrent insertion/deletions

2 Record the pointer to the element next to the one to be deleted

3 Compare the old and new pointer to the successor of the 10 element
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Lock-free programming: Non blocking linked list:

Deletion:

10 20 40 50

Head Tail

*

If we want to delete the first element then we must proceed as follows:

1 Mark the element to delete: a marked point can still be traversed but

will be ignored by concurrent insertion/deletions

2 Record the pointer to the element next to the one to be deleted

3 Compare the old and new pointer to the successor of the 10 element

and swap them (atomic compare and swap)
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Lock-free programming: Non blocking linked list:

Deletion:

10 40 50

Head Tail
If we want to delete the first element then we must proceed as follows:

1 Mark the element to delete: a marked point can still be traversed but

will be ignored by concurrent insertion/deletions

2 Record the pointer to the element next to the one to be deleted

3 Compare the old and new pointer to the successor of the 10 element

and swap them (atomic compare and swap)

4 Eventually the deleted node is to be garbage collected
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Lock-free programming

Summary:

Lock-free programming requires specifically programmed data structures

while the next solutions require specific control structures.

As such, it is of a less general application than the techniques we

describe next.

Also it may not fit modular development, since a structure composed of

lock-free programmed data structures may fail to avoid global conflicts.

However when it works, then it comes from free and can be combined with

any of the techniques that follow, thus reducing the logical complexity of

process synchronization.
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Outline

52 Concurrency

53 Preemptive multi-threading

54 Locks, Conditional Variables, Monitors

55 Doing without mutual exclusion

56 Cooperative multi-threading

57 Channeled communication

58 Software Transactional Memory
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Cooperative multi-threading in OCaml: Lwt

Cooperative multi-threading in OCaml is available by the Lwt module

Rationale

Instead of using few large monolithic threads, define p1q many small

interdependent threads, p2q the interdependence relation between them.
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Instead of using few large monolithic threads, define p1q many small

interdependent threads, p2q the interdependence relation between them.

A thread executes without interrupting till a cooperation point where it

passes the control to another thread

A cooperation point is reached either by explicitly passing the control

(function yield), or by calling a “cooperative” function (eg, read, sleep).
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Cooperative multi-threading in OCaml is available by the Lwt module

Rationale

Instead of using few large monolithic threads, define p1q many small

interdependent threads, p2q the interdependence relation between them.

A thread executes without interrupting till a cooperation point where it

passes the control to another thread

A cooperation point is reached either by explicitly passing the control

(function yield), or by calling a “cooperative” function (eg, read, sleep).

Lwt uses a non-preemptive scheduler which is an event loop.

At each cooperation point the thread passes the control to the scheduler,

which handles it to another thread.
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Cooperative multi-threading in OCaml: Lwt

Cooperative multi-threading in OCaml is available by the Lwt module

Rationale

Instead of using few large monolithic threads, define p1q many small

interdependent threads, p2q the interdependence relation between them.

A thread executes without interrupting till a cooperation point where it

passes the control to another thread

A cooperation point is reached either by explicitly passing the control

(function yield), or by calling a “cooperative” function (eg, read, sleep).

Lwt uses a non-preemptive scheduler which is an event loop.

At each cooperation point the thread passes the control to the scheduler,

which handles it to another thread.

Nota bene

Do not call blocking functions, otherwise all threads will be blocked. In

particular do not use Unix.sleep and Unix.read, but the corresponding

cooperative versions Lwt_unix.sleep and Lwt_unix.read, instead.
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Lwt threads

A thread computing a value of type ’a is a value of abstract type ’a Lwt.t
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Lwt threads

A thread computing a value of type ’a is a value of abstract type ’a Lwt.t

Each thread is in one of the following states:

1 Terminated: it successfully computed the value

2 Suspended: the computation is not over and will resume later

3 Failed: the computation failed (with an exception)
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Lwt threads

A thread computing a value of type ’a is a value of abstract type ’a Lwt.t

Each thread is in one of the following states:

1 Terminated: it successfully computed the value

2 Suspended: the computation is not over and will resume later

3 Failed: the computation failed (with an exception)

Examples:

Lwt.return : ’a -> ’a Lwt.t

It immediately returns a terminated thread whose computed value is the

one passed as argument.

Lwt_unix.sleep : float -> unit Lwt.t

It immediately returns a suspended thread that will return () after some

time (if the scheduler reschedules it).

