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Execution models for a language

@ Interpretation: control (sequencing of computations) is expressed by a
term of the source language, represented by a tree-shaped data structure.
The interpreter traverses this tree during execution.

© Compilation to native code: control is compiled to a sequence of
machine instructions, before execution. These instructions are those of a
real microprocessor and are executed in hardware.

© Compilation to abstract machine code: control is compiled to a
sequence of instructions. These instructions are those of an abstract
machine. They do not correspond to that of an existing hardware
processor, but are chosen close to the basic operations of the source
language.

G. Castagna (CNRS) Cours de Programmation Avancée 272/593



Execution models for a language

@ Interpretation: control (sequencing of computations) is expressed by a
term of the source language, represented by a tree-shaped data structure.
The interpreter traverses this tree during execution.

© Compilation to native code: control is compiled to a sequence of
machine instructions, before execution. These instructions are those of a
real microprocessor and are executed in hardware.

© Compilation to abstract machine code: control is compiled to a
sequence of instructions. These instructions are those of an abstract
machine. They do not correspond to that of an existing hardware
processor, but are chosen close to the basic operations of the source
language.Yet another example of program transformations between
different languages

G. Castagna (CNRS) Cours de Programmation Avancée 272/593



Execution models for a language

@ Interpretation: control (sequencing of computations) is expressed by a
term of the source language, represented by a tree-shaped data structure.
The interpreter traverses this tree during execution.

© Compilation to native code: control is compiled to a sequence of
machine instructions, before execution. These instructions are those of a
real microprocessor and are executed in hardware.

© Compilation to abstract machine code: control is compiled to a
sequence of instructions. These instructions are those of an abstract
machine. They do not correspond to that of an existing hardware
processor, but are chosen close to the basic operations of the source
language.Yet another example of program transformations between
different languages

Next: short overview of abstract machines for functional languages
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@ A simple stack machine

G. Castagna (CNRS) Cours de Programmation Avancée 273/593



Abstract machine for arithmetic expressions

Arithmetic expressions:

az:=N|a+a| a—a
Machine Components

@ A code pointer
@ A stack

Instruction set:
CONST(N) push integer N on stack
ADD pop two integers, push their sum
SUB pop two integers, push their difference
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Compilation scheme

Compilation (translation of expressions to sequences of instructions) is just
translation to “reverse Polish notation”:

[N]] = CONST(N)
a1 +a]] = [[as]l;[[22]];ADD
[ai —a]] = [[ad]li[[2=]];SUB

[5— (1 +2)] = CONST(5); CONST (1); CONST(2); ADD; SUB
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Transitions

BEFORE AFTER
Code | Stack || Code | Stack
CONST(N) ; ¢ s |l c N.s
ADD ; ¢ m.ny.s || ¢ (N +no).s
SUB ; ¢ n..ny.s || ¢ (N —mp).s
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Transitions

BEFORE AFTER
Code | Stack || Code | Stack
CONST(N) ; ¢ s |l c N.s
ADD ; ¢ m.ny.s || ¢ (N +no).s
SUB ; ¢ n..ny.s || ¢ (N —mp).s

Let us try to execute the compilation of 5 — (1 + 2) with an empty stack
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Transitions

BEFORE AFTER
Code | Stack || Code | Stack
CONST(N) ; ¢ s |l c N.s
ADD ; ¢ m.ny.s || ¢ (N +no).s
SUB ; ¢ n..ny.s || ¢ (N —mp).s

Let us try to execute the compilation of 5 — (1 + 2) with an empty stack

| Code | Stack |
CONST(5); CONST (1) ; CONST(2); ADD; SUB €
CONST (1) ; CONST(2); ADD; SUB 5

CONST(2); ADD; SUB 1.5
ADD; SUB | 2.1.5

SUB 3.5

€ 2
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Transitions

BEFORE AFTER
Code | Stack || Code | Stack
CONST(N) ; ¢ s |l c N.s
ADD ; ¢ m.ny.s || ¢ (N +no).s
SUB ; ¢ n..ny.s || ¢ (N —mp).s

Let us try to execute the compilation of 5 — (1 + 2) with an empty stack

| Code | Stack |
CONST(5); CONST (1) ; CONST(2); ADD; SUB €
CONST (1) ; CONST(2); ADD; SUB 5

CONST(2); ADD; SUB 1.5
ADD; SUB | 2.1.5

SUB 3.5

€ 2

Notice the right-to-left execution order
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@ The SECD machine
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SECD: abstract-machine for call by value

Machine Components

@ A code pointer
@ An environment
@ A stack

Instruction set: (+ previous arithmetic operations)

ACCESS(n) push n-th field of the environment
CLOSURE(c) push closure of code ¢ with current environment

LET pop value and add it to environment

ENDLET discard first entry of environment

APPLY pop function closure and argument, perform application
RETURN terminate current function, jump back to caller
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Compilation scheme

[n]] = ACCESS(n)
[Aa]] = CLOSURE([[a]] ; RETURN)
[[let a in b]] = [[a]] ; LET ; [[b]] ; ENDLET

[[ab]] = [lal] ; [[p]] ; APPLY

(constants and arithmetic as before)
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Compilation scheme

[n]] = ACCESS(n)
[Aa]] = CLOSURE([[a]] ; RETURN)
[[let a in b]] = [[a]] ; LET ; [[b]] ; ENDLET

[ab]] = [[a]l ; [[b]] ; APPLY

(constants and arithmetic as before)

Term:
(AM0+1))2 (i.e., Ax.x+1)2)

