
Guard Analysis and Safe Erasure Gradual Typing: a Type
System for Elixir
GIUSEPPE CASTAGNA, CNRS, Université Paris Cité, France
GUILLAUME DUBOC, Université Paris Cité and Remote Technology, France

We define several techniques to extend gradual typing with semantic subtyping, specifically targeting dynamic

languages. Focusing on the Elixir programming language, we provide the theoretical foundations for its type

system. Our approach demonstrates how to achieve type soundness for gradual typing in existing dynamic

languages without modifying their compilation, while still maintaining high precision. This is accomplished

through the static detection of strong functions, which leverage runtime checks inserted by the programmer or

performed by the virtual machine, and through a fine-grained type analysis of pattern-matching expressions

with guards.

1 Introduction
Elixir is an open-source dynamic functional programming language that runs on the Beam, the

Erlang Virtual Machine [36]. It was designed for building scalable and maintainable applications

with a high degree of concurrency and seamless distribution. Its characteristics have earned it a

surging adoption by hundreds of industrial actors and tens of thousands of developers. Despite

being a dynamically-typed language, there exist tools to perform static analysis on Elixir programs,

such as Dialyzer [31] or Gradualizer [37], and attempts have been made at forming a theoretic basis

to type it, but with clear limitations [5]. To answer the demand for a stricter, more expressive and

informative type system for Elixir, Castagna et al. [9] describe how set-theoretic types augmented

with the dynamic type of gradual typing can be used to introduce static typing into Elixir. The

approach assumes that Elixir programmers would start annotating their code with types and

gradually add more and more of them, until they reach a fully statically-typed program. In this

work, we describe the technical difficulties in fitting the type system outlined in [9] onto a language

like Elixir, with all its quirks, and our solutions to those problems. To do so, we define Core Elixir, a

subset of Elixir on which we define a gradual type system with semantic subtyping before proving

the usual type safety results on the type system.

The main novel idea presented in this work may be the one of strong functions, which is described

in Section 2. In the theory and application of gradual typing, there is a clear rift between two kinds

of gradually typed languages. Firstly, those that treat the dynamic type as a liability that needs to be

checked; to preserve their soundness, these languages (e.g., Reticulated Python [39]) use different

strategies to insert type-checks into their runtime to protect statically typed parts of their code

from dynamically typed ones. But for some languages, such as Typescript [4], this is not an option

as the runtime does not check types by default. Hence, a second way for gradual systems is to

resort to full erasure: the types of a TypeScript program leave no trace in the JavaScript emitted

by the compiler, thus, every type property comes from static analysis. This can lead type systems

towards unsoundness, and thus the program can crash due to unsafe uses of dynamic.

However, our situation is more nuanced. Indeed, although Elixir is dynamically typed, it is

compiled and then executed on the Erlang VM which, itself, is type-safe through explicit type-

checks. Furthermore, such checks can be executed at the guise of the programmer, who writes those

into guards. Hence, we had the opportunity to quantify how much checking the VM actually does,

and integrate that into our plans for a gradual type system. The concept of strong functions directly

Authors’ Contact Information: Giuseppe Castagna, Institut de Recherche en Informatique Fondamentale (IRIF), CNRS,

Université Paris Cité, France; Guillaume Duboc, Institut de Recherche en Informatique Fondamentale (IRIF), Université

Paris Cité and and Remote Technology, France.

HTTPS://ORCID.ORG/0000-0003-0951-7535
HTTPS://ORCID.ORG/0000-0002-6795-9545
https://orcid.org/0000-0003-0951-7535
https://orcid.org/0000-0002-6795-9545

2 Giuseppe Castagna and Guillaume Duboc

comes from that: these are functions whose input and output types are entirely or partially checked
by the VM either because of checks inserted by the programmer or by standard checks performed

by the VM; hence, it is possible even when applied in uncertain conditions (when dynamic code is

involved) to give their result a static type. This approach, that we call safe-erasure gradual typing,
refers to the fact that, although no checks are inserted into the language related to the types asserted

by the typechecker, this “type erasure” is safe, because the type-checker knows which parts of the

code are checked by the VM or the programmer, and which are not. Practically, this means that the

typechecker can be more precise in its analysis, and infer a static type where a dynamic type was

used, because it knows that the VM will check the type of the value at runtime. A requirement for

this approach to work is to be able to extract as much (necessarily, static) type information from

Elixir guards as possible, which is the subject of the technical analysis developed in Section 3.

A key of our approach is the use of semantic subtyping, that allows us the use of set-theoretic

type operators (union, intersection, difference), but also provides us with a decidable subtyping

relation [17, 26], which appears crucial especially in the analysis of guards. Indeed, this analysis

constantly mixes very precise conditions on types (including singleton types), and uses intersections,

differences, and unions to refine these results. It would not otherwise be possible to guarantee such

a level of precision, and the pattern matching would end up being grossly approximated.

1.1 A Walkthrough of the Work
The type system of Elixir described by Castagna et al. [9] is a gradual polymorphic type system

based on the polymorphic type system of CDuce [14, 15]. In this work, we describe the technical

additions that are missing in the CDuce type system in order to type Elixir programs, presenting

them one by one. These are the techniques of strong function typing and propagation of the dynamic()
type necessary for safe-erasure gradual typing, both described in Section 2; the guard analysis
described in Section 3; the typing (and subtyping) of multi-arity functions presented in Section 4;

the type inference for anonymous functions described in Section 5. In this section, we are going

to present them one after the other by giving some small examples that should help the reader

understand the technical developments described in the following sections.

1.1.1 Soundness. The type system we present here satisfies the following soundness property

If an expression is of type 𝑡 , then it either diverges, or produces a value of type 𝑡 , or

fails on a dynamic check either of the virtual machine or inserted by the programmer

whose formal statement is given in Theorem 2.3. The system is gradual since the type syntax

includes a dynamic() type used to type expressions whose type is unknown at compile time. The

soundness guarantee above is typical of the so-called sound gradual typing approaches. These

approaches ensure soundness by using typing derivations to insert some suitable dynamic checks

at compile time. Our system, instead, does not modify Elixir standard compilation: types are not

used for compilation and are erased after type-checking. Our system is, thus, a type-sound (i.e., safe)
erasure gradual typing system, the first we are aware of. In particular, the compiler does not insert

any dynamic check in the code apart from those explicitly written by the programmer. Therefore,

our system must ensure soundness by considering only the checks written by the programmer or

performed by the Beam machine.

Writing a sound gradual type system for Elixir is easy: since every Elixir computation that does

not diverge or error returns a value (no stuck terms, thanks to the Beam), then a system that types

every expression by dynamic() is trivially sound . . . but hardly useful. Therefore, we need a system

that must fulfill two opposite requirements

(1) it must use dynamic() as little as possible so as to be useful, and

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 3

(2) it must use dynamic() enough so as not to hinder the versatility of gradual typing

The first requirement is fulfilled by the typing of strong functions, the second requirement by the

propagation of dynamic(). We will demonstrate both of these aspects next.

1.1.2 Strong functions (Section 2). Consider the definition in Elixir of a function second that selects

the second projection of its argument (elem(𝑒, 𝑛) selects the (n+1)-th projection of the tuple 𝑒):

1 def second(x), do: elem(x,1)

If the argument of the function is not a tuple with at least two elements, then the Beam raises a

runtime exception. The function definition above is untyped. We can declare its type by preceding

it by a $-prefixed type declaration, as in

2 $ dynamic() -> dynamic()
3 def second(x), do: elem(x,1)

This is one of the simplest types we can declare for second, since it essentially states that second is

a function, and nothing more: it expects an argument of an unknown type and returns a result of

an unknown type. We can give second a type slightly more precise than (i.e., a subtype of) the type

above, that is:

4 $ {dynamic(), dynamic(), ..} -> dynamic()

which states that the argument of a function of this type must be a tuple with at least two elements

of unknown type (the trailing “..” indicates that the tuple may have further elements). With this

declaration, the application of second to an argument not of this type will be statically rejected, thus

statically avoiding the runtime raise by the Beam. We can give to the function also a non-gradual

type—i.e., a type in which dynamic() does not occur: we call them static types—, as:

5 $ {term(), integer()} -> integer()

This type declaration states that second is a function that takes a pair whose second element is an

integer (term() is Elixir’s top type that types all values) and returns an integer. If this is the type

declared for second, then the type deduced for the application second({true,42}) is, as expected,

integer(). If dyn is an expression of type dynamic(), then the type deduced for second(dyn) will be

dynamic(): if dyn evaluates into a tuple with at least two elements, then the application will return

a value that can be of any type, thus we cannot deduce for it a type more precise than dynamic().

This differs from current sound gradual typing approaches, which would deduce integer() for this

application, but also insert a runtime check that verifies that the result is indeed an integer. However,

this is not the way an Elixir programmer would have written this function. If the programmer

intention is that second had type {term(), integer()} -> integer() , then the programmer would

rather write it as follows:

6 $ {term(), integer()} -> integer()
7 def second_strong(x) when is_integer(elem(x,1)), do: elem(x,1)

This is defensive programming. The programmer inserts a guard (introduced by the keyword

when) that checks that the argument is a tuple whose second element is an integer (the analysis

of this kind of complex guards is the subject of Section 3). Thanks to this check (which makes

up for the one inserted at compile time by other sound gradual typing approaches) we can safely

deduce that second_strong(dyn) has type integer(). The above is called a strong function, because
the programmer inserted a dynamic check that ensures that even if the function is applied to an

argument not in its domain, it will always return a result in its codomain—i.e., integer()—or fail.

4 Giuseppe Castagna and Guillaume Duboc

This allows the system to deduce for second_strong(dyn) the type integer() instead of dynamic(),

thus fulfilling our first requirement. A function can be strong not only because it was defensively

programmed, but also thanks to the checks performed at runtime by the Beam, as for:

8 $ {term(), integer()} -> integer()
9 def inc_second(x), do: elem(x,1) + 1

which is also strong because the Beam dynamically checks that both arguments of an addition are

of type integer(). Therefore, also in this case, we know that if the function returns a value, then

this is an integer. Thus, we can safely deduce the type integer() for inc_second(dyn) and, thus,

for instance, that the addition inc_second(dyn) + second_strong(dyn) is well typed. To determine

whether a function is strong, we define in Section 2 an auxiliary type system that checks whether

the function, when applied to arguments not in its domain, returns results in its codomain or fails.