Lwt.fail : exn -> ’a Lwt.t

It immediately returns a failed thread whose exception is the one passed

as argument.
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Lwt threads

Lwt threads are a monad:

Lwt.bind : ’a Lwt.t -> (’a -> ’b Lwt.t) -> ’b Lwt.t

The expression Lwt.bind p f (that can also be written as p >>= f)

immediately returns a thread of type ’b Lwt.t, defined as follows:

If the thread p is terminated, then it passes its results to f.

If the thread p is suspended, then f is saved in the list of the functions

waiting for the result of p. When p terminates, then the scheduler actives

these functions one after the other.

If the thread p is failed, then so is the whole expression.
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Lwt threads

Lwt threads are a monad:

Lwt.bind : ’a Lwt.t -> (’a -> ’b Lwt.t) -> ’b Lwt.t

The expression Lwt.bind p f (that can also be written as p >>= f)

immediately returns a thread of type ’b Lwt.t, defined as follows:

If the thread p is terminated, then it passes its results to f.

If the thread p is suspended, then f is saved in the list of the functions

waiting for the result of p. When p terminates, then the scheduler actives

these functions one after the other.

If the thread p is failed, then so is the whole expression.

Nota bene

Bind is not a cooperation point: it does not imply any suspension
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Example

rlwrap ocaml
Objective Caml version 3.11.1
# #use "topfind";;

# #require "lwt.unix";;

# Lwt.bind (Lwt.return 3) (fun x ->
print_int x; Lwt.return());;

3- : unit Lwt.t = <abstr>

# Lwt.bind (Lwt_unix.sleep 3.0) (fun () ->
print_endline "hello"; Lwt.return ());;

- : unit Lwt.t = <abstr>

(Lwt.return 3) >>= (fun x -> print_int x; Lwt.return())

immediately returns a thread of type unit Lwt.t after having printed 3.

Notice the use of Lwt.return () for well typing

(Lwt_unix.sleep 3.0) >>= (fun () -> print_endline

"hello"; Lwt.return ()) immediately returns a thread of type unit

Lwt.t and nothing else.
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In order to see the last thread to behave as expected (and print after three

seconds “hello”) we have to run the scheduler, that is the function

Lwt_unix.run : ’a Lwt.t -> ’a

Lwt_unix.run t manage a queue of waiting threads without

preemption. It terminates when the thread t does.

When we run the scheduler we see the computation above to end (since

the schedule reactivates Lwt_unix.sleep 3.0 which can pass its hand

to the next thread (and then it ends after 30 seconds).

# Lwt_unix.run (Lwt_unix.sleep 30.);;
hello
- : unit = ()
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Lwt_unix

The main function provided by Lwt_unix is run:

It manages a queue of threads ready to be executed. As long as this

queue is not empty it runs them in the order.

It maintains a table of open file descriptors together with the threads that

wait on them and insert them in the queue as soon as they have received

the data they were waiting for.

It inserts in the queue the threads that exceeded their sleep time.

It iterates and stops when its argument thread does
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Lwt_unix

The main function provided by Lwt_unix is run:

It manages a queue of threads ready to be executed. As long as this

queue is not empty it runs them in the order.

It maintains a table of open file descriptors together with the threads that

wait on them and insert them in the queue as soon as they have received

the data they were waiting for.

It inserts in the queue the threads that exceeded their sleep time.

It iterates and stops when its argument thread does

Besides the scheduler Lwt_unix provides the cooperative version of most of

the functions in the Unix module:

Lwt_unix.yield : unit -> unit Lwt.t forces a cooperation point

adding the thread in the scheduler queue.

Lwt_unix.read. Works as Unix.read but while the latter immediately

blocks, the former immediately returns a new thread which:

It tries to read the file

If data is available, then it returns a result

Otherwise, it sleeps in the queue associated to the file descriptor
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“do” notation for Lwt_unix

It is possible to use the “lwt_in” notation to mimic Haskell’s “do” notation. So

Lwt_chan.input_line ch >>= fun s ->
Lwt_unix.sleep 3. >>= fun () ->
print_endline s;
Lwt.return ()

can be written as

lwtlwtlwt s = input_line ch ininin
lwtlwtlwt () = Lwt_unix.sleep 3. ininin
print_endline s;
Lwt.return ()
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Example

A thread that writes “hello” every ten seconds
let rec f () =
print_endline "hello";
Lwt_unix.sleep 10. >>= f
in f ();
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Example

A thread that writes “hello” every ten seconds
let rec f () =
print_endline "hello";
Lwt_unix.sleep 10. >>= f
in f ();

Join of threads

Let f and g be functions that return threads (e.g., unit -> ‘a Lwt.t)

let first_thread = f () in // launch the first thread
let second_thread = g () in // launch the second thread
lwt fst_result = first-thread in // wait for the first thread result
lwt snd_result = second_thread in // wait for the second thread result

...

