
Polymorphic Records for Dynamic Languages

GIUSEPPE CASTAGNA, CNRS, Université Paris Cité, France

LOÏC PEYROT, IMDEA Software Institute, Spain

We define and study row polymorphism for a type system with set-theoretic types, specifically, union, intersec-

tion, and negation types. We consider record types that embed row variables and define a subtyping relation

by interpreting record types into sets of record values, and row variables into sets of rows, that is, “chunks” of

record values where some record keys are left out: subtyping is then containment of the interpretations. We

define a functional calculus equipped with operations for field extension, selection, and deletion, its operational

semantics, and a type system that we prove to be sound. We provide algorithms for deciding the typing and

subtyping relations, and to decide whether two types can be instantiated to make one subtype of the other.

This research is motivated by the current trend of defining static type system for dynamic languages and,

in our case, by an ongoing effort of endowing the Elixir programming language with a gradual type system.

1 Introduction
The goal of this work is to define and study row polymorphism for a type system with set-theoretic

types, in particular, union, intersection, and negation types. Row polymorphism was originally

introduced by Rémy [37, 38], Wand [43, 44] and further studied and developed in several works

(e.g., [22, 29, 32, 41]). However, as we argue in this work, the theories in the current literature—

which use algebraic approaches—cannot be reused for systems with set-theoretic types and, hence,

an original theory must be developed. More broadly, the primary conceptual contribution of our

work is demonstrating that row polymorphism is not limited to syntactic or algebraic approaches.

Instead, it can be effectively integrated into the semantic subtyping framework using the same three

conceptual steps employed to incorporate parametric polymorphism into the framework [9, 10].

The interest of developing this new theory is grounded in practice. There is a growing effort

to develop type systems for dynamic languages: TypeScript [31] and Flow [16] are two major

examples of such an effort and, as most of the existing attempts to add type systems to dynamic

languages, they include union and intersection types to accommodate the flexible programming

patterns prevalent in such languages. In particular, some widely used dynamic programming

languages—such as Luau [28, 36], and Elixir [13]—have adopted set-theoretic types as defined in the

semantic subtyping framework by Frisch et al. [20]. There, (𝑖) types are interpreted as sets of values,
(𝑖𝑖) unions, intersections, and negation types are interpreted as the corresponding set-theoretic

interpretations, and (𝑖𝑖𝑖) the subtyping between two types is defined as set-containment of their

interpretations. Since semantic subtyping is the framework that we use here, our work can be

considered as a study on adding row polymorphism to Luau and Elixir. In particular, the rest of this

section uses Elixir’s syntax to showcase practical motivations.

1.1 A motivating example
To show the interest of having row polymorphism in dynamic languages, let us consider the logger
module of Elixir’s standard library, which exports the following function (see [15]):

1 def add_elixir_domain(x) do
2 case x do
3 %{domain: y} when is_list(y) -> %{x | domain: [:elixir | y]}
4 _ -> Map.put(x, :domain, [:elixir])
5 end
6 end

HTTPS://ORCID.ORG/0000-0003-0951-7535
HTTPS://ORCID.ORG/0000-0002-1398-7460

2 Giuseppe Castagna and Loïc Peyrot

This code snippet defines the function add_elixir_domain, whose argument, bound to x , is matched

in a case expression. The argument must be a record value (in Elixir records are delimited by curly

brackets prefixed by the “%” symbol).
1
If it is a record with (at least) a field for the key :domain

whose content is a list (line 3), then the function returns a copy of the argument in which the field

with key :domain is updated by consing the atom
2 :elixir to the list in the argument. Otherwise,

(line 4), the function adds (if absent) or replaces (if present but does not contain a list) in the record

x a field :domain whose content is the singleton list whose only element is the atom :elixir (this

is performed by the function Map.put of Elixir’s standard library).

Elixir’s type system [7, 14] features record types without row polymorphism. Hence, the function

add_elixir_domain can be given this type (the symbol $ is used to introduce type signatures [7]):
3

7 $ %{...} -> %{..., domain: list(term())}

In Elixir, record types starting by ... are “open”, that is, the values of these record types may

define other fields besides those specified in the type. Therefore, the type above states that

add_elixir_domain is a function that accepts any record value (since %{...} is the top record

type) and returns a record with at least a :domain field that contains a list of values (in Elixir term()

is the top type, which types all values, so list(term()) is the type of all lists; following the Erlang

convention, type names are post-fixed by (), e.g., integer(), term(), ...).
The problem with such a type is well known: the type does not specify that the fields correspond-

ing to the ellipsis in the result are the same as those in the argument. Thus, any static knowledge of

these fields is lost after the application. The practical consequence of this loss is that an expression

such as add_elixir_domain(%{file: "foo.txt", line: 42}).line, which tries to select the field

:line in the result of the application, is rejected by the type checker despite being correct. This

hinders the applicability of the type system to existing code and obliges the programmer to resort

to the less precise gradual typing features of Elixir’s type system.

The solution to this problem is also well known, and resorts to using row variables, which are

variables that range over “rows” of fields of a record type. For Elixir, this would correspond to

extending the current type system so that add_elixir_domain could be typed as follows:

8 $ %{f} -> %{f, domain: list(term())} when f: fields()

where f is a row variable—as stated by the post-fix declaration f: fields() (in Elixir, type variables

are post-fixedly quantified by a when declaration)—which, intuitively, ranges over all fields not

already specified by a record type f occurs in (here, all fields but :domain). Now, when typing the

previous expression add_elixir_domain(%{file: "foo.txt", line: 42}).line, the row variable f

can be instantiated to include the two fields for the keys :file and :line in the argument, enabling

the system to deduce for the expression the type integer().

The type system for Elixir defined in [7] also features union, intersection, and negation types—

denoted by or, and, and not— as well as polymorphic type variables. Combined with row polymor-

phism, they refine the previous type of add_elixir_domain as follows:
4

1
For consistency, we follow Hoare’s original terminology [26, 27], and always use the term “record” to denote finite key-value

maps. In contrast, Elixir uses the word “maps” for finite key-value maps and reserves “record” for a different concept.
2
Atoms are user-defined constants prefixed by a colon and of type atom(). Field keys are atoms, too, in which the starting

colon can be omitted if the field is not optional (see later on): %{domain: 42} has a field with key :domain and value 42.
3
Record types were added in Elixir’s latest release (1.17), while “$” and type variables are planned for future releases: [14].

Elixir’s syntax for row variables (cf. code in line 8 and on) is not fixed yet: the notation %{...f, } is also being considered.

4
Such a refinement can also be done without row variables, but the problem with forgotten fields is still the same.

3

9 $ (%{f, domain: list(a)} -> %{f, domain: list(atom() or a)}) and
10 (%{g, :domain => not(list(term())} -> %{g, domain: list(atom())})
11 when a: term(), f: fields(), g: fields()

The type above uses the whole palette of set-theoretic types. It also uses both parametric and row

polymorphism, since the type features a type variable a and two row variables f and g, as stated

by the when declaration in line 11. The combination of these two features renders a more precise

description of the behavior of add_elixir_domain:

• The arrow type in line 9 states that when add_elixir_domain is applied to a record value formed

by a field :domain that contains a list of a elements, and by some other fields captured by f, then

the function returns a record that is of the same type as the argument except in the :domain

field that now contains a list of “atom() or a” elements (union type).

• The arrow type in line 10 specifies as input type a record type with an optional field (denoted

by “=>”)5 of type not(list(term())). Thus, the function type in line 10 types functions that

when applied to values in which the field :domain is either absent or bound to a value that is

not a list (negation type), then it returns a record where the :domain field contains a list of

atoms and, thanks to the row variable g, where the other fields of the argument are preserved.

• The two arrows above are connected by an intersection (the and connective at the end of line 9)

meaning that the function has both types and, thus, obeys both specifications.

If add_elixir_domain is given the type in lines 9–11 and if x is defined as:

12 x = add_elixir_domain(%{domain: [41, 43], file: "foo.txt", line: 42})

then the type deduced for the expression [x.line | x.domain] is list(atom() or integer()).

It is out of the scope of this work to explain why the precision allowed by set-theoretic types

is necessary to the typing of dynamic languages. For such an explanation, we invite the reader

to refer to [7] which treats the case of Elixir. We want nevertheless to stress the importance of

negation types for a precise typing of pattern matching. This is shown in line 4 of the definition of

add_elixir_domain, where the type deduced for the variable x occurring in that line is obtained by

removing, by a negation type, from the type of the input the type of all the values captured by the

preceding pattern occurring in line 3.

In the rest of this introduction we explain the details of adding row polymorphism in the presence

of set-theoretic types and how to use it to type a language with extensible records in which fields

can be added or deleted. We start by explaining why we need a new theory for row variables.

1.2 The need for row polymorphism
Even before considering whether we need a new theory for row polymorphism, we may wonder

whether we need row polymorphism at all. The system we are planning to extend features first

order (a.k.a., prenex) polymorphism with set-theoretic types, and the combination of the two is

enough to encode a limited form of bounded polymorphism, which can be used to type the following

bump_counter function without losing the static information of the fields of the argument:

13 def bump_counter(x), do: %{x | counter: x.counter+1}

5
A record type such as %{:bar => t()} means that in the values of this type, a field for the key :bar may be absent, but if

present it must contain a value of type t(). This is Erlang’s Typespec syntax: in Elixir the keyword optional is mandatory,

as in %{optional(:bar) => t()} , but we omit it to streamline the presentation.

4 Giuseppe Castagna and Loïc Peyrot

This function increments the :counter field of its argument and can be typed by bounded poly-

morphism by the type ∀(𝛼≤{..., counter=integer()}).𝛼 → 𝛼 . The type variable 𝛼 captures the

whole type of the argument, thus also its extra fields. Thanks to that the type system deduces for

(bump_counter(%{counter: 1, file: "foo.txt"})).file the type string. The bounded polymor-

phic type above is encoded by set-theoretic types as follows (see [6]):
6

14 $ (%{..., counter: integer()} and a -> %{..., counter: integer()} and a) when a: term()

for which Elixir provides the nifty shorthand (a -> a) when a: %{..., counter: integer()} of

bounded polymorphism.

The example above may suggest that intersecting record types with type variables could play the

same role as row polymorphism. Unfortunately, the example above is one of the few cases in which

this works.
7
This technique may work to type functions in which the input and the output have

the same fields; but even in that case it is easy to have a partial loss of information. For instance,

consider the following function that takes as input a record with a field foo and redefines its content

(in Elixir, functions are annotated by the $-prefixed type that precedes their definition [7]):

15 $ (a, b) -> a when b: term(), a: %{..., foo: b}
16 def redefine_foo(x,y), do: %{x | foo: y}

Although we do not lose the static type information of any field of the argument (thanks to the

type variable a), the type for the :foo field may lose precision. For example, the type deduced

for redefine_foo(%{foo: 42},true).foo is the union integer() or boolean()—rather than just

boolean()—since the type variable b is unified with the union of the type of the second argument

and the type of the field foo: of the first argument. Furthermore, this technique fails when we try

to add a new field to a record or delete an existing field from it. For instance, consider again the

function Map.put, whose use in line 4 can be abstracted as follows:

17 $ (%{...} and a -> %{..., domain: list(atom())} and a) when a: term()
18 def put_domain(x), do: Map.put(x, :domain, [:elixir])

One might think that the use of the intersection with the type variable a captures all the fields

of the argument, but the type declaration is wrong—and, as such, rejected by the type system—

because if we instantiate the variable a by a type such as %{domain: integer()} , then we deduce for

put_domain the type %{domain: integer()} -> none() , where none() is the empty type (resulting

by simplifying the intersection in the codomain): this type states that the application of put_domain

to an argument of type %{domain: integer()} must diverge (since any returned value must be in

the empty type, which contains none), which is clearly wrong. A similar problem happens when

we apply the record operations of deleting a field or of adding a field that is not already present.

The problem with the type in line 17 is that for each intersection in it not to be empty, the type

variable a must be instantiated by a record type that contains all the fields of the input and of the

output, in particular the field for :domain. If, as above, :domain has different types in the input

and in the output, then one of the two intersections results empty (making the whole record type

containing it to be empty) which, as explained above, is unsound. For the typing to work, we need

the type variable to instantiate all the fields of the input except the field for :domain. This is exactly

6
Intersections and unions have a precedence higher than arrows and records, and negation has the highest precedence of all.

7
Even this is not true: it is just an approximation we did for presentation purposes, since it is unsound to deduce the type a

for the result type. To see why, try to instantiate a with %{counter: 42}.

5

the role of row variables, which instantiate “all the other fields” of the record type. The function

put_domain can be given any of the two following types:

19 $ %{f} -> %{f, domain: list(atom())} when f: fields()
20 $ %{f, :domain => term()} -> %{f, domain: list(atom())} when f: fields()

The type in line 19 is syntactic sugar for the one in line 20 whose domain, despite being more

verbose, explicitly states that the field :domain is either undefined or contains a value of any type.

The type in 20, thus, explicitly shows that the row variable f captures all fields but :domain.

Likewise, we need row variables for typing a function that deletes, say, the :domain field since,

once again, the type of the deleted field will be different in the input and in the output:

21 $ %{f, :domain => term()} -> %{f, :domain => none()} when f: fields()
22 def del_domain(x), do: Map.delete(x, :domain)

The codomain of the type in line 21 states that the field for :domain must be absent (i.e., if present,

it must contain a value of the empty type none(), of which there is none). As before, the type above

can be more conveniently written as: %{f} -> %{f, :domain => none()} when f: fields() , and

again, this works because f can only be instantiated to rows that do not contain a field for :domain.

Since we have established that we need row polymorphism, the next question is why not use

the existing theory? A first reason is that to integrate row polymorphism in a semantic subtyping

setting, we need to define subtyping for polymorphic records, and this requires to interpret the

row-polymorphic record types as sets of values which, to our knowledge, was never done before. A

second peculiarity of our setting are optional fields that, as far as we know, are not dealt with by

the current approaches (see the discussion on presence polymorphism in Section 5). A third harder

challenge arises from the limitations of the conventional unification techniques applied in row

polymorphism; for instance, this issue becomes apparent when considering the following example:

23 type figure() = %{shape: "circle", perim: integer(), diam: float()} or
24 %{shape: "polygon", perim: integer(), edges: integer()}
25 $ {f, perim: integer()} -> {f, perim: float()} when f: fields()
26 def perim_to_float(x), do: %{x | perim: to_float(x.perim)}

The first two lines define the type of “figures”, which are records with an integer field :perim and

with either a :diam or an :edges field, according to the value of their :shape field. In line 26 we

define a function that transforms the integer field :perim of the input into float. Its type is given in

line 25. Now, if we apply the function perim_to_float to an argument of type figure() we expect

to deduce for it a type like figure() but where the :perim field is of type float(), that is

27 $ %{shape: "circle", perim: float(), diam: float()} or
28 %{shape: "polygon", perim: float(), edges: integer()}

but current theories of row polymorphism unify record types component-wise, which in our case

would yield the following type which less precise than (i.e., is a supertype of) the type above:

29 $ %{shape: "circle" or "polygon", perim: float(), :diam => float(), :edges => integer()}

where the :shape field has now a union type and :diam and :edges have become optional. To

deduce the type in lines 27 and 28 the row variable f must be expanded into the union of two rows,

one for the shape circle and the other for the shape polygon.

Even if the problem above can be solved by particular typing techniques, the presence of negation

types in our theory invalidate such techniques in general (see example in Appendix C.1). Therefore,

6 Giuseppe Castagna and Loïc Peyrot

we need to develop an original technique to replace unification, so that it takes into account

subtyping and enables substitutions to expand row variables into Boolean combinations of rows.

In conclusion, to embed row polymorphism in a type system featuring semantically defined

union, intersection, and negation types, we need new theoretical developments to cope with the

semantic interpretation of types and the inference of substitutions for type variables in the presence

of subtyping and set-theoretic types. To do that, we proceed as we describe next.

1.3 Overview
In Section 2 we define the syntax of types and the subtyping relation. We abandon Elixir’s syntax

for maps/records and introduce in Section 2.1 a more theoretically-oriented one: we denote records

types as finite lists of field-type specifications of the form ℓ = 𝜏 , followed by a tail 𝜍 specifying an

infinite row of fields as in {{{ℓ1 = 𝜏1, ..., ℓ𝑛 = 𝜏𝑛|||𝜍}}}. In this type, each ℓ𝑖 denotes a label (or key) of

a field, and labels are pairwise distinct; 𝜏𝑖 is either a type 𝑡 or the union 𝑡 ∨ ⊥, meaning that the

field is optional with type 𝑡 (i.e., Elixir’s :key => t() field) and absent if 𝑡 is the empty type (i.e.,

:key => none()); 𝜍 is either a row variable 𝜌 , or “..” (meaning that the record type is open), or “𝜖”

(meaning that the record is closed: its values contain all and only the fields specified in the type).

To define the subtyping relation on types, we give in Section 2.2 an interpretation of types as sets

of elements of a domain D—whose elements, intuitively, represent the values of the language—and

then define subtyping as containment of the interpretations. Following Frisch [18], records values

are interpreted as quasi-constant functions, that is, functions that map all labels into ⊥ (meaning

that the field for that label is undefined) except for a finite set of labels that are mapped into values.

Therefore, (ground) record types are interpreted as sets of quasi-constant functions. More subtle

is the interpretation for row variables which, as we saw, define the type of all the labels except a

few ones; as a consequence our interpretation will map them into partial quasi-constant functions

(as in [38]), requiring a careful handling of their domains. In Section 2.3 we define an algorithm

to decide the subtyping relation just defined. We do so by extending the subtyping algorithm of

the monomorphic record types of CDuce [3]—on which we base our theory— to our polymorphic

records. The resulting (backtrack-free) algorithm has the same order of complexity as the one for

monomorphic record types, which currently used in Elixir. Finally, we give a formal definition for

type substitutions in Section 2.4, in particular for the case of row variables which are expanded

into Boolean combinations of rows of fields, and prove that its application preserves subtyping.

In Section 3 we define a language with operations on records. For those, several equivalent

choices are possible [4]. We build records starting from the empty record value, noted {}, and
adding new fields to it by the expression {𝑒 with ℓ = 𝑒′} which extends the record (resulting from

the evaluation of) 𝑒 with the field ℓ = 𝑒′, provided that a field for ℓ is not already present in 𝑒 . The

other operations on records are field selection, noted 𝑒.ℓ , which returns the content of the field ℓ

in 𝑒 , and field deletion, noted 𝑒\ℓ which removes from 𝑒 the field labeled ℓ , if any. We define an

operational semantics and a declarative type system, and we show that the latter is sound in the

sense of Wright and Felleisen [45], by proving that every well-typed expression either diverges or

returns a value of the expression’s type (Section 3.1). Next, we define an algorithmic type system

and prove it to be sound and complete with respect to the declarative one. The system is derived

from the declarative one in a standard way: subsumption is embedded in the elimination rules,

intersection introduction is essentially embedded in the typing of 𝜆-abstractions, and the rule for

applications performs instantiation and expansion by looking for a set of substitutions that make

the type of the argument be a subtype of the domain of the function (Section 3.2).

Section 4 studies the tallying problem, which plays the same role as the unification problem in

type inference, but for a subtyping—rather than an equality—relation on types. The algorithmic

7

system in Section 3.2 is effective, provided that we produce an algorithm to deduce the type

substitutions to apply to the types of the function and the argument when typing an application.

Following Castagna et al. [9] this can be done by solving the tallying problem for our types, namely,

the problem of deciding whether given two types, there exists a type substitution that makes one

type subtype of the other. Castagna et al. [9] prove that the problem is decidable for a system with

function and product type constructors and set-theoretic types, and give a sound and complete

algorithm. However, defining a tallying algorithm for types with row variables is far more difficult.

This is because substitutions replace row variables by Boolean combinations of rows of fields. We

tackle this problem in Section 4, where we define a tallying algorithm for row polymorphic types.

We prove that the algorithm is sound but not complete, and we conjecture completeness for the

case in which row variables are substituted by a single row of fields.

We conclude by discussing related work (Section 5) and further research directions (Section 6).

1.4 Contributions and limitations
The overall contribution of this work is threefold, since it provides (𝑖) a theory for a first-order

polymorphic type system with row polymorphism and set-theoretic types, (𝑖𝑖) the practical motiva-

tions for such a system, as well as (𝑖𝑖𝑖) the relevant algorithms to apply it in practice. In particular,

all the examples we presented in Sections 1.1 and 1.2 are typed by our system.

The technical contributions can be summarized as follows:

(1) We describe a first-order polymorphic type theory with union, intersection and negation type

connectives, and function and record type constructors, where record types can be either closed,

open, or specify a row variable, and their fields can be declared optional (Section 2.1). We define

a subtyping relation for these types by providing an interpretation where types are interpreted

as set of values and subtyping as set containment (Section 2.2).

(2) We prove that the subtyping relation is decidable and provide a backtrack-free algorithm to

decide it (Section 2.3) with the same order of complexity as the one implemented for Elixir.

(3) We define type substitutions that map row variables into Boolean combinations of rows, and

prove that the application of type substitutions preserves subtyping (Section 2.4).

(4) We define a declarative type system for a record calculus with record extension, selection, and

deletion and prove its soundness (Section 3.1).

(5) We define an algorithmic system that we prove sound and complete with respect to the declara-

tive one (Section 3.2).

(6) We define an algorithm for the tallying problem for our system, that is, the problem of deciding

whether given two types there exists a type substitution that make one subtype of the other;

we prove soundness of the algorithm (Section 4).

The system defined here presents some limitations. Some are expected and characteristic of the

kind of systems we consider here: the typing relation is not decidable (this is typical of systems with

intersection types) and the type system has no principal types (which is already the case both for

systems with polymorphic set-theoretic types [9, 10] and for expressive record type systems [4]).

Other limitations are instead new, in particular that the tallying algorithm is sound but not complete

(an example is given in Example 4.5; a complete algorithm exists when record types are kept out of

the equation: see Castagna et al. [9]). We prove that one of the reasons for incompleteness is that

we interpret row variables into Boolean combinations of rows rather than into single rows, and we

conjecture that completeness can be recovered in the latter case, but at the expenses of the type

system which can type fewer expressions (cf. Example C.2). Note however that all the examples

given in the introduction fall outside the incompleteness area: as Example 4.5 shows, building an

8 Giuseppe Castagna and Loïc Peyrot

example for incompleteness requires the application of higher-order functions whose types map

unions of record types into similar unions of record types.

Finally, from a practical point of view, the main limitation of this system is that it does not feature

first class labels, that is, the operations for field selection, extension, and deletion must specify

nominal labels which, thus, cannot be obtained as the result of a computation. This important

omission might hinder the application of our theory to dynamic languages where such a feature is

widely used. This omission, however, is deliberate since we wanted to focus on the problem of row

polymorphism, and we consider that having first-class labels is mostly orthogonal to it. We believe

that it will not be hard to extend our work on the lines of Castagna [5] to have first class labels also

in our system, and we leave it for future work.

2 Types
We introduce the syntax of types (Section 2.1) and their set-theoretic interpretation from which we

derive the subtyping relation (Section 2.2). We define the algorithm to decide the subtyping relation

(Section 2.3) and prove that subtyping is preserved by type and row substitutions (Section 2.4).

2.1 Syntax of Types
Definition 2.1 (Types, rows and kinds). Let L be a countable set of labels ranged over by ℓ .

The set T of types (ranged over by 𝑡) contains all terms coinductively generated by the corresponding

grammar below and that (1) have a finite number of different sub-terms (regularity) and (2) in which

every infinite branch contains an infinite number of occurrences of the record or arrow type constructors

(contractivity). The set R of rows (ranged over by 𝑟) as well as the set of field-types (ranged over by

𝜏) contain all terms inductively generated by the corresponding grammars below.

Kinds 𝜅 F ★ | ★⊥ | Row(𝐿)
Types 𝑡 F 𝛼 | 𝑏 | 𝑡 → 𝑡 | {{{ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜍}}} | 𝑡 ∨ 𝑡 | ¬𝑡 | 0
Field-types 𝜏 F 𝜃 | 𝑡 | ⊥ | 𝜏 ∨ 𝜏 | ¬𝜏
Tails 𝜍 F 𝜌 | 𝜖 | ..
Rows 𝑟 F ⟨⟨⟨ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜍⟩⟩⟩𝐿 | 𝑟 ∨ 𝑟 | ¬𝑟

where, there and from now on, 𝐿 ∈ Pfin (L) denotes a finite set of labels.
Following a mathematical logic terminology, basic types, arrows, and records are called type

constructors and yield type atoms, while unions, intersections, and negations are type connectives.

Our system use kinds. Types are of kind ★, field-types of kind ★⊥, and we have an infinite set of

kinds for rows, parametrized by a finite set 𝐿: a row indexed by the set 𝐿 is of kind Row(𝐿).
We use 𝑇 to range over types, field-types, and rows, and define 𝑇1 ∧ 𝑇2 =

def ¬(¬𝑇1 ∨ ¬𝑇2) and
𝑇1∖𝑇2 =

def
𝑇1 ∧ ¬𝑇2. For every kind, besides the full set of type connectives, there are a bottom and

a top element (forming a lattice w.r.t. subtyping). In ★, the top type is noted 1 =
def ¬0; in ★⊥, top

is equal to 1 ∨ ⊥; in each kind Row(𝐿), the top element is ⟨⟨⟨|||..⟩⟩⟩𝐿 . We use the generic notation

0 =
def ¬⟨⟨⟨|||..⟩⟩⟩𝐿 for the bottom element in Row(𝐿), with 𝐿 being, thus, implicitly given by the context.

Besides the aforementioned connectives, the types 𝑡 of Definition 2.1 are made of variables (from

a countable set V𝑡 and ranged over by 𝛼), a finite set B of basic types (e.g., Int, Bool; ranged over

by 𝑏), function types, and record types. Coinduction accounts for recursive types and comes with

the usual restrictions of regularity —necessary for the decidability of the subtyping relation— and

contractivity —which rules out meaningless types such as an infinite tower of negations, while

providing a well-founded order for inductive proofs (see [6] for details).

Records. Our records are based on the theory for records defined by Frisch [18] (see [5] for a

description in English) and first used in CDuce. Our work extends the (monomorphic) record theory

9

of [18] with row and field-type variables. In Frisch’s theory, a record value is a total function on L
that maps a finite set of labels into values, and all the remaining labels to a distinguished symbol ⊥
representing the undefined (such a function is dubbed quasi-constant by Frisch: cf. Definition 2.2).

Record type atoms (ranged over by R) are types of the form {{{ℓ1 = 𝜏1, . . . , ℓ𝑛 = 𝜏𝑛|||𝜍}}}, that is, an
unordered list describing the mapping of a finite set of pairwise distinct labels into field-types,

which is followed by a tail 𝜍 that covers the infinitely many remaining labels. We often use the

more compact notation {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}, where 𝐿 ∈ Pfin (L). For R = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}, we define
lab(R) =

def
𝐿 and tail(R) =

def
𝜍 .

Fields. In [18], field-types 𝜏 are of two forms: either (a) 𝜏 = 𝑡 : mandatory with type 𝑡 ; or (b)

𝜏 = 𝑡 ∨ ⊥: optional with type 𝑡 , and in particular always undefined if 𝑡 = 0. Our definition adds

field-type variables (field variables for short), ranged over by 𝜃 and drawn from a countable set V𝑓 .

In what follows, they are used in two ways: (1) to solve the tallying problem (see Section 4) and

(2) to implement presence polymorphism without additional effort (see the discussion in Section 5).

The introduction of field variables forces us to loosen the form of field-types by allowing arbitrary

Boolean combinations of those.

Rows. The tail 𝜍 of a record type atom R = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}} can be of three sorts. If 𝜍 = 𝜖 , then R
is closed, and only includes records that assign ⊥ to every label outside 𝐿. If 𝜍 = .., then R is open,
and imposes no restriction on the values of the fields outside 𝐿. New in our work is that 𝜍 may also

be a row variable (taken from a countable set V𝑟 ranged over by 𝜌) in which case R is polymorphic.

In R, the row variable 𝜌 = 𝜍 defines the fields for the cofinite set of labels def (𝜌) that we call
the definition space of 𝜌 . Now, since record types are total functions on L, we cannot use them to

interpret row variables. For this, we use the new syntactic category of rows from Definition 2.1,

that denote partial functions on L defined on co-finite sets of labels.

Rows are of the form ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩𝐿
′
. The relevant part is the set 𝐿′ ∈ Pfin (L) at the index,

which denotes the finite set of labels on which the row is not defined. In other terms, the row above

is a total function from L ∖ 𝐿′ into field-types: the 𝜏ℓ ’s define the fields for the labels in 𝐿 and the

tail 𝜍 the fields for the labels in L ∖ (𝐿 ∪ 𝐿′).
Of course, not every row or record type is well-formed, since we must ensure that the various 𝐿,

𝐿′, and def (𝜌) form a partition of L. They have to verify three properties, enforced statically by

the kinding system (whose outside this straightforward definition is given in Appendix A, Fig. 3):

(1) In a type {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜌}}} we must have L ∖ 𝐿 = def (𝜌);
(2) In a row ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩𝐿

′
we must have 𝐿 ∩ 𝐿′ = ∅ and, if 𝜍 = 𝜌 , then L ∖ (𝐿 ∪ 𝐿′) = def (𝜌);

(3) Unions (and, thus, intersections) are only on rows defined on the same set of labels.

Finally, for all ℓ ∈ L, we define R(ℓ) to yield the field-type associated to ℓ by R:

R(ℓ) =
def


𝜏ℓ if ℓ ∈ 𝐿; otherwise:

⊥ if 𝜍 = 𝜖

1 ∨ ⊥ if 𝜍 = .. or 𝜍 ∈ V𝑟

This operator, as well as others, is trivially transferred from record types to rows. Notice that in the

case of open and closed records (and rows), the choice of 𝐿 for a record type is not canonical, as

for instance {{{ℓ1 = Int ∨ ⊥, ℓ2 = ⊥|||𝜖}}} and {{{ℓ1 = Int ∨ ⊥|||𝜖}}} are semantically equivalent. Since row

variables have a constant definition space however, a record type like {{{ℓ = 1 ∨ ⊥|||𝜌}}} has a single
(top-level) representation with 𝐿 = {ℓ} = L ∖ def (𝜌).

2.2 Subtyping Relation
The subtyping relation characterizes the type system: union and intersection types are the least

upper bounds and greatest lower bounds of this relation, and the typing relation relies on subtyping

10 Giuseppe Castagna and Loïc Peyrot

to compare types. Our goal is to extend the monomorphic type theory of records of Frisch [18] to a

polymorphic one, obtained by adding row variables. For this, we stick to the technique employed

to extend the theory of semantic subtyping on monomorphic types to type-polymorphic ones

[12, 20, 23]. This technique can be distilled into three conceptual steps:

(1) Define the subtyping relation on monomorphic types. This is done in [20] by the definition of

set-theoretic model. This definition describes how to interpret types as subsets of some domain

whose elements represent the values of the language. Given a specific model (i.e., a specific

domain D and an interpretation function J K from types in T to sets in P(D)), this induces a
subtyping relation defined as the containment of the interpretations (i.e., 𝑡 ≤ 𝑡 ′ ⇔def J𝑡K ⊆ J𝑡 ′K).

(2) Extend the definition of model to polymorphic types. This is done by making the interpretation of

types parametric in the interpretation 𝜂 of type variables as sets of values. Subtyping can then be

defined as containment for every type variable interpretation𝜂 (i.e., 𝑡 ≤ 𝑡 ′ ⇔def ∀𝜂.(J𝑡K𝜂 ⊆ J𝑡 ′K𝜂)),
but only for models that satisfy a so-called “convexity” condition [12] (see later on).

(3) Exibit a specific convex model for polymorphic types and deduce the subtyping relation. Gesbert

et al. [23] show that a convex model for polymorphic types can be obtained by taking a specific

model for monomorphic types and indexing all its elements by finite sets of type variables.

Henceforth, we apply the same approach to record types:

(r1) The subtyping relation for monomorphic record types is defined by interpreting them as sets

of record values (i.e., total functions from labels to values).

(r2) We extend this interpretation to polymorphic record types, by making it parametric in the

interpretation 𝜂 of row variables into sets of rows (i.e., partial functions from labels to values).

(r3) We define a convex model of polymorphic record types, by taking a specific model for monomor-

phic record types and indexing all its elements by finite sets of row variables.

The sole distinction between the two approaches, thus, lies in the interpretation of type variables

and of row variables. While type variables are mapped into sets of values, row variables are mapped

into sets of rows. Rows are not values themselves but rather “chunks” of values: both (record) values

and rows are quasi-constant functions; however, (record) values are total functions, whereas rows

are partial ones. We thus achieve the same conceptual simplicity as the polymorphic extension of

semantic subtyping, though the technical development is, in our case, far more involved.

For space reason, we present here only the final result of this process, that is, the specific convex

model of step (r3), given by the domain of Definition 2.3 and the interpretation of Definition 2.5. We

then derive from it the definition of the subtyping relation (Definition 2.6) and a decision procedure

that we prove sound, complete, and terminating (Lemma 2.1 and Proposition 2.2). The development

of the first two steps is necessary only to prove that the domain and the interpretation given below

satisfy the properties of model and of convexity. This development and the corresponding proofs

are given in Appendix A.2. Although a detailed explanation of these properties is outside the scope

of this presentation, we want to stress that without the model property the definition of subtyping

would not be well-founded and without the convexity property the decision procedure would not

be sound (see [12, 20] for details).

To interpret record values we follow Frisch [18] and represent each record value by a quasi-

constant function that maps labels either into values (i.e., the elements of D) or into ⊥. Let us
write D⊥ for D ∪ {⊥} where ⊥ is a distinguished element not in D. Quasi-constant functions are

total functions that map all but a finite set of elements of their domain into the same default value.

Formally, we have the following definition.

Definition 2.2 ([18]). A function 𝑟 : L → D⊥ is quasi-constant if the set {ℓ ∈ L | 𝑟 (ℓ) ≠ ⊥}
is finite. We use L _ D⊥ to denote the set of quasi-constant functions from L to D⊥ and {[ℓ1 =

11

𝛿1, . . . , ℓ𝑛 = 𝛿𝑛, = ⊥]} to denote the quasi-constant function 𝑟 : L _ D⊥ defined by 𝑟 (ℓ𝑖) = 𝛿𝑖 for

𝑖 = 1..𝑛 and 𝑟 (ℓ) = ⊥ for ℓ ∈ L∖{ℓ1, . . . , ℓ𝑛}.
We also have to interpret rows, which are defined only on a cofinite subset of L. In other terms,

rows are partial quasi-constant functions from L to D⊥, that we note L /_ D⊥. Since a total

function is also a partial one, then we need just the latter in our domain to interpret record types

and rows. This yields the following definition of domain.

Definition 2.3 (Domain). The interpretation domain D for types, is the set of finite terms 𝑑

inductively produced by the following grammar, where 𝑐 ranges over the set C of constants, ℓ over

the set L of labels, and 𝑉 over sets of variables contained inV = V𝑡 ∪V𝑓 ∪V𝑟 . The interpretation

domain D⊥ for fields (resp. Drow for rows) is the set of terms 𝛿 (resp. ¯̄𝑑).

𝑑 F 𝑐𝑉 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝑉 | Rec(¯̄𝑑)𝑉 def (¯̄𝑑) = L
¯̄𝑑 F ⟨|ℓ1 = 𝛿, . . . , ℓ𝑛 = 𝛿, _ = ⊥∅ |⟩𝑉𝐿 𝐿 ∈ Pfin (L ∖ {ℓ1, ..., ℓ𝑛})
𝜕 F 𝑑 | Ω
𝛿 F 𝑑 | ⊥𝑉

We use 𝐷 for an element that is either 𝑑 , ¯̄𝑑 or 𝛿 . We define def (⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2
) = L ∖𝐿2. We

use tag(𝐷) to denote the set of variables indexing 𝐷 , that is, tag(𝑐𝑉) = tag({(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝑉) =
tag(Rec(¯̄𝑑)𝑉) = tag(⟨|ℓ1 = 𝛿, . . . , ℓ𝑛 = 𝛿, _ = ⊥∅ |⟩𝑉

𝐿
) = tag(⊥𝑉) = 𝑉 .

