Classes vs. Modules

G. Castagna (CNRS) Cours de Programmation Avancée 68/593

© Modularity in OOP
e Mixin Composition
e Multiple dispatch

a OCaml Classes

e Haskell’s Typeclasses

Q Generics

G. Castagna (CNRS) Cours de Programmation Avancée 69/593

© Modularity in OOP

G. Castagna (CNRS) Cours de Programmation Avancée 70/593

Complementary tools

Module system
The notion of module is taken seriously

@ Abstraction-based assembling language of structures

© It does not help extensibility (unless it is by unrelated parts), does not love
recursion

Class-based OOP
The notion of extensibility is taken seriously

@ Horizontally by adding new classes, vertically by inheritance
@ Value abstraction is obtained by hiding some components
© Pretty rigid programming style, difficult to master because of late binding.

G. Castagna (CNRS) Cours de Programmation Avancée 71/593

Modularity in OOP and ML

A three-layered framework
@ |Interfaces

@ Classes

© Objects

G. Castagna (CNRS) Cours de Programmation Avancée 72/593

Modularity in OOP and ML

A three-layered framework
@ |Interfaces

@ Classes

© Objects

The intermediate layer (classes) is absent in ML module systems

G. Castagna (CNRS) Cours de Programmation Avancée 72/593

Modularity in OOP and ML

A three-layered framework
@ |Interfaces

@ Classes

© Objects

The intermediate layer (classes) is absent in ML module systems

This intermediate layer makes it possible to
@ Bind operations to instances
@ Specialize and redefine operations for new instances

G. Castagna (CNRS) Cours de Programmation Avancée 72/593

Modularity in OOP and ML

A three-layered framework
@ |Interfaces

@ Classes

© Objects

The intermediate layer (classes) is absent in ML module systems

This intermediate layer makes it possible to
@ Bind operations to instances
@ Specialize and redefine operations for new instances

Rationale

Objects can be seen as a generalization of “references” obtained by tightly
coupling them with their operators

G. Castagna (CNRS) Cours de Programmation Avancée 72/593

An example in Scala

trait Vector {

def norm() : Double //declared method

def isOrigin (): Boolean = (this.norm == 0) // defined method
}

Like a Java interface but you can also give the definition of some methods.
When defining an instance of Vector | need only to specify norm

G. Castagna (CNRS) Cours de Programmation Avancée 73/593

An example in Scala

trait Vector {
def norm() : Double //declared method
def isOrigin (): Boolean = (this.norm == 0) // defined method

}

Like a Java interface but you can also give the definition of some methods.
When defining an instance of Vector | need only to specify norm:

class Point(a: Int, b: Int) extends Vector {
var x: Int = a // mutable instance variable
var y: Int = b // mutable instance variable

def norm(): Double = sqrt(pow(x,2) + pow(y,2)) // method
def erase(): Point = { x = 0; y = 0; return this } // method
def move(dx: Int): Point = new Point(x+dx,y) // method

G. Castagna (CNRS) Cours de Programmation Avancée 73/593

An example in Scala

trait Vector {
def norm() : Double //declared method
def isOrigin (): Boolean = (this.norm == 0) // defined method

}

Like a Java interface but you can also give the definition of some methods.
When defining an instance of Vector | need only to specify norm:

class Point(a: Int, b: Int) extends Vector {
var x: Int = a // mutable instance variable
var y: Int = b // mutable instance variable

def norm(): Double = sqrt(pow(x,2) + pow(y,2)) // method
def erase(): Point = { x = 0; y = 0; return this } // method
def move(dx: Int): Point = new Point(x+dx,y) // method

scala> new Point(1,1).isOrigin
resO: Boolean = false

G. Castagna (CNRS) Cours de Programmation Avancée 73/593

Equivalently

class Point(a: Int, b: Int) {

var x: Int = a // mutable instance variable

var y: Int = b // mutable instance variable

def norm(): Double = sqrt(pow(x,2) + pow(y,2)) // method

def erase(): Point = { x = 0; y = 0; return this } // method

def move(dx: Int): Point = new Point(x+dx,y) // method

def isOrigin(): Boolean = (this.norm == 0) // method
}

G. Castagna (CNRS) Cours de Programmation Avancée 74/593

Equivalently

class Point(a: Int, b: Int) {

var x: Int = a // mutable instance variable

var y: Int = b // mutable instance variable

def norm(): Double = sqrt(pow(x,2) + pow(y,2)) // method

def erase(): Point = { x = 0; y = 0; return this } // method

def move(dx: Int): Point = new Point(x+dx,y) // method

def isOrigin(): Boolean = (this.norm == 0) // method
}

Equivalently? Not really:

class PolarPoint (norm: Double, theta: Double) extends Vector {
var norm: Double = norm
var theta: Double = theta
def norm(): Double = return norm
def erase(): PolarPoint = { norm = 0 ; return this }

}

Can use instances of both PolarPoint and Point (first definition but not the
second) where an object of type Vector is expected.

G. Castagna (CNRS) Cours de Programmation Avancée 74/593

Inheritance

class Point(a: Int, b: Int) {
var x: Int = a
var y: Int = b
def norm(): Double = sqrt(pow(x,2) + pow(y,2))
def erase(): Point {x=0; y=0; return this }
def move(dx: Int): Point = new Point(x+dx,y)

1

def isOrigin(): Boolean = (this.norm == 0)

}

class ColPoint(u: Int, v: Int, c: String) extends Point(u, v) {
val color: String = ¢ // non-mutable instance variable
def isWhite(): Boolean = ¢ == "white"

override def norm(): Double = {
if (this.isWhite) return O else return sqrt(pow(x,2)+pow(y,2))
}

override def move(dx: Int): ColPoint=new ColPoint(x+dx,y,"red")

}

isWhite added; erase, isOrigin inherited; move, norm overridden. Notice
the late binding of norm in isOrigin.

G. Castagna (CNRS) Cours de Programmation Avancée 75/593

Late binding of norm

scala> new ColPoint(1, 1, "white").isOrigin
resl: Boolean = true

the method defined in Point is executed but norm is dynamically bound to the

definition in ColPoint.

G. Castagna (CNRS) Cours de Programmation Avancée

76/593

Role of each construction

Traits (interfaces): Traits are similar to recursive record types and make it
possible to range on objects with common methods with compatible types but
incompatible implementations.

type Vector = { norm: Double , // actually unit -> Double
erase: Vector , // actually unit -> Vector
isOrigin: Boolean // actually unit -> Boolean
}

Both Point and PolarPoint have the type above, but only if explicitly
declared in the class (name subtyping: an explicit design choice to avoid
unwanted interactions).