G. Castagna (CNRS) Cours de Programmation Avancée 622 / 648



623/648

Two versions of cooperative List.map

Two versions of map running a thread for each value in the list. Differences?
# let rec map f l =

match l with
| [] -> return []
| v :: r ->

let t = f v in
let rt = map f r in
t >>= fun v’ ->
rt >>= fun l’ ->
return (v’ :: l’);;

val map : (’a -> ’b Lwt.t) -> ’a list -> ’b list Lwt.t = <fun>

All the threads are run “in parallel”.

let rec map2 f l =
match l with
| [] -> return []
| v :: r ->

f v >>= fun v’ ->
map2 f r >>= fun l’ ->
return (v’ :: l’)

val map : (’a -> ’b Lwt.t) -> ’a list -> ’b list Lwt.t = <fun>

The threads are run sequentially: it waits for the first thread to end before

running the second
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Outline

52 Concurrency

53 Preemptive multi-threading

54 Locks, Conditional Variables, Monitors

55 Doing without mutual exclusion

56 Cooperative multi-threading

57 Channeled communication

58 Software Transactional Memory
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Communication on channels

Two kinds of communication:

1 Synchronous communication:

sending a message on an action is blocking.

Module Event of the OCaml’s thread library.

2 Asynchronous communications:

sending a message is a non-blocking action: messages are buffered and

the order is preserved.

Erlang-style concurrency.
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Synchronous communications: OCaml’s Event

type ’a channel

The type of communication channels carrying values of type ’a.

new_channel : unit -> ’a channel

Return a new channel.

type +’a event

The type of communication events returning a result of type ’a.

send : ’a channel -> ’a -> unit event

send ch v returns the event consisting in sending the value v over the

channel ch. The result value of this event is ().

receive : ’a channel -> ’a event

receive ch returns the event consisting in receiving a value from the

channel ch. The result value of this event is the value received.

choose : ’a event list -> ’a event

choose evl returns the event that is the parallel composition of all the

events in the list evl.
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Synchronous communications: OCaml’s Event

The functions send and receive are not blocking functions

The primitives send and receive build the elementary events “sending a

message” or “receiving a message” but do not have an immediate effect.

They just create a data structure describing the action to be done

To make an event happen, a thread must synchronize with another thread

wishing to make the complementary event happen

The sync primitive allows a thread to wait for the occurrence of the event

passed as argument.

sync : ’a event -> ’a

“Synchronize” on an event: offer all the communication possibilities

specified in the event to the outside world, and block until one of the

communications succeeds. The result value of that communication is

returned.

poll : ’a event -> ’a option

Non-blocking version of Event.sync: offer all the communication

possibilities specified in the event to the outside world, and if one can take

place immediately, perform it and return Some r where r is the result value

of that communication. Otherwise, return None without blocking.
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Example: access a shared variable via communications

# let ch = Event.new_channel () ;;
# let v = ref 0;;

# let reader () = Event.sync (Event.receive ch);;
# let writer () = Event.sync (Event.send ch ("S" ^ (string_of_int !v)));;

# let loop_reader s d () = (
for i=1 to 10 do
let r = reader() in print_string (s ^ ":" ^ r ^ "; "); flush stdout;
Thread.delay d

done;
print_newline());;

# let loop_writer d () =
for i=1 to 10 do incr v; writer(); Thread.delay d done;;

# Thread.create (loop_reader "A" 1.1) ();;
# Thread.create (loop_reader "B" 1.5) ();;
# Thread.create (loop_reader "C" 1.9) ();;

# loop_writer 1. ();;
A:S1; C:S2; B:S3; A:S4; C:S5; B:S6; A:S7; C:S8; B:S9; A:S10;
- : unit = ()
# loop_writer 1. ();;
C:S11; B:S12; A:S13; C:S14; B:S15; A:S16; C:S17; B:S18; A:S19; C:S20;
- : unit = ()
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Example: Single position queue