The elements of the domain are constants C to interpret basic types, sets of finite binary relations

Pfin (D×DΩ) to interpret function types, and partial quasi constant functionsL /_ D⊥ to interpret

rows (and record types by the total ones). The fact that functions are finite binary relations is a

standard technique of semantic subtyping, and corresponds to interpreting function spaces into

the infinite set of their finite approximations; that these binary relations can yield a distinguished

element Ω (which, intuitively, represents a type error) is also a standard technique of semantic

subtyping used to avoid 1 → 1 to be a supertype of all function types: since both aspects do not

play any specific role in our work we will not further comment on them (see [20] for a detailed

explanation or [5, Section 3.2] for a shorter one).

If we look more closely at the definition of the row elements in Definition 2.3, we see that they

are partial quasi-constant functions in L /_ D⊥ with default value ⊥. More precisely, the row

element ⟨|ℓ1 = 𝛿1, . . . , ℓ𝑛 = 𝛿𝑛, _ = ⊥∅ |⟩𝐿 is the quasi-constant function {[ℓ1 = 𝛿1, . . . , ℓ𝑛 = 𝛿𝑛, = ⊥]}
in (L∖𝐿) _ D⊥. When a row is total on L, then it can be wrapped in a Rec() constructor yielding
(the interpretation of) a record value (the inverse operation is given in the Definition 2.4 below).

All these elements are indexed by a finite set of variables ranged over by 𝑉 . This technique was

introduced by Gesbert et al. [23] to interpret type variables (cf. Definition 2.5), while ensuring that

the model we obtain is convex in the sense of Castagna and Xu [12]. Convexity is a property that

prevents the definition of meaningless subtyping relations, by imposing that the interpretation

of types changes uniformly for any possible change of the interpretation of the type variables.
8

A sufficient condition to satisfy convexity is that the interpretation maps every type into an

infinite set. Indexing each element of the domain with a finite set of variables is an easy way to

guarantee this since, for instance, even the interpretation of the singleton type 𝑐 is the infinite set

{𝑐𝑉 | 𝑉 ∈ Pfin (V)}. In summary, the domain of Definition 2.3 is the one by Gesbert et al. [23], but

where pairs (inhabiting product types) are replaced by record values of the form Rec(¯̄𝑑) and rows.

Definition 2.4. Let R = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}. We define row(R) = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩∅ . We extend this

definition homomorphically to Boolean combinations of record type atoms.

8
Formally, convexity states that for every finite set of types, if for every interpretation of the type variables this sets contains

at least one empty type, then it is because it contains a type that is empty for all interpretations.

12 Giuseppe Castagna and Loïc Peyrot

We have now all ingredients needed to define our set-theoretic interpretation for the types:

Definition 2.5 (Interpretation). Let D be the domain of Definition 2.3 and T the types of

Definition 2.1. We define a binary predicate (𝐷 : 𝑇) (“the element 𝐷 belongs to 𝑇 ”) on D × T ∪
D⊥ × T⊥ ∪ Drow × R by induction on the pair (𝐷,𝑇) ordered lexicographically. The predicate is only
defined if 𝐷 is coherent with the kind of 𝑇 : 𝐷 = 𝑑 if 𝑇 = 𝑡 , 𝐷 = 𝛿 if 𝑇 = 𝜏 , and 𝐷 = ¯̄𝑑 if 𝑇 = 𝑟 and

dom(𝐷) = def (𝑟).
Types: (𝑑 : 𝛼) = 𝛼 ∈ tag(𝑑) (𝑐𝑉 : 𝑏) = 𝑐 ∈ B(𝑏) (Rec(¯̄𝑑)𝑉 : R) = (¯̄𝑑 : row(R))

({(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝑉 : 𝑡1 → 𝑡2) = ∀𝑖 ∈ [1..𝑛] . if (𝑑𝑖 : 𝑡1) then (𝜕𝑖 : 𝑡2)
Fields: (𝛿 : 𝜃) = 𝜃 ∈ tag(𝛿) (⊥𝑉

: ⊥) = true

Rows: (⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉𝐿2

: 𝑟) = (∀ℓ ∈ 𝐿1.(𝛿ℓ : 𝑟 (ℓ)))
and (∀ℓ ∈ def (𝑟) ∖ 𝐿1.(⊥∅

: 𝑟 (ℓ)))
and tail(𝑟) = 𝜌 =⇒ 𝜌 ∈ 𝑉

(1)

All: (𝐷 : 𝑇1 ∨𝑇2) = (𝐷 : 𝑇1) or (𝐷 : 𝑇2) if 𝑇1, 𝑇2 of the same kind

(𝐷 : ¬𝑇) = not (𝐷 : 𝑇) if the kinds of 𝐷 and 𝑇 correspond

(𝐷 : 𝑇) = false otherwise

We define the interpretation J·K : T → P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)}.

We cannot define J·K by induction on types, since their coinductive definition would make the defi-

nition ill-founded. Thus, Definition 2.5 uses the predicate (𝐷 : 𝑇) for which an inductive definition

is possible thanks to the inductive definition of D. The interpretation of types in Definition 2.5 is

mostly the same as in [23]: a type variable 𝛼 is interpreted as the set of all elements tagged by 𝛼 ;

a type 𝑡1 → 𝑡2 is the set all the finite approximations of functions that map inputs of type 𝑡1 into

results of type 𝑡2; and union, intersection, and negation types are mapped into the corresponding

set-theoretic counterparts. The main difference with [23] is the interpretation of rows and, thus, of

record types. Equation (1) defines when a row element is in the interpretation of a row 𝑟 : it requires

that all the components of the row element are in the interpretations of the types specified by 𝑟

(first two lines), and if the tail of 𝑟 is a row variable, then it must index the row element (last line).

Definition 2.6 (Subtyping). Let J·K : T → P(D) be the interpretation from Definition 2.5. It

induces the following subtype relation in T×T :

𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K
The interpretation also induces the subfield relation in T⊥×T⊥ and subrow relation in R×R defined as

𝜏1 ≤ 𝜏2 ⇐⇒def J𝜏1Kfld ⊆ J𝜏2Kfld 𝑟1 ≤ 𝑟2 ⇐⇒def J𝑟1Krow ⊆ J𝑟2Krow

where, the interpretation J·Kfld
: T⊥ → P(D⊥) is defined as J𝜏Kfld = {𝛿 ∈ D⊥ | (𝛿 : 𝜏)}, and the

interpretation J·Krow
: R → P(Drow) is defined as J𝑟Krow = { ¯̄𝑑 ∈ Drow | (¯̄𝑑 : 𝑟)}.

2.3 Deciding subtyping
Now that subtyping is defined, we need an effective decision procedure sound and complete with

respect to this definition. Deciding subtyping amounts to deciding the emptiness of a type, since

𝑡1 ≤ 𝑡2 is equivalent to 𝑡1∧¬𝑡2 ≤ 0. From [20], we know that any type can be equivalently rewritten

into a disjunctive normal form (DNF) of the form
∨

𝑖∈𝐼 (
∧

𝑎∈𝑃𝑖 𝑎∧
∧

𝑎∈𝑁𝑖
¬𝑎∧∧

𝛼∈𝑉 𝑝

𝑖
𝛼∧∧

𝛼∈𝑉𝑛
𝑖
¬𝛼)

where each intersection contains only atoms 𝑎’s with the same type constructors: they are all

basic types, or all arrows, or all records. Thus, checking emptiness of a type amounts to checking

emptiness of all these intersections.

We suppose the sets𝑉
𝑝

𝑖
and𝑉 𝑛

𝑖 to be disjoint, as otherwise the 𝑖-th intersection is trivially empty

and can be discarded. Then, emptiness of the intersections cannot depend on the type variables

13

whose intersection is not empty. Thus, we just need decision procedures for the emptiness of the∧
𝑎∈𝑃𝑖 𝑎 ∧ ∧

𝑎∈𝑁𝑖
¬𝑎 parts. Those are already known for every intersection of atoms, except for

polymorphic records. What is still missing is a formula that characterizes the emptiness of an

intersection of the form
∧

R∈𝑃 R ∧
∧

R∈𝑁 ¬R, that is, that decides whether ∧
R∈𝑃 R ≤ ∨

R∈𝑁 R holds.

To rephrase, given any type 𝑡 , the subtyping procedure recursively apply these two steps:

(1) Reduce 𝑡 to a DNF
∨

𝑖∈𝐼 𝑡𝑖 with 𝑡𝑖 =
∧

𝑎∈𝑃𝑖 𝑎 ∧
∧

𝑎∈𝑁𝑖
¬𝑎 ∧ ∧

𝛼∈𝑉 𝑝

𝑖
𝛼 ∧ ∧

𝛼∈𝑉𝑛
𝑖
¬𝛼 ;

(2) Check the emptiness of each 𝑡𝑖 by checking if
∧

𝑎∈𝑃𝑖 𝑎 ≤ ∨
𝑎∈𝑁𝑖

𝑎 is empty:

- If the atoms are not records, we use the existing corresponding functions given in [18].

- If they are (polymorphic) records, we use the new algorithm that we describe below.

Subtyping algorithm. Let 𝑡 =
∧

R∈𝑃 R ∧
∧

R∈𝑁 ¬R. Deciding emptiness of this type is done in two

main steps. First, preprocess 𝑡 by normalizing the positive side of the type to isolate row variables.

For this, we use the equivalence between {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}} and {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||..}}}∧{{{(ℓ = 1∨⊥)ℓ∈𝐿|||𝜍}}}.
Note that a type {{{(ℓ = 1 ∨ ⊥)ℓ∈𝐿|||𝜍}}} will be abbreviated as {{{𝐿|||𝜍}}}. Second, apply the function Φ,
the core of our algorithm that we describe below.

Let 𝐿 =
⋃

𝑟 ∈𝑃∪𝑁 lab(𝑟) be the set of labels appearing explicitely in every (top-level) record atom

of 𝑡 . Our starting type 𝑡 is equivalent to the following intermediate one:

{{{(ℓ = ∧
R∈𝑃 R(ℓ))ℓ∈𝐿|||..}}} ∧

∧
R∈𝑃

{{{ lab(R)||| tail(R)}}} ∧
∧
R∈𝑁

¬R (2)

This typewas obtained by transforming the positive
∧

R∈𝑃 R part of 𝑡 : wemerged the fields over𝐿 into

a single atomic record type, and grouped the tails of positive records in a separate intersection. Next,

we are going to rewrite the type in (2) by splitting the middle intersection
∧

R∈𝑃 {{{ lab(R)||| tail(R)}}}
in two: an intersection with all the record atoms whose tail is a row variable, and all the others that

we will merge with the leftmost record in (2). For that, let us define 𝜍◦ to represent the intersection

of the tails of the records in 𝑃 whenever this tail is either 𝜖 or .., that is, 𝜍◦ = 𝜖 if there is R ∈ 𝑃 such

that tail(R) = 𝜖 , and 𝜍◦ = .. otherwise. If we take all the records in
∧

R∈𝑃 {{{ lab(R)||| tail(R)}}} whose
tail is not a row variable and intersect them with the leftmost record in (2), then we obtain the

record type R◦ = {{{(ℓ = ∧
R∈𝑃 R(ℓ))ℓ∈𝐿|||𝜍◦}}}. Notice that R◦ is a monomorphic record type. For the

remaining records in the middle intersection, let us denote by 𝑉𝑝 = {𝜌 | ∃R ∈ 𝑃 . tail(R) = 𝜌} the
set of all top-level type variables occurring in 𝑃 . The intersection of atoms in (2) is then equivalent

to the following type, which is the one for which we have to decide emptiness:

R◦ ∧
∧
𝜌∈𝑉𝑝

{{{L∖ def (𝜌)|||𝜌}}} ∧
∧
R∈𝑁

¬R (3)

The second step of our algorithm is realized by the function Φ(R◦,𝑉𝑝 , 𝑁), where R◦ ≰ 0:

Φ(R◦,𝑉𝑝 , ∅) ≔ false

Φ(R◦,𝑉𝑝 , 𝑁 ∪ {R}) ≔ if (tail(R) = .. or tail(R) = tail(R◦) or tail(R) ∈ 𝑉𝑝) then
∀ℓ∈ lab(R◦). (R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ : ¬R(ℓ)|||..}}},𝑉𝑝 , 𝑁))

else Φ(R◦,𝑉𝑝 , 𝑁)
The function must decide whether R◦ ∧

∧
𝜌∈𝑉𝑝 {{{L∖ def (𝜌)|||𝜌}}} ≤ ∨

R∈𝑁 R, so it picks an R ∈ 𝑁 and

generates the conditions to test the containment. The first clause of the definition states that if we

already examined all R ∈ 𝑁 , then subtyping does not hold, since R◦ ≰ 0 and so its intersection with

some row variables is also non-empty. If R◦ is open and R is closed, or if R is polymorphic, but its

row variable is not one in 𝑉𝑝 , then the containment cannot come from this particular R, and it is

discarded: this corresponds to the else branch of second clause. Otherwise, we are in the case in

which either R◦ is closed, or we are comparing two records types with a common row variable, or R

14 Giuseppe Castagna and Loïc Peyrot

is open. In these cases we compare R◦ and R component-wise, and for each ℓ we check that either

R◦ (ℓ) ≤ R(ℓ) or that the part that is in excess in R◦ (ℓ) is contained in the records remaining in 𝑁 .
9

This function generalizes the version for monomorphic records given in [5] and currently used in

Elixir. Interestingly, the sole difference is the addition of the test (tail(R) ∈ 𝑉𝑝). Since 𝑉𝑝 is constant

in the function, then the complexity of this function and of its monomorphic version are the same.

Lemma 2.1 (Soundness and completeness of Φ). Let R◦ be a monomorphic record type,𝑉𝑝 ⊂ V𝑟

finite and 𝑁 a finite set of (polymorphic) atomic record types. Then,

R◦ ∧
∧
𝜌∈𝑉𝑝

{{{L∖ def (𝜌)|||𝜌}}} ≤
∨
R∈𝑁

R ⇐⇒ R◦ ≤ 0 or Φ(R◦,𝑉𝑝 , 𝑁).

Proposition 2.2. The subtyping algorithm terminates. As a corollary, subtyping is decidable.

2.4 Substitutions
The upcoming descriptions of the type system and of the inference algorithm rely on type, row,

and field substitutions.

Definition 2.7. Substitutions, ranged over by 𝜎 , are total mappings from variables of kind 𝜅 to

terms of kind 𝜅 (i.e., type variables to types, field variables to field-types, and row variables of definition

space 𝐿 to rows of definition space 𝐿) that are the identity everywhere except on a finite set of variables.

This set is called the domain of the substitution 𝜎 and is defined as dom(𝜎) = {𝛼 | 𝜎 (𝛼) ≠ 𝛼} ∪ {𝜃 |
𝜎 (𝜃) ≠ 𝜃 } ∪ {𝜌 | 𝜎 (𝜌) ≠ ⟨⟨⟨|||𝜌⟩⟩⟩L∖def (𝜌) }.

The application of a substitution 𝜎 to a term 𝑇 is denoted by 𝑇𝜎 . Notice that the application is

defined both on field-types and on rows, the latter being useful only for tallying. The application of

a substitution must satisfy the following equalities.

𝛼𝜎 = 𝜎 (𝛼) 𝑏𝜎 = 𝑏 0𝜎 = 0 (𝑡1 → 𝑡2)𝜎 = 𝑡1𝜎 → 𝑡2𝜎

𝜃𝜎 = 𝜎 (𝜃) ⊥𝜎 = ⊥ (¬𝑇)𝜎 = ¬(𝑇𝜎) (𝑇1 ∨𝑇2)𝜎 = 𝑇1𝜎 ∨𝑇2𝜎

{{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}𝜎 =

{
{{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜎 (𝜌)}}}, if 𝜍 = 𝜌

{{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜍}}}, otherwise.
(4)

Where {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟}}} =
def {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||..}}} ∧ {{{𝐿|||𝑟}}} and:

{{{𝐿|||⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿′|||𝜍⟩⟩⟩𝐿}}} =
def {{{𝐿, (ℓ = 𝜏ℓ)ℓ∈𝐿′|||𝜍}}} {{{𝐿|||𝑟1∨𝑟2}}} =

def {{{𝐿|||𝑟1}}}∨{{{𝐿|||𝑟2}}} {{{𝐿|||¬𝑟}}} =
def ¬{{{𝐿|||𝑟}}}

The equalities above are standard, apart from the one in (4) which needs a definition for the notation

{{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜎 (𝜌)}}}, since 𝜎 (𝜌) is a row rather than a tail. The definition is given right after (4)

and simply states that {{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜎 (𝜌)}}} stands for the record type obtained by recursively

decomposing the Boolean combinations of the rows in 𝜎 (𝜌), until we arrive at single rows that
are expanded in the record type (recall that rows are inductively defined). Substitution for rows

is defined in the same way as for records (it suffices to change the delimiting brackets). We give

several examples of applications of (row) substitutions in Section 4.1 when discussing constraints.

As expected, if dom(𝜎) = ∅, then 𝑇𝜎 = 𝑇 . If 𝜎 (𝜌) ≤ 0 and tail(R) = 𝜌 , then R𝜎 ≤ 0. Thanks to
the parametric interpretation of types, substitution preserves subtyping:

Proposition 2.3. If 𝑡1 ≤ 𝑡2, then 𝑡1𝜎 ≤ 𝑡2𝜎 for any row substitution 𝜎 .

9
This formula generalizes the decomposition for tuples: e.g., if 𝑠◦×𝑡◦ ≰ 0 then 𝑠◦×𝑡◦ ≤ 𝑠1×𝑡1 ∨ 𝑠2×𝑡2 ⇐⇒ (𝑠◦ ≤ 𝑠1 or

(𝑠◦∖𝑠1)×𝑡1 ≤ 𝑠2×𝑡2) and (𝑡◦ ≤ 𝑡1 or 𝑠1×(𝑡◦∖𝑡1) ≤ 𝑠2×𝑡2) : see [5, Appendix D] for a longer explanation.

15

(Const)

Δ | Γ ⊢D 𝑐 : b(𝑐)
(Var)

Δ | Γ ⊢D 𝑥 : Γ(𝑥)
𝑥 ∈ dom(Γ)

(Abs)

(Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢D 𝑒 : 𝑠𝑖)𝑖∈𝐼
Δ | Γ ⊢D 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 :

∧
𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)

Δ′= vars(∧𝑖∈𝐼 𝑡𝑖 → 𝑠𝑖)

(App)

Δ | Γ ⊢D 𝑒1 : 𝑡1 → 𝑡2 Δ | Γ ⊢D 𝑒2 : 𝑡1

Δ | Γ ⊢D 𝑒1𝑒2 : 𝑡2
(Emp)

Δ | Γ ⊢D {} : {{{|||𝜖}}}

(Ext)

Δ | Γ ⊢D 𝑒 : 𝑡 ≤ {{{ℓ = ⊥|||..}}} Δ | Γ ⊢D 𝑒′ : 𝑡 ′

Δ | Γ ⊢D {𝑒 with ℓ = 𝑒′} : {{{ℓ = 𝑡 ′|||𝑡\ℓ}}}
(Del)

Δ | Γ ⊢D 𝑒 : 𝑡 ≤ {{{|||..}}}

Δ | Γ ⊢D 𝑒\ℓ : {{{ℓ = ⊥|||𝑡\ℓ}}}

(Sel)

Δ | Γ ⊢D 𝑒 : {{{ℓ = 𝑡|||..}}}

Δ | Γ ⊢D 𝑒.ℓ : 𝑡
(Inter)

Δ | Γ ⊢D 𝑒 : 𝑡1 Δ | Γ ⊢D 𝑒 : 𝑡2

Δ | Γ ⊢D 𝑒 : 𝑡1 ∧ 𝑡2

(Sub)

Δ | Γ ⊢D 𝑒 : 𝑡 ′ ≤ 𝑡

Δ | Γ ⊢D 𝑒 : 𝑡
(Inst)

Δ | Γ ⊢D 𝑒 : 𝑡

Δ | Γ ⊢D 𝑒 : 𝑡𝜎
dom(𝜎) ∩ Δ = ∅

Fig. 1. Declarative type system

3 Language
We define the syntax, static and dynamic semantics of a record calculus that we prove to be type

sound (Section 3.1) and define a sound and complete typing algorithm for it (Section 3.2).

3.1 Syntax and Semantics

Expressions 𝑒 F 𝑐 | 𝑥 | 𝑒𝑒 | 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 | {} | {𝑒 with ℓ = 𝑒} | 𝑒.ℓ | 𝑒\ℓ
Values 𝑣 F 𝑐 | 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 | {} | {𝑣 with ℓ = 𝑣}
Evaluation contexts 𝐸 F [] | 𝐸𝑒 | 𝑣𝐸 | {𝑒 with ℓ = 𝐸} | {𝐸 with ℓ = 𝑣} | 𝐸.ℓ | 𝐸\ℓ

The syntax above describes a functional language with constants, functions, and records with

field selection (𝑒.ℓ), addition ({𝑒 with ℓ = 𝑒}), and deletion (𝑒\ℓ). As customary in semantic

subtyping, 𝜆-abstractions are annotated by their type, which is an intersection of arrow types. We

use {ℓ1 = 𝑒1, . . . , ℓ𝑛 = 𝑒𝑛} as syntactic sugar for { . . . {{} with ℓ1 = 𝑒1} . . . with ℓ𝑛 = 𝑒𝑛}.
The semantics of the language is given by the call-by-value weak reduction defined below:

[R
app

] (𝜆𝑡𝑥 .𝑒)𝑣 { 𝑒 [𝑣/𝑥]
[R=

sel
] {𝑣 with ℓ = 𝑣 ′}.ℓ { 𝑣 ′

[R≠
sel
] {𝑣 with ℓ ′ = 𝑣 ′}.ℓ { 𝑣 .ℓ if ℓ ≠ ℓ ′

[R=
del
] {𝑣 with ℓ = 𝑣 ′}\ℓ { 𝑣\ℓ

[R≠
del
] {𝑣 with ℓ ′ = 𝑣 ′}\ℓ { {𝑣\ℓ with ℓ ′ = 𝑣 ′} if ℓ ≠ ℓ ′

[R
emp

] {}\ℓ { {}
[R

ctx
] 𝐸 [𝑒] { 𝐸 [𝑒′] if 𝑒 { 𝑒′

where 𝑒 [𝑣/𝑥] is the term obtained by standard capture-avoiding substitution of 𝑣 for 𝑥 in 𝑒 , defined

modulo 𝛼-equivalence. Notice that the deletion of a label ℓ is defined for the empty record {} but
selection is not: selection requires the presence of the field ℓ while deletion does not.

The terms of the language are typed by the declarative type system in Fig. 1, whose judgments

have the form Δ | Γ ⊢D 𝑒 : 𝑡 , where Δ ⊆ Pfin (V𝑡∪V𝑓 ∪V𝑟) is a set of monomorphic variables (i.e.,

variables that cannot be instantiated) and Γ a type environment from expression variables to types.

16 Giuseppe Castagna and Loïc Peyrot

The rules for the functional part are inspired from those by Castagna et al. [10]. Constants are

typed by a given function bwhich maps each constant to its basic type (const).
10
Rule (Abs) checks

that a function has all the types declared in its annotation: for each 𝑡𝑖→𝑠𝑖 , it checks that the body 𝑒

is of type 𝑠𝑖 under the environment in which 𝑥 is given type 𝑡𝑖 and the set Δ′
of all the variables

in the annotation is added to the set of monomorphic variables (vars(𝑡) returns the set of type,
field, and row variables in 𝑡 : cf. Definition B.2). The rules for intersection introduction (Inter)

and subsumption (Sub) are the usual ones: if an expression 𝑒 has two types, then it also has their

intersection; if an expression 𝑒 has type 𝑡 ′, then it also has any supertype of 𝑡 (we use the notation

Δ | Γ ⊢D 𝑒 : 𝑡 ′ ≤ 𝑡 in the premises of a rule, to indicate that the rule has premise Δ | Γ ⊢D 𝑒 : 𝑡 and

side condition 𝑡 ′ ≤ 𝑡). The instantiation rule (Inst), can instantiate any type variable unless it is in

the set of monomorphic variables Δ, as this would be unsound.

The new rules of this system are those for record expressions and their operations. The empty

record value has the closed empty record type: (Emp). Rule (Sel) states that selection is typable only

if the selected field is present, in which case its type is given to the select expression. Rule (Ext)

types a strict extension of an expression 𝑒 of type 𝑡 by the expression 𝑒′ on label ℓ , only if the field

ℓ is undefined in 𝑒 , that is, the type of 𝑒 is a subtype of {{{ℓ = ⊥|||..}}}. Rule (Del) states that we can
delete a field ℓ from an expression 𝑒 provided that it is record (i.e., its type is a subtype of {{{|||..}}}).

The types of the expressions typed by (Ext) and (Del) are both obtained in similar ways. First, we

compute the operator 𝑡\ℓ –whose formal definition we give below– which returns row(𝑡) truncated
by the field of label ℓ . Then, we put back the field of label ℓ with the desired field-type (𝑡 ′ or ⊥)
using the operation {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟}}} we defined in Section 2.4 for substitutions (cf. Eq. (4)).

We define the operator 𝑡\ℓ , on DNFs: let 𝑡 =
∨

𝑖∈𝐼
∧

R∈𝑃𝑖 R ∧
∧

R∈𝑁𝑖
¬R ∧ ∧

𝛼∈𝑉𝑖 𝛼 ∧ ∧
𝛼∈𝑉𝑛 ¬𝛼 .

Then, 𝑡\ℓ =
def ∨

𝑖∈𝐼
∧

R∈𝑃𝑖 R\ℓ ∧
∧

R∈𝑁𝑖
(¬R)\ℓ where for the literals R and ¬R the definition is:

{{{(ℓ ′= 𝜏ℓ ′)ℓ ′∈𝐿|||𝜍}}}\ℓ =

{
⟨⟨⟨(ℓ ′= 𝜏ℓ ′)ℓ ′∈𝐿∖{ℓ }|||𝜍⟩⟩⟩{ℓ } if ℓ ∈ 𝐿 or 𝜍 ∉ V𝑟

⟨⟨⟨(ℓ ′= 𝜏ℓ ′)ℓ ′∈𝐿|||..⟩⟩⟩{ℓ } otherwise

(¬{{{(ℓ ′= 𝜏ℓ ′)ℓ ′∈𝐿|||𝜍}}})\ℓ =

{
¬⟨⟨⟨(ℓ ′= 𝜏ℓ ′)ℓ ′∈𝐿∖{ℓ }|||𝜍⟩⟩⟩{ℓ } if (ℓ∈𝐿 and 𝜏ℓ = 1∨⊥) or (ℓ∉𝐿 and 𝜍 = ..)
⟨⟨⟨|||..⟩⟩⟩{ℓ } otherwise

First, notice that the type variables in the DNF are simply erased. This is not restrictive in practice,

as intersections with top-level type variables are used only to implement bounded polymorphism

which, as argued in the introduction, cannot be used for extensions and deletions, these requiring

instead the use of row variables. The definition for the positive literal R consists of two cases. The

first case is the intuitive one, with no interference from a negation or a row variable: the row is

undefined on ℓ , so we remove the field for ℓ (if any) and index the row by {ℓ}. In the second case, R
is polymorphic and ℓ is in the definition space of its tail; therefore, similarly to what we do for type

variables, we subsume R to an open record before deleting ℓ . 11

Next consider the case of a negative atom ¬R. First, suppose R(ℓ) ≠ 1 ∨ ⊥ (i.e., either ℓ ∈ 𝐿 and

𝜏ℓ ≠ 1 ∨ ⊥ or ℓ ∉ 𝐿 and 𝜍 = 𝜖). Then, the type ¬R contains, among others, all row elements such

that the field ℓ is not of type R(ℓ) (since R(ℓ) ≠ 1 ∨ ⊥, then there exists at least one such element),

and every other field is of arbitrary value. Hence, the set obtained from removing the field ℓ from

10
The functions b and B used in Definition 2.5 must satisfy 𝑐 ∈ B(b(𝑐)) for all 𝑐 ∈ C.

11
This means that if 𝑥 : {{{𝑎=Int|||𝜌}}}, then the type deduced for 𝑥\𝑏 is {{{𝑎=Int, 𝑏=⊥|||..}}}: the information bound to 𝜌 must be

forgotten since 𝑏 is in definition space of 𝜌 . However, thanks to our syntactic sugar, this never happens in practice. For

instance, we can safely give to the function def add_delete(x), do: Map.delete(%{x | a: x.a + 1}, :b) the following type:
%{f, a: integer()} -> %{f, a: integer(), :b => none()} when f: fields(), where f plays the same role as 𝜌 in the types

above. Herewe do not need to replace the second occurrence of f by “...” since, as we explained for the code in lines 19 and 20,
this type is syntactic sugar for %{f, a: integer(), :b => term()} -> %{f, a: integer(), :b => none()} when f: fields()

and, thus, :b is not in the definition space of f.

17

(Abs)

(
Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢A 𝑒 : 𝑠′𝑖 ⊑Δ∪Δ′ 𝑠𝑖

)
𝑖∈𝐼

Δ | Γ ⊢A 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 :
∧

𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)
Δ′= vars(∧𝑖∈𝐼 𝑡𝑖 → 𝑠𝑖)

(App)

Δ | Γ ⊢A 𝑒1 : 𝑡1 Δ | Γ ⊢A 𝑒2 : 𝑡2

Δ | Γ ⊢A 𝑒1𝑒2 : 𝑢
𝑢 ∈ 𝑡1 •Δ 𝑡2 (Del)

Δ | Γ ⊢A 𝑒 : 𝑡

Δ | Γ ⊢A 𝑒\ℓ : {{{ℓ = ⊥|||𝑟}}}
𝑟 ∈ 𝑡 ⊙Δ ℓ

(Sel)

Δ | Γ ⊢A 𝑒 : 𝑡

Δ | Γ ⊢A 𝑒.ℓ : 𝑢
𝑢 ∈ ⨿ℓ

Δ (𝑡) (Ext)

Δ | Γ ⊢A 𝑒 : 𝑡 Δ | Γ ⊢A 𝑒′ : 𝑡 ′

Δ | Γ ⊢A {𝑒 with ℓ = 𝑒′} : {{{ℓ = 𝑡 ′|||𝑟}}}
𝑟 ∈ 𝑡 ⊙⊥

Δ ℓ

Fig. 2. Algorithmic type system (plus (Const), (Var), (Emp), which are as in Fig. 1)

these values gives all quasi-constant functions on L ∖ {ℓ}, without restriction: the set entailed by

⟨⟨⟨|||..⟩⟩⟩{ℓ } . Now, when R(ℓ) = 1∨⊥, there are two possibilities. The first is 𝜍 = 𝜌 and ℓ ∈ 𝐿. There is a

clash, and we subsume ¬R to the top record type {{{|||..}}} before deleting ℓ , as we did in the positive

case. Note that {{{|||..}}} is the smallest type to which we can subsume ¬R. The second possibility

is given by the third case of the definition (i.e., the first case for the negated literal). There, it is

impossible to have a value of a type different from R(ℓ) = 1∨⊥. Hence, the constraints on the type

must be on the other fields: we simply remove ℓ from the definition definition space of the row.

The language satisfies the property of soundness. Its proof is routine (subject reduction and

progress, using inversion and generation lemmas) and can be found in Appendix B.

Theorem 3.1 (Type soundness). Let 𝑒 be a well-typed closed expression, that is, ∅ | ∅ ⊢D 𝑒 : 𝑡 for

some 𝑡 . Then either 𝑒 diverges or it reduces to a value of type 𝑡 .

3.2 Algorithmic type system
The system in Fig. 1 is not algorithmic: it is not syntax-directed and some of its rules are not

analytic
12
. In Fig. 2, we give an algorithmic system that is sound and complete with respect to the

system in Fig. 1 (we omitted three rules that are the same as in Fig. 1). The new system includes

the algorithmic counterparts of the typing rules for record operations which, apart from (Emp),

must be changed to account the fact that threre is no (Inst) rule in the algorithmic system and,

thus, instantiation must be performed by the algorithmic elimination rules. For instance, in the

declarative system, if 𝑥 : 𝛼 and 𝛼 ∉ Δ, then 𝑥 .ℓ : Int can be deduced by instantiating by (Inst)

𝛼 to {{{ℓ = Int|||..}}}. In the algorithmic system, in the absence of (Inst), this instantiation must be

done within the algorithmic rule (Sel). For all record operations, the algorithmic system needs to

perform a possible instantiation of the type of the record. This is done in the side conditions of the

rules for record operations by the following operators (that we explain after the Definition 3.2 for

⊑Δ), which instantiate the type of the record to match the conditions in the declarative system:

⨿ℓ
Δ (𝑡) = {𝑢 | [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑡 ⊑Δ {{{ℓ = 1|||..}}} and 𝑢 = (∧𝑖∈𝐼 𝑡𝜎𝑖).ℓ}

𝑡 ⊙Δ ℓ = {𝑟 | [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑡 ⊑Δ {{{|||..}}} and 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ}
𝑡 ⊙⊥

Δ ℓ = {𝑟 | [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑡 ⊑Δ {{{ℓ = ⊥|||..}}} and 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ}
These side conditions are primarily of theoretical interest to satisfy completeness. They address the

case of record expressions that return (parametric) polymorphic values (e.g., of type 𝛼), which are

never encountered in practice. Consequently, the sets in these side conditions are never computed

in practice. In a practical setting, the rules (Ext) and (Del) of Fig. 1 should be used instead, while the

rule to use in practice for selection has premises Δ | Γ ⊢A 𝑒 : 𝑡 , side-condition 𝑡 ≤ {{{ℓ = 1|||..}}}, and

12
A rule is analytic (as opposed to synthetic) when the input (i.e., Γ and 𝑒) of the judgment at the conclusion is sufficient to

determine the inputs of the judgments at the premises (cf. [30, 42]).

18 Giuseppe Castagna and Loïc Peyrot

conclusion Δ | Γ ⊢A 𝑒.ℓ : 𝑡 .ℓ . Keeping the rules of Fig. 1, we loose completeness, but only in theory,

and we gain in efficiency ([9, Appendix B.3] discusses this point in detail for type polymorphism).

In any case, selection uses a new type operator 𝑡 .ℓ (theoretically, in its side condition to compute

𝑢; in practical setting, in its conclusion). Since the algorithmic type system does not include a

subsumption rule, we cannot assume that the type 𝑡 deduced for the expression 𝑒 in (Sel) will be

a record type atom of the form required by the declarative system (i.e., {{{ℓ = 𝑡|||..}}}): in general, 𝑡

will be a union of intersections of such atoms, type variables, and their negations. Thus the rule

checks that 𝑡 is a record type in which the field ℓ is surely defined, and delegates to the operator 𝑡 .ℓ

(defined below) the computation of the type of the result.

Definition 3.1 (Field Selection). Let 𝑡 ≤ {{{ℓ = 1|||..}}} be a DNF. We define the selection of the

field ℓ of 𝑡 as (∨𝑖∈𝐼 𝑡𝑖).ℓ =
def ∨

𝑖∈𝐼 𝑡𝑖 .ℓ and

(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R ∧
∧
𝛼∈𝑉𝑝

𝛼 ∧
∧
𝛼∈𝑉𝑛

¬𝛼).ℓ =
def

∨
𝑁 ′⊆𝑁

(∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

¬R(ℓ)
)

The condition 𝑡 ≤ {{{ℓ = 1|||..}}} assures that 𝑡 .ℓ ≤ 1, so that selection always returns a type (and

not a generic field-type). Indeed, 𝑡 .ℓ is equivalent to min{𝑢 | 𝑡 ≤ {{{ℓ = 𝑢|||..}}}} (Appendix B.2). Once
more, the presence of top-level intersections with type variables does not play any role in selection.