G. Castagna (CNRS) Cours de Programmation Avancée 77/593

Role of each construction

Traits (interfaces): Traits are similar to recursive record types and make it
possible to range on objects with common methods with compatible types but
incompatible implementations.

type Vector = { norm: Double , // actually unit -> Double
erase: Vector , // actually unit -> Vector
isOrigin: Boolean // actually unit -> Boolean
}

Both Point and PolarPoint have the type above, but only if explicitly
declared in the class (name subtyping: an explicit design choice to avoid
unwanted interactions).

Classes: Classes are object templates in which instance variables are
declared and the semantics of this is open (late binding).

G. Castagna (CNRS) Cours de Programmation Avancée 77/593

Role of each construction

Traits (interfaces): Traits are similar to recursive record types and make it
possible to range on objects with common methods with compatible types but
incompatible implementations.

type Vector = { norm: Double , // actually unit -> Double
erase: Vector , // actually unit -> Vector
isOrigin: Boolean // actually unit -> Boolean
}

Both Point and PolarPoint have the type above, but only if explicitly
declared in the class (name subtyping: an explicit design choice to avoid
unwanted interactions).

Classes: Classes are object templates in which instance variables are
declared and the semantics of this is open (late binding).

Objects: Objects are instances of classes in which variables are given values
and the semantic of this is bound to the object itself.

G. Castagna (CNRS) Cours de Programmation Avancée 77/593

Late-binding and inheritance

The tight link between objects and their methods is embodied by late-binding

G. Castagna (CNRS) Cours de Programmation Avancée 78/593

Late-binding and inheritance

The tight link between objects and their methods is embodied by late-binding

class A {
def m1() = {.... this.m2() ...}
def m2() = {...}

+

class B extends A {
def m3() = {... this.m2() ...}
override def m2() = {...} //overriding

G. Castagna (CNRS) Cours de Programmation Avancée 78/593

Late-binding and inheritance

The tight link between objects and their methods is embodied by late-binding

class A {
def m1() = {.... this.m2() ...}
def m2() = {...}

+

class B extends A {
def m3() = {... this.m2() ...}
override def m2() = {...} //overriding

Two different behaviors according to whether late binding is used or not J

G. Castagna (CNRS) Cours de Programmation Avancée 78/593

Graphical representation

A A

m1 [... this.m20() ... wrapping, " Tmil. thism2() .
m2 * m?2

B B

A A

m1 ... this.m2() ... wrappmg>] this, m2()
m2 m2

m2 % m2

m3 ... this.m2() ... AT [m3]. this.m2() ...

G. Castagna (CNRS) Cours de Programmation Avancée

79/593

FP and OOP

@ FP is a more operation-oriented style of programming
@ OOP is a more state-oriented style of programming

G. Castagna (CNRS) Cours de Programmation Avancée 80/593

FP and OOP

@ FP is a more operation-oriented style of programming
@ OOP is a more state-oriented style of programming

@ Modules and Classes+Interfaces are the respective tools for
“programming in the large” and accounting for software evolution

G. Castagna (CNRS) Cours de Programmation Avancée 80/593

Software evolution

Classes and modules are not necessary for small non evolving programs
(except to support separate compilation)

G. Castagna (CNRS) Cours de Programmation Avancée 81/593

Software evolution

Classes and modules are not necessary for small non evolving programs
(except to support separate compilation)
They are significant for software that
@ should remain extensible over time
(e.g. add support for new target processor in a compiler)
@ is intended as a framework or set of components to be (re)used in larger
programs
(e.g. libraries, toolkits)

G. Castagna (CNRS) Cours de Programmation Avancée 81/593

Adapted to different kinds of extensions

Instances of programmer nightmares
@ Try to modify the type-checking algorithm in the Java Compiler

@ Try to add a new kind of account, (e.g. an equity portfolio account) to the
example given for functors (see Example Chapter 14 OReilly book).

G. Castagna (CNRS) Cours de Programmation Avancée 82/593

Adapted to different kinds of extensions

Instances of programmer nightmares

@ Try to modify the type-checking algorithm in the Java Compiler

@ Try to add a new kind of account, (e.g. an equity portfolio account) to the

example given for functors (see Example Chapter 14 OReilly book).

FP approach

OO0 approach

Adding a new
kind of things

Must edit all func-
tions, by adding a
new case to every
pattern matching

Add one class (the
other classes are
unchanged)

Adding a new
operation over
things

G. Castagna (CNRS)

Add one function
(the other functions
are unchanged)

Must edit all
classes by adding
or modifying meth-
ods in every class

Cours de Programmation Avancée

82/593

Modules and classes play different roles:

@ Modules handle type abstraction and parametric definitions of
abstractions (functors)

@ Classes do not provide this type abstraction possibility
@ Classes provide late binding and inheritance (and message passing)

It is no shame to use both styles and combine them in order to have the
possibilities of each one

G. Castagna (CNRS) Cours de Programmation Avancée 83/593

Which one should | choose?
@ Any of them when both are possible for the problem at issue
@ Classes when you need late binding

@ Modules if you need abstract types that share implementation (e.g.
vectors and matrices)

@ Bothin several cases.

G. Castagna (CNRS) Cours de Programmation Avancée 84/593

Which one should | choose?
@ Any of them when both are possible for the problem at issue
@ Classes when you need late binding

@ Modules if you need abstract types that share implementation (e.g.
vectors and matrices)

@ Bothin several cases.

G. Castagna (CNRS) Cours de Programmation Avancée 84/593

Which one should | choose?
@ Any of them when both are possible for the problem at issue
@ Classes when you need late binding

@ Modules if you need abstract types that share implementation (e.g.
vectors and matrices)

@ Bothin several cases.

The frontier between modules and classes gets fussier and fuzzier I

G. Castagna (CNRS) Cours de Programmation Avancée 84/593

Not a clear-cut difference

@ Mixin Composition

@ Multiple dispatch languages
@ OCaml Classes

@ Haskell’s type classes

G. Castagna (CNRS) Cours de Programmation Avancée 85/593

Not a clear-cut difference

@ Mixin Composition

@ Multiple dispatch languages
@ OCaml Classes

@ Haskell’s type classes

Let us have a look to each point J

G. Castagna (CNRS) Cours de Programmation Avancée 85/593

Outline

e Mixin Composition

G. Castagna (CNRS) Cours de Programmation Avancée 86/593

Mixin Class Composition

Reuse the new member definitions of a class (i.e., the delta in relationship to

the superclass) in the definition of a new class. In Scala:

abstract class AbsIterator {
type T // opaque type as in 0Caml Modules
def hasNext: Boolean
def next: T

Abstract class (as in Java we cannot instantiate it). Next define an interface
(trait in Scala: unlike Java traits may specify the implementation of some

methods; unlike abstract classes traits cannot interoperate with Java)

trait RichIterator extends AbsIterator {
def foreach(f: T => Unit) { while (hasNext) f(mext) } // higher-order