1.1.3 Propagation of dynamic() (Section 2). In fact, for both the above applications, inc_second(dyn)
and second_strong(dyn), our system deduces a type better than (i.e., a subtype of) integer(): it

deduces integer() and dynamic(). This is an intersection type, meaning that its expressions have

both type integer() and type dynamic(). What the system does is to propagate the type dynamic()

of the argument dyn of the applications into the result. This is meant to preserve the versatility of the

gradual typing that originated the application, thus fulfilling our second requirement: expressions

of this type can be used wherever an integer is expected, but also wherever any strict subtype

of integer() (e.g., natural numbers) is. To see the advantages of this propagation, consider the

following example that we also use to introduce more set-theoretic type connectives:

10 def negate(x) when is_integer(x), do: -x
11 def negate(x) when is_boolean(x), do: not x

The definition of negate is given by multiple clauses tested in the order in which they appear. When

negate is applied, the runtime first checks whether the argument is an integer, and if so, it executes

the body of the first clause, returning the opposite of x ; otherwise, it checks whether it is a Boolean,

and if so returns its negation; in any other case the application fails. Multi-clause definitions, thus,

are equivalent to (type-)case expressions (and indeed, in Elixir they are compiled as such). The same

static checks of redundancy and exhaustiveness that are standard for case expressions apply here,

too. For instance, if we declare negate to be of type integer() -> integer(), then the type system

warns that the second clause of negate is redundant; if we declare the type term() -> term()

instead, then the function is not well-typed since the clauses are not exhaustive. To type the

function above without any warning, we can use a union type, denoted by or:

12 $ integer() or boolean -> integer() or boolean()

which states that negate can be applied to either an integer or a Boolean argument and returns

either an integer or a Boolean result. Next, let us consider the following definition

13 $ dynamic(), dynamic() -> integer()
14 def subtract(a, b), do: a + negate(b)

and see whether it type-checks. The type declaration states that subtract is a function that, when

applied to two arguments of unknown type, returns an integer (or it diverges, or fails). Since

the parameter b is declared of type dynamic(), then the system deduces that negate(b) is of type

(integer() or boolean) and dynamic() (the dynamic() in the type of b is propagated into the type

of the result). To fulfill local requirements, the static type system can assume dynamic() to become

any type at run-time: following the terminology by Castagna et al. [11], we say that dynamic() can

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 5

materialize into any other type. In the case at issue, addition expects integer arguments. Therefore,

the function body is well typed only if we can deduce integer() for negate(b). This is possible

since the type of this expression is (integer() or boolean) and dynamic() and the system can

materialize the dynamic() in there to integer() thus deriving (a type equivalent to) integer().

Notice the key role played in this deduction by the propagation of dynamic(): had the system

deduced for negate(b) just the type integer() or boolean(), then the body would have been

rejected by the type system since additions expect integer(), and not integer() or boolean().

A similar problem would happen had we declared subtract to be of type

15 $ integer(), integer() -> integer()

In that case, the type integer() or boolean() -> integer() or boolean() is not good enough for

negate: since we assume b be to be of type integer(), then the type deduced for negate(b) is again

(integer() or boolean()) which is not accepted for additions. The solution is to give negate a

better type by using the intersection type

16 $ (integer() -> integer()) and (boolean() -> boolean())

which is a subtype of the previous type in line 12, and states that negation is a function that

returns an integer when applied to an integer and a Boolean when applied to a Boolean. This type

allows the type system to deduce the type integer() for negate(b) whenever b is an integer. This

example shows why it is important to specify (or infer) precise intersection types for functions.

The inference system we present in Section 5 will infer for an untyped definition of negate the

intersection of arrows in line 16 rather than the less precise arrow with unions of line 12.

Finally, wewant to signal that the new typing of negate in line 16 does not modify the propagation

of dynamic(): the type deduced for negate(dyn) is still (integer() or boolean) and dynamic() .

1.1.4 Guard Analysis (Section 3). Until now, the guards employed in our examples primarily

involve straightforward type checks on function parameters (e.g., is_integer(a), is_boolean(x)).

The system we investigate for safe-erasure gradual typing in Section 2 exclusively focuses on these

kinds of tests. There is a single exception in our examples with a more intricate guard, specifically

is_integer(elem(x,1)) used in line 7. In Elixir, guards can encompass complex conditions, utilizing

equality and order relations, selection operations, and Boolean operators. To illustrate, consider

the following (albeit artificial) definition:

17 def test(x) when is_integer(elem(x,1)) or elem(x,0) == :int, do: elem(x,1)
18 def test(x) when is_boolean(elem(x,0)) or elem(x,0) == elem(x,1), do: elem(x,0)

The first clause of the test definition executes when the argument is a tuple where either the

second element is an integer or the first element is the atom :int (in Elixir, atoms are user-defined

constants prefixed by a colon). The second clause requires its argument to be a tuple in which the

first element is either equal to the second element or is a Boolean.

To type this kind of definitions, the system needs to conduct an analysis characterizing the

set of values for which a guard succeeds. Section 3 presents an analysis that characterizes this

set in terms of types. In some cases, it is possible to precisely represent this set with just one

type. For example, the set of values satisfying the guard is_integer(elem(x,1)) in line 7 cor-

responds exactly to the values of type {term(), integer(), ..} . Likewise, the arguments that

satisfy the guard of the first clause of test in line 17 are precisely those of the union type

{term(), integer(), ..} or {:int, term(), ..} , where :int denotes the singleton type for the

value :int. However, such a precision is not always achievable, as demonstrated by the guard in

the second clause of test (line 18). Since it is impossible to characterize by a type all and only

6 Giuseppe Castagna and Guillaume Duboc

the tuples where the first two elements are equal, we have to approximate this set. To represent

the set of values that satisfy such guards, we use two types—an underapproximation and an

overapproximation—referred to as the surely accepted type (since it contains only values for which

the guard succeeds) and the possibly accepted type (since it contains all the values that have a chance
to satisfy the guard).

1
For the guard in line 18, the surely accepted type is {boolean(), ..} since

all tuples whose first element is a Boolean satisfy the guard; the possibly accepted type, instead, is

{term(), term(), ..} or {boolean()} since the only values that may satisfy the guard are those

with at least two elements or those with just one element of type boolean(). When the possibly

accepted type and the surely accepted type coincide, they provide a precise characterization of the

guard, as demonstrated in the two previous examples of guards (lines 7 and 17).

The type system uses these types to type case-expressions and multi-clause function defi-

nitions. In particular, to type a clause, the system computes all the values that are possibly
accepted by its guard, minus all those that are surely accepted by a previous clause, and use

this set of values to type the clause’s body. For example, when declaring test to be of type

{term(), term(), ..} -> term() , the system deduces that the argument of the first clause has

type {term(), integer(), ..} or {:int, term(), ..} . For the second clause, the system subtracts

the type above from the possibly accepted type of the second clause’s guard (intersected with the

input type, i.e., {term(), term(), ..}), yielding for x the type {not(:int), not(integer()), ..} ,

that is, all the tuples with at least two elements where the first is not :int (not 𝑡 denotes a negation
type, which types all the values that are not of type 𝑡) and the second is not an integer.

If the difference computed for some clause is empty, then the clause is redundant and a warning

is issued. This happens, for instance, for the second clause of test, if we declare for the function

test the type {:int, term(), ..} -> term() : all arguments will be captured by the first clause.

If the domain of the function (or, for case expressions, the type of the matched expression) is con-

tained in the union of the surely accepted types of all the clauses, then the definition is exhaustive. For
instance, this is the case if we declare for test the type {term(), boolean()} -> term() . If, instead,

it is contained only in the union of the possibly accepted types, then the definitionmay not be exhaus-
tive, and a warning is emitted as for declaring {term(), term(), ..} or {boolean()} -> term() .

In all the other cases, the definition is considered ill-typed, as for a declared type tuple() -> term()

(where tuple() is the type of all tuples), since a tuple with a single element that is not a Boolean is

an argument in the domain that cannot be handled by any clause.

Finally, the guard analysis of Section 3 produces for each guard a result that is more refined than

just the possibly and surely accepted types for the guards. For each guard, the analysis partitions

these types into smaller types that will then be used by the inference of Section 5 to produce a typing

for non-annotated functions. For instance, for the untyped version of test given in lines 17–18 the

analysis will produce four different input types that the inference of Section 5 will use to deduce

the following intersection type for test:

19 $ ({term(), integer(), ..} -> integer()) and
20 ({:int, term(), ..} -> term()) and
21 ({boolean()} or {boolean(), not(integer()), ..} -> boolean()) and
22 ({not(boolean() or :int), not(integer()), ..} -> not(boolean() or :int)

Splitting the domain of test as in the code above is not so difficult since its guards use the connective

or and, as we will see, to compute the split, the system in Section 3 normalizes guards into Boolean

disjunctions. Notice, however, that the analysis must take into account the order in which the guards

1
Formally, the surely accepted type is the largest type contained in all types containing only values that satisfy the guard,

and the possibly accepted type is the smallest type containing all types that contain only values that satisfy the guard.

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 7

are written. If in line 18 we use the guard elem(x,0) == elem(x,1) or is_boolean(elem(x,0)), that

is, we swap the order of the operands of the guard, then the arrow type in line 21 is no longer

correct, since the application test({true}) would fail and, therefore, the type {boolean()} must

not be included in the domain of the arrow in line 21.

1.1.5 Multi-arity Functions (Section 4). At lines 13-14 we defined the function subtract which has

two parameters. This arity is reflected in its type, where its domain consists of two comma-separated

types. All the other functions given as example are unary. While the distinction between unary and

binary functions may seem trivial to a programmer, it holds significant implications for the type

system. The CDuce type system can only handle unary functions, and simulates 𝑛-ary functions

as unary functions on 𝑛-tuples. But this is not sufficient in Elixir. First, applying a function to

two arguments or to a pair involves different syntaxes, e.g., subtract(42,42) and test({42,42}).