Code:
CLOSURE (ACCESS (0) ; CONST (1) ; ADD;RETURN) ; CONST(2) ; APPLY
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Transitions

BEFORE AFTER
Code | Env | Stack || Code | Env | Stack
ACCESS(n); ¢ e s|lc e| e(n).s
LET; c e v.s || C v.e S
ENDLET; ¢ v.e s|l c e S
CLOSURE(¢); ¢ e s|c e | dle].s
APPLY; c e| vclée]s| ¢ v.e' | ces
RETURN; ¢ e| vc.ées| ¢ e V.S

where c|e| denotes the closure of code ¢ with environment e.
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Code: CLOSURE(c); CONST(2); APPLY
where: ¢ = ACCESS (0) ;CONST (1) ;ADD;RETURN

\ Code | Env |  Stack |

CLOSURE(c); CONST(2); APPLY e S
CONST(2); APPLY e cle].s

APPLY e| 2.clel.s

c| 2.e €.e.s

CONST (1) ;ADD;RETURN | 2.e 2.e.e.s
ADD;RETURN | 2.e | 1.2.€.e.s

RETURN | 2.e 3.c.e.s

€ e 3.5
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Soundness

Of course we always have to show that the compilation is correct, in the sense
that it preserves the semantics of the reduction. This is stated as follows

Theorem (soundness of SECD)

If e= v then the SECD machine in the state ([[e]],€,€) reduces to the state
(e,€,v), where Vv is the machine value for v (the same integer for an integer,
and the corresponding closure for a A-abstraction.)

(where = is the call-by-value, weak-reduction, big-step semantics defined in
the “Refresher course on operational semantics”)
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Outline

@ Adding Tail Call Elimination
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An optimization: tail call elimination

Consider:
f=A ...g1 ...
g =A. h(...)
h = A.

The call from g to h is a tail call: when h returns, g has nothing more to
compute, it just returns immediately to £.

At the machine level, the code of g is of the form . . . ; APPLY ; RETURN

When g calls h, it pushes a return frame on the stack containing the code
RETURN. When h returns (e.g. a value v;), it jumps to this RETURN in g, which
jumps to the continuation in £.

Tail-call elimination consists in avoiding this extra return frame and this extra
RETURN instruction, enabling h to return directly to £, and saving stack space.

G. Castagna (CNRS) Cours de Programmation Avancée 284/593



An optimization: tail call elimination

f=A. g1
g =A. h(...)
h=A.
| Code | Env | Stack |
APPLY;RETURN, e v.chlen].cr.er.5
Ch v.en (RETURNg).e.cy.€r.5
RETURN}, e Vh.(RETURNy).e.cy.€r.S
RETURNg e Vh.Cs.€f.S
Cr er Vh.S

G. Castagna (CNRS)
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An optimization: tail call elimination

f=A. g1
g =A. h(...)
h=A.
| Code | Env | Stack |
APPLY;RETURN, e v.chlen].cr.er.5
Ch v.ep (RETURNg).e.cy.€r.5
RETURN}, e Vh.(RETURNg).e.ct.67.S
RETURNg e Vh.Cr.€f.S
Cf er Vh.S

Tail-call elimination consists in avoiding this extra return frame and this extra
RETURN instruction, enabling h to return directly to f, and saving stack space.

G. Castagna (CNRS) Cours de Programmation Avancée



The importance of tail call elimination

Tail call elimination is important for recursive functions whose recursive calls
are in tail position — the functional equivalent to loops in imperative languages:

let rec fact n accu =
if n = 0 then accu else fact (n-1) (accu*n)
in fact 42 1

With tail call elimination, this code runs in constant stack space.
Without tail call elimination, it consumes O(n) stack space exactly as

let rec fact n = if n = 0 then 1 else n * fact (n-1)
in fact 42

Hello stack overflows!
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SECD with tail-call elimination

Machine Components: as before

Instruction set: as before plus
TAILAPPLY perform application without pushing the return frame

Compilation scheme:
Split the compilation scheme in two functions: 7 for expressions in tail call
position, C for other expressions.

T[[let a in b]] = C[a];LET;T[[b]|

T [ab]] C[[a]]; C[[b]); TAILAPPLY
T[lal]] = Cla];RETURN (otherwise)
Cl[n]] = ACCESS(n)
Cl[rAa]] = CLOSURE(Z [[a]])
Cl[1et a in b]] = ([a]|;LET;C[[b]];ENDLET
|

= (la]]; C[[b]]; APPLY

G. Castagna (CNRS) Cours de Programmation Avancée 287/593



Transitions

The TAILAPPLY instruction behaves like APPLY, but does not bother pushing a
return frame to the current function

BEFORE AFTER
Code | Env | Stack || Code | Env | Stack
TAILAPPLY; ¢ e| vcléels| ¢ v.e s
APPLY; ¢ e| vcléels| ¢ v.e | ces
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Transitions

The TAILAPPLY instruction behaves like APPLY, but does not bother pushing a
return frame to the current function

BEFORE AFTER
Code | Env | Stack || Code | Env | Stack
TAILAPPLY; ¢ e| vcléels| ¢ v.e s
APPLY; ¢ e| vcléels| ¢ v.e | ces

Note also that 7[[1let a in b]] does not end by ENDLET, since every code
produced by 7 [[]] ends either by TAILAPPLY and RETURN, and both
TAILAPPLY and RETURN throw the current environment away.
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Back to the example

| Code | Env | Stack |
APPLY;RETURN, e v.chlen].cr.€r.s
Ch v.en (RETURNg).e.cy.€r.5
RETURNj, e Vh.(RETURNg).e.cy.€.S
RETURN, e Vh.Cr.€5.S
Cs er Vhp.S

Code | Env | Stack |
TAILAPPLY e v.Chlen].cr.er.5
Ch V.ep Cr.€r.S
RETURN, e’ Vh.Ct.€5.S
Cr ef Vh.S
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@ The Krivine Machine
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The Krivine Machine X

Machine Components

@ A code pointer ¢
@ An environment e
© Astack s

Difference: stacks and environments no longer contain values but “thunks”.
These are closures c[e] for generic expressions (not just A’'s) and represent
“frozen” expressions that are to be evaluated.