We modify the Queue example so as mutual exclusion is obtained by channels

rather than mutexes. We keep the same interface
module Cell = struct

type ’a t =
{ add_ch: ’a Event.channel; rmv_ch: ’a Event.channel }

let create () =
let aCh = Event.new_channel ()
and rCh = Event.new_channel () in
let rec empty () =

let e = Event.sync (Event.receive aCh) in
full e

and full e =
empty (Event.sync (Event.send rCh e))

in
ignore (Thread.create empty ());
{add_ch = aCh ; rmv_ch = rCh}

let add e q = ignore(
Event.sync(Event.send q.add_ch e) ) //multi-position buffer

let remove q =
Event.sync (Event.receive q.rmv_ch)

end
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Example: Single position queue

We modify the Queue example so as mutual exclusion is obtained by channels

rather than mutexes. We keep the same interface
module Cell = struct

type ’a t =
{ add_ch: ’a Event.channel; rmv_ch: ’a Event.channel }

let create () =
let aCh = Event.new_channel ()
and rCh = Event.new_channel () in
let rec empty () =

let e = Event.sync (Event.receive aCh) in
full e

and full e =
empty (Event.sync (Event.send rCh e))

in
ignore (Thread.create empty ());
{add_ch = aCh ; rmv_ch = rCh}

let add e q = ignore(
Event.pollpollpoll(Event.send q.add_ch e) ) //multi-position buffer

let remove q =
Event.sync (Event.receive q.rmv_ch)

end
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Asynchronous communications: Erlang’s concurrency

Erlang is a (open-source) general-purpose concurrent programming language

and runtime system designed by Ericsson to support distributed, fault-tolerant,

soft-real-time, non-stop applications.
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Asynchronous communications: Erlang’s concurrency

Erlang is a (open-source) general-purpose concurrent programming language

and runtime system designed by Ericsson to support distributed, fault-tolerant,

soft-real-time, non-stop applications.

The sequential subset of Erlang is a strict and dynamically typed

functional language. For concurrency it follows the Actor model. Three

primitives

spawn spawns a new process

send asynchronously send a message to a given process

receive reads one the of the received messages

Concurrency is structured around processes.

Erlang processes are are not OS processes: they are much lighter (scale

up to hundreds of million of processes). Like OS processes and unlike OS

threads or green threads they have no shared state between them.

Process communication is done via asynchronous message passing:

every process has a “mailbox”, a queue of messages that have been sent

by other processes and not yet consumed.
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Process creation
Pid = spawn(Module, FunctionName, ArgumentList)

Spawns a new process that executes the function FunctionName in the

module Module with arguments ArgumentList and returns immediately

its identifier.

Asynchronous send
Pid ! Message

Put the message Message in the buffer of the process whose identifier is

Pid. So foo(12) ! bar(baz) will first evaluate foo(12) to get the

process identifier and bar(baz) for the message to send, and returns

immediately (the value of the message) without waiting for the message

either to arrive at the destination or to be received.

Selective receive
receive

Pattern1 -> Actions1 ;
Pattern2 -> Actions2 ;

...
end

Select in the mailbox the first message that matches a pattern, remove it

from the mailbox, and execute its actions. Otherwise suspend.
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An example

% Create a process and invoke the function
% web:start_server(Port, MaxConnect)
ServerProcess = spawn(web, start_server, [Port, MaxConnect]),

% [Distribution support]
% Create a remote process and invoke the function
% web:start_server(Port, MaxConnect) on machine RemoteNode
RemoteProcess = spawn(RemoteNode, web, start_server, [Port, MaxConnect]),

% Send a message to ServerProcess (asynchronously). The message consists
% of a tuple with the atom "pause" and the number "10".
ServerProcess ! pause, 10,

% Receive messages sent to this process
receive

data, DataContent -> handle(DataContent);
hello, Text -> io:format("Got hello message: ~s", [Text]);
goodbye, Text -> io:format("Got goodbye message: ~s", [Text])

end.
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Erlang-style concurrency

This style of concurrency has been adopted in several other languages

F#: cf. the MailboxProcessor class

Scala: uses the same syntax (and semantics) as Erlang but instead of

processes we have “actor objects” that run in separate threads.

Retlang a Erlang inspired library for .NET and Jetlang its Java

counterpart.