Second, a programmer can explicitly test whether a function 𝑓 has arity 𝑛 using is_function(𝑓 ,𝑛).

Consequently, we need a type system in which it is possible to express the type of all functions of a

given arity. For instance, we may want to give a type to:

23 def curry(f) when is_function(f, 2), do: fn a -> fn b -> f.(a, b) end end
24 def curry(f) when is_function(f, 3), do: fn a -> fn b -> fn c -> f.(a, b, c) end end end

but in current systems with semantic subtyping, we can only express the type of all functions,
that is, none() -> term().2 Simulating, say, binary functions with functions on pairs does not work

since {none(), none()} -> term() is not the type of all binary functions: since the product with the

empty set gives the empty set, this type is equivalent to none() -> term(), the type of all functions.
This is the reason why we introduced the syntax (t1,· · · ,t𝑛) -> t that outlines the arity of the

functions. Now the type of all binary functions can be written as (none(), none()) -> term() , and

we can declare for the function curry the following type (though, type variables or even a gradual

type would be more useful than this type).

25 $ (((none(), none()) -> term()) -> none() -> none() -> term()) and
26 (((none(), none(), none()) -> term()) -> none() -> none() -> none() -> term())

All this requires modifications, both in the interpretation of types and in the algorithm that decides

subtyping, that we describe in Section 4.

1.1.6 Inference (Section 5). In a couple of examples we highlighted our system’s ability to deduce

the function type even in the absence of explicit type declarations. For instance, we said that

our type system can infer for negate (lines 10–11) the intersection type in line 16, and for test

(lines 17–18) the type in lines 19–22. This kind of inference is different from that performed for

parametric polymorphism by languages of the ML family. Instead, it leverages the guard analysis

of Section 3 to derive the type of guarded functions: it simply considers the guards of the different

clauses of a function definition as implicit type declarations for the function parameters, and use

them for type inference.

This kind of inference is used when explicit type declarations are omitted. This is particularly

valuable for anonymous functions of which we saw a couple examples in the definition of curry

(lines 23–24) where the body of the two clauses consists of anonymous functions. We aim to avoid

imposing an obligation on programmers to explicitly annotate anonymous functions as in:

2
A value is of type 𝑠 -> 𝑡 iff it is a function that when applied to an argument of type 𝑠 , it returns only results of type 𝑡 ;

thus, every function vacuously satisfies the constraint none() -> term() , as there is no value of type none() .

8 Giuseppe Castagna and Guillaume Duboc

27 $ list(integer()) -> list(integer())
28 def bump(lst), do: List.map(fn x when is_integer(x) -> x + 1 end, lst)

Here, the guard already provides the necessary information, making explicit annotations su-

perfluous. Additionally, we view the use of an untyped or anonymous function as an implicit

application of gradual typing. We have seen in §1.1.3, that whenever gradual typing was explic-

itly introduced by an annotation, the system propagated dynamic() in all intermediate results so

as to preserve the versatility of the initial gradual typing. We do the same here and propagate

the (implicit use of) dynamic() in the results of the anonymous/untyped functions by intersect-

ing their inferred type with an extra arrow of the form 𝑡 -> dynamic(), where 𝑡 is the domain

inferred for the function. For example, the type inferred for negate will be the type in line 16 inter-

sected with the type integer() or boolean() -> dynamic(), while the intersection in lines 19–22

inferred for test will have an extra arrow {term(), term(), ..} or {boolean()} -> dynamic() .

Likewise, the type (integer() -> integer()) and (integer() -> dynamic()) will be given to the

anonymous function in the body of bump (line 28); this type is equivalent to the simpler type

integer() -> integer() and dynamic(). All these concepts are formalized in Section 5.

1.1.7 Implementation in Elixir (Section 6). All the features and algorithms presented here are

included in Elixir, since the 1.17 release of the language [21]: the front-end of the Elixir’s compiler

types (multi-arity) functions using safe erasure gradual typing, with strong functions, dynamic()

propagation, and guard analysis. The latter is used to perform inference as described in §1.1.6. The

current 1.18 (beta) implementation covers basic, atom, tuple, and map types, and emits warnings

when it fails to type. Although the missing types and the type annotations for functions are planned

only for future releases (see [20]), the data-structures and algorithms for the types described in this

work are already part of the official compiler. Therefore, we wrap up by presenting in Section 6 the

type-checker performance on large codebases and the user feedback we received so far.

1.2 Contributions and Limitations
Our primary contribution is the establishment of the theoretical foundations of the Elixir type

system, whose general lines were outlined by [8]. Notably, we define what we believe to be the first

safe-erasure gradual type system. The technical contributions can be succinctly outlined as follows:

(1) Gradual Typing: Formalization of techniques for strong functions and dynamic() propagation.

(2) New Typing Technique: Definition of a typing technique for guards and patterns based on

the concepts of possibly accepted types and surely accepted types.

(3) Semantic Subtyping Extension: Extension of semantic subtyping to incorporate multi-arity

function spaces.

(4) Type Inference Techniques: Development of type inference techniques for anonymous

functions, leveraging pattern and guard analysis.

(5) Properties: Definition of three different characterizations of type safety and the proofs of these

properties for a language equipped with safe-erasure gradual typing.

The characterization of the gradual safety in the last point was the big technical challenge of this

work, since it needs to be stated in terms of a new relation 𝑣 ⦂ 𝑡 , laxer than the typing relation 𝑣 : 𝑡 .

Concerning limitations, some are intentional omissions, like typing of records and maps (defined

by Castagna [7]) and parametric polymorphism (defined by Castagna et al. [14, 15], orthogonal to

features introduced in this work). Others are genuine limitations, with the two most prominent

being constrained application of type narrowing and absence of type reconstruction à la ML.

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 9

Regarding type narrowing, our system incorporates a simplistic form of it, allowing specialization

in the branches of a case-expression of the type of variables occurring in the matched expression

under specific conditions (see Section 3). However, it does not achieve the level of granularity seen

in the analyses by Tobin-Hochstadt and Felleisen [38] and Castagna et al. [13]. Concerning type

reconstruction, although recognized as valuable, in particular for anonymous functions, it was not

explored in this work, with the example of the curry function highlighting its potential significance.

While a theoretical solution for addressing both limitations exists, as defined by Castagna et al.

[12], its current computational cost remains too high for practical integration into Elixir.

2 Safe Erasure Gradual Typing
We define Core Elixir in Figure 1, a typed 𝜆-calculus with constants 𝑐 (including tuples of constants

{0, 1}, etc.); variables 𝑥 ; 𝜆-abstractions 𝜆I𝑥 .𝑒 annotated by interfaces (ranged over by I), that is,
finite sets of arrows whose intersection is the type of the 𝜆-abstraction; tuples {𝑒} (we use the
overbar to denote sequences, e.g., 𝑒 stands for 𝑒1, ..., 𝑒𝑛) and projections 𝜋𝑒 𝑒 ; type-case expressions

case 𝑒 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 ; and, for illustrating the typing of Beam-checked operators, the sum +.
The language has strict weak-reduction semantics defined by the reduction rules in Figure 2.

The semantics is defined in terms of values 𝑣 and evaluation contexts E:
Values 𝑣 ::= 𝑐 | 𝜆I𝑥 .𝑒 | {𝑣 }
Contexts E ::= □ | E(𝑒) | 𝑣(E) | {𝑣, E, 𝑒} | 𝜋E 𝑒 | 𝜋𝑣 E | case E (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 | E + 𝑒 | 𝑣 + E

The reduction rules are standard: call-by-value beta-reduction where 𝑒 [𝑣/𝑥] denotes the capture-
free substitution of 𝑥 with 𝑣 in 𝑒 , tuple projection, and a first-match type-case that reduces to the

first branch that matches the value. Given a value 𝑣 and a test type 𝜏 , we denote by 𝑣 ∈ 𝜏 the

fact that 𝑣 belongs to the set represented by 𝜏 (e.g., 0 ∈ int and {0, 1} ∈ tuple), and we write

𝑣 ∉ 𝜏 if not (e.g., 0 ∉ bool). The failure reductions correspond to explicit runtime errors raised by

the Erlang VM, and they will be used to make the type safety results more precise, by explicitly

identifying which failure states are prevented in a typed program. Failures are denoted as a labeled

symbol 𝜔𝑝 , where the label 𝑝 informs of the type of exception (e.g., 𝜔
ArithError

for trying to sum

non-integer values).

The types are defined in Figure 1. Base types include integers, Booleans, atoms, functions, tuples,

and the dynamic type ‘?’. Also, we have open tuple types: {𝑡, .. } denotes any tuple starting with a

sequence of elements of types 𝑡 . The types are set-theoretic, with connectives union ∨ and negation

¬, with intersection defined as 𝑡1 ∧ 𝑡2 = ¬ (¬ 𝑡1 ∨ ¬ 𝑡2), and difference defined as 𝑡1 \ 𝑡2 = 𝑡1 ∧ ¬ 𝑡2.
The top type 1, the type of all values, is defined as 1 = int ∨ atom ∨ function ∨ tuple, while the
bottom type O is defined as O = ¬1. Note that, since constants are included in types, every value

that does not contain 𝜆-abstractions exists as a singleton type. Types are defined coinductively (for

type recursion) and, as customary in semantic subtyping, they are contractive (no infinite unions

or negations) and regular (necessary for a decidable subtyping relation): see, e.g., [26] for details.