Instruction set:

ACCESS(n) start evaluating the thunk at the n-th position of the environment
PUSH(c) push a thunk for code ¢
GRAB pop one argument and cons it to the environment
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Compilation scheme

@ Application pushes the argument as a thunk (i.e., current expression + its
environment) on the stack and evaluates the function.

@ A-abstraction grabs its argument(s) from the stack and evaluates its body

[[n]] ACCESS(n)
a] = GRAB; [[4]
[[ab]] PUSH([[6]]) ; [[&]]

Nota bene
@ Close to lambda calculus: three instructions for three terms

@ Implements call-by-name

((A.a)[e])(b[e']) — a[b[e'].€]

(A-calculus with explicit substitutions)
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Transitions

BEFORE AFTER
Code \ Env \ Stack || Code \ Env \ Stack
ACCESS(n); ¢ e s |l c;c e s |ife(n) = c'[€]
GRAB; ¢ e| clé]s| ¢ c[€].e s
PUSH(c); ¢ e sl ¢ e| cle]s
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Transitions

BEFORE AFTER
Code | Env | Stack || Code | Env | Stack
ACCESS(n); ¢ e sl cie e s
GRAB; ¢ e| c[€]s | c cdle].e s
PUSH(c); ¢ e sl ¢ e| cle]s

In pure A-calculus ACCESS () has no continuation ¢, so it is rather

BEFORE AFTER
Code \ Env \ Stack || Code Env | Stack
ACCESS(n) e sl ¢ e s

G. Castagna (CNRS)
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Soundness and efficiency

Soundness:

Krivine’s machine is much closer to A-calculus, so it has a stronger soundness
result in the sense that every reduction step of the Krivine machine
corresponds to a reduction step in the CBN A-calculus

(technically, to the CBN A-calculus with explicit substitutions).

The soundness of SECD is stated just for the big-step semantics.
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Soundness and efficiency

Soundness:

Krivine’s machine is much closer to A-calculus, so it has a stronger soundness
result in the sense that every reduction step of the Krivine machine
corresponds to a reduction step in the CBN A-calculus

(technically, to the CBN A-calculus with explicit substitutions).

The soundness of SECD is stated just for the big-step semantics.

Efficiency:
Krivine’s machine is highly inefficient

@ Duplicated execution of the same expressions (call-by-value instead of
call-by-need)

@ Duplicated values stored on the heap (no mark compression)

@ Redundant information for variables (it dumbly stores a variable with its
closure, instead of storing directly the value the varible is bound to)

@ Much more (see research papers).
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@ The lazy Krivine machine
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Adding call-by-need

We add an indirection to a HEAP, which maps locations to closures.
Evironments map variables (De Brujin indexes) to locations of the heap.
A value (€ 1/al) is a closure of the form (GRAB;c) [e] (compiles as before)

We split the rules for variables (ACCESS ()) and lambda’s (GRAB;c) in two:

BEFORE AFTER

Code | Env [ Stack | Heap [| Code [ Env [ Stack | Heap
ACCESS(n) e s h || ¢ ¢ s h |(1)
ACCESS(n) e s h |l ¢ e | mrk().s h |(2)
GRAB; ¢ e | c[€]s h |l c le s h{¢— c'[€']} [(3)
GRAB; ¢ e | mrk({).s h || GRAB;c e s | h{{— (GRAB;c)[e]} [(4)
PUSH(c); ¢ e s hll e e c[e].s h

(1) if e(n) = ¢ and h(¢) = c'[€'] € Val activate the value stored for n
(2) ife(n) =Land h({) =[] ¢ Val activate expr and mark the stack
(3) Zisfresh grab the argument on the top of the stack and allocate on heap
(4) store in the heap the value computed for the location /¢
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Mark compression

In some situations in the stack may contain sequences of markers.

For example for (Az.(Ay.z(yz))z)(Ax.x) the machine reduces at some point to
a stack of the form mrk(¢2).mrk(¢41) and both locations contain the closure

(Ax.x)[] (try it)

When a sequence of markers is popped from the stack, the same value is
assigned to each heap location pointed to by the markers

Optimization: avoid creating sequences of markers by sharing the first marker
and result location among closures that receive the same value.
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Mark compression

Solution: Add one level of indirection
Before: Environments map variables to pointers to closures
Now: Environments map variables to pointers to pointers to closures

BEFORE AFTER

Code | Env | Stack | Heap [| Code [ Env | Stack | Heap
ACCESS(n) e s h |l ¢ ¢ s h |(1)
ACCESS (n) e | mrk().s hll ¢ e | mrk(?).s h{e(n) — ('} |(2a)
ACCESS(n) e s h |l ¢ e mrk(/).s h |(2b)
GRAB; ¢ e c'[€].s h il c le s | h{t— 00— c[e]} |(3)
GRAB; ¢ e | mrk(().s h || GRAB;c e s h{¢— (GRAB;c)|e|}
PUSH(c); ¢ e s hllc e c'le].s h

(1) if h(e(n))=¢ and h(¢)

) c'[€] € Val
(2a) if h(e(n))=¢ and h(¢)

)

)

ce] ¢ Val map e(n) to ¢’ and dealloc ¢
c'[€'] ¢ Val and s = mrk(¢').s' proceed as before

(2b) if h(e(n))=¢ and h(¢)
(8) ¢ and ¢ are fresh
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Short circuiting for dereferencing

When the argument of a function is a variable deferencing is not efficient.
Consider (Ax.Mx)N.

