
Covariance and Contravariance:Con
ict without a CauseGIUSEPPE CASTAGNAC.N.R.S.In type-theoretic research on object-oriented programming, the issue of \covariance versus con-travariance" is a topic of continuing debate. In this short note we argue that covariance and con-travariance appropriately characterize two distinct and independent mechanisms. The so-calledcontravariance rule correctly captures the subtyping relation (that relationwhich establisheswhichsets of functions can replace another given set in every context). A covariant relation, instead,characterizes the specialization of code (i.e., the de�nition of new code which replaces old def-initions in some particular cases). Therefore, covariance and contravariance are not opposingviews, but distinct concepts that each have their place in object-oriented systems. Both can (andshould) be integrated in a type-safe manner in object-oriented languages. We also show thatthe independence of the two mechanisms is not characteristic of a particular model but is valid ingeneral, since covariant specialization is present in record-basedmodels, although it is hidden by ade�ciency of all existing calculi that realize this model. As an aside, we show that the �&-calculuscan be taken as the basic calculus for both an overloading-based and a record-basedmodel. Usingthis approach, one not only obtains a more uniform vision of object-oriented type theories, but inthe case of the record-based approach, one also gains multiple dispatching, a feature that existingrecord-based models do not capture.Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classi�ca-tions|object-oriented languages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-gram Constructs|type structureGeneral Terms: Theory, LanguagesAdditional Key Words and Phrases: Object-oriented languages, type theory1. INTRODUCTIONIn type-theoretic research on object-oriented programming, the issue of \covarianceversus contravariance" has been, and still is, the core of a heated debate. The dis-cussion goes back, in our ken, to at least 1988, when L�ecluse, Richard, and V�elezused \covariant specialization" for the methods in the O2 data model [L�ecluseet al. 1988]. Since then, it has been disputed whether one should use covari-ant or contravariant specialization for the methods in an object-oriented language.The fact that this debate is still heated is witnessed by the excellent tutorial onobject-oriented type systems given by Michael Schwartzbach at the last POPL con-This work was partially supportedby grant no. 203.01.56 of the Consiglio Nazionale delle Ricerche,Comitato Nazionale delle Scienze Matematiche, Italy, to work at LIENS.Author's address: LIENS, 45 rue d'Ulm 75005 Paris, France; email: castagna@dmi.ens.fr.Permission to copy without fee all or part of this material is granted provided that the copies arenot made or distributed for direct commercial advantage, the ACM copyright notice and the titleof the publication and its date appear, and notice is given that copying is by permission of theAssociation for Computing Machinery. To copy otherwise, or to republish, requires a fee and/orspeci�c permission. ACM Transactions on Programming Languages and Systems. vol. 17 n. 3.

2 � Giuseppe Castagnaference [Schwartzbach 1994]: in the abstract of his tutorial Schwartzbach �ngersthe \covariance versus contravariance" issue as a key example of the speci�city ofobject-oriented type systems.In this short note we argue that the choice between covariance and contravari-ance is a false problem. Covariance and contravariance characterize two completelydistinct mechanisms: subtyping and specialization. The confusion of the two madethem appear mutually exclusive. In fact, covariance and contravariance are notcon
icting views but distinct concepts that can be integrated in a type-safe formal-ism. Finally, we argue that it would be an error to exclude either of them, sincethen the corresponding mechanism could not be properly implemented.This result is clear in the model of object-oriented programming de�ned byGiuseppe Longo, Giorgio Ghelli, and the author in Castagna et al. [1995]; it isalready present in Ghelli's seminal work [Ghelli 1991], and it is somehow hidden inthe work on OBJ [Goguen and Meseguer 1989; Jouannaud et al. 1992; Mart��-Olietand Meseguer 1990]. In these notes we want to stress that this result is indepen-dent of the particular model of object-oriented programming one chooses, and thatcovariance and contravariance already coexist in the record-based model proposedby Luca Cardelli in Cardelli [1988], and further developed by many other authors(see the collection [Gunter and Mitchell 1994] for a wide review of the record-basedmodel).The article is organized as follows. In Section 2, we recall the terms of the problemand we hint at its solution. In Section 3, we introduce the overloading-based modelfor object-oriented programming and give a precise explanation of subtyping andspecialization. We then show how and why covariance and contravariance cancoexist within a type-safe calculus. We use this analysis to determine the preciserole of each mechanism and to show that there is no con
ict between them. Section4 provides evidence that this analysis is independent of the particular model byrevealing the (type-safe) covariance in the record-based model. Section 5 containsour conclusions and the golden rules for the type-safe usage of covariance andcontravariance.We assume that the reader is familiarwith the objects-as-records model of object-oriented programming and is aware of the typing issues it raises.The presentation is intentionally kept informal: no de�nitions, no theorems. Itis not a matter of de�ning a new system but of explaining and comparing existingones: indeed, all the technical results have already been widely published.2. THE CONTROVERSYThe controversy concerning the use of either covariance or contravariance can bedescribed as follows. In the record-based model, proposed by Luca Cardelli in1984 [Cardelli 1988], an object is modeled by a record, whose �elds contain allthe methods of the object and whose labels are the corresponding messages thatinvoke the methods. An object can be specialized to create a new object in twodi�erent ways: either by adding new methods |i.e., new �elds| or by rede�ningthe existing ones |i.e., overriding old methods.1 A specialized object can be used1It is unimportant in this context whether the specialization is performed at object level (delega-tion) or at class level (inheritance).