Figure 3 presents the complete non-gradual typing rules for Core Elixir. This system uses a

presentation in which only the relevant part of the type environments is presented (i.e., the part Γ ⊢
is omitted). Furthermore, the notation ⊣ 𝑥 : 𝑡 means that the (implicit) context ascribes 𝑥 to 𝑡 and

𝑥 : 𝑡 ′ ⊢ 𝑒 : 𝑡 denotes a local context extension that proves 𝑒 : 𝑡 . Rules marked by a “𝜔” correspond to

cases in which the type-checker emits a warning since it cannot ensure type safety. More precisely,

whenever rule (proj𝜔) or (proj
1
𝜔) are used, the type-checker warns that the expression may generate

an “index out of range” exception. The rules are standard for such a simple calculus, with small

changes due to the use of set-theoretic operators: the rule (𝜆) for lambda abstractions checks

intersections of function types by checking that a function is well-typed for every arrow type given

in its annotation. Rule (proj) uses the fact that the index can have a union of integer types (since

10 Giuseppe Castagna and Guillaume Duboc

Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆I𝑥 .𝑒 | 𝑒(𝑒) | {𝑒} | 𝜋𝑒 𝑒 | case 𝑒 𝜏 −→ 𝑒 | 𝑒 + 𝑒
Test types 𝜏 ::= 𝑏 | {𝜏 } | {𝜏, ..}
Base types 𝑏 ::= int | bool | atom | function | tuple
Types 𝑡 ::= 𝑏 | 𝑐 | 𝑡 −→ 𝑡 | {𝑡 } | {𝑡, ..} | 𝑡 ∨ 𝑡 | ¬ 𝑡 | ?
Interfaces I ::= {𝑡𝑖 → 𝑡 ′𝑖 }𝑖=1..𝑛

Fig. 1. Expressions and Types Syntax

[App] (𝜆I𝑥 .𝑒) (𝑣) ↩→ 𝑒 [𝑣/𝑥]
[Proj] 𝜋𝑖 {𝑣0, .. , 𝑣𝑛} ↩→ 𝑣𝑖 if 𝑖 ∈ [0 .. 𝑛]
[Match] case 𝑣 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 ↩→ 𝑒 𝑗 if 𝑣 ∈ 𝜏 𝑗 and 𝑣 ∉

∨
𝑖< 𝑗 𝜏𝑖

[Plus] 𝑣 + 𝑣 ′ ↩→ 𝑣 ′′ where 𝑣 ′′ = 𝑣 + 𝑣 ′ and 𝑣, 𝑣 ′ are integers
[Context] E[𝑒] ↩→ E[𝑒′] if 𝑒 ↩→ 𝑒′ without using [Context]

[App𝜔] 𝑣 (𝑣 ′) ↩→ 𝜔
BadFunction

if 𝑣 ≠ 𝜆I𝑥 .𝑒

[Proj𝜔,range] 𝜋𝑣 {𝑣0, .. , 𝑣𝑛} ↩→ 𝜔
OutOfRange

if 𝑣 ≠ 𝑖 for 𝑖 = 0 .. 𝑛

[Proj𝜔,notTuple] 𝜋𝑣′ 𝑣 ↩→ 𝜔
NotTuple

if 𝑣 ≠ {𝑣 }
[Match𝜔] case 𝑣 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 ↩→ 𝜔

CaseEscape
if 𝑣 ∉

∨
𝑖∈𝐼 𝜏𝑖

[Plus𝜔] 𝑣 + 𝑣 ′ ↩→ 𝜔
ArithError

if 𝑣 or 𝑣 ′ not integers
[Context𝜔] E[𝑒] ↩→ 𝜔𝑝 if 𝑒 ↩→ 𝜔𝑝 without using [Context𝜔]

Fig. 2. Standard and Failure Reductions

we have union types and integer singleton types), thus it types the projection with the union of all

the fields that can be selected. Rule (case) types only the branches that are attainable; for a branch

𝜏𝑖 → 𝑒𝑖 being attainable means that the type of values produced by 𝑒 (i.e., in type 𝑡), intersected

with the test type 𝜏𝑖 , minus all the types of values captured by previous branches (i.e., all values in

𝜏 𝑗 for 𝑗 < 𝑖) is non-empty. The side condition 𝑡 ≤ ∨
𝑖∈𝐼 𝜏𝑖 checks for exhaustiveness.

Remark 1. The reader may wonder why the presence of a (statically detected) non-attainable branch
does not yield a type error. The reason is that this attainability property cannot be decided locally.
For instance, to deduce the intersection type (int → int) ∧ (bool → bool) for the function
𝜆{int→int, bool→bool}𝑥 .case 𝑥 (int→𝑥+1, bool→−𝑥), the system types the case-expression twice:
once under the assumption𝑥 :int, making the bool branch unattainable, and once under the assumption
𝑥 :boolmaking the int branch unattainable. Thus, each branch is attainable at some point, though not
at the same time. The property of being statically attainable is, thus, a global property, not expressible
in a compositional system. The type-checker will check that every branch of every case is typed at
least once, and emit a “unused branch” warning when this condition is not met. We will assume this
property, so as to refine the type system used to prove the soundness of our approach (cf. Appendix B).

The type system of Figure 3 is sufficient to type non-gradual Core Elixir programs (i.e., those

with interfaces without ‘?’). After introducing the dynamic type ‘?’, we handle it by a technique

we dubbed safe erasure gradual typing, which implies the use of additional rules (Figure 4) and an

auxiliary system to infer strong function types (Figure 5), which are key aspects of our approach.

Our type relations are subtyping (≤), precision (≼), and consistent subtyping (≤∼). The theory of

semantic subtyping for gradual types makes it possible to define all these relations just in terms of

the semantic subtyping relation on static types, as it is defined by Frisch et al. [26]. Indeed (see

Theorem 6.10 in [29]) every gradual type 𝜏 is equivalent to (i.e., it is both a subtype and a supertype

of) (? ∧ 𝜏⇑) ∨ 𝜏⇓ where 𝜏⇑ (resp. 𝜏⇓) is the static type obtained from 𝜏 by replacing the covariant

occurrences of ? in it with 1 (resp. O), and the contravariant occurrences of ? in it with O (resp.

1). For instance, {?, ?} (the type of 2-tuples whose two elements can be anything at runtime) is

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 11

(cst)

𝑐 : 𝑐
(var)

⊣ 𝑥 : 𝑡

𝑥 : 𝑡
(tuple)

𝑒 : 𝑡

{𝑒} : {𝑡 }
(𝜆)

∀(𝑡𝑖 −→ 𝑠𝑖) ∈ I (𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑠𝑖)
𝜆I(𝑥).𝑒 :

∧
𝑖 (𝑡𝑖 −→ 𝑠𝑖)

(app)

𝑒 : 𝑡1 −→ 𝑡2 𝑒′ : 𝑡1

𝑒(𝑒′) : 𝑡2
(case)

𝑒 : 𝑡 ∀𝑖 ∈ 𝐼
(
𝑡 ∧ 𝜏𝑖∖ (

∨
𝑗<𝑖 𝜏 𝑗) ≰ O⇒ 𝑒𝑖 : 𝑡

′)
case 𝑒 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 : 𝑡 ′

𝑡 ≤
∨
𝑖∈𝐼
𝜏𝑖

(proj)

𝑒′ :
∨
𝑖∈𝐾 𝑖 𝑒 : {𝑡0,...,𝑡𝑛, ..}

𝜋𝑒′ 𝑒 :
∨
𝑖∈𝐾 𝑡𝑖

𝐾 ⊆ [0, 𝑛] (proj𝜔)

𝑒′ : int 𝑒 : {𝑡0,...,𝑡𝑛}

𝜋𝑒′ 𝑒 :
∨
𝑖≤𝑛 𝑡𝑖

(proj
1
𝜔)

𝑒′ : int 𝑒 : tuple

𝜋𝑒′ 𝑒 : 1
(+)

𝑒1 : int 𝑒2 : int

𝑒1 + 𝑒2 : int
(≤)

𝑒 : 𝑡1 𝑡1 ≤ 𝑡2
𝑒 : 𝑡2

Fig. 3. Declarative static type system

equivalent to ?∧{1,1} (the type of values that can be of any subtype of 2-tuples). Following Lanvin
[29], gradual subtyping is defined by two uses of static (semantic) subtyping

Subtyping : 𝜏1 ≤ 𝜏2 ⇐⇒ (𝜏1⇓ ≤ 𝜏2⇓) and (𝜏1⇑ ≤ 𝜏2⇑)
A type is less precise or materializes into another if the latter can be obtained by replacing some of

the former’s occurrences of ? by other types. This is defined as:

Precision : 𝜏1 ≼ 𝜏2 ⇐⇒ (𝜏1⇓ ≤ 𝜏2⇓) and (𝜏2⇑ ≤ 𝜏1⇑)
Finally, consistent subtyping relates two types that materialize into two other types, in which the

former is a subtype of the latter. For example, (?∨ bool −→ int) is a consistent subtype of (int−→?)
since by materializing both ?’s to int we obtain that the former type is a subtype of the latter.

Consistent subtyping : 𝜏1 ≤∼ 𝜏2 ⇐⇒ 𝜏1
⇓ ≤ 𝜏2⇑

Consistent subtyping captures the fact that, in gradual mode, the type-checker works differently:

for example, confronted with a function call, it checks whether this application could succeed at

runtime. Thus, instead of checking directly whether the argument is a subtype of the function’s

domain, it checks whether the (gradual) types of the argument and the function can materialize

into two static types such that the materialized argument is a subtype of the materialized function’s

domain. In fact, Lanvin [29] proves that 𝜏1 ≤∼ 𝜏2 if and only if there exists 𝜏 ′1 and 𝜏 ′2 such that 𝜏1 ≼ 𝜏
′
1
,

𝜏2 ≼ 𝜏
′
2
, and 𝜏 ′

1
≤ 𝜏 ′

2
. This leads to a less precise result type that contains the dynamic type. However,

this can be mitigated through the use of strong functions, which we introduce next.

The rules that handle gradual programs are presented in Figure 4. For projections, rule (proj?)
checks that types can materialize into correct ones (i.e., int for the index, and a tuple type for the

tuple), in which case all we can deduce for the projection is the type ‘?’. However, in rule (proj★), if

we know that the expression has type {𝑡1, .. , 𝑡𝑛} and that the index materializes into an integer,

then it can be typed with ‘?‘ intersected with the union of the tuple contents: ? ∧ ∨
𝑖=1..𝑛 𝑡𝑖 . For

applications, rule (app
?
) gives what is generally the only sound result for applying a gradually

typed function to a gradually typed argument, which is type ‘?’. For instance, it is unsound to type

as int the result of applying function 𝜆{int−→int}(𝑥).𝑥 to a dynamic argument because although

the function does return integers when given integers (hence, has type int −→ int), if given a

Boolean argument at runtime, it will return a Boolean result. That constitutes a large downside

of adding ‘?’ to a type system: it tends to escape and pollute the whole type system, and there is

usually no way to statically determine a static return type for a function applied to a dynamic value,

unless some runtime type checks are added to the code to enforce the function’s signature: this

is what current sound gradual typing systems do. This is not doable for us, as our system must

only perform static type checking, and not modify the Elixir runtime. However, the VM of Elixir

12 Giuseppe Castagna and Guillaume Duboc

already performs type checks, both implicitly in strong operations such as +, and explicitly with

the use of guards by programmers. Our idea is to take them both into account in the type system

by endowing types with a new notion of functional type: strong arrows.