@ We evaluate Mx in the environment {x — N[]}.
@ This pushes on the stack the closure x[{x — N[]}]: silly!
© Much more efficient and clever to push directly on the stack the closure
N[] (i.e., the result of evaluating x in the environment {x — N[]})
We short-circuit the deferencing of a variable in argument position.
An optimization already present in early implementations of Algol 60.

Rationale: now expressions in closures are never variables. They are

- either lambdas (the closure is a value)
- or applications (the closure is a “thunk”, a frozen expression).
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Short circuiting for dereferencing

@ We split the rule for application (PUSH()) in two cases: when the
argument is a variable and when it is not

© We modify the rule for lambdas, since heap allocation is now performed at
the application (instead of GRAB)

BEFORE AFTER

Code [Env] Stack | Heap [[ Code | Env | Stack | Heap
Acc(n) e s h ¢ e s h |(1)
Acc(n) e |mrk(?).s h |l ¢ e | mrk({).s h{e(n) — ('} |(2a)
Acc(n) e s h ¢ e l.s h |(2b)
GRAB; ¢ e | arg().s h c l.e s h
GRAB; ¢ e | mrk(f).s h || GRAB;c e s | h{{— (GRAB;c)[e]}
PUSH(ACC(n)); ¢ e s h |l c e |arg(e(n)).s h
PUSH(c); ¢ e s hl|l ¢ e arg(?).s | h{t— ;0" —c'[e]} [(3)

(1) if h(e(n))=¢ and h(¢)=c'[€'] € Val
(2a) if h(e(n))=¢ and h(¢)=c'[€'] ¢ Val
(2b) if h(e(n))=¢ and h(¢ )=c’[e’] ¢ Val and s £ mrk(¢').s'

) £ d

(8) £ and ¢ are fresh and ¢’ # ACC(n)
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@ Eval-apply vs. Push-enter
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Eval-apply vs. Push-enter

Real machines are more sophisticated (e.g., register allocation, garbage
collection, ...) and there exist many more variants than the ones presented.
See Marlow and Peyton Jones’s JFP’06 paper for better approximation.

Peyton Jones classifies AM for functional languages based on two subtly
different ways to evaluate a function application f a b:

@ Push-enter: (e.g., Krivine)
Push on stack the arguments a and b and enter the code of for f (that at
some point will try to grab its arguments from the stack)

@ Eval-apply: (e.g., SECD)
Evaluate f (to a closure c[e]) and apply it to the right number of
arguments (i.e., evaluate a and extend environment e with its result and, if
f is binary, do the same with b)
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Eval-apply vs. Push-enter

Real machines are more sophisticated (e.g., register allocation, garbage
collection, ...) and there exist many more variants than the ones presented.
See Marlow and Peyton Jones’s JFP’06 paper for better approximation.

Peyton Jones classifies AM for functional languages based on two subtly
different ways to evaluate a function application f a b:

@ Push-enter: (e.g., Krivine)
Push on stack the arguments a and b and enter the code of for f (that at
some point will try to grab its arguments from the stack)

@ Eval-apply: (e.g., SECD)
Evaluate f (to a closure c[e]) and apply it to the right number of
arguments (i.e., evaluate a and extend environment e with its result and, if
f is binary, do the same with b)

The difference becomes significant for curried applications of functions
whose arity is not statically known: J
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The problem with arity

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [1 [1 = []

zipWith k (x:xs) (y:ys) = k x y : zipWith k xs ys
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The problem with arity

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [1 [1 = []
zipWith k (x:xs) (y:ys) =k x y : zipWith k xs ys
Here k can end up to be unary, binary, ternary ... or more:
Q@ (Ax.x)(Ax.x)y
Q@ (AxAy.x+y)xy
Q@ (AxAyAz.z)xy
The arity of the function k is known only when it is bound to a closure.
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The problem with arity

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [1 [1 = []
zipWith k (x:xs) (y:ys) = k x y : zipWith k xs ys

Here k can end up to be unary, binary, ternary ... or more:

Q@ (Ax.x)(Ax.x)y

Q@ (AxAy.x+y)xy

Q@ (AxAyAz.z)xy
The arity of the function k is known only when it is bound to a closure.
Arity matching: match the function arity with the # of arguments available:

@ Push-enter: the function, which statically knows its own arity, examines
the stack to figure out how many arguments it has been passed, and
where they are. the callee is responsible for arity matching

@ Eval-apply: the caller, which statically knows what the arguments are,
examines the function closure, extracts its arity, and makes an exact call
to the function. the caller is responsible for arity matching
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The problem with arity

Consider againk x y
@ Push-enter:
- if there are too few arguments, the function must construct a partial application
and return.
- if there are too many arguments, then only the required arguments are
consumed, the rest of the arguments are left on the stack to be consumed later
@ Eval-apply:
- If k takes two arguments, call it straightforwardly.
- If k takes one, call it passing x, and call the resulting function passing y;
- if k takes more than two, build and return a closure for partial application kxy
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The problem with arity