To finish explaining the algorithmic system, we need to introduce the notations ⊩ 𝑠 ⊑Δ 𝑡 and

𝑡 •Δ 𝑠 , whose definitions are taken verbatim from [9]:

Definition 3.2 ([9]). Let 𝑠 and 𝑡 be two types and Δ a set of variables. We define:

[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ 𝑡 ⇐⇒def ∧
𝑖∈𝐼 𝑠𝜎𝑖 ≤ 𝑡 and ∀𝑖 ∈ 𝐼 . dom(𝜎𝑖) ∩ Δ = ∅

⊩ 𝑠 ⊑Δ 𝑡 ⇐⇒def ∃[𝜎𝑖]𝑖∈𝐼 such that [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ 𝑡

Definition 3.3 ([9]). Let 𝑠 and 𝑡 be two types with 𝑡 ≤ 0 → 1, and Δ a set of variables. We define

𝑡 •Δ 𝑠 as the set of types for which there exist two sets of type substitutions (for variables not in Δ) that
make 𝑠 compatible with the domain of 𝑡 (defined below):

𝑡 •Δ 𝑠 =
def

 𝑢

[𝜎 𝑗] 𝑗∈ 𝐽 ⊩ 𝑡 ⊑Δ 0 → 1
[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ dom(∧𝑗∈ 𝐽 𝑡𝜎 𝑗)
𝑢 =

∧
𝑗∈ 𝐽 𝑡𝜎 𝑗 ·

∧
𝑖∈𝐼 𝑠𝜎𝑖


Where 𝑡 · 𝑠 =

def
min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢}. For an arrow type 𝑡 ≤ 0 → 1, we have 𝑡 ≃ ∨

𝑖∈𝐼 (
∧

𝑝∈𝑃𝑖 (𝑠𝑝 →
𝑡𝑝) ∧

∧
𝑛∈𝑁𝑖

¬(𝑠𝑛 → 𝑡𝑛) ∧
∧

𝛼∈𝑉 𝑝

𝑖
𝛼 ∧ ∧

𝛼∈𝑉𝑛
𝑖
¬𝛼), and define dom(𝑡) = ∧

𝑖∈𝐼
∨

𝑝∈𝑃𝑖 𝑠𝑝 .

These two definitions are used in the rule (App), the key rule for the algorithmic system (which

again is taken verbatim from [9] where more details can be found). Essentially, (App) merges

together intersection elimination (in this case the standard terminology is expansion), instantiation,

and subsumption. For the application 𝑒1𝑒2 to be well typed, the type of the function must be a

functional type (i.e., a subtype of 0 → 1, the type of all functions) whose domain is a supertype of

the type of the argument. Therefore, the rule looks for two finite sets of type substitutions for the

variables not in Δ, that make the type of the function subtype of 0 → 1 and the type of the argument

subtype of the function’s domain. This search is collapsed in the definition of 𝑡1 •Δ 𝑡2. Concretely,
this operation finds two sets of substitutions [𝜎 𝑗] 𝑗∈ 𝐽 and [𝜎𝑖]𝑖∈𝐼 such that (1)

∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 ≤ 0 → 1

(this corresponds to the notation 𝑡1 ⊑Δ 0 → 1 of Definition 3.2) and (2)
∧

𝑖∈𝐼 𝑡2𝜎𝑖 is a subtype of the
domain of

∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 . It then returns all the types of the result of the application of such two types.

The operator ⊑Δ is also used to type record operations, since it is used by the side conditions of

the algorithmic rules (Del), (Sel), and (Ext): when applying an operation on a record expression 𝑒

of type 𝑡 , these side conditions check whether there exists a set of substitutions making 𝑡 a subtype

19

of, depending on the rule, {{{ℓ = 1|||..}}}, {{{|||..}}}, or {{{ℓ = ⊥|||..}}} and, if so, they apply the corresponding

operation on the instantiation of 𝑡 . For instance, ⨿ℓ
Δ (𝑡) looks for some substitutions [𝜎𝑖]𝑖∈𝐼 such

that
∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{ℓ = 1|||..}}} (i.e., a solution for 𝑡 ⊑Δ {{{ℓ = 1|||..}}}) and returns its projection on ℓ .

Finally, notice that, even if the typing rules (Abs) and (App) themselves are not new, the process

behind 𝑠 ⊑Δ 𝑡 and 𝑡 •Δ 𝑠 are. The novelty is that these operators now infer type substitutions that

range not only over types, but also over rows and field-types. In the next section, we describe how

to adapt the existing algorithms to our framework.

As expected, the algorithmic type system is sound and complete with respect to the declarative

one, as stated by the following theorems (proofs are given in Appendix B.2):

Theorem 3.2 (Soundness). If Δ | Γ ⊢A 𝑒 : 𝑡 , then Δ | Γ ⊢D 𝑒 : 𝑡 .

Theorem 3.3 (Completeness). If Δ | Γ ⊢D 𝑒 : 𝑡 , then there is 𝑠 such that Δ | Γ ⊢A 𝑒 : 𝑠 and 𝑠 ⊑Δ 𝑡 .

4 Tallying
The algorithmic type system we have defined in the last section is parametric in the decision

procedure 𝑠 ⊑Δ 𝑡 , which looks for an appropriate set of substitutions [𝜎𝑖]𝑖∈𝐼 such that
∧

𝑖∈𝐼 𝑠𝜎𝑖 ≤ 𝑡 .

While this has been tackled for type variables by Castagna et al. [9], here we need to extend the

procedure to row and field variables.

Deciding 𝑠 ⊑Δ 𝑡 is done by testing the cardinality of the set of substitutions [𝜎𝑖]𝑖∈𝐼 we are looking
for, by incremental steps. For 𝑡 •Δ 𝑠 , two sets of substitutions are sought for, and we can follow a

dove-tail order (more details are in [9, §3.2.2-3.2.3]).

For each cardinality, we apply an instance of the tallying algorithm. Tallying is a unification

problem acting on inequalities. Given an initial set of subtyping constraints, tallying looks for a

substitution that satisfies these constraints. For instance, deciding 𝑠 ⊑Δ 𝑡 is done first by trying

to solve the tallying problem for the constraint (𝑠, ≤, 𝑡), looking for a singleton substitution set.

In case of a (non-fatal) failure, the next step is to look for a set of two substitutions such that

[𝜎1, 𝜎2] ⊩ 𝑠 ⊑Δ 𝑡 , which is equivalent to solving the tallying problem for the constraint (𝑠1∧𝑠2, ≤, 𝑡),
where each 𝑠𝑖 is obtained from 𝑠 by replacing all variables not in Δ by fresh ones.

We define the solving procedure for the type tallying of a constraint-set as an extension of

the existing one for type variables. The procedure follows the same steps that are given by [9]

(plus an additional one), namely: (1) normalization, (2) merging and saturation, (3) harmonization

(which is new and specific to row variables), (4) transformation of constraints into equations, and

(5) creation of the substitution solutions. For space reasons, in what follows we detail only the

most important step: step (1) for normalization. The other steps are simpler and, therefore, we just

outline them in Section 4.2, with formal definitions provided in Appendixes C.4 to C.8.

We begin with giving few definitions, starting with the definition for constraints. Although the

typing rules need to solve the tallying problem only on types, types will be decomposed in their

subterms, thus generating constraints on field-types and rows, too.

Definition 4.1 (Constraints). A constraint (𝑇1, 𝑐,𝑇2) is a triple such that 𝑐 ∈ {≤, ≥} and

(𝑇1,𝑇2) ∈ (T × T) ∪ (T⊥ × T⊥) ∪ (R × R). 𝑇1 and 𝑇2 must be of the same kind which, in particular,

implies def (𝑇1) = def (𝑇2) if 𝑇1 and 𝑇2 are rows. We denote with C the set of all constraints.

The presence of subtyping, and in particular of the empty type, implies that to solve a single

constraint-set 𝐶 we may need to generate several constraint sets, yielding different solutions.

For instance, solving {({{{ℓ1 = 𝑠1, ℓ2 = 𝑠2|||..}}}, ≤,{{{ℓ1 = 𝑡1, ℓ2 = 𝑡2|||..}}})} generates three indepen-

dent subproblems: {(𝑠1, ≤, 0)}, {(𝑠2, ≤, 0)}, and {(𝑠1, ≤, 𝑡1), (𝑠2, ≤, 𝑡2)}. Thus, we consider sets S of

constraint-sets, each set representing a possible solution. Given two such setsS1,S2 ⊆ P(C), we de-
fine their union asS1⊔S2 = S1∪S2 and their intersection asS1⊓S2 = {𝐶1∪𝐶2 | 𝐶1 ∈ S1,𝐶2 ∈ S2}.

20 Giuseppe Castagna and Loïc Peyrot

Tallying works by decomposing types into elementary constraints. For records and rows, it might

be necessary to decompose the row variables across different fields. For instance, the record {{{|||𝜌0}}}
might need to be decomposed over, say, labels ℓ1 and ℓ2. In that case, we will spread the row variable

𝜌0 into {{{ℓ1 = 𝜌0.ℓ1, ℓ2 = 𝜌0.ℓ2|||𝜌0\{ℓ1, ℓ2}}}}, using new constructions 𝜌0.ℓ1, 𝜌0 .ℓ2, and 𝜌0\{ℓ1, ℓ2} akin
to field and row variables (Definition 4.2). Then, the tallying algorithm may give constraints over

𝜌0 .ℓ1, 𝜌0.ℓ2 and 𝜌0\{ℓ1, ℓ2}, and we expect a solution of the shape 𝜎 (𝜌0) = ⟨⟨⟨ℓ1 = 𝜏1, ℓ2 = 𝜏2|||𝑟⟩⟩⟩∅ ,
where each 𝜏𝑖 has been obtained from the constraints on 𝜌0.ℓ𝑖 , and 𝑟 from the ones on 𝜌0\{ℓ1, ℓ2}.

Definition 4.2 (Decomposition of row variables). We introduce two new constructors: (1) 𝜌.ℓ ,

that we treat as a field variable, and (2) 𝜌\𝐿, that we treat as a row variable of definition space

def (𝜌)∖𝐿. Substitution is extended to (𝜌.ℓ)𝜎 = 𝜏 if 𝜎 (𝜌) ≃ ⟨⟨⟨ℓ = 𝜏|||𝑟⟩⟩⟩𝐿′ , and (𝜌\𝐿)𝜎 = 𝑟 if 𝜎 (𝜌) ≃
⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∩def (𝜌)|||𝑟⟩⟩⟩𝐿

′
. It is undefined if 𝜎 (𝜌) does not have any of these shapes.

Hereafter, the name 𝜌 ranges over row variables and constructors 𝜌\𝐿, the name 𝜃 ranges over field

variables and constructors 𝜌.ℓ , and the name 𝑋 ranges over all kinds of variables plus these new

constructors. We consider 𝜌\𝐿 up to the equivalence generated by identifying 𝜌 ∈ V𝑟 with 𝜌\𝐿 for

all 𝐿 ⊆ L∖ def (𝜌), and (𝜌\𝐿1)\𝐿2 with 𝜌\(𝐿1 ∪ 𝐿2). With an abuse of notation we write 𝜌 for the

row ⟨⟨⟨|||𝜌⟩⟩⟩L∖ def (𝜌)
—in particular in rows constraints (e.g., (𝜌, 𝑐, 𝑟))—when no confusion arises.

Definition 4.3 (Constraint solution). Let 𝐶 ⊆ C be a constraint-set. A solution to 𝐶 is a

substitution 𝜎 such that ∀(𝑇1, ≤,𝑇2)∈𝐶 .𝑇1𝜎 ≤ 𝑇2𝜎 and ∀(𝑇1, ≥,𝑇2)∈𝐶 .𝑇1𝜎 ≥ 𝑇2𝜎 hold. If 𝜎 is a

solution to 𝐶 , we write 𝜎 ⊩ 𝐶 . In particular, 𝑇1𝜎 and 𝑇2𝜎 must be defined, that is, for all 𝜌 ∈ dom(𝜎):
- ∀ℓ ∈ L . 𝜌 .ℓ ∈ vars(𝐶) =⇒ ∃𝜏 .∃𝑟 .𝜎 (𝜌) ≃ ⟨⟨⟨ℓ = 𝜏|||𝑟⟩⟩⟩L∖ def (𝜌)

, and

- ∀𝐿 ⊆ L . 𝜌\𝐿 ∈ vars(𝐶) =⇒ ∃(𝜏ℓ)ℓ∈𝐿 .∃𝑟 .𝜎 (𝜌) ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ def (𝜌)
.

where vars(𝐶) is the set of all type/row/field variables occurring in 𝐶 .

The tallying algorithm is parametric on a total order𝑂 on variables, used to ensure that the step (5)

of tallying produces contractive types (see Proposition 4.8). A set of constraints is well-ordered if

for all constraints of the shape (𝑋, 𝑐,𝑇) and for all variables in 𝑇 that are not occurring under a

type constructor, 𝑂 (𝑋) < 𝑂 (𝑋 ′) holds (we call such variables the toplevel variables of 𝑇).

4.1 First step: constraint normalization
The first step of tallying decomposes the initial constraints on types into a set S of normalized

constraint-sets. These are constraint-sets where all constraints are of the shape (𝑋, 𝑐,𝑇), with 𝑋

and 𝑇 of the same kind. This step is implemented by a recursive function norm(𝑡, 𝑀) that takes
a type 𝑡 as input and returns a set of normalized constraint-sets necessary for 𝑡 ≤ 0 to hold. The

argument𝑀 is a set of visited types, that guarantees termination of recursion on infinitary types.

A formal description of normalization as inference rules is given in Appendix C (Figs. 5 to 7).

The general idea of normalization is the following. We first rewrite each constraint (𝑇, 𝑐,𝑇 ′) into
a set of constraints {(𝑇𝑖 , ≤, 0)}𝑖∈𝐼 , where 𝑇𝑖 is a conjunction of atoms (basic types, arrows, records),

type and field variables (in the latter case, ⊥ can also be present), or their negations. This first

constraint-set is obtained by transforming the type into DNF and putting each summand of the

outer union into a separate constraint. For each constraint (𝑇𝑖 , ≤, 0) we then isolate the smallest

(w.r.t., the order 𝑂) top-level type variable or field variable 𝑋 not in Δ, to obtain a constraint of

the form (𝑋, 𝑐,𝑇 ′
𝑖), that gives a lower (i.e., 𝑐 is ≥ when 𝑋 is negated in 𝑇𝑖) or an upper (i.e., 𝑐 is ≤

otherwise) bound on that variable, where 𝑇 ′
𝑖 is obtained from 𝑇𝑖 simply by removing 𝑋 .

There may be no variable in 𝑇𝑖 , or they may all be in the parameter Δ. A variable in Δ is

monomorphic, cannot be instantiated and is treated as a constant. In that case, we erase monomor-

phic variables because they cannot help to satisfy the constraint. On basic types, we can directly

21

see if the constraint holds. For arrow constructors, we apply subtyping to decompose the types into

constraints on their subtypes. Until now, all these steps (apart from dealing with field variables) are

similar to those of the existing tallying algorithm for type variables by Castagna et al. [9]. For a

conjunction of record atoms, the technique is more elaborated.

The normalization of a conjunction of records 𝑡 is defined as the normalization of its underlying

row through an auxiliary procedure on rows:

norm(𝑡, 𝑀) = normrow (row(𝑡), 𝑀 ∪ {𝑡})

The main technical part of the normalization step of tallying is defining this auxiliary procedure.

In the literature where rows are all atomic, rather than Boolean combinations, unification of a

row variable with another row is often done component-wise by introducing a series of fresh type

variables. In our setting, these variables would be our 𝜌.ℓ1, . . . , 𝜌 .ℓ𝑛 and 𝜌\{ℓ1, . . . , ℓ𝑛}.

Example 4.1. With component-wise unification, the constraint-set {(⟨⟨⟨log = String|||𝜌⟩⟩⟩∅, ≤, ⟨⟨⟨log =

String, succ = True, val = 1|||𝜖⟩⟩⟩∅)} is normalized to {(String, ≤, String), (𝜌.succ, ≤, True), (𝜌.val, ≤
, 1), (𝜌\𝐿, ≤, ⟨⟨⟨|||𝜖⟩⟩⟩𝐿)}, where 𝐿 = {log, succ, val}. Putting the solutions for each parts together yields

the solution 𝜎 (𝜌) = ⟨⟨⟨succ = True, val = 1|||𝜖⟩⟩⟩{log} .

As the next example shows, component-wise unification, while working well with atomic rows,

fails when considering Boolean combination of rows.

Example 4.2. Let result = ⟨⟨⟨log = String, succ = True, val = 1|||𝜖⟩⟩⟩∅ ∨ ⟨⟨⟨log = String, succ =

False, val = ⊥|||𝜖⟩⟩⟩∅ . Applying an argument of type result to a function of type ⟨⟨⟨log = String|||𝜌⟩⟩⟩∅ →
⟨⟨⟨log = String|||𝜌⟩⟩⟩∅ gives the following constraint: (⟨⟨⟨log = String|||𝜌⟩⟩⟩∅, ≤, result). A component-wise

unification gives the constraint-set {(String, ≤, String), (𝜌.succ, ≤,Bool), (𝜌.val, ≤, 1 ∨ ⊥), (𝜌\𝐿, ≤
, ⟨⟨⟨|||𝜖⟩⟩⟩𝐿)}, where 𝐿 = {log, succ, val}. This entails the solution 𝜎 (𝜌) = ⟨⟨⟨succ = Bool, val = 1 ∨
⊥|||𝜖⟩⟩⟩{log} , which is not the most precise one: since the type of the function is essentially the type

of an identity function, we would have expected the application to have type result.

In some cases, component-wise unification is not even sound.

Example 4.3. Let result be as in Example 4.2. For the constraint (⟨⟨⟨val = 1 ∨ ⊥|||𝜌 ′⟩⟩⟩∅, ≤, result),
component-wise unification gives 𝜎 (𝜌 ′) = ⟨⟨⟨log = String, succ = Bool|||𝜖⟩⟩⟩{val} as a solution, which
does not verify the constraint (the type obtained as “solution” contains record values in which succ

is True and val is undefined, which are not included in result).

To obtain a sound decomposition of rows, we can adapt the formula underlying our subtyping

algorithm (this formula can be found in the statement of Lemma A.6). Given a constraint𝐶 on DNFs

of rows, we consider the set 𝐿 of all top-level labels in the DNF (in our examples, 𝐿 = {log, succ, val}).
The formula decomposes the constraints into independent constraints over the fields with labels

in 𝐿 and constraints over the rest of the rows. Doing so, we find no solution for the constraint in

Example 4.3, which is correct, since indeed the constraint cannot be satisfied.

Although this method yields a correct set of solutions, this set is far from begin complete. In

fact, since it decomposes records over the set 𝐿 of all top-level labels, the solution found for the

constraint of Example 4.2 is the same as the one given there, as it will decompose 𝜌 unnecessarily

into 𝜌.succ, 𝜌.val and 𝜌\𝐿. Hence, the two methods for decomposing rows we have just seen are

not what we want. The first one, component-wise unification, is unsound. The second one, based

on subtyping, is far from complete. Our solution is to decompose rows over a set of label as small as

possible, and in particular smaller than the whole set of labels appearing at top-level. This technique

is based on a general decomposition formula given in the statement of Lemma C.4.

22 Giuseppe Castagna and Loïc Peyrot

Example 4.4. From the same constraint as in Example 4.2: (⟨⟨⟨log = String|||𝜌⟩⟩⟩∅, ≤, result), we
take 𝐿 = {log} (notice the minimality of 𝐿) and obtain the constraint-set: {(String, ≤, String), (𝜌, ≤
, ⟨⟨⟨succ = True, val = 1|||𝜖⟩⟩⟩{log} ∨ ⟨⟨⟨succ = False, val = ⊥|||𝜖⟩⟩⟩{log}). This entails the desired solution.

We now define the function normrow. It uses the two following operators.

Definition 4.4. Let 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2

, Δ be a set of variables, ℓ ∈ L∖𝐿2 and 𝐿 ∈ Pfin (L).
• 𝑟 [ℓ] =

def
𝜌.ℓ if 𝜍 = 𝜌 ∉ Δ and ℓ ∈ def (𝜌), and 𝑟 [ℓ] =

def
𝑟 (ℓ) otherwise.

• ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2\Δ𝐿 =

def ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜍
′⟩⟩⟩𝐿2∪𝐿

; where if 𝜍 = 𝜌 and def (𝜌) ∩ 𝐿 ≠ ∅: 𝜍 ′ = ..
if 𝜌 ∈ Δ and 𝜍 ′ = 𝜌\𝐿 otherwise; and 𝜍 ′ = 𝜍 otherwise.

Let us consider a row in DNF 𝑟0 =
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 ¬𝑟 . Let 𝜌0 be the smallest top-level variable of

𝑟0 not in Δ and 𝐿 = def (𝑟0)∖ def (𝜌0), or 𝐿 = ∅ if no such variable exists. Let 𝑆Δ = {𝑟 ∈ 𝑆 | tail(𝑟) =
𝜌 ∈ Δ and def (𝜌) ∩ 𝐿 ≠ ∅}, for 𝑆 = 𝑃, 𝑁 . Normalization normrow (𝑟0, 𝑀) is defined as:

l

𝜄:𝑁→𝐿∪{_}

(⊔
ℓ∈𝐿

normfld

(∧
𝑟 ∈𝑃

𝑟 [ℓ]∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 [ℓ], 𝑀

)
⊔
l

𝑁 ′∈N

(
normtl

(∧
𝑟 ∈𝑃

(𝑟\Δ𝐿)∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′∈𝑆
¬(𝑟\Δ𝐿), 𝑀

))
where N = {𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁Δ | ∧𝑟 ∈𝑃Δ ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ≰ ∨

𝑟 ∈𝑁 ′ ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩}.
Here, the idea of the algorithm is the following. If there is no polymorphic top-level variable

(these can only be row variables), we let 𝐿 = ∅, which does not decompose the row, and only calls

the function normtl (𝑟0, 𝑀) recursively. This function decomposes the record over the whole set

of top-level labels using the formula for subtyping. We do not loose solutions doing so: due to

the absence of top-level polymorphic variables, the emptiness of 𝑟0 can only be satisfied by the

emptiness of one of the components.

If there is a smallest polymorphic top-level variable 𝜌0, we take 𝐿 = def (𝑟0) ∖ def (𝜌0). In other

words, we take 𝐿 to be the set of labels on the left of the variable 𝜌0. In Example 4.4, we take 𝐿 to be

{log}. In this way, we decompose the row on one side over the elements in 𝐿, which does not affect

𝜌0. These elements are handled by the auxiliary function normfld, that normalizes constraints on

fields in a way similar to what is done on types. On the other side, we obtain constraints over 𝜌0,

where 𝜌0 is in a row of the shape ⟨⟨⟨|||𝜌0⟩⟩⟩L∖ def (𝜌0) . Then, the recursive call to normtl singles out the

variable 𝜌0 in order to obtain an upper or lower bound for 𝜌0, as we do for type and field variables

(the formal definitions of normfld and normtl can be found in Appendix C.3).

While 𝜌0 is not affected by the decomposition thanks to our choice of 𝐿, there can be polymorphic

top-level variables 𝜌 ′ such that def (𝜌 ′) ∩ 𝐿 ≠ ∅. This is why we have introduced the two new

operators 𝑟 [ℓ] and 𝑟\Δ𝐿.
The normalization function is sound. However, the algorithm is still not complete, due to the

potentially necessary decomposition of some row variables.

Example 4.5 (Incompleteness). Let 𝑂 (𝜌1) < 𝑂 (𝜌2). From the set {(⟨⟨⟨log = String|||𝜌2⟩⟩⟩∅ →
⟨⟨⟨log = String|||𝜌2⟩⟩⟩∅, ≥, result → result), (⟨⟨⟨log = String|||𝜌2⟩⟩⟩∅ → ⟨⟨⟨|||..⟩⟩⟩∅, ≥, ⟨⟨⟨succ = 1 ∨ ⊥, val =
1 ∨ ⊥|||𝜌1⟩⟩⟩∅ → ⟨⟨⟨succ = 1 ∨ ⊥, val = 1 ∨ ⊥|||𝜌1⟩⟩⟩∅)}, by a decomposition over 𝐿 = {log} in the first

constraint and 𝐿 = {succ, val} in the second constraint, we derive the constraint-set (omitting trivial

constraints) {(String, ≤, 𝜌1.log), (𝜌2\{succ, val}, ≤, 𝜌1\{log}), (𝜌2, ≤, result), (𝜌2, ≥, result)}. As we
describe in Section 4.2 below, a further step of the tallying algorithm harmonizes the decomposition

of the row variables across all constraints. In particular, it decomposes 𝜌2 over {succ, val} in the

constraints (𝜌2, ≤, result) and (𝜌2, ≥, result). Since when decomposing 𝜌2 in this way, no solution

might apply to both of these constraints (𝜌2 needs to be instantiated exactly to the union type

result), tallying fails. The solution mapping 𝜌2 to result is not found.

23

4.2 Other steps of tallying
Constraint merging and saturation. After normalization, a constraint set may have for the same

variable 𝑋 different constraints of the form 𝑇𝑖 ≤ 𝑋 or 𝑋 ≤ 𝑇 ′
𝑗 for 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 : we replace

them by two constraints
∨

𝑖∈𝐼 𝑇𝑖 ≤ 𝑋 and 𝑋 ≤ ∧
𝑗∈ 𝑗 𝑇

′
𝑗 , add

∨
𝑖∈𝐼 𝑇𝑖 ≤

∧
𝑗∈ 𝑗 𝑇

′
𝑗 to (i.e., saturate) the

constraint set, and normalize again.

Harmonization. Take a constraint-set𝐶 with (𝜌\𝐿1, 𝑐, 𝑟) ∈ 𝐶 , 𝐿1 ⊊ 𝐿 and 𝐿 the set of labels appear-

ing within terms 𝜌 ′ .ℓ and 𝜌 ′\𝐿2 in𝐶 . As mentioned in Example 4.5, harmonization of constraint-set

rewrites the constraint (𝜌\𝐿1, 𝑐, 𝑟) into (𝜌\𝐿, 𝑐, 𝑟) and feeds this constraint to normalization again.

Harmonization ends with a constraint-set of homogeneous domain, where for each row variable 𝜌

all occurrences of 𝜌\𝐿 are defined on (i.e., harmonized to) the same 𝐿.

Equations generation. At this point, for each type and field variable 𝑋 there is a unique (double)

constraint of the form 𝑇 ≤ 𝑋 ≤ 𝑇 ′
, that we transform into the equation 𝑋 = (𝑇 ∨𝑋 ′) ∧𝑇 ′

with 𝑋 ′

fresh. For a row variable 𝜌 , there is a set of labels 𝐿 and constraints of the form 𝜏1 ≤ 𝜌.ℓ ≤ 𝜏2 for each

ℓ ∈ 𝐿, and a constraint 𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2. We define the terms 𝜏ℓ = (𝜏1 ∨𝜃 ℓ𝜌) ∧𝜏2 and 𝑟 = (𝑟1 ∨ 𝜌 ′) ∧ 𝑟2),
with fresh variables 𝜃 ℓ𝜌 and 𝜌 ′. We finally create an equation 𝜌 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ def (𝜌)

.

Solution. We solve the equations in the order𝑂 of the variables on the left-hand side, by collecting

the equation𝑋 = 𝑇 and replacing in all other equations𝑋 by 𝜇𝑋 ′ .(𝑇 {𝑋 ′/𝑋 }) with𝑋 ′
fresh. Thanks

to the order 𝑂 , the type 𝜇𝑋 ′ .(𝑇 {𝑋 ′/𝑋 }) is contractive (cf. Proposition 4.8) and, thus, well-formed.

4.3 Properties of the algorithm
We call SolΔ (𝐶) the solving procedure for the type tallying of𝐶 . We write SolΔ (𝐶) ⇝ Θ if SolΔ (𝐶)
terminates yielding the set of substitutions Θ, called the solution of the type tallying problem for 𝐶 .

Theorem 4.6 (Soundness). Let 𝐶 be a constraint-set. If SolΔ (𝐶) ⇝ Θ, then for all 𝜎 ∈ Θ, 𝜎 ⊩ 𝐶 .

Theorem 4.7 (Termination). Let 𝐶 be a constraint-set. Then SolΔ (𝐶) terminates.

Proposition 4.8. Let 𝐶 be a constraint-set and SolΔ (𝐶) ⇝ Θ. Then (1) Θ is finite and (2) for all

𝜎 ∈ Θ and for all 𝑋 ∈ dom(𝜎), the types in 𝜎 (𝑋) are contractive.

5 Related work
Row polymorphism. Our formalization of records as quasi-constant total functions and the

inclusion of row polymorphism are directly inspired from the formalism of Rémy [37, 38]. Remy’s

work contains neither set-theoretic types nor subtyping, and therefore commutation of fields is

obtained by structural equations. Unlike our case, the types in [38] are not recursive. An extension

of this system to recursive types is given by [39] when describing a type system for objects.

Before Rémy, Wand [44] introduced row polymorphism to type object inheritance. His type

inference algorithm, corrected in [43], considers free record extension (i.e., right priority record

concatenation) but lacks principal solutions. Instead, it deduces a finite set of solutions of which all

types of the term under consideration are instances, as we also do. However, unlike us, Wand’s

type grammar lacks intersection types, so it is not possible to merge the multiple solutions into a

single type, as we instead do. An earlier attempt of our work considered free record extension, as it

is present both in CDuce and in its generalization by Castagna [5], but this made the theory much

more involved, in particular tallying. It would be worthwhile to study this possibility again, now

that the theory with strict extension is precisely laid down.

(Syntactic) subtyping is present in the work of Cardelli and Mitchell [4]. Operations on records

(deletion, selection, extension) are directly defined within the syntax of types. In our system instead,

24 Giuseppe Castagna and Loïc Peyrot

we compute these operations on the types during typing. It is thus currently impossible to postpone

the extension or deletion of a field with label ℓ that is affected by a row variable, until the point

where the row variable will be instantiated and, in that case, we must resort to an approximation.

Cardelli and Mitchell must however define syntactic equivalence relations on operators and fields,

and their system lacks principal typing, as well.

Row polymorphism and extensible records are implemented using predicate on types by Harper

and Pierce [24], later by Gaster and Jones [22] under the name qualified types. In the latter, positive

information is given in the type and negative information (absent field) in the predicate. Morris and

McKinna [32] use qualified types with uninterpreted predicates for concatenation and membership

of fields. Their system can be instantiated to most of the standard approaches of the literature.

We aimed to minimize changes to the type syntax of CDuce and Elixir, opting to refrain from

incorporating qualified types.

A convenient way to define extensible records is with scoped labels [29], where labels may appear

several times in a record, the most recent occurrence shadowing earlier ones. Paszke and Xie [34]

recently extended the formalism to deal with first-class labels, first-class rows and concatenation.

This gives a simple formulation of types, yet too syntactic for our semantic approach to typing and

subtyping, and our desire to interpret records as quasi-constant functions.

Variants, the dual of records, are studied in a semantic subtyping setting by Castagna et al. [11],

where they show that adopting full-fledged union (and intersection and negation) types as well as

let-polymorphism gives a more intuitive and expressive theory of polymorphic variants, which is

why here we focused only on polymorphism for records.

Presence polymorphism. Rémy [38] describes records types with fields that can be either present or

absent, as indicated by an additional annotation. He shows how to add presence polymorphism over

these annotations, yielding records parametric in the absence or presence of some fields. Garrigue

[21] proposes a weaker system, where constraints apply to single variables (rather than being

distributed over row and presence variables), and where absent fields are determined by intersecting

type constraints. Garrigue [21] justifies this choice by the fact that it yields types that are simpler

to understand, since they do not require different variables of different sorts. This simplicity is

the reason why it is the system used for OCaml. Our work shares Garrigue system’s simplicity,

since only row variables are visible to the programmer and, under the hood, field-type variables—

which range over types augmented with ⊥—provide a natural notion of presence polymorphism.

Field-type variables can be instantiated with ⊥ for an absent field, a type 𝑡 for a mandatory field,

but also by 𝑡 ∨ ⊥ for an optional one. To our knowledge, our work is the first to allow presence

polymorphism over optional fields: in the existing literature field-types of polymorphic records

can just be either present or absent, but not both (i.e., optional). Moreover, integrating presence

polymorphism in our framework is straightforward since field-type variables are almost handled

as ordinary type variables: it is the kinding system that enables the extra ⊥ possibility (for an

example-based comparison between presence polymorphism of [38] and ours, see Appendix A.1).

Relation between different kinds of polymorphism. Our type system features three kinds of para-

metric polymorphism: on types, rows, and field-types. It also features subtype polymorphism and

ad-hoc polymorphism via intersection and union types. The question naturally arises: how are these

concepts interconnected, and where do they overlap? It is folklore that unrestricted intersections

combined with parametric polymorphism encode a form of bounded quantification, as described in

the introduction (see also [6, Section 2]). Xie et al. [46] show that row and bounded polymorphism

can be encoded with disjoint polymorphism, obtained by adding parametric polymorphism to

a system with disjoint intersections, and having a disjointedness predicate in the quantification

of types. Contrary to our intersections that are uninhabited if applied to separate types, disjoint

25

intersections type a merge operator that generalizes the disjoint concatenation of extensible data

types, like records, to arbitrary types. The deletion operator of extensible data types can also be

generalized to arbitrary types using disjoint polymorphism and a merge operator. This operator

once again differs from our set exclusion operation 𝑡1 ∖ 𝑡2 = 𝑡1 ∧ ¬𝑡2.
Tang et al. [41] formally compare the expressiveness of row and presence polymorphism to

structural subtyping, for calculi with records and variants. More precisely, they encode diverse

subtyping using relevant polymorphic systems. They take special care in framing the complexity

of the translation, for instance when it can be done by changing only types.

Practice. Efficient compilation of polymorphic or extensible records has been widely explored by

researchers such as Gaster and Jones [22], Ohori [33]. These works advocate moving away from

Rémy’s formalism. Ohori’s calculus in particular stores information in elaborated kinds. It was

expanded to extensible records by Alves and Ramos [1], but with no mention of the compilation

method. Yet, Hillerström and Lindley [25] provide a compelling abstract machine for a calculus

employing this formalism, serving as a foundation for their language Links. Regarding general-

purpose languages, several of them propose either a flavor of set-theoretic types (like Typescript

[31] or Flow [16]), sometimes based on the theory of semantic subtyping (CDuce, Luau, Elixir or

Ballerina), or polymorphic extensible records (like Purescript [17] or OCaml) but, to our knowledge,

none of them offers both of these features, as we propose in this work.

6 Conclusion
We designed a type system featuring set-theoretic types and semantic subtyping for record calculi

with row and presence polymorphism. We instantiated this type system on a specific λ-calculus in-

corporating record selection, extension, and deletion, and devised a unification (tallying) algorithm.

Our next goal is implementing these results in the CDuce compiler, thereby enhancing the

language with row polymorphism. We closely adhered to the theory used for CDuce, in that record

types were simply extended with row variables and presence polymorphism, leveraging the union

connective and an existing constant for undefinedness. Our model and algorithms, specifically for

subtyping and tallying, naturally extend the existing ones. While we did not address the problem

of type reconstruction, Castagna et al. [8] provide the theory and an implementation of type

reconstruction for an ML-like language, that uses CDuce’s tallying library as a black box. We are

confident that plugging our tallying algorithm into that system and adding records to the language

should yield, with some extra effort, a reconstruction system with polymorphic records.

CDuce is of course more complex than our record calculus. Likewise, any type system for a

dynamic language needs to account for features like pattern matching, type cases, guards, or

type narrowing. At first sight, these features seem mostly orthogonal to the introduction of row

polymorphism. Our hope is to be able to integrate the latter seamlessly in any existing set-theoretic

type system with semantic subtyping like Elixir [7], Ballerina [2], Luau [28] or Erlang [40], and we

closely monitor the ongoing efforts to port CDuce’s tallying algorithm into the Elixir’s compiler.

Our record calculus lacks first-class labels. Castagna [5] defines a unique type system in which

records can be used both as “structs” (i.e., records without first-class labels) and as dictionaries/maps

with first-class labels. His work is carried out in the same setting as ours, set-theoretic types with

semantic subtyping and records as quasi-constant functions, but without row-polymorphism.

However, some solutions proposed by Castagna [5] are explicitly motivated by having a system

that could be easily extended with row and presence polymorphism, which is why we believe that

merging the two systems should not pose any fundamental issue. The actual expressiveness of

a system with first-class labels where operations on records are not part of the syntax of types

remains to be investigated.

26 Giuseppe Castagna and Loïc Peyrot

References
[1] Sandra Alves and Miguel Ramos. 2021. An ML-style Record Calculus with Extensible Records. Electronic Proceedings

in Theoretical Computer Science 351 (Dec. 2021), 1–17. https://doi.org/10.4204/eptcs.351.1

[2] Ballerina. [n. d.]. Structural Typing. https://ballerina.io/learn/by-example/structural-typing/

[3] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: an XML-Centric General-Purpose Language.