Others: Termite Scheme, Coro Module for Perl, ...
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Outline

52 Concurrency

53 Preemptive multi-threading

54 Locks, Conditional Variables, Monitors

55 Doing without mutual exclusion

56 Cooperative multi-threading

57 Channeled communication

58 Software Transactional Memory
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Compositionality

The main problem with locks is that they are not compositional

action1 = withdraw a 100 action2 = deposit b 100

action3 =
do withdraw a 100

Inconsistent state
deposit b 100
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The main problem with locks is that they are not compositional

action1 = withdraw a 100 action2 = deposit b 100

action3 =
do withdraw a 100

Inconsistent state
deposit b 100

Solution: Expose all locks

action3 =
do lock a

lock b
withdraw a 100
deposit b 100
release a
release b
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Compositionality

The main problem with locks is that they are not compositional

action1 = withdraw a 100 action2 = deposit b 100

action3 =
do withdraw a 100

Inconsistent state
deposit b 100

Solution: Expose all locks

action3 =
do lock a

lock b
withdraw a 100
deposit b 100
release a
release b

Problems

Risk of deadlocks

Unfeasible for more complex cases
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Software transactional memory

Idea

Borrow ideas from database people

ACID transactions:

atomic - all changes commit or all changes roll back; changes appear to

happen at a single moment in time

consistent - operate on a snapshot of memory using newest values at

beginning of the txn

isolated - changes are visible to other threads, only after commit and,

viceversa, threads in a transaction cannot see other thread changes.

durable - does not apply to STM (changes do not persist on disk) but we can

adapt it when changes are lost if software crashes or hardware fails (cf. locks).

Add ideas from (pure) functional programming

Computations are first-class values

What side-effects can happen and where they can happen is controlled
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Software transactional memory

Idea

Borrow ideas from database people

ACID transactions:

atomic - all changes commit or all changes roll back; changes appear to

happen at a single moment in time

consistent - operate on a snapshot of memory using newest values at

beginning of the txn

isolated - changes are visible to other threads, only after commit and,

viceversa, threads in a transaction cannot see other thread changes.

durable - does not apply to STM (changes do not persist on disk) but we can

adapt it when changes are lost if software crashes or hardware fails (cf. locks).

Add ideas from (pure) functional programming

Computations are first-class values

What side-effects can happen and where they can happen is controlled

Software Transactional Memory

First ideas in 1993

New developments in 2005

(Simon Peyton Jones, Simon Marlow, Tim Harris, Maurice Herlihy)
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Atomic transactions

Write sequential code, and wrap atomically around it

action3 =
atomically{

withdraw a 100
deposit b 100

}
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Atomic transactions

Write sequential code, and wrap atomically around it

action3 =
atomically{

withdraw a 100
deposit b 100

}

How does it works?

Execute body without locks

Each memory access is logged to a thread-local transaction log.

No actual update is performed in memory

At the end, we try to commit the log to memory

Commit may fail, then we retry the whole atomic block
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Atomic transactions

Write sequential code, and wrap atomically around it

action3 =
atomically{

withdraw a 100
deposit b 100

}

How does it works?

Execute body without locks

Each memory access is logged to a thread-local transaction log.

No actual update is performed in memory

At the end, we try to commit the log to memory

Commit may fail, then we retry the whole atomic block

Optimistic concurrency
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Caveats

Simon Peyton-Jones’s missile program:

action3 =
atomically{

withdraw a 100
launchNuclearMissiles
deposit b 100

}

No side effects allowed!
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Caveats

Simon Peyton-Jones’s missile program:

action3 =
atomically{

withdraw a 100
launchNuclearMissiles
deposit b 100

}

No side effects allowed!

More in details:

The logging capability is implemented by specific “transactional variables”.

Absolutely forbidden:

To read a transaction variable outside an atomic block

To write to a transaction variable outside an atomic block

To make actual changes (eg, file or network access, use of

non-trasactional variables) inside an atomic block...
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Caveats

Simon Peyton-Jones’s missile program:

action3 =
atomically{

withdraw a 100
launchNuclearMissiles
deposit b 100

}

No side effects allowed!

More in details:

The logging capability is implemented by specific “transactional variables”.

Absolutely forbidden:

To read a transaction variable outside an atomic block

To write to a transaction variable outside an atomic block

To make actual changes (eg, file or network access, use of

non-trasactional variables) inside an atomic block...

These constraints are enforced by the type system
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STM in Haskell

Fully-fledged implementation of STM: Control.Concurrent.STM

Implemented in the language also in Clojure and Perl6.