Consider againk x y
@ Push-enter:
- if there are too few arguments, the function must construct a partial application

and return.
- if there are too many arguments, then only the required arguments are

consumed, the rest of the arguments are left on the stack to be consumed later
@ Eval-apply:
- If k takes two arguments, call it straightforwardly.
- If k takes one, call it passing x, and call the resulting function passing y;

- if k takes more than two, build and return a closure for partial application kxy

Nota bene:

This holds only for calls of unknown functions. For known functions such as:
let g x y = x*y
in g 3 4
any decent compiler must load the arguments 3 and 4 into registers, or on the stack,
and call the code for g directly (no closures created) both in push/enter and eval/apply
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Outline

@ The ZAM
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Curried functions

In eval-apply the application of curried functions is costly
[[fai...an]] = [If]] ; [[a1]] s APPLY ; ... ; [[an]] ; APPLY
[[A".b]] = CLOSURE(...(CLOSURE([[b]];RETURN)...);RETURN)

Before the body b of the function starts executing, the SECD:
e constructs n— 1 intermediate, short-lived closures;
e performs n— 1 calls that return immediately
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Curried functions

In eval-apply the application of curried functions is costly

[[fai...an]] = [If]] ; [[a1]] s APPLY ; ... ; [[an]] ; APPLY
[[A".b]] = CLOSURE(...(CLOSURE([[b]];RETURN)...);RETURN)
Before the body b of the function starts executing, the SECD:

e constructs n— 1 intermediate, short-lived closures;
e performs n— 1 calls that return immediately

In push-enter it is more efficient:
[far...an]] = PUSH([[an]]);...;PUSH([[a1]]; [[£]]
[[A".b]] = GRAB;...;GRAB;[[b]]
—
n times

Push all the arguments, enter the function that grabs the needed arguments
and executes the body.
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Curried functions

In eval-apply the application of curried functions is costly

[[fai...an]] = [If]] ; [[a1]] s APPLY ; ... ; [[an]] ; APPLY
[[A".b]] = CLOSURE(...(CLOSURE([[b]];RETURN)...);RETURN)
Before the body b of the function starts executing, the SECD:

e constructs n— 1 intermediate, short-lived closures;
e performs n— 1 calls that return immediately

In push-enter it is more efficient:
[far...an]] = PUSH([[an]]);...;PUSH([[a1]]; [[£]]
[[A".b]] = GRAB;...;GRAB;[[b]]
—
n times

Push all the arguments, enter the function that grabs the needed arguments
and executes the body.

Let us try each technique on the application (A.A.A.0)210 J
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Curried function application in eval-apply

[(AA1.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ;RETURN) ; RETURN) ;RETURN);
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY
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Curried function application in eval-apply

[(AA1.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ;RETURN) ; RETURN) ;RETURN);
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

In short:
[[(A.A.X.0)210]] = CLOSURE(¢2); @

where for i =1,2

co = ACCESS(0) ; RETURN

Cj CLOSURE(cj—1) ; RETURN
ap CONST(0) ; APPLY

a; = CONST(i) ; APPLY ; aj_1

I
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Curried function application in eval-apply

[(AA1.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ;RETURN) ; RETURN) ;RETURN);
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

\ Code | Env | Stack
CLOSURE(¢») ;a0 i e In short:
a I cof] | [(AAA.0)210]] = CLOSURE(c2); @
APPLY’? 2 2'aC2H where for i = 1,2
RETURI?I 2 cy [21.81.“ co = ACCESS(0) ; RETURN
a (] ci[2] | & = CLOSURE(Gi1) ; RETURN
APPLY;ag 0 1.c[2] | @ = CONST(0) ; APPLY
o] 1.2 ap.|] aj = CONST(i) ; APPLY ; aj_4
RETURN | 1.2 | co[1.2].a0.[]
4o [l co[1.2]
APPLY I 0.co[1.2]
¢y | 0.1.2 gH
RETURN | 0.1.2 0.e|
€ [] 0




Curried function application in eval-apply

[(AAAX.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ; RETURN) ; RETURN) ; RETURN) ;
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

Code Env Stack

CLOSUR@;EQ B £
ao [l

APPLY;ay I 2.0 |

Co 2 ai. H

RETURN 2 ci]2].a1.[]

a [l ci1[2]

APPLY;ay I 1.¢¢[2]

C1 1.2 ao.l |

RETURN 1.2 | ¢f1.2].a0.[]

a (] co[1-2]

APPLY I 0.co[1.2]

co | 0.1.2 &[]

RETURN | 0.1.2 0.e.[]

€ I 0

In short:
[(AA.A.0)210]] = CLOSURE(c,); &

where for i =1,2

Co = ACCESS(0) ; RETURN

¢i = CLOSURE(c¢_1) ; RETURN
ay = CONST(0) ; APPLY

ai = CONST (1) ; APPLY ; a4



Curried function application in eval-apply

[(AAAX.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ; RETURN) ; RETURN) ; RETURN) ;
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

Code Env Stack
In short:
CLOSURE(cp)ia [ T £
a» [ [[(A.A.A.0)210]] = CLOSURE(c2); @
APPLY:2 5 62 ’wherefori=1,2
RETURN | 2 ¢ [2]_31:“ co = ACCESS(0) ; RETURN
a I ci[2] | ¢ = CLOSURE(G 1) ; RETURN
APPLY;ag i 1.ci[2] | @ = CONST(0) ; APPLY
C 1.2 ap.[| | a = CONST(i) ; APPLY ; a; 1
RETURN 1.2 | ¢f1.2].a0.[]
ao I cof1.2]
APPLY i 0.c0[1.2]
c | 0.1.2 &[]
RETURN | 0.1.2 0.e.[]
€ [0 0