In ICFP ’03, 8th ACM International Conference on Functional Programming. ACM Press, Uppsala, Sweden, 51–63.

[4] Luca Cardelli and John C. Mitchell. 1991. Operations on records. Mathematical Structures in Computer Science 1, 1

(March 1991), 3–48. https://doi.org/10.1017/s0960129500000049

[5] Giuseppe Castagna. 2023. Typing Records, Maps, and Structs. Proceedings of the ACM on Programming Languages 7,

ICFP (8 2023), 215–258. https://doi.org/10.1145/3607838

[6] Giuseppe Castagna. 2024. Programming with union, intersection, and negation types. In The French School of

Programming, Bertrand Meyer (Ed.). Springer. ISBN 978-3-031-34517-3. To appear. Preprint at arXiv:2111.03354.

[7] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2024. The Design Principles of the Elixir Type System. The Art,

Science, and Engineering of Programming 8, 2 (2024). https://doi.org/10.22152/programming-journal.org/2024/8/4

[8] Giuseppe Castagna, Mickaël Laurent, and Kim Nguyen. 2024. Polymorphic Type Inference for Dynamic Languages.

Proceedings of the ACM on Programming Languages 8, POPL (Jan. 2024), 1179–1210. https://doi.org/10.1145/3632882

[9] Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types.

In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM.

https://doi.org/10.1145/2676726.2676991

[10] Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic

functions with set-theoretic types. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM. https://doi.org/10.1145/2535838.2535840

[11] Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-theoretic types for polymorphic variants. In

Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. ACM. https://doi.org/10.

1145/2951913.2951928

[12] Giuseppe Castagna and Zhiwu Xu. 2011. Set-theoretic foundation of parametric polymorphism and subtyping. In

Proceedings of the 16th ACM SIGPLAN international conference on Functional programming. ACM. https://doi.org/10.

1145/2034773.2034788

[13] Elixir. [n. d.]. Elixir Language. https://elixir-lang.org/

[14] Elixir. 2024. Elixir documentation: Gradual set-theoretic types. https://hexdocs.pm/elixir/gradual-set-theoretic-

types.html

[15] Elixir. 2024. Function add_elixir_domain in logger.exmodule. Retrieved January 22, 2024 from https://github.com/elixir-

lang/elixir/blob/af2b21d67d4865313807e485e43d4e38a1676a54/lib/logger/lib/logger.ex#L940-L944

[16] Facebook. [n. d.]. Flow. https://flow.org/

[17] Phil Freeman. [n. d.]. PureScript. https://www.purescript.org/

[18] Alain Frisch. 2004. Théorie, conception et réalisation d’un langage de programmation adapté à XML. Ph. D. Dissertation.

Université Paris 7 - Denis Diderot.

[19] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2002. Semantic Subtyping. In LICS ’02, 17th Annual IEEE

Symposium on Logic in Computer Science. IEEE Computer Society Press, 137–146. https://doi.org/10.1109/LICS.2002.

1029823

[20] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic subtyping: Dealing set-theoretically with

function, union, intersection, and negation types. Journal of the ACM 55, 4 (Sept. 2008), 1–64. https://doi.org/10.1145/

1391289.1391293

[21] Jacques Garrigue. 2015. A certified implementation of ML with structural polymorphism and recursive types. Mathe-

matical Structures in Computer Science 25, 4 (2015), 867–891. https://doi.org/10.1017/S0960129513000066

[22] Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records and Variants. Technical

Report.

[23] Nils Gesbert, Pierre Genevès, and Nabil Layaïda. 2015. A Logical Approach to Deciding Semantic Subtyping. ACM

Transactions on Programming Languages and Systems 38, 1 (Oct. 2015), 1–31. https://doi.org/10.1145/2812805

[24] Robert Harper and Benjamin Pierce. [n. d.]. A record calculus based on symmetric concatenation. In Proceedings of the

18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’91 (1991) (POPL ’91). ACM

Press. https://doi.org/10.1145/99583.99603

[25] Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. (9 2016). https://doi.org/10.

1145/2976022.2976033

[26] C. A. R. Hoare. 1966. Further Thoughts on Record Handling. ALGOL Bull. 23 (mar 1966), 5–11.

[27] C. A. R. Hoare. 1966. Record Handling. Lecture Notes, NATO Summer School.

https://doi.org/10.4204/eptcs.351.1
https://ballerina.io/learn/by-example/structural-typing/
https://doi.org/10.1017/s0960129500000049
https://doi.org/10.1145/3607838
https://arxiv.org/abs/2111.03354
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.1145/3632882
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/2034773.2034788
https://elixir-lang.org/
https://hexdocs.pm/elixir/gradual-set-theoretic-types.html
https://hexdocs.pm/elixir/gradual-set-theoretic-types.html
https://github.com/elixir-lang/elixir/blob/af2b21d67d4865313807e485e43d4e38a1676a54/lib/logger/lib/logger.ex#L940-L944
https://github.com/elixir-lang/elixir/blob/af2b21d67d4865313807e485e43d4e38a1676a54/lib/logger/lib/logger.ex#L940-L944
https://flow.org/
https://www.purescript.org/
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1017/S0960129513000066
https://doi.org/10.1145/2812805
https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2976022.2976033

27

[28] Alan Jeffrey. 2022. Semantic Subtyping in Luau. Blog post. https://blog.roblox.com/2022/11/semantic-subtyping-luau

Accessed on May 6th 2023.

[29] Daan Leijen. 2005. Extensible Records with Scoped Labels. Revised Selected Papers from the Sixth Symposium on Trends

in Fuctional Programming, TFP 2005 (2005).

[30] Per Martin-Löf. 1994. Analytic and Synthetic Judgements in Type Theory. Springer Netherlands, Dordrecht, 87–99.

https://doi.org/10.1007/978-94-011-0834-8_5

[31] Microsoft. [n. d.]. TypeScript. https://www.typescriptlang.org/

[32] J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proceedings

of the ACM on Programming Languages 3, POPL (Jan. 2019), 1–28. https://doi.org/10.1145/3290325

[33] Atsushi Ohori. 1995. A polymorphic record calculus and its compilation. ACM Transactions on Programming Languages

and Systems 17, 6 (Nov. 1995), 844–895. https://doi.org/10.1145/218570.218572

[34] Adam Paszke and Ningning Xie. 2023. Infix-Extensible Record Types for Tabular Data. In Proceedings of the 8th ACM

SIGPLAN International Workshop on Type-Driven Development (TyDe ’23). ACM. https://doi.org/10.1145/3609027.

3609406

[35] Tommaso Petrucciani. 2019. Polymorphic Set-Theoretic Types for Functional Languages. Ph. D. Dissertation. Università

di Genova, Université Paris Diderot.

[36] Roblox. [n. d.]. Luau.

[37] Didier Rémy. 1989. Type checking records and variants in a natural extension of ML. In Proceedings of the 16th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL '89 (Austin, Texas, USA) (POPL ’89). ACM

Press, New York, NY, USA, 77–88. https://doi.org/10.1145/75277.75284

[38] Didier Rémy. 1994. Type inference for records in natural extension of ML. MIT Press, Cambridge, MA, USA, 67–95.

[39] Didier Rémy and Jérôme Vouillon. 1998. Objective ML: An effective object-oriented extension to ML. Theory and

Practice of Object Systems 4, 1 (1998), 27–50. https://doi.org/10.1002/(sici)1096-9942(1998)4:1<27::aid-tapo3>3.0.co;2-4

[40] Albert Schimpf, Stefan Wehr, and Annette Bieniusa. 2022. Set-theoretic Types for Erlang. In Proceedings of the 34th

Symposium on Implementation and Application of Functional Languages (IFL 2022). ACM. https://doi.org/10.1145/

3587216.3587220

[41] Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley.

2023. Structural Subtyping as Parametric Polymorphism. Proceedings of the ACM on Programming Languages 7,

OOPSLA2 (Oct. 2023), 1093–1121. https://doi.org/10.1145/3622836

[42] Types mailing list. 2019. What exactly should we call syntax-directed inference rules? http://lists.seas.upenn.edu/

pipermail/types-list/2019/002138.html.

[43] Mitchell Wand. [n. d.]. Type inference for record concatenation and multiple inheritance. 93, 1 ([n. d.]), 1–15.

https://doi.org/10.1016/0890-5401(91)90050-c

[44] Mitchell Wand. 1987. Complete Type Inference for Simple Objects. In Proceedings of the IEEE Symposium on Logic in

Computer Science.

[45] AndrewK.Wright andMatthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation

115, 1 (1994), 38–94. https://doi.org/10.1006/inco.1994.1093

[46] Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers. 2020. Row and Bounded Polymorphism via Disjoint

Polymorphism. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ECOOP.2020.27

https://blog.roblox.com/2022/11/semantic-subtyping-luau
https://doi.org/10.1007/978-94-011-0834-8_5
https://www.typescriptlang.org/
https://doi.org/10.1145/3290325
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/3609027.3609406
https://doi.org/10.1145/3609027.3609406
https://doi.org/10.1145/75277.75284
https://doi.org/10.1002/(sici)1096-9942(1998)4:1<27::aid-tapo3>3.0.co;2-4
https://doi.org/10.1145/3587216.3587220
https://doi.org/10.1145/3587216.3587220
https://doi.org/10.1145/3622836
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
https://doi.org/10.1016/0890-5401(91)90050-c
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.4230/LIPICS.ECOOP.2020.27

28 Giuseppe Castagna and Loïc Peyrot

A Appendix for types
The kinding rules for types are given in Fig. 3.

0 : 𝜅

𝑡 : 𝜅

¬𝑡 : 𝜅

𝑡1 : 𝜅 𝑡2 : 𝜅

𝑡1 ∨ 𝑡2 : 𝜅 𝛼 : ★ 𝑏 : ★

𝑡1 : ★ 𝑡2 : ★

𝑡1 → 𝑡2 : ★

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩∅ : Row(∅)
{{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}} : ★

∀ℓ ∈ 𝐿1 .𝜏ℓ : ★⊥

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2 : Row(𝐿2)

𝜍 ∈ {𝜖, ..}
𝐿1 ∩ 𝐿2 = ∅

∀ℓ ∈ 𝐿1 .𝜏ℓ : ★⊥

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜌⟩⟩⟩𝐿2 : Row(𝐿2)

𝐿1 ∩ 𝐿2 = ∅
def (𝜌) = L∖(𝐿1 ∪ 𝐿2) 𝜃 : ★⊥ ⊥ : ★⊥

𝑡 : ★

𝑡 : ★⊥

Fig. 3. Kinding rules

A.1 Example of a presence polymorphic type
Presence polymorphism has been introduced by Rémy [38] to let a field be polymorphic in its

presence. A presence variable 𝜃 can be instantiated to one of {abs, pre}. Our calculus also supports
presence polymorphism thanks to field variables. Let us reproduce an example of a presence

polymorphic type declaration from [38], that we will then transcribe to our setting.

30 type tree(𝜃) = Leaf of Int | Node of {left:pre.tree(𝜃), right:pre.tree(𝜃), annot:𝜃.int}

Instantiating 𝜃 to abs gives the type of trees with no annotations on the nodes, while instantiating

it with pre gives the type of trees with integers annotated on the nodes.

But there are several problems: adding yet another kind of polymorphism adds a bit of work, and

most of all, even absent fields must have a type attached. In [38], this can cause losing unification

of two semantically equivalent records, if for instance one has a field ℓ of type abs.int, and the

other a field ℓ of type abs.bool. To avoid this problem, Tang et al. [41] requires every record value

to be annotated with its type, so that they can forget about absent types, and also so that they can

have deterministic typing. So for instance the superfluous type {ℓ1 = 𝑀 ; ℓ2 = 𝑁 }{ℓ1:pre.𝐴;ℓ2:abs.𝐵}
is

equivalent to {ℓ1 = 𝑀}{ℓ1:pre.𝐴}
.

In CDuce, there is no presence polymorphism at all, and the tree type defined previously cannot be

expressed without code redundancy. In our formalism, presence polymorphism is simply obtained

by means of field variables, and adding support for it in CDuce would make it possible to write the

following (note that we use unions instead of tagged unions):

31 type tree(𝜃) = Int | {left:tree(𝜃), right:tree(𝜃), annot:𝜃}

Fields do not have any superfluous type information when they are absent, so we do not have

the redundant record expressions, and do not need to put type annotations directly on the values.

Moreover, in CDuce and in our type system, fields can be optional. This is achieved thanks to union

types (an optional field is encoded as 𝑡 ∨ ⊥). We do not know of any presence polymorphic type

system dealing with optional types.

We could instantiate the type of the example to any field-type, such as Int for a tree with all

nodes annotated by an integer, Int ∨ ⊥ for a tree with some nodes annotated by an integer, ⊥ for a

tree with no annotation, and even for instance to a type variable 𝛼 , to create a type parametric in

the type of its annotation, but where the annotation is mandatory on every node. In Rémy’s system,

29

having polymorphism also on the type of the annotations would require having two parameter

variables (for presence and for type).

A.2 Models
In this section we give the detailed technical development to define our subtyping relation.

To interpret record values we follow Frisch [18] and represent a record value by a quasi-constant

function that maps labels into either values (i.e., the elements of D) or ⊥. Quasi-constant functions
are total functions that map all but a finite set of elements of their domain into the same value

(called default value). Thus record values can be represented by quasi-constant functions whose

default value is ⊥ (see Castagna [5] for a more detailed explanation). Formally, let us write D⊥
for D ∪ {⊥} where ⊥ is a distinguished element not in D. We represent our record values as

quasi-constant functions from L to D⊥ and, thus, interpret record types as sets of these functions.

The formal definition of quasi-constant function has been given in Definition 2.2 and is repeated

below for convenience.

Definition 2.2 ([18]). A function 𝑟 : L → D⊥ is quasi-constant if the set {ℓ ∈ L | 𝑟 (ℓ) ≠ ⊥}
is finite. We use L _ D⊥ to denote the set of quasi-constant functions from L to D⊥ and {[ℓ1 =

𝛿1, . . . , ℓ𝑛 = 𝛿𝑛, = ⊥]} to denote the quasi-constant function 𝑟 : L _ D⊥ defined by 𝑟 (ℓ𝑖) = 𝛿𝑖 for

𝑖 = 1..𝑛 and 𝑟 (ℓ) = ⊥ for ℓ ∈ L∖{ℓ1, . . . , ℓ𝑛}.

Although this notation is not univocal (unless we require 𝑧𝑖 ≠ 𝑧 and the ℓ𝑖 ’s to be pairwise

distinct), this is largely sufficient for the purposes of this work. If (𝑍ℓ)ℓ∈L is a family of subsets of 𝑍

indexed by L, we denote by ⊲
∏

ℓ∈L 𝑍ℓ the subset of L _ 𝑍 formed by all quasi-constant functions

𝑟 such that 𝑟 (ℓ) ∈ 𝑍ℓ for all ℓ ∈ L (intuitively, ⊲
∏

ℓ∈L 𝑍ℓ is a “type” of quasi-constant functions).

Next we have to give an interpretation for the variables. Castagna and Xu [12] tell us that type

variables must be interpreted as sets in the domainD. Therefore, an interpretation for type variables

is a function inV𝑡 → P(D). Field variables are not much harder, since the only difference with type

variables is that their interpretation can contain ⊥, and therefore it is a function in V𝑓 → P(D⊥).
More difficult is the interpretation of row variables, since these are mapped into rows, that is, partial

quasi-constant functions on L. Let us write L /_ D⊥ for the partial quasi-constant functions

from L to D⊥. Thus, an interpretation of row variables must map an element ofV𝑟 into a set of

functions in L /_ D⊥. However, for a given 𝜌 we cannot consider any element in P(L /_ D⊥):
we need that the functions in the interpretation of 𝜌 are total on def (𝜌). Formally, we have:

Definition A.1 (Well-Kinded Interpretation). Let 𝜂 be a function in V𝑟 → P(L /_ D⊥).
We say that 𝜂 is well kinded if for every 𝜌 ∈ V𝑟 and for every 𝑓 ∈ 𝜂 (𝜌), 𝑓 is a (total) quasi-constant

function in def (𝜌) _ D⊥. We denote by V𝑟 ◦→ P(L /_ D⊥) the set of well-kinded functions.

In conclusion our interpretation of types will be parametric in an assignment 𝜂 for the variables,

which will be a function in

H =
def (V𝑡 → P(D)) ∪ (V𝑓 → P(D⊥)) ∪ (V𝑟 ◦→ P(L /_ D⊥))

The next step is to define the domain D in which to give the interpretation of types. This is quite

simple for us since it suffices to take the model defined by Castagna and Xu [12] and replace products

by quasi-constant functions. The hard problem for defining this model, and thus the interpretation

of types, is to give an interpretation of the function spaces, but this problem was solved by Frisch

et al. [20] whose solution is reused by Castagna and Xu [12]. In a nutshell we want to define an

interpretation function J.K : T → H → P(D). Since the elements of D represent the values

of the language, then D must contain the set C of constants of the language, the quasi-constant

functions (to represent record values), and the functions from D to D, but the last containment

30 Giuseppe Castagna and Loïc Peyrot

is impossible for cardinality reasons. The solution by [20] is to associate to every domain D and

function J.K : T → H → P(D) a unique extensional interpretation E(·) : T → H → P(ED)
which fixes the semantic of the type constructors, and then to accept as a valid interpretation of

the types only the pairs (J.K,D) such that for all 𝜂, J𝑡K𝜂 = ∅ ⇐⇒ E(𝑡)𝜂 = ∅.
We invite the reader to refer to Castagna and Xu [12, Section 2.2] for a more detailed explanation

of how the extensional interpretation works and to Frisch et al. [20] for full details. Henceforth,

we just present how to extend the extensional interpretation of Castagna and Xu [12] to include

quasi-constant functions and the interpretation of row-variables, and pinpoint the differences

between the two definitions. We suppose to be given an interpretation B : B → P(C) of basic
types into sets of constants. Given a set 𝑆 we use the notation 𝑆 to denote its complement in an

appropriate universe: this notation is in particular used for the set P(J𝑡1K × J𝑡2K) which corresponds
to interpreting the elements in 𝑡1 → 𝑡2 as binary relations, namely as elements of the set { 𝑓 ⊆
D2 | for all (𝑑1, 𝑑2)∈𝑓 , if 𝑑1∈J𝑡1K𝜂 then 𝑑2∈J𝑡2K𝜂 }.

Definition A.2 (Extensional interpretation). LetD be a set. The extensional domain ofD is

defined as: ED = C + D + P(D × DΩ) + (L _ D⊥) where Ω and ⊥ are two different distinguished

elements not in D.

Let J·K : T → H → P(D) be an interpretation of types parametric in a well-kinded interpretation

of variables. The associated extensional interpretation of types is the unique function E(·) : T →
H → P(ED) such that:

E(0)𝜂 = ∅
E(𝛼)𝜂 = 𝜂 (𝛼)
E(𝑏)𝜂 = B(𝑏)

E(¬𝑡)𝜂 = ED ∖ E(𝑡)𝜂
E(𝑡1 ∨ 𝑡2)𝜂 = E(𝑡1)𝜂 ∪ E(𝑡2)𝜂

E(𝑡1 → 𝑡2)𝜂 = P(J𝑡1K𝜂 × J𝑡2K𝜂)

E(R)𝜂 =

{ ⋃
¯̄𝑑∈𝜂 (𝜌)

(
⊲
∏

ℓ∈lab(R)JR(ℓ)Kfld
𝜂 ⊔ ¯̄𝑑

)
if tail(R) = 𝜌

⊲
∏

ℓ∈LJR(ℓ)Kfld
𝜂 otherwise

where

J𝑡Kfld
𝜂 = J𝑡K𝜂 if 𝑡 ≠ ¬𝑡 ′ and 𝑡 ≠ 𝑡1 ∨ 𝑡2

J𝜃Kfld
𝜂 = 𝜂 (𝜃)

J⊥Kfld
𝜂 = {⊥}

J𝜏1 ∨ 𝜏2Kfld
𝜂 = J𝜏1Kfld

𝜂 ∪ J𝜏2Kfld
𝜂

J¬𝜏Kfld
𝜂 = (ED ∪ {⊥}) ∖ J𝜏Kfld

𝜂

Notice that the induction used in the definition is well-founded thanks to the contractivity

condition in the definition of types and the fact that field-types are inductively defined.

The extensional interpretation is defined with respect to some domain D and interpretation J.K,
and maps types into a domain ED that contains D, constants C to interpret basic types, sets of

binary relations P(D × DΩ) to interpret function types, and quasi constant functions L _ D⊥ to

interpret record types. The fact that functions are binary relations that can yield a distinguished

element Ω (which, intuitively, represents a type error) is a standard technique of semantic subtyping

to avoid 1 → 1 to be a supertype of all function types: since it does not play any specific role in

our work we will not further comment on it (see [20] for a detailed explanation or Castagna [5,

Section 3.2] for a shorter one).

The definitions for the extensional interpretation given on the right-hand side in Definition A.2

are the same as those by Castagna and Xu [12]. They state that the empty type is interpreted as

the empty set, the interpretation of the type variables is given by 𝜂, that unions and negations are

interpreted as set-theoretic unions and complements, and that functions types are interpreted as

sets of binary relations whose output is in the codomain if the input is in the domain.

The novelty of our definition is the interpretation of record types given on the left-hand side.

There are two cases. The easy case is when the tail of the record type is either 𝜖 or ..: in that case

31

the interpretation of the record type is the set of all quasi constant functions in L _ P(D⊥) that
map a label ℓ into an element of the interpretation of R(ℓ) (recall that for ℓ ∉ lab(R), R(ℓ) is ⊥ for

tail(R) = 𝜖 and 1 ∨ ⊥ for tail(R) = ..). If instead tail(R) is a row variable 𝜌 , then L is partitioned in

two, the sets lab(R) and—by well-kindedness—def (𝜌), and the interpretation of R will be the set
of quasi-constant functions in L _ D⊥ obtained by unioning two partial functions: a function

in ⊲
∏

ℓ∈lab(R)JR(ℓ)Kfld
𝜂 for the lab(R) labels of L, and a function in 𝜂 (𝜌) for the remaining labels of

L. There is a caveat: fields can map labels both into values and ⊥. Therefore, the interpretation
of field-types must be slightly different from that of types, since it must map ⊥ into {⊥} and the

negation of a field-type is the complement with respect to D⊥, rather than D: the J.Kfld
does just

that.

Given a domain D and a set-theoretic interpretation of the types into this domain, they form a

model if the interpretation and the associated extensional interpretation have the same zeros:

Definition A.3 (Model). Let D be a domain and J·K : T → H → P(D). The pair (D, J·K) is a
model if and only, if for all 𝑡 ∈ T and 𝜂 ∈ H , J𝑡K𝜂 = ∅ ⇐⇒ E(𝑡)𝜂 = ∅.

Every model induces a subtyping relation on types
13
:

Definition A.4 (Subtyping). If (D, J·K) is a model, then it induces a subtyping relation defined

as follows:

𝑡1 ≤ 𝑡2 ⇐⇒def ∀𝜂.J𝑡1K𝜂 ⊆ J𝑡2K𝜂

As explained by Frisch [18, Section 2.6], the interest of defining of a model is that we can work

with the interpretation of the model “as if ” the interpretation of the type constructors (in particular,

the function type constructor) were defined as their extensional interpretation. So when deducing

the properties for the subtyping relation of a model—and just for the subtyping relation—we can

assume that P(J𝑡1K𝜂 × J𝑡2K𝜂), even if this is impossible for cardinality reasons.

Definition A.3 specifies which characteristics a model must have to induce a subtyping relation

(that behaves “as if ”), but it does not define any particular model nor, thus, any particular subtyping

relation. In what follows we define a concrete interpretation domainD (whose elements are defined

by induction) and two specific interpretations, and prove that they satisfy the conditions to be

models, since they both have the same zeros as the extensional interpretation (of one of them). This

yields two equivalent definitions of a concrete subtyping relation we are going to use in the rest of

this presentation. We will define:

• An interpretation J𝑡Kq

𝜂 parametrized by an assignment 𝜂, for which subtyping 𝑡1 ≤q 𝑡2 is

defined as ∀𝜂.J𝑡1Kq

𝜂 ⊆ J𝑡2K
q

𝜂 ; (the index 𝑞 stands for quantified, since subtyping is quantified

on all variable interpretations);

• An interpretation of types directly into sets J𝑡K, that avoids quantification over 𝜂, and for

which subtyping 𝑡1 ≤ 𝑡2 is defined directly as J𝑡1K ⊆ J𝑡2K (notice the absence of a variable
interpretation argument 𝜂).

The interpretation of types is mutually recursive with interpretations of rows and field-types.

Both of these will also give rise to subtyping relations. We will use the same notation ≤ for the

relations in T × T , T⊥ × T⊥ and R × R.
This interpretation in Definition 2.5 induces a subtyping relation that it is easy to work with,

since it got rid of the interpretation 𝜂 for the variables. We can consider the interpretation J·K :

T → P(D) as a function in T → H → P(D) that is constant on its second argument: if we

apply Definition A.4 to it, then the subtyping relation is defined as simply as 𝑠 ≤ 𝑡 ⇐⇒def J𝑠K ⊆ J𝑡K.

13
Actually, a model must be convex: see Castagna and Xu [12]. We omit this detail since it is not relevant to our presentation.

32 Giuseppe Castagna and Loïc Peyrot

But getting rid of 𝜂 makes it difficult to prove that this interpretation is a model and, thus, that

when considering the properties of this subtyping relation, we can work “as if” the interpretation

of type constructors were as in the extensional interpretation. To overcome this difficulty we define

a second interpretation, on the same domain, but this interpretation disregards the indexes of the

elements and uses an assignment 𝜂 to interpret the variables.

Definition A.5 (Parametrized intepretation of types and rows). We define a ternary

predicate (𝐷 : 𝑇)q

𝜂 (“the element 𝐷 belongs to 𝑇 under assignment 𝜂”), by induction on the pair (𝐷,𝑇)
ordered lexicographically. The only differences with the predicate (𝐷 : 𝑇) (apart from recursive calls to

the appropriate predicate), are:

(𝑑 : 𝛼)q

𝜂 = 𝑑 ∈ 𝜂 (𝛼)
(𝛿 : 𝜃)q

𝜂 = 𝛿 ∈ 𝜂 (𝜃)
(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1

, _ = ⊥∅ |⟩𝑉𝐿2
: 𝑟)q

𝜂 = (∀ℓ ∈ 𝐿1 .(𝛿ℓ : 𝑟 (ℓ))q

𝜂) and (∀ℓ ∈ def (𝑟) ∖ 𝐿1 .(⊥∅
: 𝑟 (ℓ))q

𝜂)
and tail(𝑟) = 𝜌 ⇒ ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1∩def (𝜌) , _ = ⊥∅ |⟩𝑉L∖ def (𝜌) ∈ 𝜂 (𝜌)

We define the interpretations J·Kq

𝜂 , J·K
qfld

𝜂 and J·Kqrow

𝜂 as expected.

While the interpretation of type and field variables is straightforwardly given by 𝜂, the interpre-

tation of row variables is less evident. The first line of the interpretation of a row is the same as

in Definition 2.5: in both definitions this line deals with the case when the tail of 𝑟 is not a row

variable. The second line covers the case for tail(𝑟) = 𝜌 : it checks that ¯̄𝑑 ∈ 𝜂 (𝜌), where ¯̄𝑑 is obtained

by restricting the quasi-constant function on the left to the definition space of 𝜌 .

Our goal is to prove that both interpretations give a model of types. Formally, this corresponds to

proving the following equivalences: Let E(·) be the extensional interpretation of J.Kq
. For all 𝑡 ∈ T :

(∀𝜂.E(𝑡)𝜂 = ∅) ⇐⇒ (∀𝜂.J𝑡Kq

𝜂 = ∅) ⇐⇒ J𝑡K = ∅ (5)

The leftmost “iff” proves that (D, J.Kq) is a model, while the rightmost one proves that the subtyping

relation induced by J.K is the same as the one induced by the model J.Kq
(since ∀𝜂.J𝑠Kq

𝜂 ⊆ J𝑡Kq

𝜂 ⇐⇒
∀𝜂.J𝑠Kq

𝜂 ∩ (D∖J𝑡Kq

𝜂) = ∅ ⇐⇒ ∀𝜂.J𝑠∧¬𝑡Kq

𝜂 = ∅ ⇐⇒ J𝑠∧¬𝑡K = ∅ ⇐⇒ J𝑠K ⊆ J𝑡K).
For the first equivalence, we prove the following, more precise, statement.

Lemma A.1. For all type 𝑡 , for all 𝜂,

J𝑡Kq

𝜂 = ∅ ⇐⇒ E(𝑡)𝜂 = ∅

Proof. For all 𝑑 , we show (𝑑 : 𝑡)q

𝜂 ⇐⇒ 𝑑 ∈ E(𝑡)𝜂 by induction on 𝑡 in both directions. This

induction is well-founded because the cases for type constructors do not use induction, E(𝑡)𝜂 is

defined on top of J𝑡Kq

𝜂 , and the number of type connectives is finite by regularity of the types.

We start with the left-to-right implication and detail the case 𝑡 = R. By hypothesis there is

¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ such that (Rec(¯̄𝑑)𝑉 ′
: R)q

𝜂 . By hypothesis, ∀ℓ ∈ 𝐿.(𝛿ℓ : R(ℓ))q

𝜂 , so

𝛿ℓ ∈ JR(ℓ)Kqfld

𝜂 , and ∀ℓ ∈ L ∖ 𝐿.(⊥∅
: R(ℓ))q

𝜂 , so ⊥∅ ∈ JR(ℓ)Kqfld

𝜂 . It is easy to see that this implies

respectively 𝛿ℓ ∈ JR(ℓ)Kfld
𝜂 and ⊥∅ ∈ JR(ℓ)Kfld

𝜂 . Moreover, if tail(𝜌) = 𝜌 , then ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∩def (𝜌) , _ =

⊥∅ |⟩𝑉L∖ def (𝜌) ∈ 𝜂 (𝜌). So ¯̄𝑑 ∈ E𝜂 (R).
Now, for the right-to-left implication. Let ¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ ∈ E𝜂 (R). For all ℓ ∈ lab(R),

we have by hypothesis 𝛿 ∈ JR(ℓ)Kfld
, which implies (𝛿 : R(ℓ))qfld

𝜂 . Let ℓ ∉ lab(R). If ℓ ∈ 𝐿1, then

(𝛿ℓ : R(ℓ))q

𝜂 holds. If ℓ ∉ 𝐿1: if tail(R) ∈ V , by definition R(ℓ) = 1 ∨ ⊥, and if tail(R) ∉ V ,

R(ℓ) = 1 ∨ ⊥, or R(ℓ) = ⊥. In any case, (⊥∅
: R(ℓ))q

𝜂 holds. Finally, if tail(R) = 𝜌 ∈ V , then

⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∩def (𝜌) , _ = ⊥∅ |⟩𝑉L∖ def (𝜌) ∈ 𝜂 (𝜌). □

33

We have thus shown that the subtyping relation generated by J·Kq
has the expected properties

described by E(·). In particular, it is a set-theoretic model because type operators are interpreted as

set operators.

Since it will be easier to work directly with interpretations as sets rather than to quantify over 𝜂,

we now show that the subtyping relation generated by J·K is equivalent to the parametrized one.

We show that equivalence not only on types, but also on field-types and rows. The main element of

the proof is the canonical assignment 𝜂, defined as

𝜂 (𝛼) = {𝑑 ∈ D | 𝛼 ∈ tag(𝑑)} (6)

𝜂 (𝜃) = {𝛿 ∈ D⊥ | 𝜃 ∈ tag(𝛿)} (7)

𝜂 (𝜌) = { ¯̄𝑑 ∈ Drow | def (¯̄𝑑) = def (𝜌) and 𝜌 ∈ tag(¯̄𝑑)} (8)

Lemma A.2. For every 𝑇 ∈ T⊥ ∪ R, J𝑇 K = J𝑇 Kq

𝜂
.

Proof. For any 𝐷 and 𝑇 we prove that (𝐷 : 𝑇) ⇐⇒ (𝐷 : 𝑇)q

𝜂
by induction on (𝐷,𝑇).

The only interesting case is when 𝑇 = 𝑟 and 𝐷 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2
. For all ℓ ∈ 𝐿1

we have (𝛿ℓ : 𝑟 (ℓ)) ⇐⇒ (𝛿ℓ : 𝑟 (ℓ))q

𝜂
by induction hypothesis. Let ℓ ∉ 𝐿1. We show that

(⊥∅
: 𝑟 (ℓ)) ⇐⇒ (⊥∅

: 𝑟 (ℓ))q

𝜂 by induction on 𝑟 (ℓ). This induction is well-founded : for

𝑟 (ℓ) = ⊥, both propositions are true and they are false for any other type constructor (in particular

𝑟 (ℓ) = 𝜃). The inductive cases on type operators are straightforward. If tail(𝑟) ∉ V , we are

done. Otherwise, let tail(𝑟) = 𝜌 . On the left side, we have 𝜌 ∈ 𝑉 . On the right side, we have

⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∩def (𝜌) , _ = ⊥∅ |⟩𝑉L∖ def (𝜌) ∈ 𝜂 (𝜌). By definition of 𝜂 (𝜌), this is equivalent to 𝜌 ∈ 𝑉 . □

Lemma A.3. Let𝑊 ∈ Pfin (V) and 𝑇𝑊 = {𝑇 ∈ T⊥ ∪ R | vars(𝑇) ⊆𝑊 }. For every 𝑇 ∈ 𝑇𝑊 ,

J𝑇 Kq

𝜂
= ∅ ⇐⇒ ∀𝜂.J𝑇 Kq

𝜂 = ∅.

Proof. The right-to-left implication is trivial, by instantiation of the quantifier by 𝜂′. The left-
to-right implication is by contraposition: for an arbitrary𝑊 and𝑇𝑊 , we prove ∀𝑇 ∈ 𝑇𝑊 .(∃𝜂.J𝑇 Kq

𝜂 ≠

∅ =⇒ J𝑇 Kq

𝜂
≠ ∅). For this, we define the functions 𝐹𝜂

𝑊
: D⊥ ∪ Drow ∪ {Ω} → D⊥ ∪ Drow ∪ {Ω}

as 𝐹
𝜂

𝑊
(Ω) = Ω and:

𝐹
𝜂

𝑊
(𝐷) =



𝑐𝑉̂ (𝐷)
if 𝐷 = 𝑐;

{(𝐹𝜂
𝑊
(𝑑1), 𝐹𝜂𝑊 (𝜕1)), . . . , (𝐹𝜂𝑊 (𝑑𝑛), 𝐹𝜂𝑊 (𝜕𝑛))}𝑉̂ (𝐷)

if 𝐷 = {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝑉 ;

Rec(¯̄𝑑)𝑉̂ (𝐷)
if 𝐷 = Rec(¯̄𝑑)𝑉 ;

⊥𝑉̂ (𝐷)
if 𝐷 = ⊥𝑉

;

⟨|(ℓ = 𝐹
𝜂

𝑊
(𝛿ℓ))ℓ∈𝐿1

, _ = ⊥∅ |⟩𝑉̂ (𝐷)
𝐿2

if 𝐷 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2

where𝑉 (𝐷) = {𝛼 ∈𝑊 | 𝐷 ∈ 𝜂 (𝛼)} ∪ {𝜃 ∈𝑊 | 𝐷 ∈ 𝜂 (𝜃)} ∪ {𝜌 ∈𝑊 | 𝐷 ∈ 𝜂 (𝜌)}. The finiteness of
𝑊 ensures that 𝑉 is finite. We prove the following statement, for an arbitrary 𝜂 and by induction

on (𝐷,𝑇) ordered lexicographically:

∀𝑇 ∈ 𝑇𝑊 .∀𝐷 ∈ D⊥ ∪ R .(𝐷 : 𝑇)q

𝜂 =⇒ (𝐹𝜂
𝑊
(𝐷) : 𝑇)q

𝜂

• 𝑇 = 𝛼 . We have (𝐹𝜂
𝑊
(𝐷) : 𝛼)q

𝜂
⇐⇒ 𝛼 ∈ tag(𝐹𝜂

𝑊
(𝐷)) ⇐⇒ 𝛼 ∈ 𝑉 (𝐷) ⇐⇒ 𝐷 ∈

𝜂 (𝛼) and 𝛼 ∈𝑊 ⇐⇒ (𝐷 : 𝛼)q

𝜂 . The last equivalence holds by the hypothesis that 𝑇 ∈ 𝑇𝑊 .