Covariance and Contravariance � 3wherever the object it specializes can be used. This implies that method overridingmust be restricted if type safety is desired. A su�cient condition to assure typesafety (at least for method specialization) is the requirement that each �eld can bespecialized only by terms whose types are \subtypes" of the type of the �eld.The core of the covariance/contravariance controversy concerns methods thathave a functional type. The subtyping relation for functional types is de�ned inCardelli [1988] as follows:if T1 � S1 and S2 � T2 then S1 ! S2 � T1 ! T2If we consider the arrow \!" as a type constructor, then, borrowing the terminol-ogy of category theory, \!" is a functor covariant on the right argument (sinceit preserves the direction of \�") and contravariant on the left argument (since itreverses the direction of \�"). Taking the behavior of the left argument as char-acteristic, this rule has been called the contravariant rule.2 If an arrow \!" iscovariant on the left argument (i.e., if in the rule above the sense of the �rst in-equality is reversed), then type safety is lost. With this modi�ed rule, it is quiteeasy to write a statically well-typed term that produces a run-time type error.Despite its unsoundness, covariant specialization has its tenacious defenders, andnot without cause. (Ei�el [Meyer 1991] and the O2 system [Bancilhon et al. 1992],for example, use covariant specialization.) The contravariant rule, besides beingless intuitive than the covariant one, is the source of many problems. The mostsurprising one appears with binary methods and can be exempli�ed as follows.Consider an object o1 of a given type T , from which we create another object o2of type S via specialization. Suppose we have de�ned a method equal for theseobjects, which compares the object at issue with another object of the same type.This equal method has type T � T ! Bool for the object o1 and S �S ! Bool forthe object o2. In the record-based approach, the �elds labeled equal will have thetype T ! Bool in o1 and S ! Bool in o2 since the method belongs to the object,and thus it already knows its �rst argument, usually denoted by the keyword self.If the contravariant rule is used, the type associated with equal for S-objects is nota subtype of the type for equal in T -objects. Thus, in order to have type safety,one must not use o2 as a specialization of o1. In other words, S must not be asubtype of T . This is quite unintuitive. Imagine that you have objects for realnumbers and for natural numbers. As soon as a number can respond to a messagethat asks it whether it is equal to another number, then a natural number canno longer be used where a real number is expected! Furthermore, experience withO2 (which is the third most sold object-oriented database management system inthe world) shows that the unsoundness of the type-checker has not caused manyproblems in practice. Thus, many people prefer to give up type safety and use thecovariant subtyping rule for specialization. The general conclusion is that one hasto use contravariance when static type safety is required, but otherwise covarianceis more natural,
exible, and expressive.2Although co-contravariant rule would be a better name for this rule, we prefer to adoptthe name in usage in the object-oriented community. Therefore, in the rest of the article wewill use \contravariance," \contravariant rule," and \contravariant specialization" to denote theco-contravariant behavior of the arrow.

4 � Giuseppe CastagnaThe viewpoint of the covariance advocates and the one of the contravarianceadvocates are both very appealing, and yet they seem totally incompatible. How-ever, there is a
aw in the comparison made above: covariance in O2's (nearly)overloading-basedmodel is compared with contravariance in the record-based model.The di�erence between the two models is in the type of the parameter self, whichappears in the former model but disappears in the latter one (see the type of equalin the previous example). The conclusion drawn above is wrong because, as we willshow in the next two sections, it does not take into account the disappearance ofthis type from one model to the other. Thus, we will proceed by studying bothcovariance and contravariance, �rst in the overloading-based model (Section 3) andthen in the record-based one (Section 4). We will show that both covariance andcontravariance can be used in a way that guarantees type safety. To achieve thisend, we need not impose any further restrictions, just point out what the twoconcepts serve for.Before proceeding, let us �x some terminology. Recall that each object has a setof private operations associated with it, called methods in Smalltalk [Goldberg andRobson 1983], Objective-C [Pinson and Wiener 1992], and CLOS [DeMichiel andGabriel 1987], and member functions in C++ [Stroustrup 1986]. These operationscan be executed by applying a special operator to the object itself: the object isthe receiver of a message in Smalltalk and Objective-C, the argument of a genericfunction in CLOS, and the left argument of a dot selection in C++. In order tosimplify the exposition we refer to all of these di�erent ways of selecting a methodas \message-sending" operations: the message is the name of the generic functionin CLOS and the right argument of dot selection in C++. Additionally, a messagemay have some parameters. They are introduced by keywords in Smalltalk andObjective-C; they are the arguments of an n-ary generic function in CLOS, 3 andthey are surrounded by parenthesis in C++.Now (and here we enter the core of our discussion) the type (or class) of the actualparameters of a message may or may not be considered in the run-time selectionof the method to execute. For example in CLOS, the type of each argument ofa generic function is taken into account in the selection of the method. In C++,Smalltalk, and Objective-C, no arguments are considered: the type of the receiveralone drives the selection.4 In the following sections, we formally show that givena method m selected by a message with parameters, when m is overridden, theparameters that determine the (dynamic) selection must be covariantly overridden(i.e., the corresponding parameters in the overriding method must have a lessertype). Those parameters that are not taken into account in the selection mustbe contravariantly overridden (i.e., the corresponding parameters in the overridingmethod must have a greater type).3Strictly speaking, it is not possible in CLOS to identify a privileged \receiver" for the genericfunction.4The use of overloading in C++ requires a brief remark. C++ resolves overloading at compiletime, using static types; dynamic method look-up does not a�ect which code is executed for anoverloadedmember function. At run-time, the code for such functions has already been expanded.For this reason, the overloading in C++ is quite di�erent from the one we describe in Section 3.