Types 𝑡 ::= · · · | (𝑡 −→ 𝑡)★

A strong arrow denotes functions that work as usual on their domain, but when applied to an

argument outside their domain they either fail on an explicit runtime type check, or return a value
of their codomain type, or diverge. In Section 1.1.2 (line 7) we gave the example of the function

second_strong, which in our calculus can be encoded as 𝜆{{1,int}−→int}(𝑥).case𝑥 ({1, int} −→ 𝜋1𝑥).
It is a function that returns an integer if its argument is a tuple whose second element is an integer

and otherwise “fails”, that is, it reduces to 𝜔
CaseEscape

. The notion of strong arrow is not relevant to

a standard static type system, but to a gradual type system where uncertainty is both a problem

(modules are not annotated, and the type-checker must infer types) and a feature (some program-

ming idioms are inherently dynamic). The purpose of a strong arrow is then to guarantee that a

function, when applied to a dynamic argument, will return a value of a specific type, as seen in rule

(app★). This rule is only used when static type-checking fails, and it has to preserve the flexibility

of the typing, as other functions would then struggle to type-check a fully static return type. Thus,

rules annotated by ★ introduce ‘?’ in their conclusion, in the form of an intersection. This property,

which was described in §1.1.3 of the introduction, is called dynamic propagation. Alongside with
‘?’, a static type is propagated to be used by the type-checker to detect type incompatibilities. If an

argument of type (? ∧ int) is used where a Boolean is expected, a static type error will be raised.

And if an argument of type ?∧ (int∨ bool) is used where a Boolean is expected, the type-checker

in gradual mode will allow it, by considering that the argument could become a Boolean at runtime.

The introduction rule for strong arrows (𝜆★) requires an auxiliary type-checking judgment

Γ ⊢ 𝑒 ⦂ 𝑡 defined in Figure 5. This type system models the type checks performed by the Elixir

runtime. Indeed, if Γ ⊢ 𝑒 ⦂ 𝑡 , then 𝑒 either diverges, or fails on a runtime error, that we know of, or

evaluates to a value of type 𝑡 . Therefore, the system requires rules that accept typing programs

with O, such as case 42 (bool −→ 5) which directly reduces to 𝜔
CaseEscape

. This system is similar to

the declarative one of Figure 3, but with additional “escape hatches” that make strong operations

permissible no matter the type of their operands. For instance, since + is strong (the Elixir VM

checks at runtime that the operands of an addition are both integers), then rule (+
◦
) only asks that

its terms are well-typed. If the addition does not fail, then it returns an integer (typed as int∧?
for dynamic propagation). Other such operations are tuple projection, pattern-matching, and also

function application. Using this system, we infer strong function types with rule (𝜆★); if a function
𝜆{𝑡1−→𝑡2 }(𝑥).𝑒 has type 𝑡1 −→ 𝑡2, then this type is strong if, with 𝑥 of type ?, the body 𝑒 can be

checked to have type 𝑡2 (actually 𝑡2∧? for dynamic propagation) using the rules of Figure 5. The rules

explicitly allow expressions that are known to fail at compile time. As another example, consider

(case◦
O
)

𝑒 ⦂ 𝑡 𝑡 ∧ ∨
𝑖 𝜏𝑖 ≃ O

case 𝑒 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 ⦂ O

rule (case
◦
) in Figure 5, which does not have an exhaustiveness

condition because an escaping expression will not return a

value but fail at runtime. Note that, in this rule, if no pattern

matches, then any type can be chosen for the result and, thus, the rule (case◦
O
) here above—which

types a case-expression that always fails—is admissible.

Remark 2. It is not possible to deduce intersections of strong arrows, for instance for (int −→
int) ∧ (bool −→ bool). The reason is that strong arrows describe functions whose behavior is constant
outside their domain: they necessarily error or return a value of their precise codomain type. A function
of type (int −→ int)★, when given Booleans, can either error or return integers; thus it cannot also
have type (bool −→ bool)★.

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 13

(app?)
𝑒1 : 𝑡1 𝑒2 : 𝑡2

𝑒1(𝑒2) : ?
∃𝑡 .

{
𝑡1 ≤∼ 𝑡 −→ 1

𝑡2 ≤∼ 𝑡
(proj?)

𝑒 : 𝑡 𝑒′ : 𝑡 ′

𝜋𝑒′ 𝑒 : ?

{
𝑡 ≤∼ tuple

𝑡 ′ ≤∼ int

(app★)
𝑒1 : (𝑡1 −→ 𝑡)★ 𝑒2 : 𝑡2

𝑒1(𝑒2) : ? ∧ 𝑡 𝑡2 ≤∼ 𝑡1 (proj★)
𝑒 : {𝑡0,...,𝑡𝑛} 𝑒′ : 𝑡

𝜋𝑒′ 𝑒 : ? ∧
∨
𝑖≤𝑛 𝑡𝑖

𝑡 ≤∼ int

(case★)
𝑒 : 𝑡 ∀𝑖 ∈ 𝐼

(
(𝑡 ∧ 𝜏𝑖)∖ (

∨
𝑗<𝑖 𝜏 𝑗) ≰ O⇒ 𝑒𝑖 : 𝑡

′)
case 𝑒 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 : ? ∧ 𝑡 ′

(𝑡 ≤∼ ∨𝑖∈𝐼𝜏𝑖)

(plus★)
𝑒1 : 𝑡1 𝑒2 : 𝑡2

𝑒1 + 𝑒2 : int ∧ ?

{
𝑡1 ≤∼ int

𝑡2 ≤∼ int
(𝜆★)

𝜆I𝑥 .𝑒 : 𝑡1 −→ 𝑡2 𝑥 : ? ⊢ 𝑒 ⦂ 𝑡2 ∧ ?

𝜆I𝑥 .𝑒 : (𝑡1 −→ 𝑡2)★

Fig. 4. Gradual rules

(cst◦)
𝑐 ⦂ 𝑐 ∧ ?

(var◦)
⊣ 𝑥 : 𝑡

𝑥 ⦂ 𝑡
(tuple

◦
)

∀𝑖 = 1..𝑛. (𝑒𝑖 ⦂ 𝑡𝑛)
{𝑒1, .., 𝑒𝑛} ⦂ {𝑡1, .., 𝑡𝑛}

(𝜆◦)
∀(𝑡𝑖 −→ 𝑠𝑖) ∈ I. (𝑥 : 𝑡𝑖 ⊢ 𝑒 ⦂ 𝑠𝑖) 𝑥 : ? ⊢ 𝑒 ⦂ 1

𝜆I𝑥 .𝑒 ⦂
∧
𝑖∈𝐼 (𝑡𝑖 −→ 𝑠𝑖)

(𝜆◦★)
𝜆I𝑥 .𝑒 ⦂ 𝑡1 −→ 𝑡2 𝑥 : ? ⊢ 𝑒 ⦂ 𝑡2 ∧ ?

𝜆I𝑥 .𝑒 ⦂ (𝑡1 −→ 𝑡2)★

(app
◦
)

𝑒1 ⦂ 𝑡1 −→ 𝑡2 𝑒2 ⦂ 𝑡1
𝑒1(𝑒2) ⦂ 𝑡2

(app
◦
★)

𝑒1 ⦂ (𝑡1 −→ 𝑡2)★ 𝑒2 ⦂ 1
𝑒1(𝑒2) ⦂ 𝑡2 ∧ ?

(app
◦
?)

𝑒1 ⦂ 1 𝑒2 ⦂ 1
𝑒1(𝑒2) ⦂ ?

(proj
◦
)

𝑒1 ⦂ {𝑡0,...,𝑡𝑛, ..} 𝑒2 ⦂
∨
𝑖∈𝐾 𝑖

𝜋𝑒2 𝑒1 ⦂
∨
𝑖∈𝐾 𝑡𝑖

𝐾 ⊆ [0, 𝑛] (proj
◦
int)

𝑒1 ⦂ {𝑡0,...,𝑡𝑛} 𝑒2 ⦂ 1
𝜋𝑒2 𝑒1 ⦂

∨
𝑖≤𝑛 𝑡𝑖

(proj◦1)
𝑒1 ⦂ 1 𝑒2 ⦂ 1
𝜋𝑒2 𝑒1 ⦂ ?

(case
◦
)

𝑒 ⦂ 𝑡 ∀𝑖 ∈ 𝐼 .
(
(𝑡 ∧ 𝜏𝑖)∖

(∨
𝑗<𝑖 𝜏 𝑗

)
≰ O⇒ 𝑒𝑖 ⦂ 𝑡 ′

)
case 𝑒 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 ⦂ 𝑡 ′

(+◦)
𝑒1 ⦂ 1 𝑒2 ⦂ 1
𝑒1 + 𝑒2 ⦂ int ∧ ?

(≤◦)
𝑒 ⦂ 𝑡1 𝑡1 ≤ 𝑡2

𝑒 ⦂ 𝑡2
Fig. 5. Strong Type System

To summarize, we have presented in Figures 3, 4, and 5 three declarative systems that work

together to model different typing disciplines over programs: Figure 3 presents a fully static

discipline, where subtyping is used to check compatibility between types, and function type

annotations are enforced. This is what is expected of a fully annotated program. Figure 4 only

comes into play when the previous type-checking fails. It uses a more relaxed relation on types,

consistent subtyping, to check programs whose types are gradual (i.e., where ‘?’ occurs in them).

Figure 5 serves as an auxiliary system to infer strong function types, but its elaboration mirrors the

semantics of the Beam VM: every syntactically correct program typechecks with type 1, since it

either diverges, returns a value (necessarily of type 1), or fails due to VM checks. However, some

programs have more precise types which are passed around like information to be used later.