G. Castagna (CNRS) Cours de Programmation Avancée 87/593

Mixin Class Composition

Reuse the new member definitions of a class (i.e., the delta in relationship to

the superclass) in the definition of a new class. In Scala:

abstract class AbsIterator {
type T // opaque type as in 0Caml Modules
def hasNext: Boolean
def next: T

Abstract class (as in Java we cannot instantiate it). Next define an interface
(trait in Scala: unlike Java traits may specify the implementation of some

methods; unlike abstract classes traits cannot interoperate with Java)

trait RichIterator extends AbsIterator {
def foreach(f: T => Unit) { while (hasNext) f(mext) } // higher-order

A concrete iterator class, which returns successive characters of a string:

class StringIlterator(s: String) extends AbsIterator {
type T = Char
private var i = 0
def hasNext = i < s.length()
def next = { val ch = s charAt i; i += 1; ch }

G. Castagna (CNRS) Cours de Programmation Avancée 87/593

Cannot combine the functionality of Stringlterator and Richlterator into a single
class by single inheritance (as both classes contain member impementations
with code). Mixin-class composition (keyword with): reuse the delta of a class
definition (i.e., all new definitions that are not inherited)

object StringIteratorTest {
def main(args: Array[Stringl) {
class Iter extends StringIterator(args(0)) with RichIterator //mixin
val iter = new Iter
iter.foreach(println) }

G. Castagna (CNRS) Cours de Programmation Avancée 88/593

Cannot combine the functionality of Stringlterator and Richlterator into a single
class by single inheritance (as both classes contain member impementations
with code). Mixin-class composition (keyword with): reuse the delta of a class
definition (i.e., all new definitions that are not inherited)

object StringIteratorTest {
def main(args: Array[Stringl) {
class Iter extends StringIterator(args(0)) with RichIterator //mixin
val iter = new Iter
iter.foreach(println) }

Extends the “superclass” StringIterator with RichIterator’s methods
that are not inherited from AbsIterator: foreach but not next or hasNext.

G. Castagna (CNRS) Cours de Programmation Avancée 88/593

Cannot combine the functionality of Stringlterator and Richlterator into a single
class by single inheritance (as both classes contain member impementations
with code). Mixin-class composition (keyword with): reuse the delta of a class
definition (i.e., all new definitions that are not inherited)

object StringIteratorTest {
def main(args: Array[Stringl) {
class Iter extends StringIterator(args(0)) with RichIterator //mixin
val iter = new Iter
iter.foreach(println) }

Extends the “superclass” StringIterator with RichIterator’s methods
that are not inherited from AbsIterator: foreach but not next or hasNext.
Note that the last application works since println : Any => Unit:

scala> def test (x : Any => Unit) = x // works also if we replace
test: ((Any) => Unit) (Any) => Unit // Any by a different type

scala> test(println)
resO: (Any) => Unit = <function>

G. Castagna (CNRS) Cours de Programmation Avancée 88/593

Cannot combine the functionality of Stringlterator and Richlterator into a single
class by single inheritance (as both classes contain member impementations
with code). Mixin-class composition (keyword with): reuse the delta of a class
definition (i.e., all new definitions that are not inherited)

object StringIteratorTest {
def main(args: Array[Stringl) {
class Iter extends StringIterator(args(0)) with RichIterator //mixin
val iter = new Iter
iter.foreach(println) }

Extends the “superclass” StringIterator with RichIterator’s methods
that are not inherited from AbsIterator: foreach but not next or hasNext.
Note that the last application works since println : Any => Unit:

scala> def test (x : Any => Unit) = x // works also if we replace
test: ((Any) => Unit) (Any) => Unit // Any by a different type

scala> test(println)
resO: (Any) => Unit = <function>

Rationale

Mixins are the “join” of an inheritance relation

G. Castagna (CNRS) Cours de Programmation Avancée 88/593

e Multiple dispatch

G. Castagna (CNRS) Cours de Programmation Avancée 89/593

Multiple dispatch languages

Originally used in functional languages
@ The ancestor: CLOS (Common Lisp Object System)
@ Cecil
@ Dylan

@ Now getting into mainstream languages by extensions (Ruby’s
Multiple Dispatch library, C# 4.0 dynamic or multi-method library, ...)
or directly as in Perl 6.

G. Castagna (CNRS) Cours de Programmation Avancée 90/593

Multiple dispatch in Perl 6

multi sub identify(Int $x) {
return "$x is an integer."; }

multi sub identify(Str $x) {
return qg<"$x" is a string.>; } #qq stands for ‘‘double quote’’

multi sub identify(Int $x, Str $y) {
return "You have an integer $x, and a string \"$y\"."; }

multi sub identify(Str $x, Int $y) {
return "You have a string \"$x\", and an integer $y."; }

multi sub identify(Int $x, Int $y) {
return "You have two integers $x and $y."; }

multi sub identify(Str $x, Str $y) {
return "You have two strings \"$x\" and \"$y\"."; }

say identify(42);

say identify("This rules!");

say identify(42, "This rules!");

say identify("This rules!", 42);

say identify("This rules!", "I agree!");
say identify(42, 24);

G. Castagna (CNRS) Cours de Programmation Avancée 91/593

Multiple dispatch in Perl 6

Embedded in classes

class Test {
multi method identify(Int $x) {
return "$x is an integer."; }
}

multi method identify(Str $x) {
return qg<"$x" is a string.>;

my Test $t .= new();
$t.identify(42); # 42 is an integer
$t.identify("weasel"); # "weasel" is a string

G. Castagna (CNRS) Cours de Programmation Avancée 92/593

Multiple dispatch in Perl 6

Embedded in classes

class Test {
multi method identify(Int $x) {
return "$x is an integer."; }
}

multi method identify(Str $x) {
return qg<"$x" is a string.>;

my Test $t .= new();
$t.identify(42); # 42 is an integer
$t.identify("weasel"); # "weasel" is a string

Partial dispatch
multi sub write_to_file(str $filename , Int $mode ;; Str $text) {

o

multi sub write_to_file(str $filename ;; Str $text) {

o

G. Castagna (CNRS) Cours de Programmation Avancée 92/593

Class methods as special case of partial dispatch

class Point {
has $.x is rw;
has $.y is rw;

method set_coordinates($x, $y) {
$.x = $x;
$.y = $y;

}
};

class Point3D is Point {
has $.z is rw;

method set_coordinates($x, $y) {

$.x = $x;
$.y = $y;
$.z = 0;
}
};
my $a = Point3D.new(x => 23, y => 42, z => 12);
say $a.x; # 23
say $a.z; # 12
$a.set_coordinates (10, 20);
say $a.z; # 0

G. Castagna (CNRS) Cours de Programmation Avancée 93/593

Equivalently with multi subroutines

class Point {
has $.x is rw;
has $.y is rw;