Covariance and Contravariance � 53. THE FORMAL STATEMENTIn this section we give a formal framework in which to state precisely the elementsof the problem intuitively explained in the section before. We �rst analyze theproblem in the overloading-based model [Castagna et al. 1995] since in this modelthe covariance-contravariance issue has a clearer formalization. In Section 4 we willdiscuss the record-based model.The idea in the overloading-based model is to type messages rather than objects.More precisely, we assume that messages are special functions composed of sev-eral (ordinary) functions: the methods. When a message is sent to an object ofa given class, the method de�ned for objects of that class is selected from amongthose composing the message. The object is passed to the selected method, which isthen executed. This model is quite natural for programmers used to languages withgeneric functions such as CLOS or Dylan [Apple Computer Inc. 1992] (generic func-tions of CLOS coincide to our special functions), while its understanding requiresan e�ort of abstraction to programmers used to other object-oriented languagesthat group methods inside their host objects |as formalized in the record-basedmodel| instead of inside the messagesHowever, if we ignore implementation issues, these two ways of grouping methods,either by object or by message, are essentially equivalent, since they are simply twodi�erent perspectives of the same scene. This is also true from the type-theoreticpoint of view, as suggested by Section 4.Class de�nitions are used to describe objects. A class is generally characterizedby a name, a set of instance variables, and a set of methods. Each method in aclass is associated to a message. In the overloading-based model we further assumethat classes are used to type their instances.5 Under this assumption, messagesare special functions composed of several codes (the methods); when one specialfunction is applied to an argument (i.e., the messages is sent to the argument), thecode to execute is chosen according to the class, i.e., the type, of the argument. Inother words, messages are overloaded functions. When such functions are applied,code selection is not performed at compile time, as is usual, but must insteadbe done at run-time using a late binding or late selection strategy (this run-timeselection is sometimes also called dynamic binding or dynamic dispatch). We can seewhy run-time selection is necessary by considering the following example. Supposethat we code a graphical editor in an object-oriented style. Our editor uses theclasses Line and Square, which are subclasses (subtypes) of Picture. Suppose thatwe have de�ned a method draw on all three classes. If method selection is performedat compile time, then the following message draw�xPicture:(: : :x (draw : : :)is always executed using the draw code de�ned for Pictures, since the compile-timetype of x is Picture. With late binding, the code for draw is chosen only when thex parameter has been bound and evaluated, on the basis of the run-time type of x,i.e., according to whether x is bound to an instance of Line or Square or Picture.5We prefer to be a little vague, for the moment, about the precise de�nition of typing for objects:in the case of name subtyping, the name of the class is used as its type. In the case of structuralsubtyping, the functionality of the object is used instead

6 � Giuseppe CastagnaOverloaded functions with late binding are the fundamental feature of the over-loading-based model, in the same way that records are the fundamental feature ofthe record-based model. To study the latter, Cardelli extended the simply typedlambda calculus with subtyping and records. To study the former, we extendedthe simply typed lambda calculus with subtyping and overloaded functions. Thisextension led to the de�nition of the �&-calculus, the intuitive ideas of which can bedescribed as follows (for a detailed presentation see Castagna [1994] and Castagnaet al.[1995]; see also Castagna [1995a] for the second-order case).An overloaded function consists of a collection of ordinary functions (i.e., �-abstractions), each of which is called a branch of the overloaded function. We chosethe symbol & (whence the name of the calculus) to glue together ordinary functionsinto an overloaded one. Thus we add to the simply typed lambda calculus termsof the form (M&N)which intuitively denotes an overloaded function of two branches, M and N . When(M&N) is applied to an argument, one of the two branches will be selected accord-ing to the type of the argument. We must distinguish ordinary application fromthe application of an overloaded function because they are fundamentally di�erentmechanisms. The former is implemented by substitution while the latter is imple-mented by selection. We use \�" to denote overloaded application and \�" for theusual one.We build overloaded functions as lists: we start with the empty overloaded func-tion, denoted by ", and concatenate new branches via &. Hence in the term above,M is an overloaded function while N is an ordinary one, i.e., a branch of the re-sulting overloaded function. We can write an overloaded function with n branchesM1;M2; : : :Mn as ((: : : (("&M1)&M2) : : :)&Mn):The type of an overloaded function is the set of the types of its branches. Thus ifMi:Ui ! Vi, then the overloaded function above has typefU1 ! V1; U2 ! V2; : : : ; Un ! Vng:If we pass to this function an argument N of type Uj , then the selected branch willbe Mj. More formally: ("&M1& : : :&Mn)�N >� Mj �N (*)where >� means \rewrites in zero or more steps into."In short, we add the terms ", (M&N), and (M�N) to the terms of the simplytyped lambda calculus, and we add sets of arrow types to the types of the simplytyped lambda calculus.We also add a subtyping relation on types. Intuitively, if U � V then anyexpression of type U can be used \safely" (w.r.t. types) wherever an expression oftype V is expected; with this de�nition, a calculus will not produce run-time typeerrors as long as its evaluation rules maintain or reduce the types of its terms. Thesubtyping relation for arrow types is the one of Cardelli [1988]: covariance on theright and contravariance on the left. The subtyping relation for overloaded types