With this clear distinction, we formulate three type safety results that depend on whether the

unsafe 𝜔-rules or the gradual rules are used to type expressions.

Theorem 2.1 (Soundness). For every expression 𝑒 and type 𝑡 such that ∅ ⊢ 𝑒 : 𝑡 is derived without
using any 𝜔 or gradual rules, either there exists a value 𝑣 : 𝑡 such that 𝑒 ↩→∗ 𝑣 , or 𝑒 diverges.

14 Giuseppe Castagna and Guillaume Duboc

Theorem 2.2 (𝜔-Soundness). For every expression 𝑒 and type 𝑡 such that ∅ ⊢ 𝑒 : 𝑡 is derived using
𝜔-rules but no gradual rules, either 𝑒 diverges, or 𝑒 ↩→∗ 𝑣 with 𝑣 : 𝑡 , or 𝑒 ↩→∗ 𝜔

OutOfRange
.

Theorem 2.3 (Gradual Soundness). For every expression 𝑒 and type 𝑡 such that ∅ ⊢ 𝑒 : 𝑡 , either
there is a value 𝑣 such that 𝑒 ↩→∗ 𝑣 and 𝑣 ⦂ 𝑡 , or there exists 𝑝 such that 𝑒 ↩→∗ 𝜔𝑝 , or 𝑒 diverges.

The first theorem states that, in the absence of gradual typing, if no warning is emitted, then we

are in a classic static typing system. If a warning is raised but gradual typing is still not used, then

the second theorem states that the only possible runtime failure is the out-of-range selection of

a tuple. If gradual typing is used, then Theorem 2.3 states that any resulting value will have the

shape described by the inferred type. For instance, if the type 𝑡 deduced for a given expression is

‘int’ then any value the expression reduces to is necessarily an integer; if it is ‘?’, then the value

can be any value; if it is ‘? −→ ?’, then the value will be a 𝜆-abstraction. Note that, while the first

two theorems ensure that well-typed expressions produce only well-typed values of the same type,

the third theorem ensures only that any value produced by the expression will satisfy 𝑣 ⦂ 𝑡 , that is,
that it will have the expected shape: because of weak-reduction, a gradually-typed expression can

return a 𝜆-abstraction whose body is not well-typed—though, it will be (type) safe in every context.

Thus, in particular, if the expression is of type 𝑡1 → 𝑡2, then Theorem 2.3 ensures that it can only

return values that are 𝜆-abstractions annotated by (a subtype of) of 𝑡1 → 𝑡2.

3 Guard Analysis
Section 2 shows how to handle dynamic types in languages with explicit type tests. However, our

focus is on exploring languages that use patterns and guards rather than relying solely on type

tests. These are more general, as type cases can be encoded as guard type-tests on capture variables.

In Elixir, patterns are non-functional values containing capture variables, whereas guards consist

of complex expressions formed by boolean combinations (and, or, not) from a limited set of expres-

sions such as type tests (is_integer, is_atom, is_tuple, etc.), equality tests (==, !=), comparisons (< ,

<= , > , >=), data selection (elem, hd, tl, map.key), and size functions (tuple_size, map_size, length).
The complete syntax for patterns and guards can be found in Appendix A, Figure 10. To define

our typed guard analysis, we introduce a simplified syntax for patterns and guards in Figure 6.

The revised syntax for case expressions is case 𝑒 𝑝𝑔 −→ 𝑒 , where 𝑒 represents the expression being

matched and 𝑝𝑔 → 𝑒 denotes a list of branches. Each branch consists of a pattern-guard pair 𝑝𝑔

and the corresponding expression 𝑒 to be executed. Additionally, we introduce a new expression

size 𝑒 to calculate the size of a tuple, applicable in both expressions and guards, enhancing the

complexity of guards to gauge the precision of our analysis.

Guards are constructed using three identifiers: guard atoms 𝑎, representing simplified expressions,

type tests (𝑎 ?𝜏), and comparisons (𝑎 = 𝑎, 𝑎 ≠ 𝑎), which are combined using boolean operators

defined in 𝑔. The test types 𝜏 have been expanded to include union 𝜏 ∨ 𝜏 and negation ¬𝜏 , allowing
for more expressive tests. For instance, it is now possible to verify whether a variable 𝑥 is either an

integer or a tuple (𝑥 ? int ∨ tuple) or to ascertain that it is not a tuple (𝑥 ?¬tuple).
This syntax closely resembles Elixir’s concrete syntax; the main difference is that not is absent

from guards, which is not restrictive: in Section A we detail a translation that eliminates it. To

improve readability, we will sometimes use (𝑝 when 𝑔) to denote the pattern-guard pair 𝑝𝑔.

The operational semantics is extended in Figure 8 to account for pattern-matching and the size

operator. The updated evaluation contexts and a new guard evaluation contexts are defined as:

Context E ::= · · · | size E | case E 𝑝𝑔 −→ 𝑒

Guard Context G ::= □ | G and 𝑔 | G or 𝑔 | G ? 𝑡 | G = 𝑎 | 𝑣 = G | G != 𝑎 | 𝑣 != G

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 15

Exprs 𝑒 ::= . . . | case 𝑒 𝑝𝑔 −→ 𝑒 | size 𝑒
Patterns 𝑝 ::= 𝑐 | 𝑥 | {𝑝}
Guards 𝑔 ::= 𝑎 ?𝜏 | 𝑎 = 𝑎 | 𝑎 != 𝑎

| 𝑔 and 𝑔 | 𝑔 or 𝑔
Atoms 𝑎 ::= 𝑐 | 𝑥 | {𝑎} | 𝜋𝑎 𝑎 | size𝑎
Tests 𝜏 ::= 𝑐 | 𝑏 | {𝜏 } | {𝜏, ..}

| 𝜏 ∨ 𝜏 | ¬𝜏
(where variables occur at most once in each pattern)

Fig. 6. Pattern Matching Syntax

𝑣/𝑐 = {} if 𝑣 = 𝑐

𝑣/𝑥 = {𝑥 ↦→ 𝑣}
{𝑣1, . . . , 𝑣𝑛}/{𝑝1, . . . , 𝑝𝑛} =

⋃𝑛
𝑖=1 𝜎𝑖 if 𝑣𝑖/𝑝𝑖 = 𝜎𝑖

for all 𝑖 = 1..𝑛

𝑣/𝑝 = fail otherwise

𝑣/(𝑝𝑔) = 𝜎 if 𝑣/𝑝 = 𝜎 and

𝑔 𝜎 ↩→∗ true
𝑣/(𝑝𝑔) = fail otherwise

Fig. 7. Definitions of 𝑣/𝑝 and 𝑣/(𝑝𝑔)

[Case] case 𝑣 do (𝑝𝑖𝑔𝑖 −→ 𝑒𝑖)𝑖<𝑛 ↩→ 𝑒 𝑗 𝜎 if 𝑣/(𝑝 𝑗𝑔 𝑗) = 𝜎 and

for all 𝑖 < 𝑗 <𝑛 𝑣/(𝑝𝑖𝑔𝑖) = fail
[Case𝜔] case 𝑣 do (𝑝𝑖𝑔𝑖 −→ 𝑒𝑖)𝑖<𝑛 ↩→ 𝜔

CaseEscape
if 𝑣/𝑝𝑖𝑔𝑖 = fail for all 𝑖 < 𝑛

[Size] size {𝑣1, .. , 𝑣𝑛} ↩→ 𝑛

[Size𝜔] size 𝑣 ↩→ 𝜔
Size

if 𝑣 ≠ {𝑣}

[And⊤] true and 𝑔 ↩→
𝑔

[And⊥] 𝑣 and 𝑔 ↩→
false if 𝑣 ≠ true

[Or⊤] true or 𝑔 ↩→
true

[Or⊥] false or 𝑔 ↩→
𝑔

[Eq⊤] 𝑣 = 𝑣 ′ ↩→ true if 𝑣 = 𝑣 ′

[Eq⊥] 𝑣 = 𝑣 ′ ↩→ false else

[NotEq⊤] 𝑣 != 𝑣 ′ ↩→ true if 𝑣 ≠ 𝑣 ′

[NotEq⊥] 𝑣 != 𝑣 ′ ↩→ false else

[OfType⊤] 𝑣 ? 𝑡 ↩→ true if 𝑣 ∈ 𝑡
[OfType⊥] 𝑣 ? 𝑡 ↩→ false else

[Context𝑔] G[𝑔] ↩→ G[𝑔′] if 𝑔
↩→

𝑔′

[Context𝑎] G[𝑎] ↩→ G[𝑎′] if 𝑎 ↩→ 𝑎′

[Context𝜔] G[𝑎] ↩→ false if 𝑎 ↩→ 𝜔𝑝
Fig. 8. Pattern Matching and Guard Reductions

This semantics relies on matching values to patterns 𝑣/𝑝 and values to guarded patterns 𝑣/(𝑝𝑔), as
defined in Figure 7. When 𝑣 is a value and 𝑝 a pattern, 𝑣/𝑝 results in an environment 𝜎 that assigns

capture variables in 𝑝 to corresponding matching values occurring in 𝑣 . For example, 𝑣/𝑥 returns

the environment where 𝑥 is bound to 𝑣 , and {𝑣1, 𝑣2}/{𝑥,𝑦} yields 𝑥 ↦→ 𝑣1, 𝑦 ↦→ 𝑣2. Similarly, 𝑣/(𝑝𝑔)
creates such an environment but also verifies that the guard 𝑔 evaluates to true within the created

environment; if 𝑣 does not match 𝑝 or the guard condition fails, the operation returns the token

fail. For instance, 𝑣/(𝑥 when 𝑥 ? int) results in 𝑥 ↦→ 𝑣 if 𝑣 is an integer and fail otherwise.

An important aspect of the semantics of pattern matching is that within a specific branch, if a

reduction results in an error (i.e., reduces to an 𝜔), the entire guard is considered to fail, and that

branch is discarded. For instance, consider the guard (size𝑥 = 2 or 𝑥 ? int). If 𝑥 is not a tuple,

taking its size will lead to an error. Consequently, even if 𝑥 is an integer, the guard will evaluate to

false (as specified by rule [Context𝜔]) instead of true as could be expected from the disjunction.