B

class Point3D is Point {
has $.z is rw;
5
multi sub set_coordinates(Point $p ;; $x, $y) {
$p.x = $x;
$p.y = 8y;

B

multi sub set_coordinates(Point3D $p ;; $x, $y) {

$p.x = $x;
$p.y = $y;
$p.z = 0;

B

my $a = Point3D.new(x => 23, y => 42, z => 12);

say $a.x; # 23
say $a.z; # 12
set_coordinates($a, 10, 20);

say $a.z; # 0

G. Castagna (CNRS) Cours de Programmation Avancée 94/593

Nota Bene

There is no encapsulation here.

class Point {
has $.x is rw;
has $.y is rw;

};

class Point3D is Point {
has $.z is rw;

};

multi sub set_coordinates(Point $p ;; $x, $y) {
$p.x = $x;
$p.y = 8y;

B

multi sub set_coordinates(Point3D $p ;; $x, $y)

$p.x = $x;
$p.y = $y;
$p.z = 0;

};

my $a = Point3D.new(x => 23, y => 42, z => 12);
say $a.x;

say $a.z;

set_coordinates($a, 10, 20);

Sa da.z:

G. Castagna (CNRS) Cours de Programmation Avancée

95/593

Note this for the future (of the course)

class Point {
has $.x is rw;
has $.y is rw;

class Point3D is Point {
has $.z is rw;

};

multi sub fancy(Point $p, Point3D $q) {
say "first was called";
multi sub fancy(Point3D $p, Point $q) {
say "second was called";
my $a = Point3D.new(x => 23, y => 42, z => 12);
fancy($a,$a)};

G. Castagna (CNRS) Cours de Programmation Avancée

96/593

Note this for the future (of the course)

class Point {
has $.x is rw;
has $.y is rw;

class Point3D is Point {
has $.z is rw;

};

multi sub fancy(Point $p, Point3D $q) {
say "first was called";
multi sub fancy(Point3D $p, Point $q) {
say "second was called";
my $a = Point3D.new(x => 23, y => 42, z => 12);
fancy($a,$a)};

Ambiguous dispatch to multi ’fancy’. Ambiguous candidates had signatures|
: (Point $p, Point3D $q)
:(Point3D $p, Point $q)
in Main (file <unknown>, line <unknown>)

G. Castagna (CNRS) Cours de Programmation Avancée 96/593

Outline

0 OCaml Classes

G. Castagna (CNRS) Cours de Programmation Avancée 97/593

OCaml Classes

Some compromises are needed
@ No polymorphic objects
@ Need of explicit coercions
@ No overloading

G. Castagna (CNRS) Cours de Programmation Avancée 98/593

OCaml Classes

Some compromises are needed
@ No polymorphic objects
@ Need of explicit coercions
@ No overloading

A brief parenthesis

A scratch course on OCaml classes and objects by Didier Remy (just click
here) http://gallium.inria.fr/“remy/poly/mot/2/index.html

G. Castagna (CNRS) Cours de Programmation Avancée 98/593

OCaml Classes

Some compromises are needed
@ No polymorphic objects
@ Need of explicit coercions
@ No overloading

A brief parenthesis

A scratch course on OCaml classes and objects by Didier Remy (just click
here) http://gallium.inria.fr/“remy/poly/mot/2/index.html

Programming is in general less liberal than in “pure” object-oriented languages,
because of the constraints due to type inference.

v

G. Castagna (CNRS) Cours de Programmation Avancée 98/593

OCaml Classes

Some compromises are needed
@ No polymorphic objects
@ Need of explicit coercions
@ No overloading

A brief parenthesis

A scratch course on OCaml classes and objects by Didier Remy (just click
here) http://gallium.inria.fr/“remy/poly/mot/2/index.html

Programming is in general less liberal than in “pure” object-oriented languages,
because of the constraints due to type inference.

v

G. Castagna (CNRS) Cours de Programmation Avancée 98/593

OCaml Classes

Some compromises are needed
@ No polymorphic objects
@ Need of explicit coercions
@ No overloading ... Haskell makes exactly the opposite choice ...

A brief parenthesis

A scratch course on OCaml classes and objects by Didier Remy (just click
here) http://gallium.inria.fr/“remy/poly/mot/2/index.html

Programming is in general less liberal than in “pure” object-oriented languages,
because of the constraints due to type inference.

v

G. Castagna (CNRS) Cours de Programmation Avancée 98/593

e Haskell’s Typeclasses

G. Castagna (CNRS) Cours de Programmation Avancée 99/593

Haskell's Typeclasses

Typeclasses define a set of functions that can have different implementations
depending on the type of data they are given.

class BasicEq a where
isEqual :: a -> a -> Bool

An instance type of this typeclass is any type that implements the functions
defined in the typeclass.

G. Castagna (CNRS) Cours de Programmation Avancée 100/593

Haskell's Typeclasses

Typeclasses define a set of functions that can have different implementations
depending on the type of data they are given.

class BasicEq a where
isEqual :: a -> a -> Bool

An instance type of this typeclass is any type that implements the functions
defined in the typeclass.

ghci> :type isEqual
isEqual :: (BasicEq a) => a -> a -> Bool

« For all types a, so long as a is an instance of BasicEq, isEqual takes two
parameters of type a and returns a Bool »

G. Castagna (CNRS) Cours de Programmation Avancée 100/593

To define an instance:

instance BasicEq Bool where
isEqual True True = True
isEqual False False = True
isEqual _ _ = False

G. Castagna (CNRS) Cours de Programmation Avancée 101/593

To define an instance:
instance BasicEq Bool where

isEqual True True = True
isEqual False False = True
isEqual _ _ = False

We can now use isEqual on Bools, but not on any other type:

ghci> isEqual False False
True

ghci> isEqual False True
False

ghci> isEqual "Hi" "Hi"

<interactive>:1:0:
No instance for (BasicEq [Char])
arising from a use of ‘isEqual’ at <interactive>:1:0-16
Possible fix: add an instance declaration for (BasicEq [Char])
In the expression: isEqual "Hi" "Hi"
In the definition of ‘it’: it = isEqual "Hi" "Hi"

As suggested we should add an instance for strings

’instance BasicEq String where

G. Castagna (CNRS) Cours de Programmation Avancée 101/593

A not-equal-to function might be useful. Here’s what we might say to define a
typeclass with two functions:

class BasicEq2 a where
isEqual2 :: a -> a -> Bool
isEqual2 x y = not (isNotEqual2 x y)

isNotEqual2 :: a -> a -> Bool
isNotEqual2 x y = not (isEqual2 x y)

People implementing this class must provide an implementation of at least one
function. They can implement both if they wish, but they will not be required to.