Covariance and Contravariance � 7can be deduced from the observation that an overloaded function can be used inthe place of another overloaded one when, for each branch of the latter, there isone branch in the former that can replace it. Thus, an overloaded type U is smallerthan another overloaded type V if and only if, for any arrow type in V , there is atleast one smaller arrow type in U . Formally:U2 � U1 V1 � V2U1 ! V1 � U2 ! V2 8i 2 I; 9j 2 J U 0j ! V 0j � U 00i ! V 00ifU 0j ! V 0j gj2J � fU 00i ! V 00i gi2IBecause of subtyping, the type of N in (*) may not match any of the Ui but justbe a subtype of one of them. In this case, we choose the branch whose Ui \bestapproximates" the type of N . More precisely, if the type of N is U , we select thebranch h such that Uh = minfUijU � Uig.In our system, not every set of arrow types can be considered an overloaded type,however. In particular, a set of arrow types fUi ! Vigi2I is an overloaded type ifand only if for all i; j in I it satis�es these two conditions:(1) U maximal in LB(Ui; Uj)) there exists a unique h 2 I such that Uh = U(2) Ui � Uj) Vi � Vjwhere LB(Ui; Uj) denotes the set of common lower bounds of Ui and Uj .Condition (1) concerns the selection of the correct branch. We said earlier thatif we apply an overloaded function of type fUi ! Vigi2I to a term of type U , thenthe selected branch has type Uj ! Vj where Uj = mini2IfUijU � Uig. Condition(1) guarantees the existence and uniqueness of this branch (it is a necessary andsu�cient condition for existence, as proved in Castagna [1994]).More interesting for the purposes of this article is the second condition, which wecall the covariance condition. Condition (2) guarantees that during computationthe type of a term may only decrease. More concretely, if we have a two-branchoverloaded function M of type fU1 ! V1; U2 ! V2g with U2 < U1, and we passto it a term N , which at compile-time has type U1, then the compile-time type ofM�N will be V1. If the normal form of N has type U2, however, (which is possible,since U2 < U1) then the run-time type of M�N will be V2. Condition(2) requiresthat V2 � V1.So far, we have shown how to include overloading and subtyping in the calculus.Late binding still remains. A simple way to obtain it is to impose the conditionthat a reduction like (*) can be performed only if N is a closed normal form. Withthis restriction, the most precise type for N is apparent whenever the argument isused to select the appropriate branch from an overloaded function.Let us stress, once more, that it is important to understand that overloadedfunctions with late binding are signi�cantly di�erent from the form of overloadedfunctions found in C or de�nable C++, for example. With late binding, overloadingis resolved at run-time, while C/C++ overloaded functions are resolved at compiletime.At this point we can intuitively show how to use this calculus to model object-oriented languages by noting that in �& it is possible to encode surjective pairings,simple records (those of Cardelli [1988])|as described in Section 4| and extensiblerecords (see Cardelli and Mitchell [1991], R�emy [1989], and Wand [1987]). Theseencodings can be found in Castagna [1994].

8 � Giuseppe CastagnaConditions (1) and (2) have a very natural interpretation in object-oriented lan-guages. Suppose that mesg is the identi�er of an overloaded function with thefollowing type: mesg : fC1 ! T1; C2 ! T2g:In object-oriented jargon, mesg is then a message containing two methods, onede�ned in the class C1 and the other in the class C2: class C1's method returns aresult of type T1, while class C2's method returns a result of type T2. If C1 is asubclass ofC2 (more precisely a subtype: C1 � C2), then the method ofC1 overridesthe one of C2. Condition (2) requires that T1 � T2. That is to say, the covariancecondition expresses the requirement that a method that overrides another one mustreturn a smaller type. If instead C1 and C2 are unrelated, but there exists somesubclass C3 of both of them (C3 � C1; C2), then C3 has been de�ned by multipleinheritance fromC1 and C2. Condition (1) requires that a branch be de�ned for C3in mesg , i.e., in case of multiple inheritance, methods de�ned for the same messagein more than one ancestor must be explicitly rede�ned.Let us see how this all �ts together by an example. Consider the class 2DPointwith two integer instance variables x and y and subclass 3DPoint, which has an ad-ditional instance variable z. These relationships can be expressed with the followingde�nitions:class 2DPoint class 3DPoint is 2DPoint{ {x:Int; x:Int;y:Int y:Int;} z:Int: }: ::where in place of the dots are the de�nitions of the methods. To a �rst ap-proximation, these classes can be modeled in �& by two atomic types 2DPointand 3DPoint with 3DPoint�2DPoint , whose respective representation types arethe records hhx: Int ; y: Intii and hhx: Int ; y: Int ; z: Int ii. Note that the assumption3DPoint�2DPoint is \compatible" with the subtyping relation on the correspond-ing representation types.One method that we could include in the de�nition of 2DPoint isnorm = sqrt(self.x^2 + self.y^2)where self denotes the receiver of the message. We may override this method in3DPoint with the following methodnorm = sqrt(self.x^2 + self.y^2 + self.z^2).In �&, these methods are written as a two-branch overloaded function:norm � (�self 2DPoint:p self:x2 + self:y2& �self 3DPoint:pself:x2 + self:y2 + self:z2)