The case for 𝑇 = 𝜃 is similar.

• 𝑇 = ⊥ and 𝐷 = ⊥𝑉
. (𝐹𝜂

𝑊
(⊥𝑉) : ⊥)q

𝜂
= (⊥𝑉̂ (𝐷)

: ⊥)q

𝜂 holds.

34 Giuseppe Castagna and Loïc Peyrot

• 𝑇 = R and 𝐷 = Rec(¯̄𝑑)𝑉 . By hypothesis, we have (¯̄𝑑 : row(R))q

𝜂 . By induction, this implies

(𝐹𝜂
𝑊
(¯̄𝑑) : row(R))q

𝜂
and thus (𝐹𝜂

𝑊
(𝐷) : R)q

𝜂
.

• 𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2
and 𝑡 = 𝑟 . The statement holds for labels in and outside of 𝐿1

by induction hypothesis. If tail(𝑟) ∉ V , we are done. Let tail(𝑟) = 𝜌 . By hypothesis, 𝜌 ∈𝑊 .

By definition of the predicate, there is ¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1∩def (𝜌) , _ = ⊥∅ |⟩𝑉L∖ def (𝜌) ∈ 𝜂 (𝜌). As
in the case for type variables, we show: (𝐹𝜂

𝑊
(¯̄𝑑) : 𝜌)q

𝜂
⇐⇒ 𝜌 ∈ tag(𝐹𝜂

𝑊
(¯̄𝑑)) ⇐⇒ 𝜌 ∈

𝑉 (¯̄𝑑) ⇐⇒ 𝐷 ∈ 𝜂 (𝜌) and 𝜌 ∈𝑊 .

• Other cases can be found in [35, Lemma 2.8] or are direct by falsity of the premise. □

Lemma A.4. For all 𝑡1 and 𝑡2, 𝑡1 ≤q 𝑡2 ⇐⇒ 𝑡1 ≤ 𝑡2.

Proof. By definition, Lemma A.3 and Lemma A.2, we show:

𝑡1 ≤q 𝑡2 ⇐⇒ ∀𝜂.J𝑡1∖𝑡2Kq

𝜂 = ∅ ⇐⇒ J𝑡1∖𝑡2K
q

𝜂
= ∅ ⇐⇒ J𝑡1∖𝑡2K = ∅ ⇐⇒ 𝑡1 ≤ 𝑡2 □

A.3 Subtyping relation
Lemma A.5. Let 𝑟 be an atomic row of definition space L ∖𝐿𝑟 and 𝐿 such that lab(𝑟) ⊆ 𝐿 ⊆ def (𝑟).

Then,

𝑟 ≃ ⟨⟨⟨(ℓ = 𝑟 (ℓ)|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′||| tail(𝑟)⟩⟩⟩𝐿𝑟 ≃
∧
ℓ∈𝐿

⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′||| tail(𝑟)⟩⟩⟩𝐿𝑟

where 𝐿′ = lab(𝑟) if tail(𝑟) ∈ V and 𝐿′ = 𝐿 otherwise.

Proof. Straightforward by the definition of the models. □

The function Φ we define in Section 2.3 to decide subtyping crucially relies on the formula

we give in Lemma A.6. It gives a characterization of the emptiness of
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 ¬𝑟 . While

function Φ is stated on records, we prefer to state this lemma on rows, as we will refer back

to it in that way for tallying (Section 4.1). The corollary for records follows immediately by

𝑡1 ≤ 𝑡2 ⇐⇒ row(𝑡1) ≤ row(𝑡2) when 𝑡1, 𝑡2 ≤ {{{|||..}}}. This lemma generalizes to rows and

polymorphic record types the decomposition of monomorphic ones defined by Frisch [18]. The

main difference is the addition the third condition on line (11), that checks whether a row variable

appears both in the positive and in the negative fragment.

Lemma A.6. Let 𝑃 and 𝑁 be sets of atomic row types 𝑟 each of definition space L∖𝐿𝑟 . Let 𝐿 be a

finite set of labels such that

⋃
𝑟 ∈𝑃∪𝑁 lab(𝑟) ⊆ 𝐿 ⊆ L∖𝐿𝑟 . Let 𝑃V = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} and likewise

for 𝑁V . For every 𝑟 , we define its default type def (𝑟) as: def (𝑟) = ⊥ if 𝑟 is closed, and def (𝑟) = 1 ∨⊥
otherwise. The relation

∧
𝑟 ∈𝑃 𝑟 ≤ ∨

𝑟 ∈𝑁 𝑟 holds iff ∀𝜄 : 𝑁 → 𝐿 ∪ { },

©­«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ) ≤
∨

𝑟 ∈𝜄−1 (ℓ)
𝑟 (ℓ)ª®¬ (9)

or

(
∃𝑟◦ ∈ 𝜄−1 (_) ∖ 𝑁V .(

∧
𝑟 ∈𝑃

def (𝑟) ≤ def (𝑟◦))
)

(10)

or

(
∃𝑟◦ ∈ 𝜄−1 (_) ∩ 𝑁V .∃𝑟 ∈ 𝑃V . tail(𝑟◦) = tail(𝑟)

)
(11)

Proof. In the following, we let 𝐿𝑖 = lab(𝑟𝑖) and 𝜍𝑖 = tail(𝑟𝑖). Using Lemma A.5, we decompose

the conjunction into:∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧
𝑟𝑛∈𝑁

(∨ℓ∈𝐿⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟 ∨ ¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟) (12)

35

Where 𝐿′𝑖 = 𝐿𝑖 if 𝑟𝑖 ∈ V and 𝐿′𝑖 = 𝐿 otherwise. We can distribute the intersection of the elements of

𝑁 on the right of (12) over the unions in the second brackets. We obtain a union of intersections of,

each time, |𝑁 | elements, where each intersection is a possible combination of the individual rows

present in the second line. Each combination is described by a function 𝜄 : 𝑁 → 𝐿 ∪ {_}, where
𝜄 (𝑟𝑛) = ℓ means that the element ⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟 is present in the combination given by 𝜄, while

𝜄 (𝑟𝑛) = _ means that the element ¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 is present in the combination. For each 𝑟𝑛 ∈ 𝑁 , let us

write 𝑟𝑛ℓ = ⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟 and 𝑟𝑛− = ¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 . Therefore the row in (12) is equivalent to:∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∨

𝜄:𝑁→𝐿∪{_}
(
∧
𝑟𝑛∈𝑁

𝑟𝑛
𝜄 (𝑟𝑛)) (13)

By distributing the intersection over the union we obtain∨
𝜄:𝑁→𝐿∪{_}

©­«
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧
𝑟𝑛∈𝑁

𝑟𝑛
𝜄 (𝑟𝑛)

ª®¬ (14)

A union is empty if and only if each summand of the union is empty. Therefore the row above is

empty if and only if for all 𝜄 : 𝑁 → 𝐿 ∪ {_}, the following is empty:∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧
𝑟𝑛∈𝑁

𝑟𝑛
𝜄 (𝑟𝑛)

≃
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

ℓ∈𝐿∪{_}

∧
𝑟𝑛∈𝜄−1 (ℓ)

𝑟𝑛ℓ

≃
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

𝑟𝑛∈𝜄−1 (_)
𝑟𝑛− ∧

∧
ℓ∈𝐿

∧
𝑟𝑛∈𝜄−1 (ℓ)

𝑟𝑛ℓ

=
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

𝑟𝑛∈𝜄−1 (_)
¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 ∧

∧
ℓ∈𝐿

∧
𝑟𝑛∈𝜄−1 (ℓ)

⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟

≃
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

𝑟𝑛∈𝜄−1 (_)
¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨(ℓ = ∧

𝑟𝑛∈𝜄−1 (ℓ)¬𝑟𝑛 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟

≃ ⟨⟨⟨(ℓ =
∧
𝑟𝑝 ∈𝑃

𝑟 (ℓ) ∧
∧

𝑟𝑛∈𝜄−1 (ℓ)
¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧

∧
𝑟𝑝 ∈𝑃

⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑛∈𝜄−1 (_)
¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟

≃ ⟨⟨⟨(ℓ =
∧
𝑟𝑝 ∈𝑃

𝑟𝑝 (ℓ) ∧
∧

𝑟𝑛∈𝜄−1 (ℓ)
¬𝑟𝑛 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟

∧
∧

𝑟𝑝 ∈𝑃V̄

⟨⟨⟨𝐿|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑛∈𝜄−1 (_)∩𝑁V̄

¬⟨⟨⟨𝐿|||𝜍𝑛⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑝 ∈𝑃V
⟨⟨⟨𝐿𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧

∧
𝑟𝑛∈𝜄−1 (_)∩𝑁V

¬⟨⟨⟨𝐿𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟

Let:

• 𝑟 1
𝜄 = ⟨⟨⟨(ℓ = ∧

𝑟𝑝 ∈𝑃 𝑟𝑝 (ℓ) ∧
∧

𝑟𝑛∈𝜄−1 (ℓ) ¬𝑟𝑛 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ;
• 𝑟 2

𝜄 =
∧

𝑟𝑝 ∈𝑃V̄ ⟨⟨⟨𝐿|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑛∈𝜄−1 (_)∩𝑁V̄
¬⟨⟨⟨𝐿|||𝜍𝑛⟩⟩⟩𝐿𝑟 ;

• 𝑟 3
𝜄 =

∧
𝑟𝑝 ∈𝑃V ⟨⟨⟨𝐿𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧

∧
𝑟𝑛∈𝜄−1 (_)∩𝑁V ¬⟨⟨⟨𝐿𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 .

We can see that 𝑟 1
𝜄 is empty iff condition (9) holds, 𝑟 2

𝜄 is empty iff condition (10) does (in the case

where 𝑃V̄ is empty, notice that the intersection is equal to 1∨⊥), and 𝑟 3
𝜄 is empty iff condition (11)

holds. We directly obtain that if one of the conditions holds, then the row 𝑟𝜄 is empty. We now show

that if 𝑟𝜄 is empty, then there is 1 ≤ 𝑖 ≤ 3 such that 𝑟 𝑖𝜄 is empty.

For this, we suppose that none of the subtypes is empty and build an element ¯̄𝑑 ∈ J𝑟𝜄Krow
.

(1) Since 𝑟 1
𝜄 is not empty, for all ℓ ∈ 𝐿 there is an element𝛿1

ℓ ∈ J∧𝑟𝑝 ∈𝑃 𝑟𝑝 (ℓ)∧
∧

𝑟𝑛∈𝜄−1 (ℓ) ¬𝑟𝑛 (ℓ)Kfld
.

36 Giuseppe Castagna and Loïc Peyrot

(2) Since 𝑟 2
𝜄 is not empty, there is an element ⟨|(ℓ = 𝛿2

ℓ)ℓ∈𝐿2
, _ = ⊥∅ |⟩𝑉2 ∈ J𝑟 2

𝜄 Krow
.

(3) Since 𝑟 3
𝜄 is not empty, there is an element ¯̄𝑑3 ∈ J𝑟 3

𝜄 Krow
. However, the restrictions on the set

of elements in J𝑟 3
𝜄 Krow

only concern their tags so that any element ¯̄𝑑 ′ with tag(¯̄𝑑 ′) = tag(¯̄𝑑3)
and def (¯̄𝑑 ′) = def (¯̄𝑑3) is in J𝑟3Krow

. Let 𝑉3 = tag(¯̄𝑑3).
We build the element ⟨|(ℓ = 𝛿1

ℓ)ℓ∈𝐿, (ℓ = 𝛿2

ℓ)ℓ∈𝐿2∖𝐿, _ = ⊥∅ |⟩𝑉3 . This element belongs to J𝑟𝜄Krow
,

which is a contradiction. □

A.4 Subtyping algorithm
Naively implementing the above subtyping formula requires backtracking. Indeed, for all map

𝜄 : 𝑁 → 𝐿 ∪ {_}, we have to check if subtyping holds on one of the labels ℓ ∈ 𝐿. On that recursive

call, since the types are coinductive, we need to assume that the type we are checking is empty. So,

we are collecting a series of emptiness assumptions along the call stack. If later a contradiction

arises, we need to backtrack to the point where the wrong assumption was introduced, to then take

another branch, in our case, check subtyping for another ℓ . Our function Φ avoids backtracking to

compute subtyping more efficiently, following [18, Chapter 7].

Lemma 2.1 (Soundness and completeness of Φ). Let R◦ be a monomorphic record type,𝑉𝑝 ⊂ V𝑟

finite and 𝑁 a finite set of (polymorphic) atomic record types. Then,

R◦ ∧
∧
𝜌∈𝑉𝑝

{{{L∖ def (𝜌)|||𝜌}}} ≤
∨
R∈𝑁

R ⇐⇒ R◦ ≤ 0 or Φ(R◦,𝑉𝑝 , 𝑁).

Proof. If R◦ ≃ 0, the result holds. Otherwise, we prove this by induction on the cardinality of

𝑁 . In the following, given a variable 𝜌 ∈ 𝑉𝑝 , let us write 𝐿𝜌 for L ∖ def (𝜌).
If 𝑁 = ∅, the union

∨
R∈𝑁 R is empty. So the statement holds if and only if R◦ ≃ 0, since

Φ(R◦,𝑉𝑝 , ∅) = false, and
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} is never empty.

Now, let 𝑁 = 𝑁 ′ ∪ {R}. Let 𝐿 = lab(R◦). R can be decomposed as
∧

ℓ∈𝐿 {{{ℓ = R(ℓ)|||..}}} ∧ {{{𝐿′|||𝜍}}},
where 𝐿′ = 𝐿 if 𝜍 ∉ V and 𝐿′ = lab(R) otherwise. The left-hand side of the statement is thus equiv-

alent to R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}}∧ (∨ℓ∈𝐿 {{{ℓ = ¬R(ℓ)|||..}}}∨¬{{{𝐿′|||𝜍}}}) ≤ ∨
𝑛∈𝑁 ′ R𝑛 . We can distribute the

intersection over the unions. We must then prove an equivalence between (R◦ ≃ ∅ or Φ(R◦,𝑉𝑝 , 𝑁))
and:

∀ℓ ∈ 𝐿.R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}} ∧
∧
𝜌∈𝑉𝑝

{{{𝐿𝜌|||𝜌}}} ≤
∨
𝑛∈𝑁 ′

R𝑛 (15)

and R◦ ∧
∧
𝜌∈𝑉𝑝

{{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤
∨
𝑛∈𝑁 ′

R𝑛 (16)

We now have to verify that each of these statements are equivalent to Φ(R◦,𝑉𝑝 , 𝑁).
We start with (15). Let ℓ ∈ 𝐿 and let Rℓ◦ = R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}}. By the induction hypothesis,

we have that Rℓ◦ ∧ ∧
𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ∨

𝑛∈𝑁 ′ R𝑛 ⇐⇒ Rℓ◦ ≃ 0 or Φ(Rℓ◦,𝑉𝑝 , 𝑁 ′). Since R◦ ; 0,
Rℓ◦ ≃ 0 ⇐⇒ R◦ (ℓ) ≤ R(ℓ).
We continue with (16). We define Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) as (𝜍 = .. or 𝜍 = tail(R◦) or 𝜍 ∈ 𝑉𝑝). We show

that (16) is equivalent to: Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) or (¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′)). It is easy to

show using Lemma A.6 that R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} is empty iff Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) holds. In
particular, the first condition of Lemma A.6 never holds since 𝐿′ = 𝐿 when 𝜍 ∉ V . Then, there are

two cases.

(1) R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤ 0. This means that Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) holds, and also that

R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤ ∨
𝑛∈𝑁 ′ R𝑛 .

37

(2) R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≰ 0. This means that Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) does not hold. Thus,
there are two possible cases: either (a) tail(R◦) = 𝜖 and 𝜍 = .., or (b) 𝜍 = 𝜌 ∉ 𝑉𝑝 . We show that

R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤ ∨
R∈𝑁 ′ R is equivalent to R◦ ∧

∧
𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ∨

R∈𝑁 ′ R.

From this, we use the induction hypothesis to obtain the equivalence with Φ(R◦,𝑉𝑝 , 𝑁 ′)
(since R◦ ; 0).
The right-to-left implication of the equivalence is trivial. For the converse implication, we

use Lemma A.6 on R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ¬{{{𝐿′|||𝜍}}} ∨∨
R∈𝑁 ′ R. By the hypothesis (a) and (b)

in the corresponding cases, the second and third conditions of that lemma never hold. Thus,

we have by hypothesis that ∀𝜄 : 𝑁 ′ ∪ {{{𝐿′|||𝜍}}} → 𝐿 ∪ {_}.∃ℓ ∈ 𝐿.R◦ (ℓ) ≤
∨

R∈𝜄−1 (ℓ) R(ℓ). The
implication holds because ∀ℓ ∈ 𝐿.{{{𝐿′|||𝜍}}}(ℓ) = 1 ∨ ⊥.

Summing up, we have proved by induction that if R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} is not empty, checking

that it is a subtype of
∨

𝑛∈𝑁 R𝑛 is equivalent to checking both these two propositions:

(1) ∀ℓ ∈ 𝐿 . ((R◦ (ℓ) ≤ R(ℓ)) or Φ(R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}},𝑉𝑝 , 𝑁 ′))
(2) (Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}})) or (¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′))

To conclude, notice that if (¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′)) holds, then by induction hypoth-

esis we have R◦ ∧𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ∨
𝑛∈𝑁 ′ R𝑛 and, a fortiori, R◦ ∧

∧
𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ R ∨∨

𝑛∈𝑁 ′ R𝑛 . It is

therefore useless to check the other proposition (1) above, which thus must be checked only when

Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) holds. This yields

(¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′))
or (Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and (∀ℓ ∈ 𝐿 . (R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}},𝑉𝑝 , 𝑁 ′)))

which corresponds to the second clause of the definition of Φ. □

Proposition 2.2. The subtyping algorithm terminates. As a corollary, subtyping is decidable.

Proof. The number of disjoint types in a DNF is finite. Also, the preprocessing of a conjunction

of record types can be defined for all such types and computed in a finite number of steps. Finally, in

functionΦ, the number of elements in the third parameter decreases at each recursive call. Moreover,

the subtyping relation on non-record types is decidable [12], from which we get decidability of the

subtyping relation on field-types. □

A.5 Substitutions
Lemma A.7. Let J·K𝒒𝜂 be the appropriate interpretation among J·Kq

𝜂 , J·K
qfld

𝜂 and J·Kqrow

𝜂 . For every 𝑇 ,

𝜎 and 𝜂, if 𝜂′ is defined by 𝜂′ (𝑋) = J𝜎 (𝑋)K𝒒𝜂 , then J𝑇𝜎K
𝒒
𝜂 = J𝑇 K𝒒

𝜂′ .

Proof. For an arbitrary 𝜎 and 𝜂, we show that

∀𝑇 ∈ T⊥ ∪ R .∀𝐷 ∈ D⊥ ∪ Drow.(𝐷 : 𝑇𝜎)q

𝜂 ⇐⇒ (𝐷 : 𝑇)q

𝜂′

by induction on (𝐷,𝑇) and with 𝜂′ defined as before. We detail two cases, the others are straight-

forward.

• 𝑇 = 𝛼 and 𝐷 = 𝑑 . On the left, we have (𝑑 : 𝛼𝜎)q

𝜂 = (𝑑 : 𝜎 (𝛼))q

𝜂 and on the right (𝑑 : 𝛼)q

𝜂′ =

𝑑 ∈ 𝜂′ (𝛼) = 𝑑 ∈ J𝜎 (𝛼)Kq

𝜂 = (𝑑 : 𝜎 (𝛼))q
.

• 𝑇 = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜌}}} and 𝐷 = Rec ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿𝑑 , _ = ⊥∅ |⟩𝑉 . The case for rows is similar. We

have 𝑇𝜎 = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||..}}} ∧ {{{𝐿|||𝜎 (𝜌)}}}. Let ¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿𝑑∖𝐿, _ = ⊥∅ |⟩𝑉
𝐿
. On the left, we

have:

(𝐷 : 𝑇𝜎)q

𝜂 = (∀ℓ ∈ 𝐿𝑑 .(𝛿ℓ : 𝑇 (ℓ)𝜎)q

𝜂) and (∀ℓ ∉ 𝐿𝑑 .(⊥∅
: 𝑇 (ℓ)𝜎)q

𝜂 and (¯̄𝑑 : 𝜎 (𝜌))q

𝜂

38 Giuseppe Castagna and Loïc Peyrot

By induction hypothesis, the first two conditions are equivalent to ∀ℓ ∈ 𝐿𝑑 .(𝛿ℓ : 𝑇 (ℓ))q

𝜂′ and

∀ℓ ∉ 𝐿𝑑 .(⊥∅
: 𝑇 (ℓ))q

𝜂′ . By the same reasoning as in the previous case, the last condition is

equivalent to (¯̄𝑑 : 𝜌)q

𝜂′ , which altogether give (𝐷 : 𝑇)q

𝜂′ . □

Proposition 2.3. If 𝑡1 ≤ 𝑡2, then 𝑡1𝜎 ≤ 𝑡2𝜎 for any row substitution 𝜎 .

Proof. By definition, 𝑡1 ≤ 𝑡2 ⇐⇒ J𝑡1∖𝑡2K = ∅. By Lemma A.4, this is equivalent to ∀𝜂.J𝑡1∖𝑡2Kq

𝜂 .

In particular, this holds for 𝜂′ defined as in Lemma A.7, so that J𝑡1∖𝑡2K
q

𝜂′ = ∅. By Lemma A.7, this

implies J(𝑡1∖𝑡2)𝜎Kq

𝜂 = ∅ which means 𝑡1𝜎 ≤ 𝑡2𝜎 . □

B Appendix for language
B.1 Syntax and semantics

Definition B.1 (Top-level variables). The top-level variables of a type (resp. field-type, row) are

defined as tlv(𝑡) = tlv
′ (𝑡) ∩ V𝑡 (resp. tlv(𝜏) = tlv

′ (𝜏) ∩ V𝑓 , tlv(𝑟) = tlv
′ (𝑟) ∩ V𝑟).

tlv
′ (𝛼) = {𝛼}

tlv
′ (𝜃) = {𝜃 }

tlv
′ (⟨⟨⟨ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜌⟩⟩⟩𝐿) = tlv

′ ({{{ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜌}}}) = {𝜌}
tlv

′ (𝑇1 ∨𝑇2) = tlv
′ (𝑇1) ∪ tlv

′ (𝑇2)
tlv

′ (¬𝑇) = tlv
′ (𝑇)

tlv
′ (𝑇) = ∅ otherwise

Definition B.2. Given a type term 𝑇 , we write vars(𝑇) the set of variables occurring in it. The

following equalities hold.

vars(𝛼) = {𝛼} vars(𝑇1 → 𝑇2) = vars(𝑇1) ∪ vars(𝑇2) vars(𝑏) = ∅
vars(𝜃) = {𝜃 } vars(𝑇1 ∨𝑇2) = vars(𝑇1) ∪ vars(𝑇2) vars(⊥) = ∅

vars(⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2) = {𝜍} ∩ V𝑟 vars(¬𝑇) = vars(𝑇) vars(0) = ∅

vars(R) = vars(row(R))

Lemma B.1. If 𝑡1 ≤ 𝑡2 with 𝑡2 ≤ {{{|||..}}} then 𝑡1\ℓ ≤ 𝑡2\ℓ .

Proof. We show that for any 𝑡 ≤ {{{|||..}}}, we have J𝑡\ℓKrow =
⋃

(Rec(¯̄𝑑)𝑉 :𝑡) ¯̄𝑑\ℓ , where ⟨|(ℓ =

𝜏ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ \ℓ = {⟨|(ℓ = 𝜏ℓ)ℓ∈𝐿∖ℓ , _ = ⊥∅ |⟩ (𝑉∖𝑉ℓ)∪𝑉 ′

{ℓ } |𝑉 ′ ⊆ 𝑉ℓ }, where for all ℓ ∈ 𝐿, 𝑉ℓ =
def {𝜌 |

ℓ ∈ dom(𝜌)}.
We start with

⋃
(Rec(¯̄𝑑)𝑉 :𝑡) ¯̄𝑑\ℓ ⊆ J𝑡\ℓKrow

. Let (Rec(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∪{ℓ }, _ = ⊥∅ |⟩𝑉∅)
𝑉0 : 𝑡) and 𝑡

in DNF. Let ¯̄𝑑ℓ = ⟨|(ℓ = 𝜏ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩ (𝑉∖𝑉ℓ)∪𝑉 ′

{ℓ } with 𝑉 ′ ⊆ 𝑉ℓ . The proof is by induction on the

top-level type connectives of 𝑡 .

• 𝑡 = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿′|||𝜌}}}.
– ℓ ∈ 𝐿′ or 𝜍 ∉ V𝑟 . Then 𝑡\ℓ = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿′∖{ℓ }|||𝜍⟩⟩⟩{ℓ } and it is clear that (¯̄𝑑ℓ : 𝑡\ℓ).
– ℓ ∉ 𝐿′ and 𝜍 = 𝜌 ∈ V𝑟 . Then 𝑡\ℓ = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿′|||..⟩⟩⟩{ℓ } . By construction, for each ℓ ∈ 𝐿′,
we have either (𝛿ℓ : 𝑡 (ℓ)) if ℓ ∈ 𝐿, or (⊥∅

: 𝑡 (ℓ)) otherwise. So (¯̄𝑑ℓ : 𝑡\ℓ) since there is
no constraint on the tagged set of variables in the interpretation of 𝑡\ℓ .

• 𝑡 = ¬{{{(ℓ = 𝜏ℓ)ℓ∈𝐿′|||𝜍}}}.
– ℓ ∈ 𝐿′ or 𝜍 ∉ V𝑟 . Without loss of generality, we can suppose ℓ ∈ 𝐿′ even in the second

case. If 𝜏ℓ ≠ 1 ∨ ⊥, then 𝑡\ℓ = ⟨⟨⟨|||..⟩⟩⟩{ℓ } and (¯̄𝑑ℓ : 𝑡\ℓ) is trivial. If 𝜏ℓ = 1 ∨ ⊥, then
𝑡\ℓ = ¬⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿′∖{ℓ }|||𝜍⟩⟩⟩{ℓ } and there is ℓ ′ ≠ ℓ such that (𝛿ℓ : 𝑡 (ℓ)) is false, or
(⊥∅

: 𝑡 (ℓ)) is false. Thus, (¯̄𝑑ℓ : 𝑡\ℓ).
– ℓ ∉ 𝐿′ and 𝜍 = 𝜌 ∈ V𝑟 . Then 𝑡\ℓ = ⟨⟨⟨|||..⟩⟩⟩{ℓ } and (¯̄𝑑ℓ : 𝑡\ℓ) is trivial.

39

• 𝑡 = 𝑡1 ∧ 𝑡2. We have 𝑡\ℓ = 𝑡1\ℓ ∧ 𝑡2\ℓ . By induction hypothesis, (¯̄𝑑\ℓ : 𝑡𝑖\ℓ) for 𝑖 ∈ {1, 2}, so
(¯̄𝑑\ℓ : 𝑡\ℓ).

• 𝑡 = 𝑡1 ∨ 𝑡2. We have 𝑡\ℓ = 𝑡1\ℓ ∨ 𝑡2\ℓ . By induction hypothesis, there is 𝑖 ∈ {1, 2} such that

(¯̄𝑑\ℓ : 𝑡𝑖\ℓ). Thus, (¯̄𝑑\ℓ : 𝑡\ℓ).

Now, we consider J𝑡\ℓKrow ⊆ ⋃
(Rec(¯̄𝑑)𝑉 :𝑡) ¯̄𝑑\ℓ . If 𝑡 ≤ 0, then by definition 𝑡\ℓ ≤ 0. Otherwise, let

(¯̄𝑑ℓ : 𝑡\ℓ) and 𝑡 = ∨
𝑖∈𝐼

∧
R∈𝑃𝑖 R ∧

∧
R∈𝑁𝑖

¬R. For each 𝑖 ∈ 𝐼 , let 𝑃𝑖V = {R ∈ 𝑃𝑖 | tail(R) = 𝜌 and ℓ ∉

def (𝜌)}, similarly for 𝑁 𝑖
V . By the reasoning of Lemma C.4, we have

𝑡 ≃
∨
𝑖∈𝐼

∨
𝑁 ′
𝑖
⊆𝑁𝑖

∨
𝑁 ′
𝑖,V⊆𝑁 ′

𝑖
∩𝑁 𝑖

V

𝑡𝑁 ′
𝑖,V

=
∨
𝑖∈𝐼

∨
𝑁 ′
𝑖
⊆𝑁𝑖

∨
𝑁 ′
𝑖,V⊆𝑁 ′

𝑖
∩𝑁 𝑖

V

(
{{{ℓ =

∧
R∈𝑃𝑖

R(ℓ) ∧
∧

R∈𝑁𝑖∖𝑁
′
𝑖

¬R(ℓ)|||..}}} ∧
∧
R∈𝑃𝑖

{{{ℓ||| row(R)\ℓ}}}

∧
∧

R∈𝑁 ′
𝑖
∖𝑁 ′

𝑖,V

¬{{{ℓ||| row(R)\ℓ}}}
∧
R∈𝑃𝑖

V

{{{ lab(R)||| tail(R)}}} ∧
∧

R∈𝑁 ′
𝑖,V

¬{{{ lab(R)||| tail(R)}}}
)

where row(R)\ℓ is the operation defined on positive atomic row types in Definition C.3. This

operation coincides with R\ℓ on a positive and atomic R. For each 𝑖 and 𝑁 ′
𝑖,V , we have 𝑡𝑁 ′

𝑖,V
\ℓ =∧

R∈𝑃𝑖 {{{ℓ||| row(R)\ℓ}}} ∧ ∧
R∈𝑁 ′

𝑖
∖𝑁 ′

𝑖,V
¬{{{ℓ||| row(R)\ℓ}}}). By hypothesis, there are 𝑖 ∈ 𝐼 and 𝑁 ′

𝑖,V such

that (¯̄𝑑ℓ : 𝑡𝑁 ′
𝑖,V
\ℓ). Let 𝛿ℓ be such that (𝛿ℓ :

∧
R∈𝑃𝑖 R(ℓ) ∧

∧
R∈𝑁 ′

𝑖
¬R(ℓ)). Let𝑉 = (tag(¯̄𝑑ℓ) ∪ {tail(R) |

R ∈ 𝑃𝑖V }) ∖ {tail(R) | R ∈ 𝑁 ′
𝑖,V }. We take ¯̄𝑑 to be ¯̄𝑑ℓ completed by ℓ = 𝛿 and with tag(¯̄𝑑) = 𝑉 and

we have (Rec(¯̄𝑑)𝑉 : 𝑡). Since {tail(R) | R ∈ 𝑃𝑖V } and {tail(R) | R ∈ 𝑁 ′
𝑖,V } are subsets of 𝑉ℓ , we have

¯̄𝑑ℓ ∈ ¯̄𝑑\ℓ .
For the second case to work, we need to show that for all 𝑡 ≤ {{{|||..}}}, 𝑡\ℓ ≃ split(𝑡)\ℓ , where

split(𝑡) is the type obtained by the previous decomposition. First, let 𝑡 =
∧

R∈𝑃 R ∧
∧

R∈𝑁 ¬R. The
proof is by induction on |𝑁 |. Let 𝑃V and 𝑁V be defined as before relative to 𝑃 and 𝑁 .

• 𝑁 = ∅. Then,

split(𝑡) = {{{ℓ =
∧
R∈𝑃

R(ℓ)|||..}}} ∧
∧
R∈𝑃

{{{ℓ||| row(R)\ℓ}}} ∧
∧
R∈𝑃V

{{{ lab(R)||| tail(R)}}}

and split(𝑡)\ℓ = ∧
𝑅∈𝑃 row(R)\ℓ = 𝑡\ℓ .

• 𝑁 = 𝑁0 ∪ {R𝑛 = {{{ℓ = 𝜏|||𝑟}}}} where 𝑟 is an atomic row. By equivalence, this covers all

cases where tail(R𝑛) ∉ V𝑟 and the ones where tail(R𝑛) = 𝜌 and ℓ ∉ def (𝜌). Let 𝑡0 =∧
R∈𝑃 R ∧

∧
R∈𝑁0

¬R, so that 𝑡\ℓ = 𝑡0\ℓ ∧ R𝑛\ℓ . The type 𝑡 is decomposed as follows:

split(𝑡) =
∨

𝑁 ′⊆𝑁0

∨
𝑁 ′
V⊆𝑁 ′∩𝑁V

∨
𝑘∈{0,1}

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧

R∈𝑁∖𝑁 ′
R(ℓ)

∧
𝑘=0

¬𝜏|||..}}}

∧
∧
R∈𝑃

{{{ℓ||| row(R)\ℓ}}} ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬{{{ℓ||| row(R)\ℓ}}}
∧
𝑘=1

¬{{{ℓ|||𝑟}}}

∧
∧
R∈𝑃V

{{{ lab(R)||| tail(R)}}} ∧
∧
R∈𝑁 ′

V

¬{{{ lab(R)||| tail(R)}}}
)

There are two cases.

40 Giuseppe Castagna and Loïc Peyrot

(1) 𝜏 = 1 ∨⊥. Since ¬𝜏 = 0, the disjunction with 𝑘 = 0 is empty, and the DNF of split(𝑡) is
equal to∨

𝑁 ′⊆𝑁0

∨
𝑁 ′
V⊆𝑁 ′∩𝑁V

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧

R∈𝑁∖𝑁 ′
R(ℓ)|||..}}}

∧
∧
R∈𝑃

{{{ℓ||| row(R)\ℓ}}} ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬{{{ℓ||| row(R)\ℓ}}}
)
∧ ¬{{{ℓ|||𝑟}}}

which is equal to split(𝑡0) ∧ ¬{{{ℓ|||𝑟}}}. So by induction hypothesis and since R𝑛\ℓ = ¬𝑟 ,

split(𝑡)\ℓ = split(𝑡0)\ℓ ∧ ¬𝑟 ≃ 𝑡0\ℓ ∧ ¬𝑟 = 𝑡\ℓ

(2) 𝜏 ≠ 1 ∨ ⊥. Then, split(𝑡)\ℓ is equal to∨
𝑁 ′⊆𝑁0

∨
𝑁 ′
V⊆𝑁 ′∩𝑁V

(∧
R∈𝑃

row(R)\ℓ ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬(row(R)\ℓ)

∨
∧
R∈𝑃

row(R)\ℓ ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬(row(R)\ℓ) ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬𝑟
)

So that split(𝑡)\ℓ is trivially equivalent to split(𝑡0)\ℓ , and by induction hypothesis and

the fact that R𝑛\ℓ = ⟨⟨⟨|||..⟩⟩⟩ℓ we have split(𝑡0)\ℓ ≃ 𝑡0\ℓ = 𝑡\ℓ .
• 𝑁 = 𝑁0 ∪ {R𝑛 = {{{(ℓ ′ = 𝜏 ′ℓ)ℓ ′∈𝐿|||𝜌}}}} where ℓ ∉ 𝐿. Let 𝑡0 =

∧
R∈𝑃 R ∧ ∧

R∈𝑁0
¬R, so that

𝑡\ℓ = 𝑡0\ℓ ∧ R𝑛\ℓ . The type 𝑡 is decomposed as follows:

split(𝑡) =
∨

𝑁 ′⊆𝑁0

∨
𝑁 ′
V⊆𝑁 ′∩𝑁V

∨
𝑘∈{1,2}

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧

R∈𝑁∖𝑁 ′
R(ℓ)|||..}}}

∧
∧
R∈𝑃

{{{ℓ||| row(R)\ℓ}}} ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬{{{ℓ||| row(R)\ℓ}}}
∧
𝑘=1

¬{{{ℓ = 1 ∨ ⊥, (ℓ ′ = 𝜏 ′ℓ)ℓ ′∈𝐿|||..}}}

∧
∧
R∈𝑃V

{{{ lab(R)||| tail(R)}}} ∧
∧
R∈𝑁 ′

V

¬{{{ lab(R)||| tail(R)}}}
∧
𝑘=2

¬{{{𝐿|||𝜌}}}
)

Thus, split(𝑡)\ is trivially equivalent to the type in case (2) above (with ¬⟨⟨⟨(ℓ ′ = 𝜏 ′ℓ)ℓ ′∈𝐿|||..⟩⟩⟩{ℓ }
instead of ¬𝑟 in the second line), which is equal to split(𝑡0)\ℓ and we conclude in the same

way since here also R𝑛\ℓ = ⟨⟨⟨|||..⟩⟩⟩{ℓ } .
Now, if 𝑡 =

∨
𝑖∈𝐼 𝑡𝑖 where the 𝑡𝑖 ’s are conjunctions, we have 𝑡\ℓ =

∨
𝑖∈𝐼 (𝑡𝑖\ℓ) ≃

∨
𝑖∈𝐼 (split(𝑡𝑖)\ℓ) =

split(𝑡)\ℓ . □

Lemma B.2 (Inversion). Let 𝑣 = {𝑣1 with ℓ = 𝑣2}. If there is a derivation Δ | Γ ⊢D 𝑣 : 𝑡 , then there

are derivations Δ | Γ ⊢D 𝑣1 : 𝑡1 ≤ {{{ℓ = ⊥|||..}}} and Δ | Γ ⊢D 𝑣2 : 𝑡2 such that {{{ℓ = 𝑡2|||𝑡1\ℓ}}} ≤ 𝑡 .