G. Castagna (CNRS) Cours de Programmation Avancée 102/593

Type-classes vs OOP

Type classes are like traits/interfaces/abstract classes, not classes itself (no
proper inheritance and data fields).

class Eq a where
(==) :: a -> a -> Bool

(/=) :: a ->a -> Bool
-- let’s just implement one function in terms of the other

x /=y = not (x ==y)

is, in a Java-like language:

interface Eq<A> {
boolean equal(A x);
boolean notEqual(A x) { // default, can be overridden
return 'equal(x);

G. Castagna (CNRS) Cours de Programmation Avancée

103/593

Type-classes vs OOP

Type classes are like traits/interfaces/abstract classes, not classes itself (no
proper inheritance and data fields).

class Eq a where
(==) :: a -> a -> Bool

(/=) :: a ->a -> Bool
-- let’s just implement one function in terms of the other

x /=y = not (x ==y)

is, in a Java-like language:

interface Eq<A> {
boolean equal(A x);
boolean notEqual(A x) { // default, can be overridden
return 'equal(x);

Haskell typeclasses concern more overloading than inheritance. They are
closer to multi-methods (overloading and no access control such as private

fields), but only with static dispatching.

103/593

G. Castagna (CNRS) Cours de Programmation Avancée

Type-classes vs OOP

A flavor of inheritance
They provide a very limited form of inheritance (but without overriding and late
binding!):

class Eq a => Ord a where
(X, k=), =),)

a
max, min Y

-> a -> Bool
-> a -> a

G. Castagna (CNRS) Cours de Programmation Avancée 104/593

Type-classes vs OOP

A flavor of inheritance

They provide a very limited form of inheritance (but without overriding and late
binding!):

class Eq a => Ord a where

(), (=), =,)

a
max, min Y

-> a -> Bool
-> a -> a

The subclass 0rd “inherits” the operations from its superclass Eq. In particular,
“methods” for subclass operations can assume the existence of “methods” for
superclass operations:

class Eq a => Ord a where
(<), (=), =),) ::a ->
max, min tra ->
x<y= x<=y&&zx /=y

Inheritance thus is not on instances but rather on types (a Haskell class is not a
type but a template for a type).

G. Castagna (CNRS) Cours de Programmation Avancée 104/593

Type-classes vs OOP

A flavor of inheritance
They provide a very limited form of inheritance (but without overriding and late
binding!):

class Eq a => Ord a where

(), (=), =,)

a
max, min Y

-> a -> Bool
-> a -> a

The subclass 0rd “inherits” the operations from its superclass Eq. In particular,
“methods” for subclass operations can assume the existence of “methods” for
superclass operations:

class Eq a => Ord a where
(<), (=), =),) ::a ->
max, min tra ->
x<y= x<=y&&zx /=y

Inheritance thus is not on instances but rather on types (a Haskell class is not a
type but a template for a type). Multiple inheritance is possible:

’class (Real a, Fractional a) => RealFrac a where ... ‘

G. Castagna (CNRS) Cours de Programmation Avancée 104/593

Hybrid solutions

@ Mixins raised in FP area (Common Lisp) and are used in OOP to allow
minimal module composition (as functors do very well). On the other hand
they could endow ML module system with inheritance and overriding

@ Multi-methods are an operation centric version of OOP. They look much
as a functional approach to objects

@ OCaml and Haskell classes are an example of how functional language
try to obtain the same kind of modularity as in OOP.

Something missing in OOP
What about Functors?

G. Castagna (CNRS) Cours de Programmation Avancée 105/593

Outline

e Generics

G. Castagna (CNRS) Cours de Programmation Avancée 106/593

Why in C# and not in Java?

Direct support in the CLR and IL (intermediate language)

The CLR implementation pushes support for generics into almost all feature
areas, including serialization, remoting, reflection, reflection emit, profiling,
debugging, and pre-compilation.

G. Castagna (CNRS) Cours de Programmation Avancée 107/593

Why in C# and not in Java?

Direct support in the CLR and IL (intermediate language)

The CLR implementation pushes support for generics into almost all feature
areas, including serialization, remoting, reflection, reflection emit, profiling,
debugging, and pre-compilation.

V.

Java Generics based on GJ

Rather than extend the JVM with support for generics, the feature is "compiled
away" by the Java compiler

Consequences:
@ generic types can be instantiated only with reference types (e.g. string or
object) and not with primitive types
@ type information is not preserved at runtime, so objects with distinct
source types such as List<string> and List<object> cannot be
distinguished by run-time

@ Clearer syntax
G. Castagna (CNRS) Cours de Programmation Avancée 107/593

Generics Problem Statement

public class Stack

object[] m_Items;
public void Push(object item)
{...}

pﬁéiic object Pop()
{...}

@ runtime cost (boxing/unboxing, garbage collection)
@ type safety

Stack stack = new Stack();
stack.Push(1);

stack.Push(2);

int number = (int)stack.Pop();

Stack stack = new Stack();
stack.Push(1);
string number = (string)stack.Pop(); // exception thrown

G. Castagna (CNRS) Cours de Programmation Avancée 108/593

Heterogenous translation

You can overcome these two problems by writing type-specific stacks. For
integers:

public class IntStack

{
int[] m_Items;
public void Push(int item){...}
public int Pop(){...}

IntStack stack = new IntStack();
stack.Push(1);
int number = stack.Pop();

For strings:

public class StringStack
{

string[] m_Items;
public void Push(string item){...}
public string Pop(O{...}

StringStack stack = new StringStack();
stack.Push("1");

string number = stack.Pop();

G. Castagna (CNRS) Cours de Programmation Avancée 109/593

Problem

Writing type-specific data structures is a tedious, repetitive, and error-prone
task.

G. Castagna (CNRS) Cours de Programmation Avancée 110/593

Problem

Writing type-specific data structures is a tedious, repetitive, and error-prone

task.

Generics

public class Stack<T>

{
T[] m_Items;
public void Push(T item)
{...}

public T Pop()

{...}

}

Stack<int> stack = new Stack<int>();

stack.Push(1);
stack.Push(2);
int number = stack.Pop();

G. Castagna (CNRS)

Cours de Programmation Avancée

110/593

Problem

Writing type-specific data structures is a tedious, repetitive, and error-prone
task.