Covariance and Contravariance � 9where " is omitted for brevity. The type of this overloaded function is f2DPoint !Real ; 3DPoint ! Realg. Note that self becomes in �& the �rst parameter of theoverloaded function, i.e., the one whose class determines the selection.Covariance appears when, for example, we de�ne a method that modi�es theinstance variables. For example, a method initializing the instance variables of2DPoint and 3DPoint objects will have the following typeinitialize : f2DPoint ! 2DPoint ; 3DPoint ! 3DPointg:In this framework, the inheritance mechanism is given by subtyping plus the branchselection rule. If we send a message of type fCi ! Tigi2I to an object of class C,then the method de�ned in the class mini=1::nfCijC � Cig will be executed. If thisminimum is exactly C, then the receiver uses the method de�ned in its own class; ifthe minimum is strictly greater than C, then the receiver uses the method that itsclass, C, has inherited from the minimum. Note that the search for the minimumcorresponds exactly to Smalltalk's \method look-up," where one searches for theleast superclass (of the receiver's class) for which a given method has been de�ned.Modeling messages by overloaded functions has some advantages. For example,since these functions are �rst-class values, so are messages. It becomes possibleto write functions (even overloaded ones) that take a message as an argument orreturn one as result. Another interesting characteristic of this model is that itallows methods to be added to an already existing class C without modifying thetype of its objects. Indeed, if the method concerned is associated with the messagem, it su�ces to add a new branch for the type C to the overloaded function denotedby m.6In the context of this article, however, the most notable advantage of using over-loaded functions is that it allows multiple dispatch.7 As we hinted in the previoussection, one of the major problems of the record model is that it is impossibleto combine satisfactorily subtyping and binary methods (i.e., methods with a pa-rameter of the same class as the class of the receiver). This problem gave rise tothe proposed use of the unsound covariant subtyping rule. Let us reconsider thepoint example above, adding the method equal . In the record-based models, two-dimensional and three-dimensional points are modeled by the following recursiverecords:2EqPoint � hhx: Int; y: Int; equal: 2EqPoint ! Boolii3EqPoint � hhx: Int; y: Int; z: Int; equal: 3EqPoint ! Boolii.Because of the contravariance of arrow, the type of the �eld equal in 3EqPoint isnot a subtype of the type of equal in 2EqPoint . Therefore 3EqPoint 6�2EqPoint .8Let us consider the same example in �&. We have already de�ned the atomictypes 2DPoint and 3DPoint . We can still use them since, unlike what happens in6It is important to remark that the new method is available at once to all the instances of C,and thus it is possible to send the message m to an object of class C even if this object has beende�ned before the branch for C in m.7That is, the capability of selecting a method taking into account other classes besides that of thereceiver of the message.8The subtyping rule for recursive types says that if from X � Y one can deduce that U � V then�X:U � �Y:V follows. In the example above, 2EqPoint � �X : hhx: Int; y: Int; equal:X ! Boolii.

10 � Giuseppe Castagnathe record case, adding a new method to a class does not change the type of itsinstances. In �&, a declaration such asequal: f2DPoint ! (2DPoint ! Bool) ; 3DPoint! (3DPoint ! Bool)gis not well de�ned either: because 3DPoint� 2DPoint , condition (2) |the covari-ance condition| requires that 3DPoint ! Bool � 2DPoint ! Bool, which doesnot hold because of the contravariance of arrow on the left argument. It must benoted that such a function would choose the branch according to the type of justthe �rst argument. Now, the code for equal cannot be chosen until the types ofboth arguments are known. This is the essential reason why the type above mustbe rejected (in any case, it is easy to write a term with the above type producing anerror). In �&, however, it is possible to write a function that takes into account thetypes of two (or more) arguments for branch selection. For equal , this is obtainedas follows:equal: f(2DPoint � 2DPoint)! Bool ; (3DPoint � 3DPoint)! Boolg:If we send to this function two objects of class 3DPoint , then the second branch ischosen; when one of the two arguments is of class 2DPoint (and the other is of aclass smaller than or equal to 2DPoint), the �rst branch is chosen.At this point, we are able to make precise the roles played by covariance andcontravariance in subtyping: contravariance is the correct rule when you want tosubstitute a function of a given type for another one of a di�erent type; covari-ance is the correct condition when you want to specialize (in object-oriented jargon\override") a branch of an overloaded function by one with a smaller input type.It is important to notice that, in this case, the new branch does not replace the oldbranch, but rather it conceals it from the objects of some classes. Our formaliza-tion shows that the issue of \contravariance versus covariance" was a false problemcaused by the confusion of two mechanisms that have very little in common: sub-stitutivity and overriding.Substitutivity establishes when an expression of a given type S can be used inplace of an expression of a di�erent type T . This information is used to typeordinary applications. More concretely, if f is a function of type T ! U , then wewant to characterize a category of types whose values can be passed as argumentsto f ; it must be noted that these arguments will be substituted , in the body of thefunction, for the formal parameter of type T . To this end, we de�ne a subtypingrelation such that f accepts every argument of type S smaller than T . Therefore,the category at issue is the set of subtypes of T . When T is T1 ! T2 it mayhappen that, in the body of f , the formal parameter is applied to an expressionof type T1. Hence, we deduce two facts: the actual parameter must be a function(thus, if S � T1 ! T2, then S has the shape S1 ! S2), and furthermore, it mustbe a function to which we can pass an argument of type T1 (thus T1 � S1, yes!: : : contravariance). It is clear that if one is not interested in passing functions asarguments, then there is no reason to de�ne the subtyping relation on arrows (thisis the reason why O2 works well even without contravariance9).9Ei�el compensates the holes resulting from the use of covariance by a link-time data-
ow analysisof the program.