Curried function application in eval-apply

[(AAAX.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ; RETURN) ; RETURN) ; RETURN) ;
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

Code Env Stack
CLOSUR@;EQ B £

a

a
APPLY;aq,
C1
RETURN
ap

APPLY

Co
RETURN
€

APPLY;a
£ 2
RETURN =27

[

[]

I
1.2

1.2

[

[
0.1.2

0.1.2
I

\
I\- Q
gy

—_
o
= 6

N

]

-

QD
o S

In short:

[(A-A.1.0)210]] = CLOSURE(c2) ; a

where for i =1,2

Co
Ci
ao
aj

ACCESS (0) ; RETURN
CLOSURE(c¢;—1) ; RETURN
CONST(0) ; APPLY
CONST (i) ; APPLY ; a;_1



Curried function application in eval-apply

[(AAAX.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ; RETURN) ; RETURN) ; RETURN) ;
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

Code Env Stack
CLOSUR@EQ | Inshort:
a [(A-A.1.0)210]] = CLOSURE(c»); 2
APPLY;a )

where for i =1,2

a.
A o ), co = ACCESS(0) ; RETURN
RETY 1“ ¢ = CLOSURE(Ci_1) ; RETURN
APPLY:ay a, = CONST(0) ; APPLY
ap.- | ai = CONST (1) ; APPLY ; a4
RETUR 00[1.21.30.{]
ao [l col1.2]
APPLY i 0.co[1.2]
o | 0.1.2 el
RETURN | 0.1.2 0.

€ [ 0




Curried function application in eval-apply

[(AAAX.0)210] =

CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ; RETURN) ; RETURN) ; RETURN) ;
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

Code Env Stack
CLOSUR@;EQ N In short:
a [[(A.A.A.0)210]] = CLOSURE(c2); @
APPLY;a a2 ) where for i = 1,2
o
RETURT -)‘_ c = ACCESS(0) ; RETURN
C1 H ¢ = CLOSURE(c,_1) ; RETURN
APPLY:ay ay — CONST(O) ; APPLY
ap.- | a; CONST (1) ; APPLY ; a4
RETUR . @.aoﬂ
ao (] Co[1-2]
APPLY 1 0.co[1.2]
co | 0.1.2 e[l
RETURN | 0.1.2 0.£.[]
€ [l 0




Curried function application in eval-apply

[(AAA.0)210] =
CLOSURE (CLOSURE (CLOSURE (ACCESS (0) ; RETURN) ; RETURN) ; RETURN);
CONST(2) ; APPLY ; CONST(1) ; APPLY ; CONST(0) ; APPLY

Code Env Stack
In short:
CLOSURE(co) g | " Shon
a [[(A.A.A.0)210]] = CLOSURE(c2); @
APPLY.a = 211) where for i =1,2
o
> o = ACCESS(0) ; RETURN
RETURK @EL. G ;
c H ¢ = CLOSURE(c;_1) ; RETURN
APPLY;a, a, = CONST(0) ; APPLY
ap.- | ai = CONST (1) ; APPLY ; a4




Curried function application in push-enter

[[(A.A.A.0)210]] = PUSH(0) ;PUSH (1) ;PUSH(2) ;GRAB;GRAB;GRAB;ACCESS (0)
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Curried function application in push-enter

[[(A.A.A.0)210]] = PUSH(0) ;PUSH (1) ;PUSH(2) ;GRAB;GRAB;GRAB;ACCESS (0)

In short:
[[(A.A.A.0)210]] = PUSH(O) ; p

where for i =1,2,3

g% = ACCESS(0)
gi = GRAB; g«
po = PUSH(2) ; g3
pi = PUSH(1) ; po

G. Castagna (CNRS) Cours de Programmation Avancée 308/593



Curried function application in push-enter

[[(A.A.A.0)210]] = PUSH(0) ;PUSH (1) ;PUSH(2) ;GRAB;GRAB;GRAB;ACCESS (0)

] Code | Env \ Stack‘

In short:

PUSH(0);
PUSH(1S ;5; H oﬁ [(A.A.1.0)210]] = PUSH(0); pr
PUSH(2) ;93 I 1[1.0[] where fori =1,2,3

GRAB;g» (| 2[].1]].0] do = ACCESS(0)

GRAB; g ' 2H 1H-0H g = GRAB; g

GRAB;g, 1.2 0 _ )

po = PUSH(2) ; g5

ACCESS(O% 0[].1[].2H o[l b = PUSH(D) : po
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Curried function application in push-enter

[[(A.A.A.0)210]] = PUSH(0) ;PUSH (1) ;PUSH(2) ;GRAB;GRAB;GRAB;ACCESS (0)

] Code | Env \ Stack‘

In short:
PUSH(0) ;p4 (] € :
PUSH(2);93 I 1[1.0[] where fori = 1,2,3
GRAB;g» (| 2[].1]].0] do = ACCESS(0)
GRAB;g; ' 2H 1H-0H g = GRAB; gi_s
GRAB;go 1[].2 0 _ .
po = PUSH(2) ; g3
ACCESS(0) | O[.1[].2[] o] _ .
0 i : p1 = PUSH(1) ; po

Push-enter clearly wins
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Curried function application in push-enter

[[(A.A.A.0)210]] = PUSH(0) ;PUSH (1) ;PUSH(2) ;GRAB;GRAB;GRAB;ACCESS (0)

] Code | Env \ Stack ‘ In short:
PUSH(0);
i H ol [(A.A1.0)210]] = PUSH(0); py
PUSH(2) ;g5 Il 1[1.0[] where fori = 1,2,3

GRAB;g» (| 2[].1]].0] do = ACCESS(0)
GRAB; g ' 2H 1H-0H g = GRAB; g
GRAB; g 1[].2 0 _ :

po = PUSH(2) ; gs

ACCESS(O% 0[].1[].2H o[l b = PUSH(D) : po

Push-enter clearly wins

Combine the call-by-value semantics with the push-enter model I

G. Castagna (CNRS) Cours de Programmation Avancée 308/593




The ZAM (Zinc Abstract Machine)

(The model underlying the bytecode interpretors of Caml Light and OCaml.)