Proof. By induction on Δ | Γ ⊢D 𝑣 : 𝑡 , with a case analysis on the last rule used, that has to be

of (Ext), (Inter) or (Sub).

(Ext) Straightforward.

(Inter) We apply the induction hypothesis twice. Since both types obtained are supertypes of

{{{ℓ = 𝑡2|||𝑡1\ℓ}}}, their intersection is also.

(Sub) By induction hypothesis and transitivity of subtyping. □

Lemma B.3 (Subject reduction). Let 𝑒 be an expression and 𝑡 a type. If Δ | Γ ⊢D 𝑒 : 𝑡 and 𝑒 { 𝑒′,
then Δ | Γ ⊢D 𝑒′ : 𝑡 .

41

Proof. The proof is by induction on the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 and by a case analysis on

the last rule used in the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 . We detail the cases related to the rules for

records, for the rest, see e.g. [20].

(Emp) 𝑒 = {}, so it does not reduce.

(Ext) 𝑒 = {𝑒1 with ℓ = 𝑒2}. Necessarily, we have 𝑒
′ = {𝑒′

1
with ℓ = 𝑒2} or 𝑒′ = {𝑒1 with ℓ = 𝑒′

2
}

and this is direct by induction hypothesis.

(Sel) If 𝑒 = 𝑒0.ℓ { 𝑒′
0
.ℓ = 𝑒′ or if 𝑒 = {𝑒1 with ℓ ′ = 𝑒2}.ℓ and the reduction occurs in 𝑒1 or

𝑒2, this is direct by induction hypothesis. Otherwise, we have 𝑒 = {𝑣 with ℓ ′ = 𝑣 ′}.ℓ and
Δ | Γ ⊢D {𝑣 with ℓ ′ = 𝑣 ′} : {{{ℓ = 𝑡|||..}}}. By Lemma B.2, there are derivations Δ | Γ ⊢D 𝑣 : 𝑡1 ≤
{{{ℓ ′ = ⊥|||..}}} and Δ | Γ ⊢D 𝑣 ′ : 𝑡2 such that {{{ℓ ′ = 𝑡2|||𝑡1\ℓ ′}}} ≤ {{{ℓ = 𝑡|||..}}}.
• If ℓ = ℓ ′, then 𝑒′ = 𝑣 ′. Since {{{ℓ = 𝑡2|||𝑡1\ℓ}}} ≤ {{{ℓ = 𝑡|||..}}}, we have 𝑡2 ≤ 𝑡 and we conclude

by (Sub).

• If ℓ ≠ ℓ ′, then 𝑒′ = 𝑣 .ℓ . Since {{{ℓ ′ = 𝑡2|||𝑡1\ℓ ′}}} ≤ {{{ℓ = 𝑡|||..}}}, we have 𝑡1 ≤ {{{ℓ = 𝑡, ℓ ′ =
⊥|||..}}}. We conclude by rules (Sub) and (Sel).

(Del) If 𝑒 = {}\ℓ { {}, since {}\ℓ = {}, we can use the same derivation. If 𝑒 = {𝑒1 with ℓ ′ = 𝑒2}\ℓ
and the reduction occurs in 𝑒1 or 𝑒2, this is direct by induction hypothesis. Otherwise, we have

𝑒 = {𝑣 with ℓ ′ = 𝑣 ′}\ℓ . By Lemma B.2, there are derivations Δ | Γ ⊢D 𝑣 : 𝑡1 ≤ {{{ℓ ′ = ⊥|||..}}}
and Δ | Γ ⊢D 𝑣 ′ : 𝑡2 such that {{{𝑡1 with ℓ ′ = 𝑡2}}} ≤ 𝑡 .

• If ℓ = ℓ ′, then 𝑒′ = 𝑣\ℓ . Since 𝑡1 ≤ {{{ℓ = ⊥|||..}}}, 𝑣 can be typed with 𝑡1 = 𝑡1\ℓ =

{{{𝑡1 with ℓ = 𝑡2}}}\ℓ . We conclude because {{{𝑡1 with ℓ = 𝑡2}}} ≤ 𝑡 .

• If ℓ ≠ ℓ ′, then 𝑒′ = {𝑣\ℓ with ℓ ′ = 𝑣 ′}. There is a derivation Δ | Γ ⊢D 𝑣\ℓ : 𝑡1\ℓ . Since
{{{𝑡1\ℓ with ℓ ′ = 𝑡2}}} = {{{𝑡1 with ℓ ′ = 𝑡2}}}\ℓ , we conclude by rule (Ext).

(Inst) Direct by induction hypothesis. □

Lemma B.4 (Generation for values). Let 𝑣 be a value such that Δ | Γ ⊢D 𝑣 : 𝑡 with 𝑡 ≤ {{{|||..}}}.
Then 𝑣 has one of the forms {} or {𝑣1 with ℓ = 𝑣2}.

Proof. It is easy to see that a derivation for 𝑣 is obtained by a rule (Emp) followed by rules (Ext),

(Inter) or (Sub). Remark that there are no rules (Inst) because it is impossible to derive a poly-

morphic type 𝑡 for 𝑣 , in particular since for instance {{{|||𝜖}}} ≰ {{{|||𝜌}}}. Moreover, we can show by

induction on the depth of the derivation that if Δ | Γ ⊢D 𝑣 : 𝑡 is derivable, then 𝑡 ; 0. The proof is
by induction on the derivation.

(Emp) This is the base case, where 𝑣 = {}.
(Ext) 𝑣 is of the second form.

(Inter) 𝑡1 and 𝑡2 are reducible to disjunctive normal forms 𝑡R
1
∧𝑡 ′

1
and 𝑡R

2
∧𝑡 ′

2
, such that 𝑡R

1
, 𝑡R

2
≤ {{{|||..}}}

and by hypothesis, 𝑡 ′
1
∧ 𝑡 ′

2
≤ 0. We can show by induction on the derivation of 𝑣 that this

last property does not hold if 𝑣 is not a record expression.

(Sub) We have Δ | Γ ⊢D 𝑣 : 𝑡 ′ ≤ 𝑡 . 𝑡 ′ ≰ 0 since 𝑣 is a value, so we can apply the induction

hypothesis. □

Lemma B.5 (Progress). Let 𝑒 be a well-typed closed expression, that is, ∅ | ∅ ⊢D 𝑒 : 𝑡 for some 𝑡 . If

𝑒 is not a value, then there exists an expression 𝑒′ such that 𝑒 { 𝑒′.

Proof. The proof is by induction on the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 and by a case analysis on

the last rule used in the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 . We detail the cases related to records, for the

rest, see e.g. [20].

(Emp) 𝑒 = {} is a value.

(Ext) 𝑒 = {𝑒1 with ℓ = 𝑒2}. If 𝑒1 or 𝑒2 can be reduced, 𝑒 can also. Otherwise, 𝑒1 and 𝑒2 are values

by induction and so is 𝑒 .

42 Giuseppe Castagna and Loïc Peyrot

(Del) 𝑒 = 𝑒0\ℓ . If 𝑒0 can be reduced, so can 𝑒 . Otherwise, we have by induction hypothesis that 𝑒0

is a value. By Lemma B.4, either 𝑒0 = {𝑣 with ℓ ′ = 𝑣 ′} and 𝑒 reduces with [R=
del
] or [R≠

del
],

or 𝑒0 = {} and 𝑒 reduces with [R
emp

].
(Sel) 𝑒 = 𝑒0 .ℓ . If 𝑒0 can be reduced, so can 𝑒 . Otherwise, we have by induction hypothesis that 𝑒0

is a value. By Lemma B.4, 𝑒0 = {𝑣 with ℓ ′ = 𝑣 ′} or 𝑒0 = {}. In the first case, 𝑒 reduces with

[R=
del
] or [R≠

del
]. The second case is impossible, since there is no derivation for 𝑒0 of type

{{{ℓ = 𝑡|||..}}}.
(Inst) Directly by induction hypothesis. □

Theorem 3.1 (Type soundness). Let 𝑒 be a well-typed closed expression, that is, ∅ | ∅ ⊢D 𝑒 : 𝑡 for

some 𝑡 . Then either 𝑒 diverges or it reduces to a value of type 𝑡 .

Proof. Consequence of Lemmas B.3 and B.5. □

B.2 Algorithmic type system
B.2.1 Field selection. We remind here the definition of the field selection operator.

Definition 3.1 (Field Selection). Let 𝑡 ≤ {{{ℓ = 1|||..}}} be a DNF. We define the selection of the

field ℓ of 𝑡 as (∨𝑖∈𝐼 𝑡𝑖).ℓ =
def ∨

𝑖∈𝐼 𝑡𝑖 .ℓ and

(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R ∧
∧
𝛼∈𝑉𝑝

𝛼 ∧
∧
𝛼∈𝑉𝑛

¬𝛼).ℓ =
def

∨
𝑁 ′⊆𝑁

(∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

¬R(ℓ)
)

For an arbitrary type 𝑡 ≤ {{{ℓ = 1|||..}}}, we define 𝑡 .ℓ =
def (dnf (𝑡 ∧ {{{|||..}}})).

Lemma B.6. Let 𝑡 =
∧

R∈𝑃 R ∧ ∧
R∈𝑁 ¬R and 𝜌 ∈ V𝑟 such that 𝜌 ∉ tlv(row(𝑡)). Then, 𝑡 ∧

{{{L∖ def (𝜌)|||𝜌}}} ≤ 0 ⇐⇒ 𝑡 ≤ 0.

Proof. Because 𝜌 ∉ tlv(row(𝑡)), the set of elements Rec(¯̄𝑑) ∈ J𝑡 ..K is exactly the elements of

J𝑡K, where 𝜌 is added from tag(¯̄𝑑). □

Lemma B.7. Let 𝑡 ≤ {{{ℓ = 1|||..}}}. Then, for all 𝑢, 𝑡 ≤ {{{ℓ = 𝑢|||..}}} ⇐⇒ 𝑡 .ℓ ≤ 𝑢. In particular, 𝑡 .ℓ ≤ 1
and 𝑡 ≤ {{{ℓ = 𝑡 .ℓ|||..}}}.

Proof. By Lemma C.4, 𝑡 is equivalent to:∨
𝑖∈𝐼

∨
𝑁 ′⊆𝑁𝑖

∨
𝑁 ′
V⊆𝑁 ′∩𝑁V

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧

R∈𝑁∖𝑁 ′
¬R(ℓ)|||..}}}

∧
∧
R∈𝑃

{{{ℓ = 1 ∨ ⊥|||R\ℓ}}} ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬{{{ℓ = 1 ∨ ⊥|||R\ℓ}}}

∧
∧
R∈𝑃V

{{{ lab(R)||| tail(R)}}} ∧
∧
R∈𝑁 ′

V

¬{{{ lab(R)||| tail(R)}}}
)

where 𝑃V = {R ∈ 𝑃 | tail(R) = 𝜌 and ℓ ∈ def (𝜌)}, similarly for 𝑁V , and because for any atom R,
row(R)\{ℓ} = R\ℓ . Then, for any 𝑢 it is clear that 𝑡 ≤ {{{ℓ = 𝑢|||..}}} is equivalent to 𝑡 .ℓ ≤ 𝑢. □

Corollary B.8. Let 𝑡 ≤ {{{ℓ = 1|||..}}} and [𝜎𝑖]𝑖∈𝐼 be a set of substitutions. Then (∧𝑖∈𝐼 𝑡𝜎𝑖).ℓ ≤∧
𝑖∈𝐼 𝑡 .ℓ𝜎 .

43

B.2.2 Taming non-structural rules. To prove soundness and completeness of the algorithmic type

system, we go through an intermediate type system, where the intersection rule is n-ary, and the

introduction of a term variable can perform a renaming of polymorphic variables. The introduction

of a renaming aims at eliminating trivial instantiations (only renamings) in the uses of (Inst). More

details are given by [8, Section I.1].

(Var)

Δ | Γ ⊢𝑚 𝑥 : Γ(𝑥)𝜎
𝑥 ∈ dom(Γ)
dom(𝜎) ∩ Δ = ∅
and 𝜎 is a renaming

(Inter)

(Δ | Γ ⊢𝑚 𝑒 : 𝑡𝑖)𝑖∈𝐼
Δ | Γ ⊢𝑚 𝑒 :

∧
𝑖∈𝐼

𝑡𝑖

|𝐼 | > 0

Rules different from (Inst) and (Var) are the same as in the declarative type system.

Lemma B.9. Δ | Γ ⊢𝑚 𝑒 : 𝑡 ⇐⇒ Δ | Γ ⊢D 𝑒 : 𝑡 .

Proof. The left-to-right direction is straightforward since the rules in the intermediate system

generalize the ones of the declarative system. The right-to-left direction is obtained by replacing

instances of (Var) by instances of (Var) followed by (Inst) in the declarative system, and by

replacing occurences of n-ary intersections by 𝑛 − 1 (Inter) nodes. □

Next, we want to restrict derivations in the intermediate system to a canonical form, where the

apparition of (Inst) and (Sub) nodes is controlled. For convenience, we introduce the following

rule macro:

(⊑)
Δ | Γ ⊢𝑚 𝑒 : 𝑠

Δ | Γ ⊢𝑚 𝑒 : 𝑡
𝑠 ⊑Δ 𝑡

which is a stands for (Sub) when 𝑠 ≤ 𝑡 and otherwise for:

(Sub)

(Inter)

(Inst)

Δ | Γ ⊢𝑚 𝑒 : 𝑠

Δ | Γ ⊢𝑚 𝑒 : 𝑠𝜎𝑖
∀𝑖 ∈ 𝐼

Δ | Γ ⊢𝑚 𝑒 :

∧
𝑖∈𝐼

𝑠𝜎𝑖

Δ | Γ ⊢𝑚 𝑒 : 𝑡

Definition B.3 (Canonical derivation). A derivation is canonical if every (Inst) node it contains

is part of a (⊑) pattern and every (⊑) and (Sub) nodes are either:
• The premise of an (Del) or (Sel) node, or

• The first premise of a (Ext) node, or

• One of the premises of an (Abs) or (App) node.

Lemma B.10. A derivation of Δ | Γ ⊢𝑚 𝑒 : 𝑡 can be transformed into a derivation Δ | Γ ⊢𝑚 𝑒 : 𝑡𝜎 ,

for any renaming 𝜎 such that dom(𝜎) ∩ Δ = ∅, without changing the structure of the derivation.

Proof. As in [8, Lemma I.14]. □

Lemma B.11. Let 𝐼 , Δ and 𝑡 ′𝑖 ⊑Δ 𝑡𝑖 for all 𝑖 ∈ 𝐼 . Then,
∧

𝑖∈𝐼 𝑡
′
𝑖 ⊑Δ

∧
𝑖∈𝐼 𝑡𝑖 .

Proof. As in [8, Proposition I.15]. □

Lemma B.12. Let 𝑠′ ⊑Δ 𝑠 , ℓ and 𝑟 of definition space L ∖ ℓ such that vars(𝑠′) ∩ vars(𝑟) ⊆ Δ. Then,
{{{ℓ = 𝑠′|||𝑟}}} ⊑Δ {{{ℓ = 𝑠|||𝑟}}}.

Proof. Let {𝜎𝑖 }𝑖∈𝐼 such that
∧

𝑖∈𝐼 𝑠
′𝜎𝑖 ≤ 𝑠 , with dom(𝜎) ⊆ vars(𝑠′). We have

∧
𝑖∈𝐼 {{{ℓ =

𝑠′|||𝑟}}}𝜎𝑖 ≃ {{{ℓ =
∧

𝑖∈𝐼 𝑠
′𝜎𝑖|||𝑟}}} ≤ {{{ℓ = 𝑠|||𝑟}}}. □

44 Giuseppe Castagna and Loïc Peyrot

Lemma B.13. Any derivation of Δ | Γ ⊢𝑚 𝑒 : 𝑡 can be transformed into a canonical derivation of

Δ | Γ ⊢𝑚 𝑒 : 𝑡 ′, where 𝑡 ′ ⊑Δ 𝑡 .

Proof. By induction on the size of the derivation and through a case analysis on the root of the

derivation tree used.

(Inst) or (Sub) We remove the root and let its premise be the new one.

(Inter) Let 𝑡 =
∧

𝑖∈𝐼 𝑠𝑖 . By induction hypothesis, for all 𝑖 ∈ 𝐼 we have derivations Δ | Γ ⊢𝑚 𝑒 : 𝑠′𝑖
with 𝑠′𝑖 ⊑Δ 𝑠𝑖 . By rule (Inter), we have a derivation of 𝑡 ′ =

∧
𝑖∈𝐼 𝑠

′
𝑖 , and 𝑡

′ ⊑Δ 𝑡 is verified

by Lemma B.11.

(Const), (Var), (Emp) Alredy canonical.

(Ext) Let 𝑒 = {𝑒1 with ℓ = 𝑒2} and 𝑡 = {{{ℓ = 𝑡2|||𝑡1\ℓ}}}. By induction hypothesis, we have canonical

derivations Δ | Γ ⊢𝑚 𝑒1 : 𝑡 ′
1
and Δ | Γ ⊢𝑚 𝑒2 : 𝑡 ′

2
with 𝑡 ′

1
⊑Δ 𝑡1 and 𝑡

′
2
⊑Δ 𝑡2. By rule (⊑), we

derive Δ | Γ ⊢𝑚 𝑒1 : 𝑡1. Let 𝑡
′ = {{{ℓ = 𝑡 ′

2
|||ℓ}}}𝑡1. Rule (Ext) node gives a canonical derivation of

Δ | Γ ⊢𝑚 𝑒 : 𝑡 ′. We can suppose that the variables in 𝑡 ′
2
and 𝑡1 are disjoint (otherwise we use

Lemma B.10), and conclude 𝑡 ′ ⊑Δ 𝑡 by Lemma B.12.

(Abs) By induction hypothesis, for each 𝑖 ∈ 𝐼 we have derivations Δ ∪ vars(𝑡) | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠′𝑖
with 𝑠′𝑖 ⊑Δ 𝑠𝑖 . By rule (⊑), we have derivations Δ ∪ vars(𝑡) | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠𝑖 and we

conclude by rule (Abs).

(App), (Sel), (Del) Similar to the previous case. □

B.2.3 Soundness and completeness.

Theorem 3.2 (Soundness). If Δ | Γ ⊢A 𝑒 : 𝑡 , then Δ | Γ ⊢D 𝑒 : 𝑡 .

Proof. By induction on the algorithmic typing derivation. By Lemma B.9, it sufices to give a

derivation Δ | Γ ⊢𝑚 𝑒 : 𝑡 . We proceed by a case analysis on the last rule used in the derivation.

(Const), (Var) Straightforward.

(Abs) By induction hypothesis, for each 𝑖 ∈ 𝐼 we have Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠′𝑖 . Since 𝑠
′
𝑖 ⊑Δ∪Δ′ 𝑠𝑖 ,

we derive Δ∪Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠𝑖 by rule (⊑). We conclude by rule (Abs) in the declarative

system.

(App) By hypothesis, we have 𝑢 ∈ 𝑡1 •Δ 𝑡2, so 𝑢 is such that there are two substitution sets with∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 ≤ ∧

𝑖∈𝐼 𝑡2𝜎𝑖 → 𝑢. By induction hypothesis and (⊑), we obtain Δ | Γ ⊢𝑚 𝑒1 :∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 and Δ | Γ ⊢𝑚 𝑒2 :

∧
𝑖∈𝐼 𝑡2𝜎𝑖 . By (Sub), we have Δ | Γ ⊢𝑚 𝑒1 :

∧
𝑖∈𝐼 𝑡2𝜎𝑖 → 𝑢. We

conclude by rule (App) in the declarative system.

(Emp) Straightforward.

(Ext) By induction hypothesis, we have Δ | Γ ⊢𝑚 𝑒 : 𝑡 , Δ | Γ ⊢𝑚 𝑒′ : 𝑡 ′ and sets of substitutions

[𝜎𝑖]𝑖∈𝐼 such that
∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{|||..}}} and 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ . By rules (Inst) and (Inter), we

have Δ | Γ ⊢𝑚 𝑒 :
∧

𝑖∈𝐼 𝑡𝜎𝑖 , and we conclude with rule (Del).

(Del) Similar to the case for (Ext), without the derivation of 𝑡 ′.
(Sel) By induction hypothesis, we have Δ | Γ ⊢𝑚 𝑒 : 𝑡 and a set of substitutions [𝜎𝑖]𝑖∈𝐼 such that∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{ℓ = 1|||..}}} and 𝑢 = (∧𝑖∈𝐼 𝑡𝜎𝑖).ℓ . By Lemma B.7, we have
∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{ℓ = 𝑢|||..}}},
so we conclude with rule (⊑) and (Sel). □

Theorem 3.3 (Completeness). If Δ | Γ ⊢D 𝑒 : 𝑡 , then there is 𝑠 such that Δ | Γ ⊢A 𝑒 : 𝑠 and 𝑠 ⊑Δ 𝑡 .

Proof. By Lemmas B.9 and B.13 we transform the input derivation into a canonical derivation

Δ | Γ ⊢𝑚 𝑒 : 𝑡 ′, where 𝑡 ′ ⊑Δ 𝑡 . The proof is by induction on the derivation (where we use (⊑) instead
of the corresponding pattern). In the end, we obtain Δ | Γ ⊢A 𝑒 : 𝑠 with 𝑠 ⊑Δ 𝑡 ′ and thus conclude

since by transitivity of ⊑Δ, we have 𝑠 ⊑Δ 𝑡 .

(Const), (Var) Straightforward.

45

(Ext)

Δ | Γ ⊢ 𝑒 : 𝑡 ≤ {{{ℓ = ⊥|||..}}} Δ | Γ ⊢ 𝑒′ : 𝑡 ′

Δ | Γ ⊢ {𝑒 with ℓ = 𝑒′} : {{{ℓ = 𝑡 ′|||𝑡\ℓ}}}
(Del)

Δ | Γ ⊢ 𝑒 : 𝑡 ≤ {{{|||..}}}

Δ | Γ ⊢ 𝑒\ℓ : {{{ℓ = ⊥|||𝑡\ℓ}}}

(Sel)

Δ | Γ ⊢ 𝑒 : 𝑡

Δ | Γ ⊢ 𝑒.ℓ : 𝑡 .ℓ

The rules (Const), (Var), (Abs), (App), (Emp) are the same as in the algorithmic system.

Fig. 4. Alternative algorithmic system

(Abs) By induction hypothesis, for each 𝑖 ∈ 𝐼 , we have Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢A 𝑒 : 𝑠𝑖 with 𝑠
′
𝑖 ⊑Δ 𝑠𝑖 . We

conclude with rule (Abs) in the algorithmic system.

(App) By induction hypothesis, we have Δ | Γ ⊢A 𝑒1 : 𝑡 and Δ | Γ ⊢A 𝑒2 : 𝑠 , where 𝑡 ⊑Δ 𝑡1 → 𝑡2
and 𝑠 ⊑Δ 𝑡1. So 𝑡2 ∈ 𝑡 •Δ 𝑠 since (𝑡1 → 𝑡2) · 𝑡1 = 𝑡2.

(Emp) Straightforward.

(Ext) By induction hypothesis, we have Δ | Γ ⊢A 𝑒 : 𝑠 , a set of substitutions such that [𝜎𝑖]𝑖∈𝐼 ⊩
𝑠 ⊑Δ 𝑡 ≤ {{{ℓ = ⊥|||..}}}, Δ | Γ ⊢A 𝑒′ : 𝑠′ and 𝑠′ ⊑Δ 𝑡 ′. Thus, we have [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{ℓ = ⊥|||..}}}.
Since 𝑡 ≤ {{{ℓ = ⊥|||..}}}. Let 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ . By Lemma B.1, we have 𝑟 ≤ 𝑡\ℓ , so that

{{{ℓ = 𝑠′|||𝑟}}} ⊑Δ {{{ℓ = 𝑡 ′|||..}}}𝑡\ℓ .
(Del) By induction hypothesis, we have Δ | Γ ⊢A 𝑒 : 𝑠 and a set of substitutions such that

[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ 𝑡 ≤ {{{|||..}}}. Thus, we have [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{|||..}}}. Let 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ . By
Lemma B.1, we have 𝑟 ≤ 𝑡\ℓ , so that {{{ℓ = ⊥|||𝑟}}} ⊑Δ {{{ℓ = ⊥|||𝑡\ℓ}}}.

(Sel) By induction hypothesis, we have Δ | Γ ⊢A 𝑒 : 𝑠 and a set of substitutions such that

[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{ℓ = 𝑡|||..}}}. Thus, we have [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{ℓ = 1|||..}}}. Let 𝑢 = (∧𝑖∈𝐼 𝑠𝜎𝑖).ℓ . We

have 𝑢 ∈ ⨿ℓ
Δ (𝑠), and by Lemma B.7 𝑢 ≤ 𝑡 so 𝑢 ⊑Δ 𝑡 .

(⊑) Straightforward by induction hypothesis and transitivy of ⊑.
(Sub) Straightforward by induction hypothesis, inclusion of ≤ in ⊑ and transitivity of ⊑.
(Inter) By hypothesis, there is 𝐼 and derivations Δ | Γ ⊢𝑚 𝑒 : 𝑠𝑖 for all {𝑠𝑖 }𝑖∈𝐼 , with 𝑡 =

∧
𝑖∈𝐼 𝑠𝑖 .

Since the derivation is canonical, we know that each of these derivations ends with (the

same kind of) structural rule. According to the other cases, for all 𝑖 ∈ 𝐼 we have derivations

Δ | Γ ⊢𝑚 𝑒 : 𝑠′𝑖 , where 𝑠
′
𝑖 ⊑Δ 𝑠𝑖 . By Lemma B.11 we have 𝑡 ′ =

∧
𝑖∈𝐼 𝑠

′
𝑖 ⊑Δ

∧
𝑖∈𝐼 𝑠𝑖 = 𝑡 . □

B.2.4 Alternative incomplete type system.

Lemma B.14. The type system in Fig. 4 is sound with respect to the declarative type system.

Proof. Similar to the proof of Theorem 3.2. □

C Appendix for tallying
Definition C.1. Given a constraint-set 𝐶 ⊆ C, the set of type row and field variables occurring in

𝐶 is defined as vars(𝐶) = ⋃
(𝑇1,𝑐,𝑇2) ∈𝐶 vars(𝑇1) ∪ vars(𝑇2), with vars(𝑇𝑖) defined in Definition B.2.

Definition C.2 (Ordering). Let 𝑉 and Δ be sets of variables and 𝐿 a set of labels. An ordering

𝑂𝑋 on 𝑉 is an injective map from 𝑉 to N, an ordering 𝑂ℓ on 𝐿 is an injective map from 𝐿 to N. An

ordering𝑂 on𝑉 and 𝐿 is defined as a lexicographic ordering on N ×N according to𝑂𝑋 and𝑂ℓ , where:

𝑂 (𝜌.ℓ) = (𝑂𝑋 (𝜌),𝑂ℓ (ℓ)), 𝑂 (𝜌\𝐿) = (𝑂𝑋 (𝜌),𝑂 ′ (𝜌, 𝐿)) and 𝑂 (𝑋) = (𝑂𝑋 (𝑋), 0)) otherwise; for all
𝑋1 ∉ Δ and 𝑋2 ∈ Δ of the same kind, 𝑂 (𝑋1) < 𝑂 (𝑋2); and 𝑂 ′ (𝜌, 𝐿) is an integer obtained in a

canonical way from the set 𝐿 ∪ def (𝜌) and different from any 𝑂ℓ (ℓ).

46 Giuseppe Castagna and Loïc Peyrot

C.1 Examples regarding the restriction of solutions to atomic rows
We give two examples where we discuss considering only atomic rows instead of Boolean combi-

nations of them in the grammar. The first one shows that we can find tallying solutions even for

unions of records thanks to the unification technique. The second demonstrates that this technique

is not enough to recover all desired solutions, and therefore that Boolean combinations of rows, as

we adopt them in our system, are welcome.

Example C.1. Let us consider the types of the example on Page 5, that we rewrite as follows:

𝑡 = {{{𝑝 = Int|||𝜌}}} → {{{𝑝 = Float|||𝜌}}} and 𝑢 = {{{𝑠 = "circle", 𝑝 = Int, 𝑑 = Float|||𝜖}}} ∨ {{{𝑠 =

"polygon", 𝑝 = Int, 𝑒 = Int|||𝜖}}}. We would like to be able to unify the parameter of the function

with the argument, even though the latter is a union. As explained in [9, §C.2.1], the problem

of computing 𝑡 •∅ 𝑢 can be reduced to solving {(𝑡 ′, ≤, 𝑢 → 𝛼)}, where 𝛼 is a fresh variable, and

𝑡 ′ =
∧

𝑖∈𝐼 𝑡𝜎𝑖 , where the 𝜎𝑖 are renamings of 𝜌 . The cardinality of 𝐼 will be increased during the

search for a solution.

With a cardinality |𝐼 | = 1, we need in particular to find a solution for the constraint ({{{𝑝 =

Int|||𝜌}}}, ≥, 𝑢). A component-wise unification gives the most precise solution (since we restrict

ourselves to atomic rows): 𝜎 (𝜌) = ⟨⟨⟨𝑠 = "circle" ∨ "polygon", 𝑑 = Float ∨ ⊥, 𝑒 = Int ∨ ⊥|||𝜖⟩⟩⟩{𝑠 } .
This is however not the solution we want. Incrementing the cardinality of 𝐼 , we now look for

a solution of {(({{{𝑝 = 𝐼𝑛𝑡|||𝜌1}}} → {{{𝑝 = Int|||𝜌1}}}) ∧ ({{{𝑝 = 𝐼𝑛𝑡|||𝜌2}}} → {{{𝑝 = Int|||𝜌2}}}), ≤, 𝑢 → 𝛼)}.
Thus, we look in particular for a solution to the constraint ({{{𝑝 = 𝐼𝑛𝑡|||𝜌1}}} ∨ {{{𝑝 = 𝐼𝑛𝑡|||𝜌2}}}, ≥, 𝑢). A
component-wise unification gives the solution 𝜎 (𝜌1) = ⟨⟨⟨𝑠 = "circle", 𝑑 = Float|||𝜖⟩⟩⟩{𝑠 }, 𝜎 (𝜌2) =
⟨⟨⟨𝑠 = "polygon", 𝑒 = Int|||𝜖⟩⟩⟩{𝑠 } , thanks to which we retrieve the desired solution, even with the

restriction that rows are all atomic.

Example C.2 (Necessity of connectives on rows). This second examples illustrates why considering

only atomic rows is not satisfactory. Take 𝑡 = {{{|||𝜌}}} → {{{|||𝜌}}} and 𝑠 = {{{𝑎 = ⊥|||..}}}∧¬{{{|||𝜖}}} and let us
look for a solution of 𝑡 •∅ 𝑠 . As in the previous example, this problem can be reduced to solving

{(𝑡 ′, ≤, 𝑠 → 𝛼)}, where 𝛼 is a fresh variable, and 𝑡 ′ =
∧

𝑖∈𝐼 𝑡𝜎𝑖 , where the 𝜎𝑖 are renamings of 𝜌 .

At first, we try |𝐼 | = 1, so we look for a solution of {({{{|||𝜌}}} → {{{|||𝜌}}}, ≤,{{{𝑎 = ⊥|||..}}}∧¬{{{|||𝜖}}} → 𝛼)}.
After normalization, we obtain the constraint-set {(𝛼, ≥,{{{|||𝜌}}}), (𝜌, ≥, ⟨⟨⟨𝑎 = ⊥|||..⟩⟩⟩∅ ∧¬⟨⟨⟨|||𝜖⟩⟩⟩∅)}. If we
were to consider only atomic rows, we could only give the solution 𝜎 (𝜌) = ⟨⟨⟨|||..⟩⟩⟩∅ and 𝜎 (𝛼) = {{{|||..}}}.

To try to find a more precise solution, we run tallying again after incrementing the cardinal of

𝐼 . This yields the following constraint-set: {(({{{|||𝜌1}}} → {{{|||𝜌1}}}) ∧ ({{{|||𝜌2}}} → {{{|||𝜌2}}}), ≤, 𝑠 → 𝛼)},
which normalizes first to {(𝛼, ≥,{{{|||𝜌1}}} ∧ {{{|||𝜌2}}}), (𝜌1 ∨ 𝜌2, ≥, ⟨⟨⟨𝑎 = ⊥|||..⟩⟩⟩∅ ∧ ¬⟨⟨⟨|||𝜖⟩⟩⟩∅)}, and then

(assuming 𝑂 (𝜌1) ≤ 𝑂 (𝜌2)) to {(𝛼, ≥,{{{|||𝜌1}}} ∧ {{{|||𝜌2}}}), (𝜌1, ≥, ⟨⟨⟨𝑎 = ⊥|||..⟩⟩⟩∅ ∧ ¬⟨⟨⟨|||𝜖⟩⟩⟩∅ ∧ ¬𝜌2)}. With

atomic rows only, we still do not have a satisfactory solution, and further expansions do not help.

C.2 General decomposition of rows
Definition C.3. Let 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1

|||𝜍⟩⟩⟩𝐿2
and 𝐿 a finite set of labels. We define 𝑟\𝐿 = ⟨⟨⟨(ℓ =

𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜍
′⟩⟩⟩𝐿2∪𝐿

, where 𝜍 ′ = .. if 𝜍 ∈ V and 𝐿 ⊈ 𝐿1 ∪ 𝐿2, and 𝜍
′ = 𝜍 otherwise.

Lemma C.3. Let 𝑟 be an atomic row and 𝐿 a set of labels. Let 𝑟 ′ = ⟨⟨⟨𝐿 ∩ lab(𝑟)|||𝑟\(𝐿 ∩ lab(𝑟))⟩⟩⟩ if
tail(𝑟) = 𝜌 and def (𝜌) ∩ 𝐿 ≠ ∅, and 𝑟 ′ = ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ otherwise.

(1) 𝑟 ≃ ⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟 ′ ≃ ∧
ℓ∈𝐿 ⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩ ∧ 𝑟 ′

(2) ⟨⟨⟨𝐿 ∩ lab(𝑟)|||𝑟\(𝐿 ∩ lab(𝑟))⟩⟩⟩ ≃ ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧ ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ if tail(𝑟) ∈ V .