Covariance and Contravariance � 11Overriding is a totally di�erent feature. Suppose we have an identi�er m (in thecircumstances, a message) that identi�es two functions f : A ! C and g : B ! Dwhere A and B are incomparable. When this identi�er is applied to an expressione, then the meaning of the application is f applied to e if e has a type smaller thanA (in the sense of substitutivity explained above), or g applied to e if e has typesmaller than B. Suppose now that B � A. The application in this case is resolvedby selecting f if the type of e is included between A and B, or by selecting g ifthe type is smaller than or equal to B. There is a further problem, however. Thetypes may decrease during computation. It may happen that the type checker seesthat e has type A, and infers that m applied to e has type C (f is selected). Butif, during the computation, the type of e decreases to B, the application will havetype D. Thus, D must be a type whose elements can be substituted for elementsof type C (in the sense of substitutivity above), i.e., D � C. You may call thisfeature covariance, if you like, but it must be clear that it is not a subtyping rule:g does not replace f since g will never be applied to arguments of type A. Indeed,g and f are independent functions that perform two precise and di�erent tasks:f handles the arguments of m whose type is included between A and B, while ghandles those arguments whose type is smaller than or equal to B. In this case,we are not de�ning substitutivity; instead, we are giving a formation rule for setsof functions in order to ensure the type consistency of the computation. In otherwords, while contravariance characterizes a (subtyping) rule, i.e., a tool to deducean existing relation, covariance characterizes a (formation) condition, i.e., a lawthat programs must observe.Since these arguments are still somewhat too abstract for object-oriented prac-titioners, let us write them in \plain" object-oriented terms as we did at the endof Section 2. A message may have several parameters, and the type (class) of eachparameter may or may not be taken into account in the selection of the appro-priate method. If a method for that message is overridden, then the parametersthat determine the selection must be covariantly overridden (i.e., the correspondingparameters in the overriding method must have a lesser type). Those parametersthat are not taken into account for the selection must be contravariantly overridden(i.e., the corresponding parameters in the overriding method must have a greatertype).How is all this translated into object-oriented type systems? Consider a messagem applied (or \sent") to n objects e1 : : : en where ei is an instance of class Ci.Suppose we want to consider the classes of only the �rst k objects in the methodselection process. This dispatching scheme can be expressed using the followingnotation: m(e1; : : : ; ekjek+1; : : : ; en):If the type of m is fSi ! Tigi2I, then the expression above means that we want toselect the method whose input type is the mini2IfSi j (C1 � : : : � Ck) � Sig andthen to pass it all the n arguments. The type, say Sj ! Tj , of the selected branchmust have the following form:(A1 � : : : �Ak)| {z }Sj ! (Ak+1 � : : : �An)! U| {z }Tj

12 � Giuseppe Castagnawhere Ci � Ai for 1� i�k and Ai � Ci for k<i�n.10 If we want to override theselected branch by a more precise one, then, as explained above, the new methodmust covariantly override A1 : : :Ak (to specialize the branch) and contravariantlyoverride Ak+1 : : :An (to have type safety).4. COVARIANCE IN THE RECORD-BASED MODELWe said in the previous section that covariance must be used to specialize thearguments that are taken into account during method selection. In record-basedmodels, no arguments are taken into account in method selection: the method touse is uniquely determined by the record (i.e., the object) that the dot selectionis applied to. Thus in these models, it appears that we cannot have a covariancecondition.Strictly speaking, this argument is not very precise, since the record-based modeldoes possess a limited form of \covariance" (in the sense of a covariant dependencythat the input and the output of a message must respect), but it is hidden by theencoding of objects. Consider a label `. By the subtyping rule for record types, ifwe \send" this label to two records of type S and T with S � T , then the resultreturned by the record of type S must have a type smaller than or equal to the typeof the one returned by T . This requirement exactly corresponds to the dependencyexpressed by the covariance condition (2), 11 but its form is much more limited be-cause it applies only to record types (since we \sent" a label), but not to products(i.e., multiple dispatch) nor to arrows. We may see this correspondence by treatinga record label ` as a potentially in�nitely branching overloaded function that takesas its argument any record with at least a �eld labeled by ` and returns a value ofthe corresponding type: ` : f hh`:T ii ! T gT2TypesNote that this treatment respects the covariance condition (2) since hh`:T ii �hh`:T 0ii implies T � T 0. Though, all the types of the arguments are records ofthe same form; no other kind of type is allowed. Hence record-based models pos-sess only a limited form of covariance, an \implicit" covariance.However the idea is that \explicit" covariance without multiple dispatching doesnot exist. Actual record-based models do not possess multiple dispatching. Thislack does not mean that the analogy \objects as records" is incompatible withmultiple dispatching, however. The problem is simply that the formalisms that usethis analogy are not expressive enough to model it.In the rest of this section, therefore, we show how to construct a record-basedmodel of object-oriented programming using the �&-calculus, i.e., we use �& todescribe a model in which objects will be modeled by records. In the model weobtain, it will be possible to perform multiple dispatch, and hence we will recoverthe covariance relation. Thus, we will have shown by example that covariance and10Indeed, by the covariance condition, all methods whose input type is compatible with the oneof the arguments must be of this form.11Recall that in the overloading-based model, covariance has exactly the same meaning as here.That is, the smaller the type of the object that a message (label) is sent to, the smaller the typeof the result.

Covariance and Contravariance � 13contravariance can cohabit in type-safe systems based on the analogy of \objectsas records."The key point is that records can be encoded in �&. By using this encoding, wecan mimic any model based on simple records, but with an additional bene�t: wehave overloaded functions. For the purposes of this article, simple records su�ce.Let us recall their encoding in �& as given in Castagna et al. [1995].Let L1; L2; : : : be an in�nite list of atomic types. Assume that they are isolated(i.e., for any type T , if Li � T or T � Li, then Li = T), and introduce for eachLi a constant `i:Li. It is now possible to encode record types, record values, andrecord �eld selection, respectively, as follows:hh`1:V1; : : : ; `n:Vnii � fL1 ! V1; : : : ; Ln ! Vngh`1 =M1; : : : ; `n = Mni � (" & �xL1 :M1 & : : :& �xLn :Mn) (xLi 62 FV (Mi))M:` � M�`In words, a record value is an overloaded function that takes as its argument alabel |each label belongs to a di�erent type| that is used to select a particularbranch (i.e., �eld) and then is discarded (since (xLi 62 FV (Mi)). Since L1 : : :Lnare isolated, the typing, subtyping, and reduction rules for records are special cases12 of the rules for overloaded types. Henceforth, to enhance readability, we will usethe record notation rather then its encoding in �&. All the terms and types writtenbelow are encodable in �&.13Consider again the equal message. The problem, we recall, was that it is notpossible to select the right method by knowing the type of just one argument. Thesolution in the overloading-based approach was to use multiple dispatching and toselect the method based on the class of both arguments. We can use the samesolution with records. Thus, the method de�ned for 2EqPoint must select di�erentcode according to the class of the \second" argument (similarly for 3EqPoint).This can be obtained by using in the �eld for equal an overloaded function. Thede�nition of the previous two recursive types therefore becomes:2EqPoint � hhx: Int;y: Int;equal: f2EqPoint! Bool; 3EqPoint ! Boolgii3EqPoint � hhx: Int;y: Int;z: Int;equal: f2EqPoint! Bool; 3EqPoint ! BoolgiiNote that now 3EqPoint�2EqPoint . The objection may now be raised that whenwe de�ne the class 2EqPoint , the class 3EqPoint may not exist yet, and so it12There is an \if and only if" relation, e.g., the encodings of two record types are in subtypingrelation if and only if the record types are in the same relation.13More precisely, in �& plus recursive types.