A call-by-value, push-enter model where the caller pushes one or several
arguments on the stack and the callee pops them and put them in its
environment.

Needs special handling for
@ partial applications: (Ax.Ay.b) a
@ over-applications: (Ax.x) (Ax.x) a

309/593
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The ZAM

Machine Components: as the SECD but where the stack is split into a
argument stack and a return stack

Instruction set: as the SECD plus
GRAB grab argument on the stack OR create a closure
PUSHMARK push a mark to signal the last argument

minus LET, which is replaced by a GRAB.

Compilation scheme:

Clinll

Cl[Aa]]
Cllba...an]]
C[[let a in b]|
T{[n]

TAa]
T([bay...an]|
T[[let a in b]|

I

ACCESS(n)

CLOSURE (7 [[Aa]])

PUSHMARK; C[[an]]; .-; Cl[a1]]; C[[b]]; APPLY
Cl[a]]; GRAB; C[[b]]; ENDLET

ACCESS (n); RETURN

GRAB; 7[[a]|

PUSHMARK; C[[an]]; -.-; Cl[a1]]; C[[b]]; TAILAPPLY
Cl[a]]; GRAB; T [[b]]

Notice the left to right evaluation order for function application

G. Castagna (CNRS)
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Transitions

BEFORE AFTER
Code | Env | ArgStack | RetStack [[ Code | Env | ArgStack | RetStack
ACCESS(n);c e s r c e e(n).s r
CLOSURE(c);c e s r|l c e c'le].s r
TAILAPPLY;c e c'[e'].s r c e s r
APPLY;c e c'[€].s r c e s cer
PUSHMARK;c e s r c e [¥].s r
GRAB;c e [*l.s cd.er |l e | (GRAB;c)[e].s r
GRAB;c e V.S r c v.e s r
RETURN;c e v.[#.s c.e.r c e v.s r
RETURN;c e c'[€].s r|l ¢ ¢ s r
ENDLET;c v.e S r c e S r
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Transitions

BEFORE AFTER
Code | Env | ArgStack | RetStack [[ Code | Env | ArgStack | RetStack
ACCESS(n);c e s ril c e e(n).s r
CLOSURE(c);c e s r|l c e c'le].s r
TAILAPPLY;c e c'[€].s r ¢ e s r
APPLY;c e c'[€].s r c e B cer
PUSHMARK;c e s r c e [(¥].s r
GRAB;c e [H.s c.er || e’ | (GRAB;c)[e].s r
GRAB;c e V.S r c v.e s r
RETURN;c e v.[®.s c.ée.r c e V.S r
RETURN;C e | d[é]s r|l ¢ e s r
ENDLET;c v.e S r c e s r

@ Having a separate TATLAPPLY command no longer is strictly necessary since it
has same behaviour as RETURN and could be replaced by it (we keep it to stress
the places where only TAILAPPLY applies).

4
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Transitions

BEFORE AFTER
Code | Env | ArgStack | RetStack [[ Code | Env | ArgStack | RetStack
ACCESS(n);c s ril c e e(n).s r
CLOSURE(c);c e s r|l c e c'le].s r
TAILAPPLY;c e c'[e'].s r c e s r
APPLY;c e c'[€].s r c e s cer
PUSHMARK;c e s r c e [¥].s r
GRAB;c e [H.s c.er || e’ | (GRAB;c)[e].s r
GRAB;c e V.S r c v.e s r
RETURN;c e v.[#.s c.e.r c e v.s r
RETURN;c e c'[€].s r|l ¢ ¢ s r
ENDLET;c v.e S r c e s r

@ Having a separate TATLAPPLY command no longer is strictly necessary since it
has same behaviour as RETURN and could be replaced by it (we keep it to stress
the places where only TAILAPPLY applies).

© The code produced by 7 [[a]] always ends either by RETURN or (equivalently) by
TAILAPPLY

4
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Krivine machine hidden in the ZAM

Call-by-name evaluation in the ZAM can be achieved with the following
compilation scheme, isomorphic to that of Krivine’s machine:

N[[n]] = ACCESS(n);TAILAPPLY
A[ra]] = GRAB;A[[a]]
A[[ba]] = CLOSURE(A[[a]]); A[b]]

The other ZAM instructions (and the mark [x], and the return stack) are just
extra call-by-value baggage.
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Merging the two stacks

Return addresses can be put on the argument stack provided they are pushed
before the arguments, along with the separation marks.
For that we compile using a continuation passing style:

Cl[n]lk = ACCESS(n);k
Cl[ha]lk = CLOSURE(T[[Aa]]):k
Cl[bai...an]]Jk = PUSHRETADDR (k);

Cllan]](...(C[[a1]](C[[b]] (TAILAPPLY)))...)
Cl[let a in b]lk = CJ[a]|(GRAB; C[[b]|(ENDLET;k))