It should also be noted that, in Elixir, both ‘and’ and ‘or’ operators exhibit short-circuit behavior.
Specifically, if the left-hand side of an and-guard evaluates to false, the right-hand side is not

evaluated (as specified by rule [And⊥]); similarly, if the left-hand side of an or-guard evaluates to

true, the right-hand side is not evaluated (as defined by rule [Or⊥]).

3.1 Typing Pattern Matching
To type the expression case 𝑒 (𝑝𝑖𝑔𝑖 → 𝑒𝑖)𝑖≤𝑛 we aim to precisely type each branch’s expression 𝑒𝑖
by analyzing the set of values for which the pattern-guard pair 𝑝𝑖𝑔𝑖 succeeds, that is, {𝑣 ∈ Values |
𝑣 matches 𝑝𝑖𝑔𝑖 }. However, not every such set of values corresponds perfectly to a type. For example,

16 Giuseppe Castagna and Guillaume Duboc

we have seen in §1.1.4 the guard in line 18—expressed in our formalism by the pattern-guard pair

(𝑥 when (𝜋0 𝑥 ? bool) or (𝜋0 𝑥 = 𝜋1 𝑥))—, which matches tuples with either a Boolean as the first

element, or whose first two elements are identical, yet no specific type denotes all such tuples. To

address this, we define an approximation using two types, termed as the potentially accepted type

I

𝑝𝑔

H

(in our example it is {bool, ..}∨{1,1, ..} since any value accepted by the pattern will belong
to this type) and the surely accepted type H𝑝𝑔I (here it is {bool, ..} since all tuples starting with a

Boolean are surely accepted) for pair 𝑝𝑔. Through these types, we derive an approximating type 𝑡𝑖
encompassing all values reaching 𝑒𝑖 . When the matched expression is of type 𝑡 , 𝑡𝑖 is formulated

as (𝑡 ∧ I

𝑝𝑖𝑔𝑖

H)∖∨𝑗<𝑖 H𝑝 𝑗𝑔 𝑗I. In words, the values in 𝑡𝑖 are those that may be produced by 𝑒 (i.e.,

those in 𝑡), and may be captured by 𝑝𝑖𝑔𝑖 (i.e., those

I

𝑝𝑖𝑔𝑖

H

) and which are not surely captured by a

preceding branch (i.e., minus those in H𝑝 𝑗𝑔 𝑗I for all 𝑗 < 𝑖). This type 𝑡𝑖 can be utilized to generate

the type environment under which 𝑒𝑖 is typed. This environment, denoted as 𝑡𝑖/𝑝𝑖 , assigns the
deducible type of each capture variable of the pattern 𝑝𝑖 , assuming the pattern matches a value in

𝑡𝑖 . The definition of this environment is a standard concept in semantic subtyping and is detailed

in Appendix E, Figure 28. A first approximation of the typing can be given by the following rule

(given here only for presentation purposes but not included in the system):

(case𝜔 (coarse))

Γ ⊢ 𝑒 : 𝑡 (∀𝑖≤𝑛) (𝑡𝑖 ≰ O ⇒ Γ, 𝑡𝑖/𝑝𝑖 ⊢ 𝑒𝑖 : 𝑠)
Γ ⊢ case 𝑒 (𝑝𝑖𝑔𝑖 → 𝑒𝑖)𝑖≤𝑛 : 𝑠

𝑡𝑖 = (𝑡 ∧ I

𝑝𝑖𝑔𝑖

H)∖∨𝑗<𝑖 H𝑝 𝑗𝑔 𝑗I
𝑡 ≤ ∨

𝑖≤𝑛

I

𝑝𝑖𝑔𝑖

H

The rule types a case-expression of 𝑛 branches. For the 𝑖-th branch with pattern 𝑝𝑖 and guard 𝑔𝑖 , it

computes 𝑡𝑖 and produces the type environment 𝑡𝑖/𝑝𝑖 . This environment is used to type 𝑒𝑖 only if

𝑡𝑖 ≰ O, thus ensuring that some values may reach the branch and checking for case redundancy.

The side condition 𝑡 ≤ ∨
𝑖<𝑛

I

𝑝𝑖𝑔𝑖

H

ensures that every value of type 𝑡 may potentially be captured

by some branch, addressing exhaustiveness. The rule is labeled with 𝜔 , indicating a potential

warning, as the union

∨
𝑖≤𝑛

I

𝑝𝑖𝑔𝑖

H

might over-approximate the set of captured values. However, if

𝑡 ≤ ∨
𝑖≤𝑛 H𝑝𝑖𝑔𝑖I holds, then there’s no warning (cf. rule (case) in Figure 30, Appendix E), since all

values in

∨
𝑖≤𝑛 H𝑝𝑖𝑔𝑖I are captured by some pattern-guard pair, and so are those in 𝑡 .

The typing rule for case expressions is actually more complicated than the one above, since it

performs a finer-grained analysis of Elixir guards that is also used to compute their surely/potentially

accepted types. Let us look at it in detail:

(case𝜔)

Γ ⊢ 𝑒 : 𝑡 (∀𝑖≤𝑛) (∀𝑗≤𝑚𝑖) (𝑡𝑖 𝑗 ≰ O ⇒ Γ, 𝑡𝑖 𝑗/𝑝𝑖 ⊢ 𝑒𝑖 : 𝑠)
Γ ⊢ case 𝑒 (𝑝𝑖𝑔𝑖 → 𝑒𝑖)𝑖≤𝑛 : 𝑠

𝑡 ≤
∨
𝑖≤𝑛

I

𝑝𝑖𝑔𝑖

H

where Γ ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖

In contrast to the prior rule, the system now computes a list of types 𝑡𝑖1, ..., 𝑡𝑖𝑚𝑖
for each 𝑝𝑖𝑔𝑖

pair, which partitions the earlier 𝑡𝑖 . The rule types each 𝑒𝑖 expression 𝑚𝑖-times, each with a

distinct environment 𝑡𝑖 𝑗/𝑝𝑖 . The 𝑡𝑖 𝑗 values are derived from an auxiliary deduction system: Γ; 𝑡 ⊢
(𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖

. This system, detailed in the rest of this section, inspects each 𝑔𝑖 for

OR-clauses, generating pairs (𝑡, 𝔟) that indicate the clause’s type 𝑡 and a Boolean flag 𝔟 indicating

its exactness. For example, the guard (𝜋0 𝑥 ? bool or 𝜋0 𝑥 = 𝜋1 𝑥) of our example produces pairs

({bool, ..}, true) and ({1,1, ..}, false): the first flag is true since the type is exact; the second flag
is false since the type is an approximation. The guard (𝑥 ? int or 𝜋0 𝑥 ? int) instead will produce
(int, true) and ({int, ..}, true). Guards are parsed in Elixir’s evaluation order and potential clause
failures. Analysis of guard 𝑔𝑖 needs both Γ and 𝑝𝑖 as it might use variables from either.

Given Γ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖
, the potentially accepted type for 𝑝𝑖𝑔𝑖 is the union

of all 𝑡𝑖 𝑗 ’s, while the surely accepted type for 𝑝𝑖𝑔𝑖 is the union of all 𝑡𝑖 𝑗 ’s for which 𝔟𝑖 𝑗 is true.

Thus, we have

I

𝑝𝑖𝑔𝑖

H

=
∨
𝑗≤𝑚𝑖

𝑡𝑖 𝑗 and H𝑝𝑖𝑔𝑖I =
∨

{ 𝑗≤𝑚𝑖 | 𝔟𝑖 𝑗 } 𝑡𝑖 𝑗 . In our example, if 𝑔 is the guard

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 17

(𝜋0 𝑥 ? int or 𝜋0 𝑥 = 𝜋1 𝑥), then I

𝑥𝑔

H

= {bool, ..}∨{1,1, ..} and H𝑥𝑔I = {bool, ..}. Conversely,
if 𝑔 is the guard (𝑥 ? int or 𝜋0 𝑥 ? int), then the potentially and surely accepted types of 𝑥𝑔 are

the same, both being int ∨ {int, ..}, indicating that the approximation is exact.

When using this analysis, type safety depends on the side conditions used. Rule (case) with

𝑡 ≤ ∨
𝑖≤𝑛 H𝑝𝑖𝑔𝑖I is safe for exhaustiveness, ensuring the same static guarantee as Theorem 2.1:

Theorem 3.1 (Static Soundness). If ∅ ⊢ 𝑒 : 𝑡 is derived with the 𝜔-free rules of Figure 3 and the

(case) rule with condition 𝑡 ≤ ∨
𝑖≤𝑛 H𝑝𝑖𝑔𝑖I, then either 𝑒 ↩→∗ 𝑣 with 𝑣 : 𝑡 , or 𝑒 diverges.

Rule (case𝜔) above will be used whenever our guard analysis is too imprecise to type a correct

program, raising a warning and adding𝜔
CaseEscape

to the set of explicit runtime errors in Theorem 2.2.

The gradual rule (case★) simply checks that the scrutinee may be covered by some patterns, and

does not modify the type safety of Theorem 2.3. See Theorems E.4, E.5, and E.6 in Appendix E.1.

Remark 3 (Naive Type Narrowing). In practice, if 𝑒 is being matched, its skeleton sk(𝑒) (which is a
pattern that matches the structure and variables of that expression while leaving out any functional
or constant parts – see Definition E.1) is added to patterns. Thus, any type narrowing that occurs in
the guard analysis is also applied to the variables of 𝑒 . This is possible by adding intersections—noted
&—to patterns: a value matches the intersection pattern 𝑝1&𝑝2 iff it matches both 𝑝1 and 𝑝2; now
every pattern can be compiled as sk(𝑒)&𝑝 . Then, we handle dependencies between variables (e.g., if
pattern 𝑥&{𝑦, 𝑧} is followed by a guard 𝑦 ? int, then the type of 𝑥 is refined to {int,1}), using an
environment update Γ [𝑥 =∧ 𝑡]𝑝 (see next section) that narrows the type of 𝑥 in Γ to 𝑡 , and uses pattern
𝑝 to properly refine the type of other variables in Γ that depend on 𝑥 . The pattern 𝑝 can then simply be
passed around alongside Γ in the guard analysis judgments. Since it is a global dependency (no change
is ever made to 𝑝), it is not necessary to propagate it in the typing rules, and we omitted it for clarity.