14 � Giuseppe Castagnawould be impossible to de�ne in the method equal for 2EqPoint the branch for3EqPoint . But note that a lambda abstraction may be considered as a special caseof an overloaded function with only one branch and thus that an arrow type maybe considered as an overloaded type with just one arrow (it is just a matter ofnotation; see Section 4.3 of Castagna [1994]). Hence, we could have �rst de�ned2EqPoint as2EqPoint � hhx: Int;y: Int;equal: f2EqPoint! Boolgiiand then added the class 3EqPoint with the following type:3EqPoint � hhx: Int;y: Int;z: Int;equal: f2EqPoint! Bool; 3EqPoint ! BoolgiiNote that again 3EqPoint�2EqPoint holds. An example of objects with the typesabove isY (�self 2EqPoint:hx = 0;y = 0;equal = �p2EqPoint:(self :x = p:x)^ (self :y = p:y)i)Y (�self 3EqPoint:hx = 0;y = 0;z = 0;equal =(�p2EqPoint:(self :x = p:x) ^ (self :y = p:y)&�p3EqPoint:(self :x = p:x)^ (self :y = p:y) ^ (self :z = p:z))i)where Y is the �xpoint operator (which is encodable in �&: see Castagna [1994]).The type safety of expressions having the types above is assured by the type safetyof the �&-calculus. Indeed, the type requirements for specializing methods as in thecase above can be explained in a simple way: when specializing a binary (or generaln-ary) method for a new class C 0 from an old class C, the specialized method mustspecify not only its behavior in the case that it is applied to an object of the thenew class C 0, but also its behavior in the case that it is applied to an object of theold class C. Going back to our example of Section 2, this is the same as saying thatwhen one specializes the class of natural numbers from the real numbers, then typesafety can be obtained by specifying not only how to compare a natural numberto another natural number, but also how to compare it to a real number. Theconclusion is that in the record-based approach, specialization of functional �eldsis done by using (contravariant) subtypes, but to make specialization type-safe

Covariance and Contravariance � 15and convenient with binary (and general n-ary) methods, we must more accuratelyspecialize binary (and general n-ary) methods by de�ning their behavior not onlyfor the objects of the new class, but also for all possible combinations of the newobjects with the old ones.One could object that if the subtyping hierarchy were very deep, this approachwould require us to de�ne many branches, one for each ancestor, and that in mostcases these de�nitions would never be used. Actually, many of these de�nitions arenot necessary. Indeed, in all cases, two branches will su�ce to assure type safety.14For example, suppose that we further specialize our equality-point hierarchy byadding further dimensions. When we de�ne the nEqPoint , it is not necessary tode�ne the behavior of the equal method for nEqPoint , (n-1)EqPoint ,: : : , 2EqPoint ;two branches are more than enough: one for 2EqPoint (the only one really neces-sary), the other for nEqPoint . Why? The reason is that from the subtyping rules,it follows that if for all i 2 I; Ti � T then fT ! Sg � fTi ! Sgi2I . If we take2EqPoint for T and the various (n-k)EqPoint for Ti we may see that the branch2EqPoint! Bool su�ces in the de�nition of nEqPoint to guarantee type safety;all the other branches are not strictly necessary, but they may be added at will.Furthermore, if the branch that guarantees type safety is missing, it can be addedin an automatic way. Therefore, multiple dispatch can be embedded directly intothe compiler technology in order to \patch" programs of languages that, like O2,use covariant subtyping, without modifying the language's syntax. In that casetype safety is obtained without any modi�cation of the code that already exists: arecompilation is enough (see Castagna [1995b]).Finally, we want to stress that, in this record-based model, covariance and con-travariance naturally coexist. This is not apparent in the example above with equalsince all the branches of equal return the same type Bool. To see that the twoconcepts coexist, imagine that instead of the method for equal we had a methodadd . Then we would have objects of the following types:2AddPoint � hhx: Int;y: Int;add: f2AddPoint! 2AddPointgii3AddPoint � hhx: Int;y: Int;z: Int;add: f2AddPoint! 2AddPoint; 3AddPoint! 3AddPointgiiThe various branches of the multimethod15 add in 3AddPoint are related in a co-variant way, since the classes of their arguments determine the code to be executed.14This observation does not depend on the size or the depth of the hierarchy, and it is valid alsofor n-ary methods. More than two branches may be required only if we use multiple inheritance.15A multimethod is a collection of methods (or branches). When a multimethod is applied toargument objects, the appropriate method to execute is selected according to the type of one ormore of the arguments. Multimethods correspond to our overloaded functions.