Generics \

public class Stack<T>
{

T[] m_Items;
public void Push(T item)
{...}
public T Pop()
{...}
}
Stack<int> stack = new Stack<int>();
stack.Push(1);
stack.Push(2);
int number = stack.Pop();

You have to instruct the compiler which type to use instead of the generic type
parameter T, both when declaring the variable and when instantiating it:
Stack<int> stack = new Stack<int>();

G. Castagna (CNRS) Cours de Programmation Avancée 110/593

public class Stack<T>{

readonly int m_Size;

int m_StackPointer = 0;

T[] m_Items;

public Stack():this(100){

}

public Stack(int size){
m_Size = size;
m_Items = new T[m_Size];

public void Push(T item){
if (m_StackPointer >= m_Size)
throw new StackOverflowException() ;
m_Items[m_StackPointer] = item;
m_StackPointer++;

}
public T Pop({
m_StackPointer--;
if (m_StackPointer >= 0) {
return m_Items[m_StackPointer]; }
else {
m_StackPointer = 0;
throw new InvalidOperationException("Cannot pop an empty stack"
}
}
}

Recap
Two different styles to implement generics (when not provided by the VM):

@ Homogenous: replace occurrences of the type parameter by the type
Object. This is done in GJ and, thus, in Java (>1.5).

© Heterogeneous: make one copy of the class for each instantiation of the
type parameter. This is done by C++ and Ada.

The right solution is to support generics directly in the VM

G. Castagna (CNRS) Cours de Programmation Avancée 112/593

Recap
Two different styles to implement generics (when not provided by the VM):

@ Homogenous: replace occurrences of the type parameter by the type
Object. This is done in GJ and, thus, in Java (>1.5).

© Heterogeneous: make one copy of the class for each instantiation of the
type parameter. This is done by C++ and Ada.

The right solution is to support generics directly in the VM
Unfortunately, Javasoft marketing people did not let Javasoft researchers to
change the JVM.

G. Castagna (CNRS) Cours de Programmation Avancée 112/593

Multiple Generic Type Parameters

class Node<K,T> {
public K Key;
public T Item;
public Node<K,T> NextNode;
public Node() {

Key = default(K); // the "default" value of type K
Item = default(T); // the "default" value of type T
NextNode = null;

public Node(K key,T item,Node<K,T> nextNode) {
Key = key;
Item = item;
NextNode = nextNode;

¥

public class LinkedList<K,T> {
Node<K,T> m_Head;
public LinkedList() {
m_Head = new Node<K,T>();

public void AddHead(K key,T item){
Node<K,T> newNode = new Node<K,T>(key,item,m_Head);
m_Head = newNode;

G. Castagna (CNRS) Cours de Programmation Avancée 113/593

Generic Type Constraints

Suppose you would like to add searching by key to the linked list class
public class LinkedList<K,T> {

public T Find(K key) {
Node<K,T> current = m_Head;
while(current.NextNode != null) {

if (current.Key == key) //Will not compile
break;
else

current = current.NextNode;
}
return current.Item;

// rest of the implementation

}

The compiler will refuse to compile this line
if (current.Key == key)

because the compiler does not know whether K (or the actual type supplied by
the client) supports the == operator.

G. Castagna (CNRS) Cours de Programmation Avancée 114/593

We must ensure that K implements the following interface

public interface IComparable {
int CompareTo(Object other);
bool Equals(Object other);

¥

G. Castagna (CNRS) Cours de Programmation Avancée 115/593

We must ensure that K implements the following interface

public interface IComparable {
int CompareTo(Object other);
bool Equals(Object other);

This can be done by specifying a constraint:

public class LinkedList<K,T> where K : IComparable {
public T Find(K key) {
Node<K,T> current = m_Head;
while(current.NextNode != null) {
if (current.Key.CompareTo (key) == 0)
break;
else
current = current.NextNode;
}

return current.Item;

//Rest of the implementation
}

G. Castagna (CNRS) Cours de Programmation Avancée

115/593

We must ensure that K implements the following interface

public interface IComparable {
int CompareTo(Object other);
bool Equals(Object other);

This can be done by specifying a constraint:

public class LinkedList<K,T> where K : IComparable {
public T Find(K key) {
Node<K,T> current = m_Head;
while(current.NextNode != null) {
if (current.Key.CompareTo (key) == 0)
break;
else
current = current.NextNode;

}

return current.Item;

//Rest of the implementation
}

Problems

@ key is boxed/unboxed when it is a value (i.e. not an object)

@ The static information that key is of type K is not used
(CompareTo requires a parameter just of type Object).

G. Castagna (CNRS) Cours de Programmation Avancée 115/593

F-bounded polymorphism

In order to enhance type-safety (in particular, enforce the argument of
K.CompareTo to have type K rather than Object) and avoid boxing/unboxing
when the key is a value, we can use a generic version of IComparable.

public interface IComparable<T> {
int CompareTo(T other);
bool Equals(T other);

}

G. Castagna (CNRS) Cours de Programmation Avancée 116/593

F-bounded polymorphism

In order to enhance type-safety (in particular, enforce the argument of
K.CompareTo to have type K rather than Object) and avoid boxing/unboxing
when the key is a value, we can use a generic version of IComparable.

public interface IComparable<T> {
int CompareTo(T other);
bool Equals(T other);

}

This can be done by specifying a constraint:

public class LinkedList<K,T> where K : IComparable<K> {
public T Find(K key) {
Node<K,T> current = m_Head;
while(current.NextNode != null) {
if (current.Key.CompareTo (key) == 0)
break;
else
current = current.NextNode;

}

return current.Item;

//Rest of the implementation

}

G. Castagna (CNRS) Cours de Programmation Avancée 116/593

Generic methods

You can define method-specific (possibly constrained) generic type parameters
even if the containing class does not use generics at all:

public class MyClass

{
public void MyMethod<T>(T t) where T : IComparable<T>

{...}
}

G. Castagna (CNRS) Cours de Programmation Avancée 117/593

Generic methods

You can define method-specific (possibly constrained) generic type parameters
even if the containing class does not use generics at all:

public class MyClass
{

public void MyMethod<T>(T t) where T : IComparable<T>

{...}
}

When calling a method that defines generic type parameters, you can provide
the type to use at the call site:

MyClass obj = new MyClass();
obj.MyMethod<int>(3)

G. Castagna (CNRS) Cours de Programmation Avancée 117/593

Subtyping

Generics are invariant:

List<string> ls = new List<string>();

1s.Add("test");

List<object> lo = 1s; // Can’t do this in C#

object ol = 10[0]; // ok - converting string to object

1o[0] = new object(); // ERROR - can’t convert object to string

G. Castagna (CNRS) Cours de Programmation Avancée 118/593

Subtyping

Generics are invariant:

List<string> ls = new List<string>();

1s.Add("test");

List<object> lo = 1s; // Can’t do this in C#

object ol = 10[0]; // ok - converting string to object

1o[0] = new object(); // ERROR - can’t convert object to string

This is the right decision as the example above shows.

G. Castagna (CNRS) Cours de Programmation Avancée 118/593

Subtyping

Generics are invariant:

List<string> ls = new List<string>();

1s.Add("test");

List<object> lo = 1s; // Can’t do this in C#

object ol = 10[0]; // ok - converting string to object

1o[0] = new object(); // ERROR - can’t convert object to string

This is the right decision as the example above shows.
Thus

S is a subtype of T does not imply Class<S> is a subtype of Class<T>.