Proof. If 𝑟 ′ = ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ , the proof is straightforward. Otherwise, let 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜌⟩⟩⟩𝐿2 ,

with 𝐿 ⊈ 𝐿1 ∪ 𝐿2. For the first item, since 𝑟 (ℓ) = 1 ∨ ⊥ for any ℓ ∉ 𝐿1 ∩ 𝐿2, we must show

𝑟 ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∩𝐿1
, (ℓ = 1 ∨ ⊥)ℓ∈𝐿∖𝐿1

|||..⟩⟩⟩ ∧ ⟨⟨⟨𝐿 ∩ 𝐿1, (ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜌⟩⟩⟩ . For the second item, we

47

must show ⟨⟨⟨𝐿 ∩ 𝐿1, (ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜌⟩⟩⟩ ≃ ⟨⟨⟨𝐿, (ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||..⟩⟩⟩ ∧ ⟨⟨⟨ lab(𝑟)|||𝜌⟩⟩⟩ . Both of them are

straightforward. □

Lemma C.4. Let 𝑃 and 𝑁 be sets of atomic rows of the same definition space and 𝐿 be a finite

set of labels. Let 𝑃V = {𝑟 ∈ 𝑃 | tail(𝑟) = 𝜌 and 𝐿 ∩ def (𝜌) ≠ ∅}, similarly for 𝑁V . The relation∧
𝑟 ∈𝑃 𝑟 ≤ ∨

𝑟 ∈𝑁 𝑟 holds iff for every map 𝜄 : 𝑁 → 𝐿 ∪ {_}, for every 𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁V :

©­«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ) ≤
∨

𝑟 ∈𝜄−1 (ℓ)
𝑟 (ℓ)ª®¬ or

©­«
∧
𝑟 ∈𝑃

𝑟\𝐿 ≤
∨

𝑟 ∈𝜄−1 (_)∖𝑁 ′

𝑟\𝐿 ª®¬
or

(∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ≤
∨
𝑟 ∈𝑁 ′

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩
)

Proof. For each 𝑟 ∈ 𝑃V ∪ 𝑁V , let 𝑟− = ⟨⟨⟨𝐿 ∩ lab(𝑟)|||𝑟\(𝐿 ∩ lab(𝑟)⟩⟩⟩ and for each 𝑟 ∈ (𝑃 ∪ 𝑁) ∖
(𝑃V ∪ 𝑁V), let 𝑟− = ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ .
Using Lemma C.3, we decompose the type in the statement into:∧

𝑟 ∈𝑃
(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟− ∧

∧
𝑟 ∈𝑁

(
∨
ℓ∈𝐿

¬⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩ ∨ ¬𝑟−) (17)

We can distribute the intersection of the elements of 𝑁 on the right of (17) over the unions in

the second brackets. We obtain a union of intersections of, each time, |𝑁 | elements, where each

intersection is a possible combination of the individual types present in the second line. Each

combination is described by a function 𝜄 : 𝑁 → 𝐿 ∪ {_}, where 𝜄 (𝑛) = ℓ means that the element

⟨⟨⟨ℓ = ¬𝑟 (ℓ)|||..⟩⟩⟩ is present in the combination given by 𝜄, while 𝜄 (𝑛) = _ means that the element ¬𝑟−
is present in the combination. For each 𝑟 ∈ 𝑁 and ℓ ∈ 𝐿, let us write 𝑟ℓ = ⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩ . Therefore
the type in (17) is equivalent to:∧

𝑟 ∈𝑃
(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧

∨
𝜄:𝑁→𝐿∪{_}

(
∧
𝑟 ∈𝑁

¬𝑟𝜄 (𝑟)) (18)

By distributing the intersection over the union we obtain∨
𝜄:𝑁→𝐿∪{_}

(∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧
𝑟 ∈𝑁

¬𝑟𝜄 (𝑟)

)
(19)

A union is empty if and only if each summand of the union is empty. Therefore the type above is

empty if and only if for all 𝜄 : 𝑁 → 𝐿 ∪ {_}, the following type is empty:∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧
𝑟 ∈𝑁

¬𝑟𝜄 (𝑟)

≃
∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧

ℓ∈𝐿∪{_}

∧
𝑟 ∈𝜄−1 (ℓ)

¬𝑟ℓ

≃
∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧

𝑟 ∈𝜄−1 (_)
¬𝑟− ∧

∧
ℓ∈𝐿

∧
𝑟 ∈𝜄−1 (ℓ)

¬𝑟ℓ

≃
∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧

𝑟 ∈𝜄−1 (_)
¬𝑟− ∧ ⟨⟨⟨(ℓ = ∧

𝑟 ∈𝜄−1 (ℓ)¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩

≃ ⟨⟨⟨(ℓ = ∧
𝑟 ∈𝑃𝑟 (ℓ) ∧

∧
𝑟 ∈𝜄−1 (ℓ)¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧

∧
𝑟 ∈𝑃

𝑟− ∧
∧

𝑟 ∈𝜄−1 (_)
¬𝑟−

48 Giuseppe Castagna and Loïc Peyrot

Let 𝑟1 = ⟨⟨⟨(ℓ = ∧
𝑟 ∈𝑃𝑟 (ℓ) ∧

∧
𝑟 ∈𝜄−1 (ℓ)¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ . The last type is equivalent to

𝑟1 ∧
∧
𝑟 ∈𝑃

⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟⟩⟩⟩

∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁V

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧

𝑟 ∈𝜄−1 (_)∩𝑁V

(¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∨ ¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩)

≃ 𝑟1 ∧
∧
𝑟 ∈𝑃

⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟⟩⟩⟩ ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁V

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩

∧
∨

𝑁 ′⊆𝜄−1 (_)∩𝑁V

(
∧

𝑟 ∈ (𝜄−1 (_)∩𝑁V)∖𝑁 ′

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩)

≃
∨

𝑁 ′⊆𝜄−1 (_)∩𝑁V

(
𝑟1 ∧

∧
𝑟 ∈𝑃

⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩

∧
∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩
)

This type is empty if and only if the conjunctions are all empty for each 𝜄 and𝑁 ′ ⊆ 𝜄−1 (_)∩𝑁V . Take

𝜄 and 𝑁 ′
and let 𝑟2 =

∧
𝑟 ∈𝑃 ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧

∧
𝑟 ∈𝜄−1 (_)∖𝑁 ′ ¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ and 𝑟3 = ∧∧

𝑟 ∈𝑃V ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧∧
𝑟 ∈𝑁 ′ ¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ . Let 𝑟𝜄 =

∧
1≤𝑖≤3 𝑟𝑖 . It is immediate that 𝑟1 is empty iff the first condition

of the statement holds, 𝑟2 is empty iff the second does, and 𝑟3 is empty iff the third does. We

directly obtain that if one of the conditions holds, then the type 𝑟𝜄 is empty. We now show that if 𝑟𝜄
is empty, then there is 1 ≤ 𝑖 ≤ 3 such that 𝑟𝑖 is empty.

For this, we suppose that none of the subtypes is empty and build an element ¯̄𝑑 ∈ J𝑟𝜄Krow
.

(1) Since 𝑟1 is not empty, for all ℓ ∈ 𝐿 there is an element 𝛿1

ℓ ∈ J∧𝑟 ∈𝑃 𝑟 (ℓ) ∧
∧

𝑟 ∈𝜄−1 (ℓ) ¬𝑟 (ℓ)Kfld
.

(2) Since 𝑟2 is not empty, there is an element ⟨|(ℓ = 𝛿2

ℓ)ℓ∈𝐿2
, _ = ⊥∅ |⟩𝑉2 ∈ J𝑟2Krow

.

(3) Since 𝑟3 is not empty, there is an element ¯̄𝑑3 ∈ J𝑟3Krow
. However, the restrictions on the set

of elements in J𝑟3Krow
only concern their tags so that any element ¯̄𝑑 ′ with tag(¯̄𝑑 ′) = tag(¯̄𝑑3)

and def (¯̄𝑑 ′) = def (¯̄𝑑3) is in J𝑟3Krow
. Let 𝑉3 = tag(¯̄𝑑3).

We build the element ⟨|(ℓ = 𝛿1

ℓ)ℓ∈𝐿, (ℓ = 𝛿2

ℓ)ℓ∈𝐿2∖𝐿, _ = ⊥∅ |⟩𝑉3 . This element belongs to J𝑟𝜄Krow
,

which is a contradiction. □

C.3 Normalization of fields and tails
In this subsection, we define the functions normfld (𝜏,𝑀) and normtl (𝑟, 𝑀) that are mentioned in

Section 4.1. The formal definition of the whole algorithm is given below in Appendix C.4.

Fields. A field-type is always equivalent to a DNF that is a disjunction of conjunctions of either

of the shape 𝜏 ∧ ∧
𝜃 ∈𝑃 𝜃 ∧ ∧

𝜃 ∈𝑁 𝜃 , where 𝜏 is either ⊥ or a type 𝑡 . If there is a smallest variable

𝜃0 ∈ 𝑃 ∪ 𝑁 not in Δ, we single out this variable, in the same way as is done for type variables in

our algorithm and in [9]. If all top-level field variables are monomorphic:

• If 𝜏 = 𝑡 , 𝜏 can be instantiated to an empty type only if 𝑡 can, so we apply norm(𝑡, 𝑀).
• If 𝜏 = ⊥, 𝜏 can never be instantiated to an empty type since ⊥ ≰ 0, so normalization fails.

49

We use the notation 𝑋 𝑇 to indicate that 𝑋 is the smallest top-level variable in 𝑇 .

normfld (𝜏,𝑀) =


{{(𝜃0, ≤,¬𝜏 ∨

∨
𝜃 ∈𝑃∖{𝜃0 } ¬𝜃 ∨ ∨

𝜃 ∈𝑁 𝜃)}}, if ∃𝜃0 ∈ 𝑃 .𝜃0 𝜏
{{(𝜏 ∧ ∧

𝜃 ∈𝑃 𝜃 ∧ ∧
𝜃 ∈𝑁∖{𝜃0 } ¬𝜃 ≤ 𝜃0)}}, if ∃𝜃0 ∈ 𝑁 .𝜃0 𝜏

norm(𝑡, 𝑀), if 𝜏 ′ = 𝑡 and (𝑃 ∪ 𝑁) ∖ Δ = ∅
∅, if 𝜏 ′ = ⊥ and (𝑃 ∪ 𝑁) ∖ Δ = ∅

Tails. By design, the input of this function is a row such that:

• Either there is a polymorphic top-level variable that is an a row 𝑟0 with lab(𝑟) = ∅. Then,
we single out this variable on the left of a new constraint.

• Or there is no polymorphic top-level row variable. In that case, we decompose the row over

all the labels using the subtyping formula.

normtl (𝑟, 𝑀) =


{{(𝜌0, ≤,

∨
𝑟 ∈𝑃∖{𝑟0 } ¬𝑟 ∨

∨
𝑟 ∈𝑁 𝑟)}}, if 𝑟0 ∈ 𝑃

{{(𝜌0, ≥,
∧

𝑟 ∈𝑃 𝑟 ∧𝑟 ∈𝑁∖{𝜌 } ¬𝑟)}}, if 𝑟0 ∈ 𝑁
d

𝜄∈𝐼
⊔

ℓ∈𝐿 normfld

(∧
𝑟 ∈𝑃 𝑟 (ℓ) ∧

∧
𝑟 ∈𝜄−1 (ℓ) ¬𝑟 (ℓ), 𝑀

)
, if tlv(𝑟) ⊆ Δ

where in the two first cases, there is 𝜌0 ∈ (𝑃 ∪ 𝑁) ∖ Δ such that there is 𝑟0 ∈ 𝑃 ∪ 𝑁 with

𝑟0 = ⟨⟨⟨|||𝜌0⟩⟩⟩L∖ def (𝑟)
, and where in the last case:

• 𝐿 =
⋃

𝑟 ∈𝑃∪𝑁 lab(𝑟);
• 𝑃Δ = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} and 𝑁Δ = {𝑟 ∈ 𝑁 | tail(𝑟) ∈ V};
• 𝐼 = {𝜄 : 𝑁 → 𝐿 ∪ {_} | (∀𝑟◦ ∈ 𝜄−1 (_) ∖ 𝑁Δ .

∧
𝑟 ∈𝑃 def (𝑟) ≰ def (𝑟◦)) and (∀𝑟0 ∈ 𝜄−1 (_) ∩

𝑁Δ .∀𝑟𝑝 ∈ 𝑃Δ . tail(𝑟◦) ≠ tail(𝑟𝑝))}, where def (𝑟) is defined as in Lemma A.6.

C.4 Constraint normalization
We formalize normalization as a judgment Σ ⊢N 𝐶 ⇝ S, which states that under the environment

Σ (which, informally, contains the types that have already been processed at this point), 𝐶 is

normalized to S. The main judgment is derived according to the rules in Figs. 5 to 7. Given a type,

field or row variable 𝑋 and a conjunction of types, field-types or rows respectively, we define

single(𝑋,𝑇 ∧ 𝑋) = {(𝑋, ≤,¬𝑇)} and single(𝑋,𝑇 ∧ ¬𝑋) = {(𝑋, ≥,𝑇)}. We call single normal form

a DNF that has no topmost disjunction.

If ∅ ⊢N 𝐶 ⇝ S, then S is the result of the normalization of 𝐶 . We now prove soundness and

termination of the constraint normalization algorithm.

Definition C.4. We define the family (≤𝑛)𝑛∈N of subtyping relations as

𝑡 ≤𝑛 𝑠 ⇐⇒def ∀𝜂.J𝑡K𝑛𝜂 ⊆ J𝑠K𝑛𝜂

where J·K𝑛 is the rank 𝑛 interpretation of a type, defined as

J𝑡K𝑛𝜂 = {𝑑 ∈ J𝑡K𝜂 | height(𝑑) ≤ 𝑛}

and height(𝑑) is the height of an element in D, defined as

. . .

height(Rec(¯̄𝑑)𝑉) = 1 + height(¯̄𝑑)
height(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉𝐿′) = max(1, (height(𝛿ℓ))ℓ∈𝐿)

Lemma C.5. Let 𝑡 ≤ {{{|||..}}}. Then, 𝑡 ≤𝑛+1 0 ⇐⇒ row(𝑡) ≤𝑛 0.

50 Giuseppe Castagna and Loïc Peyrot

Σ ⊢N ∅⇝ {∅}
(Nempty)

(Σ ⊢N {(𝑇𝑖 , 𝑐𝑖 ,𝑇 ′
𝑖)}⇝ S𝑖)𝑖∈𝐼

Σ ⊢N {(𝑇𝑖 , 𝑐𝑖 ,𝑇 ′
𝑖) | 𝑖 ∈ 𝐼 }⇝ ⊓𝑖∈𝐼S𝑖

(Njoin)

Σ ⊢N (𝑇, ≤,𝑇 ′) ⇝ S
Σ ⊢N (𝑇 ′, ≥,𝑇) ⇝ S

(Nsym)

Σ ⊢N {(𝑇 ∧ ¬𝑇 ′, ≤, 0)}⇝ S 𝑇 ′ ≠ 0

Σ ⊢N {(𝑇, ≤,𝑇 ′)}⇝ S
(Nzero)

Σ ⊢N {(dnf (𝑇), ≤, 0)}⇝ S 𝑇 ≠ dnf (𝑇)
Σ ⊢N {(𝑇, ≤, 0)}⇝ S

(Ndnf)

Σ ⊢N {(𝑇𝑖 , ≤, 0) | 𝑖 ∈ 𝐼 }⇝ S
Σ ⊢N {(∨𝑖∈𝐼 𝑇𝑖 , ≤, 0)}⇝ S

(Nunion)

Where 𝑇𝑖 in (Nunion) are single normal forms.

Fig. 5. Normalization rules for all kinds

𝑡 ∈ Σ tlv(𝑡) = ∅
Σ ⊢N {(𝑡, ≤, 0)}⇝ {∅}

(Nhyp)

Σ ∪ {𝑡} ⊢N★ {(𝑡, ≤, 0)}⇝ S 𝑡 ∉ Σ

Σ ⊢N {(𝑡, ≤, 0)}⇝ S
(Nassum)

tlv(𝑇) = ∅ 𝑋 ′ 𝑂𝑃 ∪ 𝑁 S =

{
{single(𝑋 ′,𝑇0)} 𝑋 ′ ∉ Δ

Σ ⊢N {(𝑇, ≤, 0)} 𝑋 ′ ∈ Δ

Σ ⊢N {(𝑇0 =
∧
𝑋 ∈𝑃

𝑋 ∧
∧
𝑋 ∈𝑁

¬𝑋 ∧𝑇, ≤, 0)}⇝ S
(Ntlv)

Σ ⊢N {(⊥, ≤, 0)}⇝ ∅
(Nopt)

S =

{
{∅} if 𝑡, ≤, 0
∅ if 𝑡 ≰ 0

Σ ⊢N★ {(𝑡 =
∧
𝑖∈𝑃

𝑏𝑖 ∧
∧
𝑗∈𝑁

¬𝑏 𝑗 , ≤, 0)}⇝ S
(Nbasic)

∃ 𝑗 ∈ 𝑁 .∀𝑃 ′ ⊆ 𝑃 .


Σ ⊢N {𝑡1

𝑗 ∧
∧
𝑖∈𝑃 ′

¬𝑡1

𝑖 , ≤, 0}⇝ S1

𝑃 ′
Σ ⊢N {

∧
𝑖∈𝑃∖𝑃 ′

𝑡2

𝑖 ∧ ¬𝑡2

𝑗 , ≤, 0}⇝ S2

𝑃 ′ 𝑃 ′ ≠ 𝑃

S2

𝑁 ′ = ∅ otherwise

Σ ⊢N★ {(
∧
𝑖∈𝑃

(𝑡1

𝑖 → 𝑡2

𝑖) ∧
∧
𝑗∈𝑁

¬(𝑡1

𝑗 → 𝑡2

𝑗), ≤, 0)}⇝
⊔
𝑗∈𝑁

l

𝑃 ′⊆𝑃
(S1

𝑃 ′ ⊔ S2

𝑃 ′)
(Narrow)

Σ ⊢N {(row(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R), ≤, 0)}⇝ S

Σ ⊢N★ {(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R, ≤, 0)}⇝ S
(Nrec)

Fig. 6. Normalization rules for type and field single normal forms

51

Proof. By definition and a trivial well-founded induction on type operators, we have J𝑡Kq

𝜂 =

{Rec(¯̄𝑑)𝑉 | ¯̄𝑑 ∈ Jrow(𝑡)Kq

𝜂}. Thus, by definition of height, we have J𝑡Kq

𝑛+1
𝜂 = {Rec(¯̄𝑑)𝑉 | ¯̄𝑑 ∈

Jrow(𝑡)Kq

𝑛𝜂}. □

Definition C.5. Given a constraint-set 𝐶 and a substitution 𝜎 , we define the rank 𝑛 satisfaction

predicate ⊩𝑛 as

𝜎 ⊩𝑛 𝐶 ⇐⇒def ∀(𝑇1, ≤,𝑇2) ∈ 𝐶.𝑇1 ≤𝑛 𝑇2 and ∀(𝑇1, ≥,𝑇2) ∈ 𝐶.𝑇1 ≥𝑛 𝑇2

Lemma C.6. (1) 𝜎 ⊩0 𝐶 for all 𝜎 and 𝐶 .

(2) 𝜎 ⊩ 𝐶 ⇐⇒ ∀𝑛.𝜎 ⊩𝑛 𝐶 .

Proof. Consequence of [9, Lemma C.7] and Lemma C.5. □

Definition C.6 (Marshalling). Given a conjunction of atomic rows 𝑟0 =
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 𝑟 , a

finite set of labels and a set of variables, we define marshalling as

marsh(𝑟, 𝐿,Δ) =
∧

𝑟 ∈𝑃∖𝑃0

𝑟 ∧
∧

𝑟 ∈𝑁∖𝑁0

¬𝑟 ∧
∧
𝑟 ∈𝑃0

⟨⟨⟨(ℓ = 𝑟 [ℓ])ℓ∈𝐿|||𝑟\Δ𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑁0

¬⟨⟨⟨(ℓ = 𝑟 [ℓ])ℓ∈𝐿|||𝑟\Δ𝐿⟩⟩⟩

where 𝑃0 = {𝑟 ∈ 𝑃 | tail(𝑟) = 𝜌 ∉ Δ and def (𝜌) ∩ 𝐿 ≠ ∅}, similarly for 𝑁0.

Lemma C.7. If 𝜎 ⊩ {(marsh(𝑟, 𝐿,Δ), ≤, 0}, then 𝜎 ⊩ {(𝑟, ≤, 0)}.

Proof. We show that marsh(𝑟0, 𝐿,Δ)𝜎 = 𝑟0𝜎 . Let 𝑟 = ⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿1
|||𝜌⟩⟩⟩ ∈ 𝑃0 ∪ 𝑁0 and

𝑟 ′ = ⟨⟨⟨(ℓ = 𝑟 [ℓ]ℓ∈𝐿|||𝑟\Δ𝐿⟩⟩⟩ . Then, 𝑟 ′ = ⟨⟨⟨(ℓ = 𝑟 (ℓ)ℓ∈𝐿1
, (ℓ = 𝜌.ℓ)ℓ∈𝐿∖𝐿1

|||𝜌\𝐿⟩⟩⟩ . We have 𝜎 (𝜌) ≃
⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∖𝐿1

|||𝑟 ′′⟩⟩⟩L∖ def (𝜌)
because 𝜎 is a solution for {marsh(𝑟0, 𝐿,Δ), ≤, 0}. Therefore, 𝑟𝜎 =

marsh(𝑟, 𝐿,Δ)𝜎 . □

Given a set Σ of types and rows, we write 𝐶 (Σ) for the constraint-set {(𝑇, ≤, 0) | 𝑇 ∈ Σ}.

Lemma C.8 (Soundness). Let 𝐶 be a constraint-set. If ∅ ⊢N 𝐶 ⇝ S, then for all constraint-set

𝐶′ ∈ S and all substitution 𝜎 , we have 𝜎 ⊩ 𝐶′ =⇒ 𝜎 ⊩ 𝐶 .

Proof. We prove the following stronger statements.

(1) Assume Σ ⊢N 𝐶 ⇝ S. For all 𝐶′ ∈ S, 𝜎 and 𝑛, if 𝜎 ⊩𝑛 𝐶 (Σ) and 𝜎 ⊩𝑛 𝐶′
, then 𝜎 ⊩𝑛 𝐶 .

(2) Assume Σ ⊢N★ 𝐶 ⇝ S. For all 𝐶′ ∈ S, 𝜎 and 𝑛, if 𝜎 ⊩𝑛 𝐶 (Σ) and 𝜎 ⊩𝑛 𝐶′
, then 𝜎 ⊩𝑛+1 𝐶 .

The cases (Nempty), (Njoin), (Nsym), (Nzero), (Ndnf), (Nunion), (Nhyp), (Nassum), (Nbasic) and

(Narrow) are given in [9, Lemma C.10].

(Ntlv) Let 𝑇0 = 𝑇 ∧ ∧
𝑋 ∈𝑃 𝑋 ∧ ∧

𝑋 ∈𝑁 ¬𝑋 and 𝑋 ′
be the smallest type variable with respect

to the order in 𝑃 ∪ 𝑁 . If 𝑋 ′ ∈ 𝑃 ∖ Δ, then we have 𝜎 ⊩𝑛 {(𝑋 ′, ≤,¬𝑇𝑋 ′)} with 𝑇𝑋 ′ =

𝑇 ∧ ∧
𝑋 ∈𝑃∖𝑋 𝑋 ∧ ∧

𝑋 ∈𝑁 ¬𝑋 , thus (𝑋 ′)𝜎 ≤𝑛 ¬𝑇𝑋 ′𝜎 . This is equivalent to 𝑇𝜎 ≤𝑛 0, and
we conclude 𝜎 ⊩𝑛 {(𝑇, ≤, 0)}. If 𝑋 ′ ∈ 𝑁 ∖ Δ, the result follows as well. If 𝑋 ′ ∈ Δ, then
𝑃 ∪ 𝑁 ⊆ Δ by Definition C.2. We have J𝑇0K = {𝐷 ∈ J𝑇 K | 𝑃 ⊆ tag(𝐷) and 𝑁 ∩ tag(𝐷) = ∅}.
Since 𝑇0 is non empty, the variables in 𝑃 and 𝑁 are different, and since those variables

cannot be instantiated, we can satisfy 𝑇0 ≤ 0 if and only if 𝑇 ≤ 0 is satisfied.

(Nopt) Direct by emptiness of S.
(Nrec) Let 𝑡 =

∧
R∈𝑃 R ∧ ∧

R∈𝑁 ¬R. By induction, we have 𝜎 ⊩𝑛 {(row(𝑡) ≤ 0)}. This is by
definition equivalent to row(𝑡)𝜎 ≤𝑛 0, thus row(𝑡𝜎) ≤𝑛 0 and by Lemma C.5 𝑡𝜎 ≤𝑛+1 0,
which concludes 𝜎 ⊩𝑛+1 {(𝑡 ≤ 0)}.

(Nrow) The result is direct if S = ∅. Otherwise, we have 𝐶′ =
⋃

𝜄∈𝑁→𝐿∪{_} 𝐶
′
𝜄 , where 𝐶

′
𝜄 ∈⊔

ℓ∈𝐿 S𝜄
ℓ ⊔

d
𝑁 ′∈N S𝜄

𝑁 ′ . For all 𝜄 : 𝑁 → 𝐿 ∪ {_}, there are two cases.

52 Giuseppe Castagna and Loïc Peyrot

(1) In the first case, there is ℓ ∈ 𝐿 such that 𝐶′
𝜄 ∈ Sℓ

𝜄 . Then, by induction,

𝜎 ⊩𝑛 {(
∧
𝑟 ∈𝑃

𝑟 [ℓ] ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 [ℓ] ≤ 0)}

(2) In the second case, we have 𝐶′
𝜄 =

⋃
𝑁 ′ 𝐶𝑁 ′

𝜄 , where 𝐶𝑁 ′
𝜄 ∈ S𝜄

𝑁 ′ . For all 𝑁
′
, there are two

subcases.

(a) In the first subcase, 𝑁 ′ ∈ N . Then, by induction,

𝜎 ⊩𝑛 {(
∧
𝑟 ∈𝑃

𝑟\Δ𝐿 ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′

¬(𝑟\Δ𝐿) ≤ 0)}

(b) In the second subcase, 𝑁 ′ ∈ 𝜄−1 (_) ∩ 𝑁Δ ∖N . Then we have

𝜎 ⊩𝑛 {(
∧
𝑟 ∈𝑃Δ

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩, ≤, 0)}

In other words, ∀𝜄 : 𝑁 → 𝐿 ∪ {_}.∀𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁Δ :

©­«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 [ℓ]𝜎 ≤𝑛

∨
𝑟 ∈𝜄−1 (ℓ)

𝑟 [ℓ]𝜎ª®¬ or
©­«
∧
𝑟 ∈𝑃

(𝑟\Δ𝐿)𝜎 ≤𝑛

∨
𝑟 ∈𝜄−1 (_)∖𝑁 ′

(𝑟\Δ𝐿)𝜎 ª®¬
or

(∧
𝑟 ∈𝑃Δ

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩
)

Let 𝑃0 = {𝑟 ∈ 𝑃 | tail(𝑟) = 𝜌 ∉ Δ and def (𝜌) ∩ 𝐿 ≠ ∅}, same for 𝑁0. By Lemma C.4, the

definition of substitution and the fact that 𝑟 [ℓ] = 𝑟 (ℓ) and 𝑟\Δ𝐿 = 𝑟\𝐿 for all 𝑟 ∉ 𝑃0 ∪𝑁0, we

have marsh(𝑟0, 𝐿,Δ)𝜎 ≤𝑛 0, that is 𝜎 ⊩ {marsh(𝑟0, 𝐿,Δ), ≤, 0)}, By Lemma C.7, we conclude

𝜎 ⊩𝑛 {(𝑟0 ≤ 0)}.
(Ntail-mono) The result is direct if

d
𝜄∈𝐼

⊔
ℓ∈𝐿 S𝜄

ℓ = ∅. Otherwise, we have 𝐶′ =
⋃

𝜄∈𝐼 𝐶
′
𝜄 , where

S′
𝜄 ∈

⊔
ℓ∈𝐿 Sℓ

𝜄 . By definition of ⊔, for all 𝜄 ∈ 𝐼 , there is ℓ ∈ 𝐿 such that𝐶′
𝜄 ∈ Sℓ

𝜄 . By induction,

𝜎 ⊩𝑛 {(∧𝑟 ∈𝑃 𝑟 (ℓ) ∧
∧

𝑟 ∈𝜄−1 (ℓ) ¬𝑟 (ℓ))}. In other words,

∀𝜄 ∈ 𝐼 .∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ)𝜎 ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 (ℓ)𝜎 ≤𝑛 0

Moreover, by hypothesis that 𝐿 ⊆ ⋃
𝑟 ∈𝑃∪𝑁 lab(𝑟). Also, for each 𝜄 ∉ 𝐼 , one of the two

conditions (10) or (11) of Lemma A.6 is satisfied. By this corollary,
∧

𝑟 ∈𝑃 𝑟𝜎∧
∧

𝑟 ∈𝑁 ¬𝑟𝜎 ≤𝑛 0.
We conclude 𝜎 ⊩𝑛 {(∧𝑟 ∈𝑃 𝑟 ∧

∧
𝑟 ∈𝑁 ¬𝑟 ≤ 0)}.

(Ntail-tlv) Let 𝑟0 =
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 𝑟 . By hypothesis, there is 𝑟 ′ = ⟨⟨⟨|||𝜌\𝐿1⟩⟩⟩𝐿2 ∈ 𝑃 ∪ 𝑁 such that

𝜌 𝑂𝑟 ′. There are two similar cases, we detail the one where 𝑟 ′ ∈ 𝑃 . Let 𝑟 ′
0
=

∧
𝑟 ∈𝑃∖{𝑟 ′ } ¬𝑟 ∧∧

𝑟 ∈𝑁 𝑟 . By hypothesis, we have 𝜎 ⊩𝑛 {(𝑟 ′𝜎 ≤ ¬𝑟 ′
0
)}, thus 𝑟 ′𝜎 ≤𝑛 𝑟 ′

0
𝜎 . This is equivalent to

𝑟0𝜎 ≤𝑛 0, and we conclude 𝜎 ⊩𝑛 {(𝑟0 ≤ 0)}. □

We introduce a notion of plinth generalizing the one of Frisch [18] to types, field-types and rows.

This notion is used to prove termination of the algorithm.

Definition C.7 (Plinth). A plinth ℶ ⊂ T⊥ ∪ R is a set of types, field-types and rows with the

following properties:

• ℶ is finite;

• ℶ contains 0, 1, ⊥, ⟨⟨⟨|||..⟩⟩⟩∅ and is closed under Boolean connectives (∨, ∧, ¬);
• for all type 𝑡1 → 𝑡2 ∈ ℶ, we have 𝑡1 ∈ ℶ and 𝑡2 ∈ ℶ;
• for all type R ∈ ℶ, we have row(R) ∈ ℶ;

53

• for all row 𝑟 ∈ ℶ of definition space L∖𝐿𝑟 , let 𝐿 be the set of labels appearing explicitely in ℶ
and 𝑉 the set of row variables in ℶ, we have:
– for all ℓ ∈ 𝐿, 𝑟 (ℓ) ∈ ℶ
– for all 𝐿′ ⊆ 𝐿, ∀𝑉 ′ ⊆ 𝑉 , 𝑟\𝑉 ′

𝐿′ ∈ ℶ and marsh(𝑟, 𝐿′,𝑉 ′) ∈ ℶ.
Every finite set of types, field-types and types is included in a plinth. Indeed, for a regular type 𝑡 ,

the set of its subtrees 𝑆 is finite, while rows and field-types are inductively defined. The definition

of the plinth ensures that the closure of 𝑆 under Boolean connectives is also finite. Moreover, if a

type, field-type or row belongs in a plinth, the set of its subtrees also does. Finally, if a record or a

row belongs to a plinth, the rows obtained by marshalling or by removing fields also belongs to the

plinth, but only if these operations are done with respect to the set of labels present in the plinth,

in order to guarantee finiteness of the plinth.

Lemma C.9 (Termination). Let 𝐶 be a finite constraint set. The normalization of 𝐶 terminates.

Proof. Let 𝐵 be the set of types occuring in𝐶 . As𝐶 is finite, 𝐵 is finite as well. Let ℶ be a plinth

such that 𝐵 ⊆ ℶ. Then, when we normalize a constraint (𝑡, ≤, 0) during the process of ∅ ⊢N 𝐶 , 𝑡

would belong to ℶ. We prove the lemma by induction on (|ℶ∖Σ|,𝑈 , |𝐶 |),𝑈 is the number of unions

∨ occurring in the constraint-set𝐶 (over any kind) plus the number of constraints (𝑇1, ≤,𝑇2) where
𝑇2 ≠ 0 or𝑇1 is not in DNF, and𝐶 is the constraint-set to be normalized. We detail the original cases,

others are described in the proof [9, Lemma C.14].

(Nopt) Terminates immediately.

(Nrec) None of the indices decreases, but the next rule to apply must be one of (Nrow), (Ntail-

mono) or (Ntail-tlv).

(Nrow) Although (|ℶ ∖ Σ|,𝑈 , |𝐶 |) may not change, the next rule to apply must be one of (Ndnf),

(Nhyp), (Nassum), (Ntlv), (Nopt) for S𝜄
ℓ and (Ntail-tlv) for S𝜄

𝑁 ′ .

(Ntail-mono) Although (|ℶ ∖ Σ|,𝑈 , |𝐶 |) may not change, the next rule to apply must be one of

(Ndf), (Nhy), (Nassum), (Ntlv), (Nopt).

(Ntail-tlv) Terminates immediately. □

Definition C.8 (Normalized constraint). A constraint is said to be normalized if it is of the

shape (𝑋, 𝑐,𝑇), where 𝑋 and 𝑇 are of the same kind. A constraint-set is normalized if all constraints

are.

Lemma C.10. Let 𝐶 be a constraint-set and ∅ ⊢N 𝐶 ⇝ S. Then, all constraint-sets 𝐶′ ∈ S are

normalized.

Proof. Straightforward by induction on the algorithm derivation. □

Lemma C.11 (Finiteness). Let 𝐶 be a constraint-set and ∅ ⊢N 𝐶 ⇝ S. Then, S is finite.

Proof. It is easy to prove that each normalizing rule generates a finite set of finite sets of

normalized constraints. □

Definition C.9. Let 𝐶 be a normalized constraint-set and 𝑂 an ordering on vars(𝐶) and on the

labels occurring in 𝐶 . We say 𝐶 is well-ordered if for all normalized constraint (𝑋1, 𝑐,𝑇) ∈ 𝐶 and for

all 𝑋2 ∈ tlv(𝑇), 𝑂 (𝑋1) < 𝑂 (𝑋2) holds.
Lemma C.12. Let 𝐶 be a constraint-set and ∅ ⊢N 𝐶 ⇝ S. Then for all normalized constraint-set

𝐶′ ∈ S, 𝐶′
is well-ordered.

Proof. There are two different ways to generate normalized constraints:

(Ntlv) We single out the type variable 𝑋 ′
whose order is minimum, because tlv(𝑇) = ∅.

(Ntail-tlv) We single out the row variable 𝜌 whose order is minimum. □

54 Giuseppe Castagna and Loïc Peyrot

C.5 Constraint merging and saturation
After normalization, we have a set of constraint-sets where the same variable might have several

upper and lower bounds given by different constraints on that variable. After this step, we wish to

obtain unique upper and lower bounds for the same variable. This is done in two phases. For each

normalized constraint-set 𝐶 and following the order on variables, we:

• Merge two constraints (𝑋, ≤,𝑇1) and (𝑋, ≤,𝑇2) into (𝑋, ≤,𝑇1 ∧𝑇2).
• Merge two constraints (𝑋, ≥,𝑇1) and (𝑋, ≥,𝑇2) into (𝑋, ≥,𝑇1 ∨𝑇2).

Once the set 𝐶 has been transformed into 𝐶′
where there are no such constraints left, we saturate

the set to verify that the lower bound is indeed a subtype of the upper bound, once again following

the order on variables. From two constraints (𝑇1, ≤, 𝑋) and (𝑋, ≤,𝑇2), we normalize the constraint

(𝑇1 ∧ ¬𝑇2, ≤, 0). We obtain a set of constraint-sets S. We add the new resulting constraint-sets

accordingly to the existing ones with S ⊓ {𝐶′}, then apply the step of merging and saturation again

on each constraint-sets in S ⊓ {𝐶′}. Termination of this step is assured as in the step of constraint

normalization by an additional argument𝑀 to the merge function, saving visited types.

Formally, this part is almost exactly the same as in the original algorithm in [9, Section C.1.2].

One simply needs to replace occurrences of 𝛼 and 𝑡 by the more general meta-variables 𝑋 and 𝑇 .

The rules are given in Figs. 8 and 9. Termination is proved thanks to the generalized definition of

plinths (Definition C.7).