16 � Giuseppe Castagna5. CONCLUSIONWith this article we hope to have contributed decisively to the debate about theuse of covariance and contravariance. We have tried to show that the two conceptsare not antagonistic, but that each has its own use: covariance for specializationand contravariance for substitutivity. Also, we have tried to convey the idea thatthe independence of the two concepts is not characteristic of a particular model butis valid in general. The fact that covariance did not appear explicitly in the record-based model was not caused by a defect of the model but rather by a de�ciency of allthe calculi that used the model. In particular, they were not able to capture multipledispatching. Indeed, it is only when one deals with multiple dispatching that thedi�erences between covariance and contravariance become apparent. The use ofoverloaded functions has allowed us to expose the covariance hidden in records.As an aside, we have shown that the �&-calculus can be taken as the basiccalculus both of an overloading-based and of a record-based model. With it, wenot only obtain a more uniform vision of object-oriented type theories but, in thecase of the record-based approach, we also gain multiple dispatching, which is, webelieve, the solution to the typing of binary methods.To end this note we give three \golden rules" that summarize our discussion.The Golden Rules(1) Do not use (left) covariance for arrow subtyping.(2) Use covariance to override parameters that drive dynamic method selection.(3) When overriding a binary (or n-ary) method, specify its behavior not only forthe actual class but also for its ancestors.ACKNOWLEDGMENTSI want to thank V�eronique Benzaken who encouraged me to write this article andKathleen Milsted for her patient reading and many suggestions. Special thanksto John Mitchell and to Kathleen Fisher whose revisions made these notes morereadable.REFERENCESApple Computer Inc. 1992.Dylan: An Object-Oriented Dynamic Language. Eastern Researchand Technology, Apple Computer Inc., Cambridge, Mass.Bancilhon, F., Delobel, C., and Kanellakis, P. (Eds.) 1992. Implementing an Object-Oriented Database System: The Story of O2 . Morgan Kaufmann, San Mateo, Calif.Cardelli, L. 1988. A semantics of multiple inheritance. Inf. Comput. 76, 138{164. A previousversion can be found in Semantics of Data Types. Lecture Notes in Computer Science, vol.173. Springer-Verlag, New York, 1984, pp. 51{67.Cardelli, L. and Mitchell, J. 1991. Operations on records.Math. Struct. Comput. Sci. 1, 1,3{48.Castagna, G. 1995a. A meta-language for typed object-oriented languages. Theor. Comput.Sci. To be published. An extended abstract appears in Proceedings of the 13th Conferenceon the Foundations of Software Technology and Theoretical Computer Science. LectureNotes in Computer Science, vol. 761. Springer-Verlag, New York, 1993.Castagna, G. 1995b. A proposal for making O2 more type safe. Tech. Rep. LIENS-95-4, LIENS, Paris, France. Available by anonymous ftp from ftp.ens.fr in �le/pub/dmi/users/castagna/o2.dvi.Z.

Covariance and Contravariance � 17Castagna, G. 1994. Overloading, subtyping and late binding: Functional foundation of object-oriented programming. Ph.D. thesis, Universit�e Paris 7, Paris, France. Appeared as LIENSTech. Rep.Castagna, G., Ghelli, G., and Longo, G. 1995. A calculus for overloaded functions withsubtyping. Inf. Comput. 117, 1, 115{135. A preliminary version has been presented at the1992 ACM Conference on LISP and Functional Programming (San Francisco, June).DeMichiel, L. and Gabriel, R. 1987. Common lisp object system overview. In Proceedingof ECOOP '87 European Conference on Object-Oriented Programming (Paris, France).Lecture Notes in Computer Science, vol. 276. Springer-Verlag, Berlin, 151{170.Ghelli, G. 1991. A static type system for message passing. In Proceedings of OOPSLA '91.ACM, New York.Goguen, J. and Meseguer, J. 1989. Order-sorted algebra I: Equational deduction for multipleinheritance, overloading, exceptions and partial operations. Tech. Rep. SRI-CSL-89-10,Computer Science Laboratory, SRI International, Menlo Park, Calif. July.Goldberg, A. and Robson, D. 1983. Smalltalk-80: The Language and Its Implementation.Addison-Wesley, Reading, Mass.Gunter, C.A. and Mitchell, J.C. 1994.Theoretical Aspects of Object-Oriented Programming:Types, Semantics, and Language Design. The MIT Press, Cambridge, Mass.Jouannaud, J.-P.,Kirchner, C., Kirchner, H., and Megrelis, A. 1992. OBJ: Programmingwith equalities, subsorts, overloading and parametrization. J. Logic Program. 12, 257{279.L�ecluse, C., Richard, P., and V�elez, F. 1988. O2, an object-oriented data model. In Pro-ceedings of the ACM SIGMOD Conference (Chicago, Ill.). ACM, New York.Mart��-Oliet, N. and Meseguer, J. 1990. Inclusions and subtypes. Tech. Rep. SRI-CSL-90-16,Computer Science Laboratory, SRI International, Menlo Park, Calif. Dec.Meyer, B. 1991. Ei�el: The Language. Prentice-Hall, Englewood Cli�s, N.J.Pinson, L. and Wiener, R. 1992. Objective-C: Object-Oriented Programming Techniques.Addison-Wesley, Reading, Mass.R�emy, D. 1989. Typechecking records and variants in a natural extension of ML. In the 16thAnnual ACM Symposium on the Principles of Programming Languages. ACM, New York.Schwartzbach, M. 1994. Developments in object-oriented type systems. Tutorial given atPOPL'94. Unpublished.Stroustrup, B. 1986. The C++ Programming Language. Addison-Wesley, Reading, Mass.Wand, M. 1987. Complete type inference for simple objects. In the 2nd Annual Symposium onLogic in Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.Received April 1994; revised January 1995; accepted February 1995