If this (covariance) were allowed, the last line would have to result in an
exception (eg. InvalidCastException).

G. Castagna (CNRS) Cours de Programmation Avancée 118/593

Beware of self-proclaimed type-safety

Since S is a subtype of T implies S[] is subtype of T[]. (covariance)

Do not we have the same problem with arrays?

G. Castagna (CNRS) Cours de Programmation Avancée 119/593

Beware of self-proclaimed type-safety

Since S is a subtype of T implies S[] is subtype of T[]. (covariance)

Do not we have the same problem with arrays? Yes

G. Castagna (CNRS) Cours de Programmation Avancée 119/593

Beware of self-proclaimed type-safety

Since S is a subtype of T implies S[] is subtype of T[]. (covariance)

Do not we have the same problem with arrays? Yes

From Jim Miller CLI book
The decision to support covariant arrays was primarily to allow Java
to run on the VES (Virtual Execution System). The covariant design
is not thought to be the best design in general, but it was chosen in
the interest of broad reach.

(ves, it is not a typo, Microsoft decided to break type safety and did so in order to run Java in .net)

G. Castagna (CNRS) Cours de Programmation Avancée 119/593

Beware of self-proclaimed type-safety

Since S is a subtype of T implies S[] is subtype of T[]. (covariance)

Do not we have the same problem with arrays? Yes
From Jim Miller CLI book

The decision to support covariant arrays was primarily to allow Java
to run on the VES (Virtual Execution System). The covariant design
is not thought to be the best design in general, but it was chosen in
the interest of broad reach.

(ves, it is not a typo, Microsoft decided to break type safety and did so in order to run Java in .net)

Regretful (and regretted) decision:
class Test {

static void Fill(object[] array, int index, int count, object val) {
for (int i = index; i < index + count; i++) array[i] = val;
}

static void Main() {
string[] strings = new string[100];
Fill(strings, O, 100, "Undefined");
Fill(strings, 0, 10, null);
Fill(strings, 90, 10, 0); //—8ystem.ArrayTypeMismatchException

G. Castagna (CNRS) Cours de Programmation Avancée 119/593

Variant annotations

Add variants (C# 4.0)

// Covariant parameters can be used as result types
interface IEnumerator<out T> {

T Current { get; }

bool MoveNext();

// Covariant parameters can be used in covariant result types
interface IEnumerable<out T> {

IEnumerator<T> GetEnumerator();
}

// Contravariant parameters can be used as argument types
interface IComparer<in T> {
bool Compare(T x, T y);

G. Castagna (CNRS) Cours de Programmation Avancée 120/593

Variant annotations

Add variants (C# 4.0)

// Covariant parameters can be used as result types
interface IEnumerator<out T> {

T Current { get; }

bool MoveNext();

// Covariant parameters can be used in covariant result types
interface IEnumerable<out T> {

IEnumerator<T> GetEnumerator();
}

// Contravariant parameters can be used as argument types
interface IComparer<in T> {
bool Compare(T x, T y);

This means we can write code like the following:

IEnumerable<string> stringCollection = //smaller type
IEnumerable<object> objectCollection = strlngCollectlon //larger type
foreach(object o in objectCollection) { ... }

IComparer<object> objectComparer = ...; //smaller type
IComparer<string> stringComparer = objectComparer; //larger type
bool b = stringComparer.Compare("x", "y");

G. Castagna (CNRS) Cours de Programmation Avancée 120/593

Features becoming standard in modern OOLs ...

In Scala we have generics classes and methods with annotations and bounds

class ListNode[+T](h: T, t: ListNodel[T]) {
def head: T = h
def tail: ListNode[T] = t
def prepend[U >: T](elem: U): ListNode[U] =
ListNode(elem, this)

G. Castagna (CNRS) Cours de Programmation Avancée 121/593

Features becoming standard in modern OOLs ...

In Scala we have generics classes and methods with annotations and bounds

class ListNode[+T](h: T, t: ListNodel[T]) {
def head: T = h
def tail: ListNode[T] = t
def prepend[U >: T](elem: U): ListNode[U] =
ListNode(elem, this)

and F-bounded polymorphism as well:

class GenCell[T] (init: T) {

private var value: T = init

def get: T = value

def set(x: T): unit = { value = x }
}

trait Ordered[T] {
def < (x: T): boolean
}

def updateMax[T <: Ordered[T]](c: GenCell[T], x: T) =
if (c.get < x) c.set(x)

G. Castagna (CNRS) Cours de Programmation Avancée 121/593

... but alsoin FP.

All these characteristics are present in different flavours in OCaml

G. Castagna (CNRS) Cours de Programmation Avancée 122/593

... but alsoin FP.

All these characteristics are present in different flavours in OCaml

Generics are close to parametrized classes:
exception Empty;;

1]

class [’a] stack

object

val mutable p : ’a list = []
method push x = p <- x :: p
method pop =

match p with
| [1 -> raise Empty
| x::t ->p <-t; x
end;;
class [’a] stack :
object val mutable p : ’a list method pop : ’a method push : ’a -> unit en
new stack # push 3;;

- : unit = O

let x = new stack;;

val x : ’_a stack = <obj>
x # push 3;;

- : unit = O

x5

- : int stack = <obj>

G. Castagna (CNRS) Cours de Programmation Avancée 122/593

Constraints can be deduced by the type-checker

#class [’a] circle (c : ’a) =
object
val mutable center = c
method center = center
method set_center c = center <- c
method move = (center#move : int -> unit)

end;;
class [’a] circle

‘a ->

object
constraint ’a = < move : int -> unit; .. >
val mutable center : ’a
method center : ’a
method move : int -> unit
method set_center : ’a -> unit

end

G. Castagna (CNRS) Cours de Programmation Avancée

123/593

Constraints can be imposed by the programmer

#class point x_init =
object

val mutable x = x_init

method get_x = x
method move d = x
end;;
class point
int ->
object val mutable x

#class [’a] circle (c
object

constraint ’a = #point

<- x +d

int method get_x
’a) =

(x = < get_x

val mutable center = ¢
method center = center

method set_center

c = center <- ¢

method move = center#move

end;;
class [’a] circle

7a >

object
constraint ’a = #p
val mutable center
method center : ’a
method move : int
method set_center

end

G. Castagna (CNRS)

oint
’a

-> unit
’a -> unit

Cours de Programmation Avancée

int; move

int->unit;

int method move : int -> unit e

> %)

124/593

Explicit instantiation is done just for inheritance
#class colored_point x (c : string) =

object
inherit point x
val ¢ = ¢

method color = c

end; ; .
class colored_point

int ->

string ->

object

end

#class colored_circle c =
object
inherit [colored_point] circle c
method color = center#color
end;;
class colored_circle
colored_point ->
object
val mutable center : colored_point
method center : colored_point
method color : string
method move : int -> unit
method set_center : colored_point -> unit

end
G. Castagna (CNRS) Cours de Programmation Avancée 125/593

Variance constraints

@ Variance constraint are meaningful only with subtyping (i.e. objects,
polymorphic variants, ...).