C.6 Harmonization
Thanks to the last step, we now have a set of constraint-sets such that in all constraint-sets, each

variable in the domain of the constraint-set has at most one upper bound and one lower bound. Yet,

for a row variable 𝜌 of the original type constraints, we can have several constraints for the derived

constructors 𝜌\𝐿, for instance a constraint-set containing both (𝜌\𝐿1, ≤,𝑇1) and (𝜌\𝐿2, ≤,𝑇2), with
𝐿1 ∩ def (𝜌) ≠ 𝐿2 ∩ def (𝜌). There could also be occurrences of another construction 𝜌\𝐿3 in𝑇1 with

a different 𝐿3. We want a unique decomposition of 𝜌 in each constraint-set, with a unique set 𝐿0

such that only 𝜌\𝐿0 may appear in the domain of the constraint-set. From this, we will build a

solution such that 𝜎 (𝜌) ≃ (ℓ = 𝜏ℓ)ℓ∈𝐿0
𝑟 . There can be occurrences of 𝜌\𝐿′ not in the domain, or of

𝜌.ℓ ′, but substitution will be correctly defined since we take 𝐿0 to cover all such occurrences.

Formally, a harmonized constraint is defined as follow.

Definition C.10 (Harmonized constraint). Let 𝐶 ⊆ C be a saturated constraint-set. We say 𝐶

is harmonized if for each type variable 𝜌 ∈ dom(𝐶), there is a finite set of labels 𝐿 such that:

(1) ∀(𝜌\𝐿𝑖 , 𝑐, 𝑟𝑖) ∈ 𝐶. 𝐿𝑖∖ def (𝜌) = 𝐿 ∖ def (𝜌);
(2) ∀𝜌\𝐿′ ∈ vars(𝐶). 𝐿′ ⊆ 𝐿;

(3) ∀𝜌.ℓ ∈ vars(𝐶). ℓ ∈ 𝐿 ∩ def (𝜌).

If a constraint-set is not harmonized, then it is of the shape𝐶∪{⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟 }, where 𝐿0 ⊈ 𝐿, when

we define 𝐿0 =
⋃

𝜌.ℓ∈vars(𝐶)∪vars(𝑟) {ℓ} ∪
⋃

𝜌\𝐿′∈vars(𝐶)∪vars(𝑟) 𝐿
′
. To harmonize the decomposition

of the variable row, we normalize the constraint-set {(⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿, 𝑐, 𝑟)}. We integrate

the obtained set of constraint-sets S to the existing constraints with {𝐶} ⊓ S and apply merging

and harmonization recursively. The rules are given in Fig. 10.

Lemma C.13 (Soundness). Let 𝐶 be a finite saturated constraint-set. If ∅ ⊢H 𝐶 ⇝ S, then for all

constraint-set 𝐶′ ∈ S and all substitution 𝜎 , we have 𝜎 ⊩ 𝐶′ =⇒ 𝜎 ⊩ 𝐶 .

Proof. The proof is by induction on the derivation tree. We prove the more general statement

for all Σ. The base case Σ ⊢H 𝐶 ⇝ {𝐶} is trivial. In the inductive case, let𝐶 = 𝐶0 ∪ {(⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟)}.
By definition of ⊔, there are 𝐶𝑛 ∈ {𝐶} ⊓ S and 𝐶𝑚 ∈ S𝑛 such that 𝐶′ ∈ S𝑚

𝑛 . Since 𝜎 ⊩ 𝐶′
, we have

55

∀𝜄 : 𝑁→𝐿∪{_}.


∀ℓ ∈ 𝐿.Σ ⊢N {(

∧
𝑟 ∈𝑃

𝑟 [ℓ] ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 [ℓ], ≤, 0)}⇝ S𝜄

ℓ

∀𝑁 ′ ∈ N .Σ ⊢N {(
∧
𝑟 ∈𝑃

𝑟\Δ𝐿 ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′

¬(𝑟\Δ𝐿), ≤, 0)}⇝ S𝜄
𝑁 ′

𝜌 𝑂 tlv(𝑟0) 𝜌 ∉ Δ 𝐿 = def (𝑟0)∖ def (𝜌) 𝐿 ≠ ∅
𝑃Δ = {𝑟 ∈ 𝑃 ∩ Δ | tail(𝑟) = 𝜌𝑝 and def (𝜌𝑝) ∩ 𝐿 ≠ ∅}
𝑁Δ = {𝑟 ∈ 𝑁 ∩ Δ | tail(𝑟) = 𝜌𝑛 and def (𝜌𝑛) ∩ 𝐿 ≠ ∅}

N = {𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁Δ |
∧
𝑟 ∈𝑃Δ

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ≰ 0}

Σ ⊢N {(𝑟0 =
∧
𝑟 ∈𝑃

𝑟 ∧
∧
𝑟 ∈𝑁

¬𝑟, ≤, 0)}⇝
l

𝜄:𝑁→𝐿∪{_}

(⊔
ℓ∈𝐿

S𝜄
ℓ ⊔

l

𝑁 ′∈N
S𝜄
𝑁 ′

) (Nrow)

∀𝜄 ∈ 𝐼1 ∩ 𝐼2.∀ℓ ∈ 𝐿.Σ ⊢N {(
∧
𝑟 ∈𝑃

𝑟 (ℓ) ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 (ℓ), ≤, 0)}⇝ S𝜄

ℓ

𝐼1 = {𝜄 : 𝑁 → 𝐿 ∪ {_} | ∀𝑟◦ ∈ 𝜄−1 (_)∖𝑁Δ .
∧

𝑟 ∈𝑃∖𝑃Δ
def (𝑟) ≰ def (𝑟◦)}

𝐼2 = {𝜄 : 𝑁 → 𝐿 ∪ {_} | ∀𝑟◦ ∈ 𝜄−1 (_) ∩ 𝑁Δ .∀𝑟𝑝 ∈ 𝑃Δ . tail(𝑟◦) ≠ tail(𝑟𝑝)}
tlv(𝑃 ∪ 𝑁) ⊆ Δ 𝐿 =

⋃
𝑟 ∈𝑃∪𝑁

lab(𝑟)

𝑃Δ = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} 𝑁Δ = {𝑟 ∈ 𝑁 | tail(𝑟) ∈ V}

Σ ⊢N {(
∧
𝑟 ∈𝑃

𝑟 ∧
∧
𝑟 ∈𝑁

¬𝑟, ≤, 0)}⇝
l

𝜄∈𝐼1∩𝐼2

⊔
ℓ∈𝐿

S𝜄
ℓ

(Ntail-mono)

𝜌 𝑂 tlv(𝑃 ∪ 𝑁) 𝜌 ∉ Δ ∃𝑟 ′ ∈ 𝑃 ∪ 𝑁 .𝑟 ′ = ⟨⟨⟨|||𝜌⟩⟩⟩𝐿

Σ ⊢N {(𝑟0 =
∧
𝑟 ∈𝑃

𝑟 ∧
∧
𝑟 ∈𝑁

¬𝑟, ≤, 0)}⇝ {single(⟨⟨⟨|||𝜌⟩⟩⟩𝐿, 𝑟0)}
(Ntail-tlv)

Fig. 7. Normalization rules for row single normal forms

∀𝑖 ∈ 𝐼 .(𝑋, ≥,𝑇𝑖) ∈ 𝐶 |𝐼 | ≥ 2

⊢M 𝐶 ⇝ (𝐶 ∖ {(𝑋, ≥,𝑇𝑖) | 𝑖 ∈ 𝐼 } ∪ {(𝑋, ≥,
∨
𝑖∈𝐼

𝑇𝑖)})
(MLB)

∀𝑖 ∈ 𝐼 .(𝑋, ≤,𝑇𝑖) ∈ 𝐶 |𝐼 | ≥ 2

⊢M 𝐶 ⇝ (𝐶 ∖ {(𝑋, ≤,𝑇𝑖) | 𝑖 ∈ 𝐼 } ∪ {(𝑋, ≤,
∨
𝑖∈𝐼

𝑇𝑖)})
(MUB)

Fig. 8. Merging rules

56 Giuseppe Castagna and Loïc Peyrot

Σ𝑝 ,𝐶Σ ∪ {(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ⊢S 𝐶 ⇝ S (𝑇1,𝑇2) ∈ Σ𝑝

Σ𝑝 ,𝐶Σ ⊢S {(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ∪𝐶 ⇝ S
(Shyp)

(𝑇1,𝑇2) ∉ Σ𝑝 ∅ ⊢N {(𝑇1, ≤,𝑇2)}⇝ S
S′ = {{(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ∪𝐶 ∪𝐶Σ} ⊓ S
∀𝐶′ ∈ S′ .Σ𝑝 ∪ {(𝑇1,𝑇2)}, ∅ ⊢MS 𝐶

′ ⇝ S𝐶′

Σ𝑝 ,𝐶Σ ⊢S {(𝑋, ≥,𝑇1), (𝑋, ≤, 𝑋2)} ∪𝐶 ⇝
⊔

𝐶′∈S′

S𝐶′
(Sassum)

∀𝑋,𝑇1,𝑇2.�{(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ⊆ 𝐶

Σ𝑝 ,𝐶Σ ⊢S 𝐶 ⇝ {𝐶 ∪𝐶Σ}
(Sdone)

Where Σ𝑝 ,𝐶Σ ⊢MS 𝐶 ⇝ S means that there exists 𝐶′
such that ⊢M 𝐶 ⇝ 𝐶′

and Σ𝑝 ,𝐶Σ ⊢S 𝐶′ ⇝ S.

Fig. 9. Saturation rules

𝐶 is harmonized

Σ ⊢H 𝐶 ⇝ {𝐶}
(Hdone)

𝐿0 =
⋃

𝜌.ℓ∈vars(𝐶)∪vars(𝑟)
{ℓ} ∪

⋃
𝜌\𝐿′∈vars(𝐶)∪vars(𝑟)

𝐿′ 𝐿0 ⊈ 𝐿

∅ ⊢N {(⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿, 𝑐, 𝑟)}⇝ S
∀𝐶𝑛 ∈ {𝐶} ⊓ S.(∅, ∅ ⊢MS 𝐶𝑛 ⇝ S𝑛)

∀𝐶𝑚 ∈ S𝑛 and 𝐶𝑚 ∉ Σ.(Σ ∪𝐶𝑚 ⊢H 𝐶𝑚 ⇝ S𝑚
𝑛)

Σ ⊢H 𝐶 ∪ {(⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟)}⇝
⊔

𝐶𝑛∈{𝐶 }⊓S

⊔
𝐶𝑚∈S𝑛

S𝑚
𝑛

(Harm)

Fig. 10. Harmonization rules

by induction hypothesis on Σ ∪𝐶𝑚 ⊢H 𝐶𝑚 ⇝ S𝑚
𝑛 that 𝜎 ⊩ 𝐶𝑚 . By definition of ⊔ again, there is

𝐶𝑛 ∈ {𝐶0} ⊓ S such that 𝐶𝑚 ∈ S𝑛 . Since 𝜎 ⊩ 𝐶𝑚 , we have by soundness of constraint merging on

∅, ∅ ⊢MS 𝐶𝑛 ⇝ S𝑛 that 𝜎 ⊩ 𝐶𝑛 . We have 𝐶𝑛 = 𝐶0 ∪𝐶′
𝑛 with 𝐶′

𝑛 ∈ S. Since 𝜎 ⊩ 𝐶𝑛 , we have 𝜎 ⊩ 𝐶
′
𝑛

and by Lemma C.8 𝜎 ⊩ {(⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿, 𝑐, 𝑟)}. Thus, 𝜎 (𝜌) ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∩def (𝜌) , (ℓ =

𝜏ℓ)ℓ∈𝐿0∖𝐿|||𝑟
′⟩⟩⟩L∖ def (𝜌)

. Then, (⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿)𝜎 = (⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿)𝜎 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿0∖𝐿|||𝑟
′⟩⟩⟩𝐿 .

Therefore, 𝜎 ⊩ {(⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟)}. We conclude 𝜎 ⊩ 𝐶0 as well because 𝜎 ⊩ 𝐶𝑛 and 𝐶0 ⊆ 𝐶𝑛 . □

Lemma C.14 (Termination). Let 𝐶 be a finite saturated constraint-set. The harmonization of 𝐶

terminates.

Proof. Let 𝐵 be the set of types, type fields and rows in 𝐶 , finite since 𝐶 is finite. Let ℶ be a

plinth such 𝐵 ⊆ ℶ. When adding a set of constraint𝐶𝑚 to Σ during harmonization, every constraint

of 𝐶𝑚 belongs to (ℶ × {≤, ≥} × ℶ). The proof is by induction on (| (ℶ × {≤, ≥},×ℶ) | − |Σ|, |𝐶 |)
lexicographically ordered.

(Hdone) Terminates immediatly.

57

(Harm) Normalization, merging and saturation all terminate. In the recursive step of harmoniza-

tion that are applied, | (ℶ × {≤, ≥} × ℶ) | − |Σ| decreases. □

Lemma C.15 (Finiteness). Let 𝐶 be a finite saturated constraint-set and ∅ ⊢H 𝐶 ⇝ S. Then S is

finite.

Proof. By induction on the derivation and by Lemma C.11 and finiteness of constraint merging.

□

Lemma C.16. Let 𝐶 be a finite saturated constraint-set and ⊢H 𝐶 ⇝ S. Then for all constraint-set

𝐶′ ∈ S, 𝐶′
is harmonized.

Proof. Direct by induction on the derivation, finite by Lemma C.14. □

Lemma C.17. Let 𝐶 be a well-ordered saturated constraint-set and ∅ ⊢H 𝐶 ⇝ S. Then for all

harmonized constraint-set 𝐶′ ∈ S, 𝐶′
is well-ordered.

Proof. Consequence of Lemma C.12 and conservation of well-orderedness by merging and

saturation. □

C.7 From constraints to equations
Once normalization, merging and harmonization are done, we have a set of well-ordered constraint-

sets at hand, where all variables have unique lower and upper bounds, and for each row variable 𝜌 ,

there is at most a unique occurrence of 𝜌\𝐿 (where 𝐿 can be empty if 𝜌 has not been decomposed),

such that also every occurrence of 𝜌.ℓ has ℓ ∈ 𝐿. We are now able to rewrite each constraint-set 𝐶

into an equivalent equation system.

Definition C.11 (Eqation system). An equation system 𝐸 is a set of equations of the form

𝑋 = 𝑇 such that there exists at most one equation in 𝐸 for every variable 𝑋 , and 𝑋 and 𝑇 are of the

same kind. We define the domain of 𝐸, written dom(𝐸), as the set {𝑋 | ∃𝑇 .𝑋 = 𝑇 ∈ 𝐸}.

Definition C.12 (Eqation system solution). Let 𝐸 be an equation system. A solution to 𝐸 is a

substitution 𝜎 such that ∀(𝑋 = 𝑇) ∈ 𝐸.𝜎 (𝑋) ≃ 𝑇𝜎 holds. If 𝜎 is a solution to 𝐸, we write 𝜎 ⊩ 𝐸.

Given a constraint-set𝐶 , we will use the notation (𝑇1 ≤ 𝑋 ≤ 𝑇2) ∈ 𝐶 to indicate {(𝑇1, ≤, 𝑋), (𝑋, ≤
,𝑇2)} ⊆ 𝐶 . We assume that every variable and every term 𝜌.ℓ , 𝜌\𝐿 in dom(𝐶) have an upper and a

lower bound, without loss of generality because a constraint with bottom or top types can always

be added if needed:

• For a type variable 𝛼 , we can add constraints (0, ≤, 𝛼) or (𝛼, ≤, 1);
• For a field variable 𝜃 (or 𝜌.ℓ), we can add constraints (0, ≤, 𝜃) or (𝜃, ≤, 1 ∨ ⊥);
• For a row variable 𝜌\𝐿 (or 𝜌), we can add constraints (0, ≤, 𝜌\𝐿) or (𝜌\𝐿, ≤, ⟨⟨⟨|||..⟩⟩⟩L∖(def (𝜌)∪𝐿)).

We rewrite the set 𝐶 to a set of equations with a function solve(𝐶), where 𝛼 ′
, 𝜃 ′, 𝜃ℓ and 𝜌 ′ are

fresh variables. We write (𝑇1 ≤ 𝑋 ≤ 𝑇2) for the constraints {(𝑇1, ≤, 𝑋), (𝑋, ≤,𝑇2)} ⊆ 𝐶 .

solve(𝐶) = {𝛼 = (𝑡1 ∨ 𝛼 ′) ∧ 𝑡2 | (𝑡1 ≤ 𝛼 ≤ 𝑡2) ∈ 𝐶}
∪ {𝜃 = (𝜏1 ∨ 𝜃 ′) ∧ 𝜏2 | (𝜏1 ≤ 𝜃 ≤ 𝜏2) ∈ 𝐶 and 𝜃 ≠ 𝜌.ℓ}
∪ {𝜌 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ def (𝜌)

| (if ∃𝐿′ .(𝑟1 ≤ 𝜌\𝐿′ ≤ 𝑟2) ∈ 𝐶, then 𝐿 = 𝐿′ ∩ def (𝜌) and 𝑟 = (𝑟1 ∨ 𝜌 ′) ∧ 𝑟2,

else 𝐿 = {ℓ | 𝜌.ℓ ∈ vars(𝐶)} and 𝑟 = 𝜌 ′)
and (∀ℓ ∈ 𝐿. if (𝜏1

ℓ ≤ 𝜌.ℓ ≤ 𝜏2

ℓ) ∈ 𝐶 then 𝜏ℓ = (𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ else 𝑟 = 𝜃ℓ)}

58 Giuseppe Castagna and Loïc Peyrot

where 𝛼 ′
, 𝜃 ′, and 𝜌 ′ are fresh variables.

For type and field variables (not generated by the decomposition of a row variable), we obtain

an equation by means of the type connectives, where the union entails a lower bound and the

intersection an upper bound. For a row variable 𝜌 , there is 𝐿 and constraints (𝜏1

ℓ ≤ 𝜌.ℓ ≤ 𝜏2

ℓ) ∈ 𝐶

for all ℓ ∈ 𝐿 and (𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2), with the potentially missing constraints obtained with the

default values. Since we have decomposed 𝜌 into the labels in 𝐿 and a part of definition space

L ∖ (def (𝜌) ∪ 𝐿), we build an equation for 𝜌 by concatenating the independent types for 𝜌.ℓ and

𝜌\ℓ together.
To prove soundness of the transformation, we define the rank 𝑛 satisfaction predicate ⊩𝑛 for

equation systems, which is similar to the one for constraint-sets.

Lemma C.18 (Soundness). Let 𝐶 ⊆ C be a well-ordered saturated constraint-set and 𝐸 its trans-

formed equation system. Then for all substitutions 𝜎 , if 𝜎 ⊩ 𝐸, then 𝜎 ⊩ 𝐶 .

Proof. We write 𝑂 (𝐶1) < 𝑂 (𝐶2) if 𝑂 (𝑋1) < 𝑂 (𝑋2) for all 𝑋1 ∈ dom(𝐶1) and all 𝑋2 ∈ dom(𝐶2).
We prove a stronger statement:

(*) For all 𝜎 , 𝑛 and 𝐶Σ ⊆ 𝐶 , if 𝜎 ⊩𝑛 𝐸, 𝜎 ⊩𝑛 𝐶Σ, 𝜎 ⊩𝑛−1 𝐶 ∖ 𝐶Σ and 𝑂 (𝐶 ∖ 𝐶Σ) < 𝑂 (𝐶Σ), then
𝜎 ⊩𝑛 𝐶 ∖𝐶Σ.

Here 𝐶Σ denotes the set of constraints that have been checked. The proof proceeds by induction

on |𝐶 ∖𝐶Σ |, and is similar to the proof of [9, Lemma C.33] for type variables only. The base case

𝐶 ∖𝐶Σ = ∅ is straightforward. Let 𝐶 ∖𝐶Σ ≠ ∅ and let us consider the case of row variables. Take

𝜌 with the maximal order in dom(𝐶 ∖𝐶Σ). There are a set 𝐿 and corresponding equations 𝜌\𝐿 =

𝑟 = (𝑟1 ∧ 𝜌 ′) ∧ 𝑟2 and (𝜌.ℓ = 𝜏ℓ = (𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ)ℓ∈𝐿 . As 𝜎 ⊩𝑛 𝐸, we have 𝜎 (𝜌) ≃𝑛 (⟨⟨⟨ℓ = 𝜏ℓ|||𝑟⟩⟩⟩𝐿𝜌𝜎),
where 𝐿𝜌 = L ∖ def (𝜌). Then, for all ℓ ∈ 𝐿:

(𝜌.ℓ)𝜎 ∧ ¬𝜏2

ℓ 𝜎 ≃𝑛 ((𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ)𝜎 ∧ ¬𝜏2

ℓ 𝜎 ≃𝑛 0

And similarly for (𝜌\𝐿)𝜎 ∧ ¬(𝜌\𝐿)𝜎 . On the other hand, for all ℓ ∈ 𝐿, we have:

𝜏1

ℓ 𝜎 ∧ ¬(𝜌.ℓ)𝜎 ≃𝑛 𝜏1

ℓ ∧ ¬((𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ)𝜎 ≃𝑛 𝜏1

ℓ 𝜎 ∧ ¬𝜏2

ℓ 𝜎

And similarly for 𝑟1𝜎 ∧ ¬(𝜌\𝐿)𝜎 . It remains to show that 𝜏1

ℓ 𝜎 ≤𝑛 𝜏2

ℓ 𝜎 holds for all ℓ ∈ 𝐿 and that

𝑟1𝜎 ≤𝑛 𝑟2𝜎 hold, that is 𝜎 ⊩𝑛 {(𝜏1

ℓ ≤ 𝜏2

ℓ)ℓ∈𝐿, (𝑟1 ≤ 𝑟2}. The rest of the proof goes as in [9, Lemma

C.33]. We use the fact that the order of 𝜌.ℓ and 𝜌\𝐿 is directly superior to the order of 𝜌 , and thus

maximal in dom(𝐶 ∖𝐶Σ). □

Lemma C.19 (Completeness). Let 𝐶 ⊆ C be a saturated normalized constraint-set and 𝐸 its

transformed equation system. Then for all substitution 𝜎 , if 𝜎 ⊩ 𝐶 , there exists 𝜎 ′
such that dom(𝜎 ′) ∪

dom(𝜎) = ∅ and 𝜎 ∪ 𝜎 ′ ⊩ 𝐸.

Proof. Let 𝜎 ′ = {𝜎 (𝛼)/𝛼 ′ | 𝛼 ∈ dom(𝐶)} ∪ {𝜎 (𝜃)/𝜃 ′ | 𝜃 ∈ dom(𝐶) and 𝜃 ≠ 𝜌.ℓ} ∪
{(𝜌\𝐿)𝜎/𝜌 ′} ∪ {(𝜌.ℓ)𝜎/𝜃𝜌

ℓ
| 𝜌.ℓ ∈ dom(𝐶)}, where 𝐿 is obtained as in the definition of solve either

from 𝜌\𝐿′ ∈ dom(𝐶) and 𝐿 = 𝐿′ ∩ def (𝜌), or by 𝐿 = {ℓ | 𝜌.ℓ ∈ vars(𝐶)}. The case for type and field
variables is as in [9, Lemma C.34]. Let us consider an equation 𝜌 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ def (𝜌) ∈ 𝐸.

Correspondingly, there exist (𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2) ∈ 𝐶 and for all ℓ ∈ 𝐿, there exist (𝜏1

ℓ ≤ 𝜌.ℓ ≤ 𝜏2

ℓ) ∈ 𝐶

(without loss of generality, we suppose 𝐶 to be saturated with default values). As 𝜎 ⊩ 𝐶 , then

𝑟1𝜎 ≤ (𝜌\𝐿)𝜎 ≤ 𝑟2𝜎 , and for all ℓ ∈ 𝐿, 𝜏1

ℓ 𝜎 ≤ (𝜌.ℓ)𝜎 ≤ 𝑟2𝜎 , and the operations (𝜌\𝐿)𝜎 and (𝜌.ℓ)𝜎

59

are defined. Thus,

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩ (𝜎 ∪ 𝜎 ′) = ⟨⟨⟨(ℓ = (𝜏1

ℓ (𝜎 ∪ 𝜎 ′) ∨ (𝜎 ∪ 𝜎 ′) (𝜃𝜌
ℓ
)) ∧ 𝜏2

ℓ (𝜎 ∪ 𝜎 ′))ℓ∈𝐿|||
(𝑟1 (𝜎 ∪ 𝜎 ′) ∨ (𝜎 ∪ 𝜎 ′) (𝜌 ′)) ∧ 𝑟2 (𝜎 ∪ 𝜎 ′)⟩⟩⟩

= ⟨⟨⟨(ℓ = (𝜏1

ℓ 𝜎 ∨ (𝜌.ℓ)𝜎) ∧ 𝜏2

ℓ 𝜎)ℓ∈𝐿|||(𝑟1𝜎 ∨ (𝜌\𝐿)𝜎 ∧ 𝑟2𝜎⟩⟩⟩
≃ ⟨⟨⟨(ℓ = (𝜌.ℓ)𝜎 ∧ 𝜏2

ℓ 𝜎)ℓ∈𝐿|||(𝜌\𝐿)𝜎 ∧ 𝑟2𝜎⟩⟩⟩
≃ ⟨⟨⟨(ℓ = (𝜌.ℓ)𝜎)ℓ∈𝐿|||(𝜌\𝐿)𝜎⟩⟩⟩
= 𝜎 (𝜌)

The last line is justified by 𝜎 being a solution to𝐶 , so being of the shape 𝜎 (𝜌) = ⟨⟨⟨(ℓ = 𝜏 ′ℓ)ℓ∈𝐿|||𝑟 ′⟩⟩⟩ . □

Definition C.13. Let 𝐸 be an equation system and 𝑂 an ordering on dom(𝐸) and on the labels

occurring in 𝐸. We say that 𝐸 is well-ordered if for all 𝑋 = 𝑇𝑋 ∈ 𝐸 and 𝑋 ′ ∈ tlv(𝑇𝑋) ∩ dom(𝐸), we
have 𝑂 (𝑋1) < 𝑂 (𝑋 ′).

Lemma C.20. Let 𝐶 be a well-ordered saturated normalized constraint-set and 𝐸 its transformed

equation system. Then 𝐸 is well-ordered.

Proof. We have dom(𝐸) = dom(𝐶) ∩ (V𝑡 ∪V𝑓) ∪ {𝜌 | ∃ℓ .𝜌 .ℓ ∈ dom(𝐶) or ∃𝐿.𝜌\𝐿 ∈ dom(𝐶)}.
The case for type and field variables is as in [9, Lemma C.36], but uses the fact that (tlv(𝑇1) ∪
tlv(𝑇2)) ∩ dom(𝐸) = (tlv(𝑇1) ∪ tlv(𝑇2)) ∩ dom(𝐶). Now, consider 𝜌 = 𝑟0 with 𝑟0 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩
obtained from (𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2) ∈ 𝐶 with 𝑟 = (𝑟1∧𝜌 ′)∨𝑟2, and for all ℓ ∈ 𝐿 from (𝜏1

ℓ ≤ 𝜌.ℓ2) ∈ 𝐶 . We

have tlv(𝑟0) = tlv(𝑟). Since𝐶 is well-ordered, for all (𝜌2 ∈ tlv(𝑟1)∪tlv(𝑟2))∩dom(𝐶),𝑂 (𝜌) < 𝑂 (𝜌2).
Moreover, 𝜌 ′ is a fresh row variable in 𝐶 , that is 𝜌 ′ ∉ dom(𝐶). And then 𝜌 ′ ∉ dom(𝐸). Therefore,
tlv(𝑟) ∩ dom(𝐸) = (tlv(𝑟1) ∪ tlv(𝑟2)) ∩ dom(𝐶) and the result follows. □

C.8 Solution of equation systems
We have now obtained a set of equation-sets 𝐸, that we must each transform into a substitution 𝜎 .

We do this in the same way as in [9, §3.2.2], but with all kinds of variables rather than just type

variables. In the set of equations, there is no construction 𝜌.ℓ or 𝜌\𝐿 anymore. We define a function

Unify(𝐸) as Unify(∅) = {}, and otherwise:

(1) Select in 𝐸 the equation 𝑋 = 𝑇 for the smallest 𝑋 w.r.t. the order;

(2) Let 𝐸′
be the set of equations obtained by replacing in 𝐸∖{𝑋 = 𝑇 } every occurrence of 𝑋

by 𝜇𝑋 ′ .(𝑇 {𝑋 ′/𝑋 }) (𝑋 ′
fresh);

(3) Let 𝜎 = Unify(𝐸′) and return {𝑋 = (𝜇𝑋 ′ .𝑇 {𝑋 ′/𝑋 })𝜎} ∪ 𝜎 .

The ordering on the variables guarantees the regularity of the obtained types. For the elements

𝜎 (𝑋) = 𝜇𝑋 ′ .𝑇 where 𝑋 ′ ∉ vars(𝑇), we can remove the introduced 𝜇-abstraction.

It is straightforward to extend the proofs and definitions.

Definition C.14 (General solution). Let 𝐸 be an equation system. A general solution to 𝐸 is

a substitution 𝜎 from dom(𝐸) to T⊥ ∪ R such that ∀𝑋 ∈ dom(𝜎). vars(𝜎 (𝑋)) ∩ dom(𝜎) = ∅ and

∀𝑋 = 𝑇 ∈ 𝐸.𝜎 (𝑋) ≃ 𝑇𝜎 holds.

Definition C.15 (Eqivalent substitutions). Let 𝜎, 𝜎 ′
be two substitutions. We say 𝜎 ≃ 𝜎 ′

if

and only if ∀𝑋 .𝜎 (𝑋) ≃ 𝜎 ′ (𝑋).

Proposition C.21. Let 𝐸 be a well-ordered equation system. LetUnify(𝐸) be the procedure described
by Castagna et al. [9] to build a substitution.

Soundness If 𝜎 = Unify(𝐸), then 𝜎 ⊩ 𝐸.

60 Giuseppe Castagna and Loïc Peyrot

Completeness For all substitution 𝜎 , if 𝜎 ⊩ 𝐸, then there exist 𝜎0 and 𝜎
′
such that 𝜎0 = Unify(𝐸)

and 𝜎 ≃ 𝜎 ′ ◦ 𝜎0.

Termination The algorithm Unify(𝐸) terminates.

The last property we verified is well-formedness. As in [9], a type is well-formed if and only

if the recursion traverses a constructor, and this property is guaranteed thanks to the order on

variables.

Proposition C.22 (Well-formedness). If 𝜎 = Unify(𝐸), then for all 𝑋 ∈ dom(𝜎), 𝜎 (𝑋) is
well-formed.

Proof. Assume that there exists an ill-formed 𝜎 (𝑋). That is, 𝜎 (𝑋) = 𝜇𝑥 .𝑡 where 𝑥 occurs

at the top-level of 𝑡 . According to the algorithm Unify(), there exists a sequence of equations

(𝑋 =)𝑋0 = 𝑇𝑋0
, . . . , 𝑋𝑛 = 𝑇𝑋𝑛

such that 𝑋𝑖 is at top-level in 𝑇𝑋𝑖−1
and 𝑋0 is at top-level in 𝑇𝑋𝑛

and

where 𝑖 ∈ {1, . . . , 𝑛} and 𝑛 ≥ 0. We must necessarily have all the 𝑋𝑖 of the same kind. Indeed, for

type (resp. row) variables only types (resp. row) variables can appear at top-level. Now, if𝑋0 is a field

variable, there can be a type variable 𝑋𝑖 at top-level in the field-type𝑇𝑖−1. But then, 𝑋0 cannot be at

top-level in 𝑋𝑛 since𝑇𝑖 is a type, and field variables cannot appear at top-level in a type. Since all 𝑋

and 𝑇 must be of the same kind and according to Definition C.13, we have 𝑂 (𝑋𝑖−1) < 𝑂 (𝑋𝑖) and
𝑂 (𝑋𝑛) < 𝑂 (𝑋0). Therefore, we have 𝑂 (𝑋0) < 𝑂 (𝑋1) < · · · < 𝑂 (𝑋𝑛) < 𝑂 (𝑋0), which is impossible.

Thus the result follows. □

C.9 The complete algorithm
The procedure SolΔ (𝐶) to solve type tallying of a constraint-set 𝐶 proceeds as follows.

(1) 𝐶 is normalized into a finite set S of well-ordered normalized constraint-sets (Section 4.1).

(2) Each constraint-set 𝐶𝑖 ∈ S is merged and saturated into a finite set S𝐶𝑖
of well-ordered

constraint-sets. Then, all these sets are collected into another set S′
(i.e., S′ =

⊔
𝐶𝑖 ∈S S𝐶𝑖

)

(Appendix C.5).

(3) Each constraint-set 𝐶′
𝑖 ∈ S′

is harmonized into a finite set S𝐶′
𝑖
of well-ordered harmonized

constraint-sets. Then, all these sets are collected into another set S′′
(i.e., S′′ =

⊔
𝐶′
𝑖
∈S′ S𝐶′

𝑖
)

(Appendix C.6). This step is specific to row variables.

(4) For each constraint-set 𝐶′′
𝑖 ∈ S′′

, we transform 𝐶′′
𝑖 into an equation system 𝐸𝑖 and then

construct a general solution 𝜎𝑖 from 𝐸𝑖 (Appendix C.7).

(5) Finally, we collect all the solutions 𝜎𝑖 , yielding a set Θ of solutions to 𝐶 (Appendix C.8).

In the original algorithm for type variables, failing at the step of normalization means that there is

no solution overall, even when increasing the cardinality of the substitution sets sought by dove-tail

order in the general algorithm described in the beginning of Section 4 (see [9, §3.2.3]). Whether

here a failure in the step of normalization or harmonization means the absence of a solution overall

is still an open question.

We write SolΔ (𝐶) ⇝ Θ if SolΔ (𝐶) terminates with Θ, and we call Θ the solution of the type

tallying problem for 𝐶 .

Theorem 4.6 (Soundness). Let 𝐶 be a constraint-set. If SolΔ (𝐶) ⇝ Θ, then for all 𝜎 ∈ Θ, 𝜎 ⊩ 𝐶 .

Proof. Consequence of Lemma C.8, soundness of merging, Lemma C.13, Lemma C.18 and

soundness of Unify (Proposition C.21). □

Theorem 4.7 (Termination). Let 𝐶 be a constraint-set. Then SolΔ (𝐶) terminates.

Proof. Consequence of Lemma C.9, termination of merging, Lemma C.14, finiteness of the

constraint-sets and termination of Unify (Proposition C.21). □

61

Proposition 4.8. Let 𝐶 be a constraint-set and SolΔ (𝐶) ⇝ Θ. Then (1) Θ is finite and (2) for all

𝜎 ∈ Θ and for all 𝑋 ∈ dom(𝜎), the types in 𝜎 (𝑋) are contractive.

Proof. The first item is a consequence of Lemma C.11, Lemma C.15 and finiteness of the

constraints after merging. The second one is a consequence of Lemma C.12, well-orderedness of

merging, Lemma C.17, Lemma C.20 and well-orderedness of Unify (Proposition C.21). □

	Abstract
	1 Introduction
	1.1 A motivating example
	1.2 The need for row polymorphism
	1.3 Overview
	1.4 Contributions and limitations

	2 Types
	2.1 Syntax of Types
	2.2 Subtyping Relation
	2.3 Deciding subtyping
	2.4 Substitutions

	3 Language
	3.1 Syntax and Semantics
	3.2 Algorithmic type system

	4 Tallying
	4.1 First step: constraint normalization
	4.2 Other steps of tallying
	4.3 Properties of the algorithm

	5 Related work
	6 Conclusion
	References
	A Appendix for types
	A.1 Example of a presence polymorphic type
	A.2 Models
	A.3 Subtyping relation
	A.4 Subtyping algorithm
	A.5 Substitutions

	B Appendix for language
	B.1 Syntax and semantics
	B.2 Algorithmic type system

	C Appendix for tallying
	C.1 Examples regarding the restriction of solutions to atomic rows
	C.2 General decomposition of rows
	C.3 Normalization of fields and tails
	C.4 Constraint normalization
	C.5 Constraint merging and saturation
	C.6 Harmonization
	C.7 From constraints to equations
	C.8 Solution of equation systems
	C.9 The complete algorithm