Implementations for C++, Java, C#, F# being developed as libraries ...

difficult to solve all problems

In Haskell, it is easy: controlled side-effects

type STM a
instance Monad STM

atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

type TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Sides effects must be performed on specific “transactional variables” TVar

G. Castagna (CNRS) Cours de Programmation Avancée 639 / 648



640/648

STM: TVar

Threads in STM Haskell communicate by reading and writing transactional

variables

type Resource = TVar Int

putR :: Resource -> Int -> STM ()
putR r i = do v <- readTVar r

writeTVar r (v+i)

main = do ... atomically (putR r 13) ...

Operationally, atomically takes the tentative updates and actually applies

them to the TVars involved. The system maintains a per-thread transaction log

that records the tentative accesses made to TVars.

G. Castagna (CNRS) Cours de Programmation Avancée 640 / 648



641/648

STM: retry

retry: Retries execution of the current memory transaction because it has

seen values in TVars which mean that it should not continue (e.g., the TVars

represent a shared buffer that is now empty). The implementation may block

the thread until one of the TVars that it has read from has been updated.

retry :: STM a

atomically {if n_items == 0 then retryretryretry
else ...remove from queue...}
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STM: retry

retry: Retries execution of the current memory transaction because it has

seen values in TVars which mean that it should not continue (e.g., the TVars

represent a shared buffer that is now empty). The implementation may block

the thread until one of the TVars that it has read from has been updated.

retry :: STM a

atomically {if n_items == 0 then retryretryretry
else ...remove from queue...}

In summary:

retry says “abandon the current transaction and re-execute it from

scratch”

The implementation waits until n_items changes

No condition variables, no lost wake-ups!
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Blocking composes

atomically { x = queue1.getItem()
; queue2.putItem( x ) }

If either getItem or putItem retries, the whole transaction retries

So the transaction waits until queue1 is not empty AND queue2 is not full

No need to re-code getItem or putItem

(Lock-based code does not compose)
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STM orElse

orElse: it tries two alternative paths:

If the first retries, it runs the second

If both retry, the whole orElse retries.

orElse :: STM a -> STM a -> STM a

atomically { x = queue1.getItem();
queue2.putItem(x)

‘orElse‘
queue3.putItem(x) }

So the transaction waits until

queue1 is non-empty, AND

EITHER queue2 is not full OR queue3 is not full

without touching getItem or putItem

Note:

m1 ‘orElse‘ (m2 ‘orElse‘ m3) = (m1 ‘orElse‘ m2) ‘orElse‘ m3
retry ‘orElse‘ m = m
m ‘orElse‘ retry = m
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Compositionality

All transactions are flat

Calling transactional code from the current transaction is normal

This simply extends the current transaction
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STM in Haskell

Safe transactions through type safety

A very specific monad STM (distinct from I/O)

We can only access TVars

TVars can only be accessed in STM monad

Referential transparency inside blocks

Explicit retry – expressiveness

Compositional choice – expressiveness
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STM in Haskell

Safe transactions through type safety

A very specific monad STM (distinct from I/O)

We can only access TVars

TVars can only be accessed in STM monad

Referential transparency inside blocks

Explicit retry – expressiveness

Compositional choice – expressiveness

Problems

Overhead: managing transactions bookkeeping requires some overhead

Starvation: could the system “thrash” by continually colliding and

re-executing?

No: one transaction can be forced to re-execute only if another succeeds in

committing. That gives a strong progress guarantee.

But a particular thread could perhaps starve.

Performance: potential for many retries resulting in wasted work

Tools: support is currently lacking

for learning which memory locations experienced write conflicts

for learning how often each transaction is retried and why
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Problems in C++/Java/C#

Retry semantics

IO in atomic blocks

Access of transaction variables outside of atomic blocks

Access to regular variables inside of atomic blocks
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A useful analogy

Switch from manual to automatic gear:
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Memory management

malloc, free, manual refcounting

Garbage collection
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A useful analogy

Switch from manual to automatic gear:

Memory management

malloc, free, manual refcounting

Garbage collection

Concurrency

Mutexes, semaphores, condition variables

Software transactional memory
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Manual/auto tradeoffs

Same kind of tradeoffs:
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Memory management

Manual: Performance, footprint

Auto: Safety against memory leaks, corruption
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Manual/auto tradeoffs

Same kind of tradeoffs:

Memory management

Manual: Performance, footprint

Auto: Safety against memory leaks, corruption

Concurrency

Manual: Fine tuning for high contention

Auto: Safety against deadlock, corruption

Rationale

In both cases you pay in terms of performance and of “I do not quite know what

is going on”, but they allow you to build larger, more complex systems that

won’t break because of wrong “by hand” management.
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