G. Castagna (CNRS) Cours de Programmation Avancée 126/593

Variance constraints
@ Variance constraint are meaningful only with subtyping (i.e. objects,
polymorphic variants, ...).

@ They can be used in OCaml (not well documented): useful on abstract
types to describe the expected behaviour of the type with respect to
subtyping.

G. Castagna (CNRS) Cours de Programmation Avancée 126/593

Variance constraints

@ Variance constraint are meaningful only with subtyping (i.e. objects,
polymorphic variants, ...).

@ They can be used in OCaml (not well documented): useful on abstract
types to describe the expected behaviour of the type with respect to
subtyping.

@ Forinstance, an immutable container type (like lists) will have a covariant
type:

type (+’a) container

meaning that if s is a subtype of t then s container is a subtype of t

container. On the other hand an acceptor will have a contravariant type:
type (-’a) acceptor

meaning that if s is a subtype of t then t acceptor is a subtype s acceptor.

G. Castagna (CNRS) Cours de Programmation Avancée 126/593

Variance constraints

@ Variance constraint are meaningful only with subtyping (i.e. objects,
polymorphic variants, ...).

@ They can be used in OCaml (not well documented): useful on abstract
types to describe the expected behaviour of the type with respect to
subtyping.

@ Forinstance, an immutable container type (like lists) will have a covariant
type:

type (+’a) container

meaning that if s is a subtype of t then s container is a subtype of t

container. On the other hand an acceptor will have a contravariant type:
type (-’a) acceptor

meaning that if s is a subtype of t then t acceptor is a subtype s acceptor.

G. Castagna (CNRS) Cours de Programmation Avancée 126/593

Variance constraints

@ Variance constraint are meaningful only with subtyping (i.e. objects,
polymorphic variants, ...).

@ They can be used in OCaml (not well documented): useful on abstract
types to describe the expected behaviour of the type with respect to
subtyping.

@ Forinstance, an immutable container type (like lists) will have a covariant
type:

type (+’a) container

meaning that if s is a subtype of t then s container is a subtype of t

container. On the other hand an acceptor will have a contravariant type:
type (-’a) acceptor

meaning that if s is a subtype of t then t acceptor is a subtype s acceptor.

see also https://ocaml. janestreet.com/?gq=node/99

G. Castagna (CNRS) Cours de Programmation Avancée 126/593

Summary for generics ...

G. Castagna (CNRS) Cours de Programmation Avancée 127/593

Generics endow OOP with features from the FP universe

G. Castagna (CNRS) Cours de Programmation Avancée 128/593

Generics endow OOP with features from the FP universe

Generics on classes (in particular combined with Bounded
Polymorphism) look close to functors.

G. Castagna (CNRS) Cours de Programmation Avancée 128/593

Generics endow OOP with features from the FP universe

Generics on classes (in particular combined with Bounded
Polymorphism) look close to functors.

Compare the Scala program in two slides with the Set functor with signature:

module Set :
functor (Elt : ORDERED_TYPE) ->
sig
type element = Elt.t
type set = element list
val empty : ’a list
val add : Elt.t -> Elt.t list -> Elt.t list
val member : Elt.t -> Elt.t list -> bool
end

where

type comparison = Less | Equal | Greater;;

module type ORDERED_TYPE
sig
type t
val compare: t -> t -> comparison
end;;

G. Castagna (CNRS) Cours de Programmation Avancée 128/593

and that is defined as:
module Set (Elt: ORDERED_TYPE) =

struct

type element = Elt.t
type set = element list

let empty = []
let rec add x s
match s with

0 -> [x]
| hd::t1 ->
match Elt.compare x hd with
Equal -> s (* x is already in s
| Less ->x s (* x is smaller than

| Greater -> hd :: add x tl
let rec member x s =

match s with
[1 -> false
| hd::tl ->
match Elt.
Equal
| Less
| Greater
end;;

G. Castagna (CNRS)

compare x hd with

-> true (* x belongs to s *)
-> false (* x is smaller than
-> member x tl

Cours de Programmation Avancée

*)
all elmts of s *)

all elmts of s *)

129/593

trait Ordered[A] {
def compare(that: A): Int
def < (that: A): Boolean
def > (that: A): Boolean

(this compare that) < 0
(this compare that) > O

trait Set[A <: Ordered[A]l] {
def add(x: A): Set[A]
def member(x: A): Boolean

class EmptySet[A <: Ordered[A]] extends Set[A] {
def member(x: A): Boolean = false
def add(x: A): Set[A] =
new NonEmptySet(x, new EmptySet[A]l, new EmptySet[A])
}

class NonEmptySet[A <: Ordered[A]]
(elem: A, left: Set[A], right: Set[A]) extends Set[A] {
def member(x: A): Boolean =
if (x < elem) left member x
else if (x > elem) right member x
else true
def add(x: A): Set[A] =
if (x < elem) new NonEmptySet(elem, left add x, right)
else if (x > elem) new NonEmptySet(elem, left, right add x)
else this

G. Castagna (CNRS) Cours de Programmation Avancée

130/593

Generics endow OOP with features from the FP universe

Generics on methods bring the advantages of parametric polymorphism

def isPrefix[A](p: Stack[A], s: Stack[A]): Boolean = {
p.isEmpty ||
p.-top == s.top && isPrefix[A] (p.pop, s.pop)

val sl = new EmptyStack[String].push("abc")
val s2 = new EmptyStack[String].push("abx").push(sl.top)
println(isPrefix[String] (s1, s2))

G. Castagna (CNRS) Cours de Programmation Avancée 131/593

Generics endow OOP with features from the FP universe

Generics on methods bring the advantages of parametric polymorphism

def isPrefix[A](p: Stack[A], s: Stack[A]): Boolean = {
p.isEmpty ||
p.-top == s.top && isPrefix[A] (p.pop, s.pop)

val sl = new EmptyStack[String].push("abc")
val s2 = new EmptyStack[String].push("abx").push(sl.top)
println(isPrefix[String] (s1, s2))

Local Type Inference
It is possible to deduce the type parameter from s1 and s2. Scala does it for us.

val sl = new EmptyStack[String].push("abc")
val s2 = new EmptyStack[String].push("abx").push(sl.top)
println(isPrefix(sl, s2))

G. Castagna (CNRS) Cours de Programmation Avancée 131/593

	Classes vs. Modules
	Modularity in OOP
	Mixin Composition
	Multiple dispatch
	OCaml Classes
	Haskell's Typeclasses
	Generics