T[n]] = ACCESS(n);RETURN
T[Aq] GRAB; T [[a]|

|
| =
T(bai...an]] = Cllan]l(.-.(Clla]](C[[b]](TAILAPPLY)))...)
T[[let a in b]] = C[[a]](GRAB;T[[b]])

(Facilitates exception handling, stack resizing, etc.)
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Transitions

BEFORE AFTER
Code | Env | Stack || Code | Env | Stack
GRAB; ¢ e v.s | ¢ v.e S
GRAB; ¢ e F.c'.€.s || ¢ e | (GRAB;c)[e].s
RETURN; ¢ e| v.ig.cd.es |l e V.S
RETURN; ¢ e cdle].s || ¢ e s
PUSHRETADDR(C'); ¢ e s c e [#.c.e.s
TAILAPPLY; ¢ e clée].s || ¢ e s
ACCESS(n); ¢ e s |l c e e(n).s
ENDLET; ¢ v.e sl c e S
CLOSURE(c); ¢ e sl ¢ e c[e].s
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Handling of curried applications

Consider the code in the closure for A.A.A.a:
GRAB; GRAB; GRAB; T a]|

and recall that Z'[[a]] finishes by a RETURN (or equivalently by a TAILAPPLY)

@ Total application to 3 arguments:

- The stack on entry is vq.vo.v3.[%].c".€

- The three GRABs succeed yielding an environment v3.vs.vq . €.

- T[[a]] is executed. It produces a value v and finishes by a RETURN

- RETURN sees the stack v.[x].c’.€/, reinstalls the caller ¢’[€'], and returns v to it
@ Partial application to 2 arguments:

- The stack on entry is vq.v,.[x].c &

- The third GRAB fails and returns (GRAB; 7 [[a]|)[v2.v4.€], representing

the result of the partial application.

@ Over-application to 4 arguments:

The stack on entry is vy.vo.v3.v4. [3].c".€/

- The three GRABs succeed yielding an environment v3.vs. vy .e.

- T[[a]] is executed. It produces a value v and finishes by a RETURN

- RETURN sees the stack v.v4.[%].¢’.€/, and tail-applies v to v
(v should be a closure or otherwise the over-application would be wrong and the machine stuck).
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@ Stackless Machine for CPS terms
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Stackeless Machine for CPS terms

The A-terms produced by the CPS transformation have the following form:

a = n|N|Ab|A\Lb CPSatom
b == al|aja|aaa; CPS body

Machine Components:
A stackless abstract machine with:

@ a code pointer ¢
@ an environment e
@ three registers Ry, R, Rs.

Instruction set:

ACCESS,; (n) store n-th field of the environment in R;
CONST; (N) store the integer N in R;

CLOSURE,;(c) store closure of ¢cin R;

TAILAPPLY1  apply closure in Ry to argument R»
TAILAPPLY2  apply closure in Ry to arguments Rs, Rs
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Compilation scheme

Compilation of atoms ;[[a]] (leaves the value of ain R)):

A[n]] = ACCESS;(n)
A[[N]] = CONST;(N)
Ai[[A.b]] = CLOSURE;(B[[b]])
A[[M.b]] = CLOSURE; (B[[b])

Compilation of bodies B[[b]|:

Bllall = Alall
3[[81 ag]] A4 [[81 ]] : Ao [[ag]] :TAILAPPLY1
@[[81 6283]] A4 [[31 ]]; Ao [[ag]]; A3 [[63]] : TAILAPPLY2
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Transitions

BEFORE AFTER
Code |Env] R R R; [[Code] Env]| R Ro Rs
TAILAPPLY1; C e|cle] v -|l¢ v.e - - -
TAILAPPLY2; ¢ e| €] w wl|c Vo.vy.€ - - -
ACCESS{(n); ¢ e - w wllec e | e(n) Vo V3
CONST; (N); ¢ e — v w|lc e N Vo )
CLOSURE; (¢'); ¢ e — w wllec e | c[e] Vo Va
ACCESS,(n); ¢ e - w wlle e vi e(n) Va
CONSTo(N); ¢ e — v wilc e Vi N )
CLOSURE, (¢'); ¢ e — w wllec e vi  C[e] V3
ACCESS3(m); ¢ e - w wllec e vy vo  e(n)
CONST3(N); ¢ e — v wvilc e Vi Vo N
CLOSURE3(¢'); ¢ e — w wllec e V4 v d[e]
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Continuations vs. stacks

That CPS terms can be executed without a stack is not surprising, given that
the stack of a machine such as the SECD is isomorphic to the current
continuation in a CPS-based approach.

fx=1+gx gx=2-hx hx=...

Consider the execution point where h is entered. In the CPS model, the
continuation at this point is

k =Av.k'(2—v) with kK" =Av.k"(1+v) and k" =Av.v

In the SECD model, the stack at this point is

(SUB ; RETURN).e,.2. (ADD ; RETURN).e/.1. €
—

< < v
"

;7( ~kK’ k"
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Continuations vs. stacks

At the machine level, stacks and continuations are two ways to represent the
call chain: the chain of function calls currently active.

@ Continuations: as a singly-linked list of heap-allocated closures, each
closure representing a function activation (in the example of the previous
slide k — Av.k' (2—v)[k" — Av.k"(1 + v)[K" — Av.v]]).

These closures are reclaimed by the garbage collector.

@ Stacks: as contiguous blocks in a memory area outside the heap, each
block representing a function activation. These blocks are explicitly
deallocated by RETURN instructions.

Stacks are more efficient in terms of GC costs and memory locality, but need to
be copied in full to implement callcc.
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