3.2 An Overview of Guard Analysis.
In the rest this section we illustrate how to derive Γ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖

. The analysis

of a single guard is expressed via a judgment of the form Γ ⊢ 𝑔 ↦→ R, where R is defined as follows:

Results R ::= 𝑇 | 𝜔 where 𝑇 ::= {𝒮 ; 𝒯} | {𝒮 ; false}
Environments 𝒮,𝒯 ::= (Γ, 𝔟)
Failure Results F ::= 𝜔 | {𝒮 ; false}

Pairs of environments, {𝒮 ; 𝒯}, form the basis for our guard analysis. The first element, 𝒮 = (Γ, 𝔟),
represents the safe environment, in which Γ (a mapping from variables to types) gives a necessary

condition on the types of the variables in the guard, such that the guard does not error (i.e., does not

evaluate to 𝜔). This condition is sufficient only if the Boolean flag 𝔟 is true. Similarly,𝒯 denotes

the success environment, which is a necessary condition on the type of the variables for the guard

to evaluate to true. The fact that an environment is sufficient or not is mainly a matter of precision,

because the system needs to find out the exact type of all the values that make a guard succeed.

For example, for guard (size 𝑥 = 2), the exact success set are all the tuples of size 2, thus its

success environment is (𝑥 : {1,1} , true). Conversely, if such a type cannot be found, then the

environment is an approximation: for instance, if the guard (𝑥 ? int and 𝑥 > 𝑦) succeeds, then 𝑥
is an integer—but there’s no way in our system to encode by a type the fact that (𝑥 > 𝑦). Hence,
the corresponding environment is ((𝑥 :int, 𝑦 :1), false). The reason why 𝑦 is not also guaranteed

to be an integer is that Elixir allows comparing every two values (> is a total order on values).

The analysis of a guard 𝑔 thus produces a list of pairs {𝒮 ; 𝒯}, each describing one way for the

guard to succeed. For instance, the analysis of a guard 𝑔1 or𝑔2 produces one pair that describes
type conditions that make 𝑔1 succeed, and a second pair that describes the conditions for 𝑔1 to

reduce to false without erroring, and for 𝑔2 to succeed. Our analysis also finds faulty guards, either

18 Giuseppe Castagna and Guillaume Duboc

because they always error (i.e., evaluate to 𝜔), or because they fail (i.e., evaluate to false) within

safe-environment 𝒮; the meta-variable F captures both cases.

Appendix E gives the complete rules for guard analysis. Hereafter, we comment only on the most

significant ones by unrolling a series of examples. Consider the guard ({𝑥,𝑦} when 𝑥 ? tuple),

[var]

Γ(𝑥) ≰ 𝑡 Γ(𝑥) ∧ 𝑡 ; O
Γ ⊢ 𝑥 ? 𝑡 ↦→ {(Γ, true) ; (Γ [𝑥 =

∧
𝑡], true)}

which performs a type test on a capture variable. The
rule that handles this case is [Var] given here on the

right, where the notation Γ [𝑥 =
∧
𝑡] denotes the envi-

ronment obtained from Γ after refining the typing of 𝑥 with 𝑡 (i.e., ascribing it to Γ(𝑥) ∧ 𝑡 : the
complete definition can be found in Appendix E, Figure 29). This produces the judgement

(𝑥 :1, 𝑦 :1) ⊢ (𝑥 ? tuple) ↦→ {((𝑥 :1, 𝑦 :1), true) ; ((𝑥 :tuple, 𝑦 :1), true)}
in which the first element of the result leaves the variables unchanged, since this guard cannot error

(paired with Boolean flag true, since this analysis is exact), while the second element containing

(𝑥 :tuple, 𝑦 :1) indicates that the guard will succeed if and only if 𝑥 is a tuple (and this condition is

also sufficient as indicated by the Boolean flag true). If we refine this guard with a conjunction
{𝑥,𝑦} when (𝑥 ? tuple) and (size 𝑥 = 2)

now it specifically matches tuples of size 2, and its analysis is done by rule [And]:

[and]

Γ ⊢ 𝑔1 ↦→ {(Φ1, 𝔟1) ; (Δ1, 𝔠1)} Δ1 ⊢ 𝑔2 ↦→ {(Φ2, 𝔟2) ; (Δ2, 𝔠2)}
Γ ⊢ 𝑔1 and𝑔2 ↦→ {𝒮 ; (Δ2, 𝔠1 & 𝔠2)}

𝒮 =

{
(Φ1, 𝔟1) if 𝔟2 = true and Φ2 = Δ1

(Φ2, 𝔟1 & 𝔟2) otherwise

In this rule, the success environment produced by the analysis of the first component 𝑥 ? tuple of

the and (in our case, Δ1 = (𝑥 : tuple, 𝑦 : 1)) is used to analyze the second component (size 𝑥 = 2),

which is then handled by successive uses of the rules [Eq2] and [Size]:

[eq2]

Γ ⊢ 𝑎2 : 𝑐 Γ ⊢ 𝑎1 ? 𝑐 ↦→ {𝒮 ; 𝒯}
Γ ⊢ 𝑎1 = 𝑎2 ↦→ {𝒮 ; 𝒯} [size]

Γ ⊢ 𝑎 ? tuple ↦→ {_; 𝒯} Γ ⊢ 𝑎 ? tuple𝑖 ↦→ {_; 𝒯′}
Γ ⊢ size𝑎 ? 𝑖 ↦→ {𝒯 ; 𝒯′}

where tuple𝑖 is the type of all the tuples of size 𝑖 . Rule [Eq2] corresponds to the best-case scenario

of a guard equality: when one of the terms has a singleton type (Γ ⊢ 𝑎2 : 𝑐), a sufficient condition

for both terms to be equal is that the other term gets this type as well (Γ ⊢ 𝑎1 ? 𝑐). In our example,

this means doing the analysis Γ ⊢ size 𝑥 ? 2 with rule [Size]. This rule asks two questions (i.e.,

checks two premises): “can 𝑥 be a tuple” (this produces a non-erroring environment), and “can 𝑥 be

a tuple of size 2?” (which in our case refines 𝑥 to be of type {1,1}). The most general versions of

these rules make approximations and can be found in Appendix E (Figure 25).

To go further, we can check that the second element of this tuple has type int, by adding

another conjunct to the guard: {𝑥,𝑦} when (𝑥 ? tuple) and (size 𝑥 = 2) and (𝜋1 𝑥 ? int). Now,
rule [Proj] applies:

[proj]

Γ ⊢ 𝑎′ : 𝑖 Γ ⊢ 𝑎 ? tuple>𝑖 ↦→ {_; (Δ, 𝔟)} Δ ⊢ 𝑎 ? {

𝑖 times︷ ︸︸ ︷
1,...,1 , 𝑡, ..} ↦→ 𝒯

Γ ⊢ 𝜋𝑎′ 𝑎 ? 𝑡 ↦→ {(Δ, 𝔟) ; 𝒯}
where tuple>𝑖 represents tuples of size greater than 𝑖 (e.g., tuple>1 = {1,1, ..}). This rule reads
from left to right: after checking that the index is a singleton integer 𝑖 (in our example, 1), the

non-erroring environment is computed by checking that the tuple has more than 𝑖 elements. In our

example, (size 𝑥 = 2) has already refined 𝑥 to be of type {1,1}. Finally, the success environment

checks that the tuple is of size greater than 𝑖 with 𝑡 in 𝑖-th position (in our example, it has type

{1, int, ..}); since 𝑥 was a tuple of size two, the intersection of those two types is {1, int}.
In the case of a disjunction, a guard can succeed if its first component succeeds, or if the first

fails (but does not error) and the second succeeds (guards being evaluated in a left-to-right order).

Consider {𝑥,𝑦} when (𝑥 ? tuple) and (size 𝑥 = 2) or (𝑦 ? bool) whose analysis uses rule [Or]

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 19

[or]

Γ ⊢ 𝑔1 ↦→ {(Φ1, 𝔟1) ; (Δ1, 𝔠1)}
Γ, 𝑡𝑖/𝑝 ⊢ 𝑔2 ↦→ {(Φ2, 𝔟2) ; (Δ2, 𝔠2)}

Γ ⊢ 𝑔1 or𝑔2 ↦→ {(Φ1, 𝔟1) ; (Δ1, 𝔠1)}, {𝒮 ; (Δ2, 𝔠1 & 𝔠2)}

𝒮 =

{
(Φ1, 𝔟1) if (𝔟2 = 1) and

(
Φ2 = Γ, 𝑡𝑖/𝑝

)
(Φ2, 𝔟1 & 𝔟2) otherwise

𝑡𝑖 =

{
H𝑝IΦ1

\ H𝑝IΔ1

if 𝔠1 = 1

H𝑝IΦ1

if 𝔠1 = 0

The first term of the or, that is, (𝑥 ? tuple) and (size 𝑥 = 2), is analyzed with rule [And] given

before, which produces {((𝑥 :1, 𝑦 :1), true) ; ((𝑥 :{1,1}, 𝑦 :1), true)}. The second term, thus, is analyzed

under the environment (𝑥 :¬{1,1}, 𝑦 :1) which is obtained by subtracting the success environment

of the first guard from its non-erroring one (i.e., we realize that, since tuples of size two make the

first guard succeed, they will never reach the second guard). This is done by computing the type

𝑡 = H{𝑥,𝑦}I𝑥 :1,𝑦:1∖ H{𝑥,𝑦}I𝑥 :{1,1},𝑦:1 = {1,1}∖ {{1,1},1} = {¬{1,1},1}
where the notation H𝑝IΓ (defined in Appendix E, Figure 27) denotes the type of values that are

accepted by a pattern 𝑝 and which, when matched against 𝑝 , bind the capture variables of 𝑝 to

types in Γ (e.g., H{𝑥,𝑦}I𝑥 :int,𝑦:bool = {int, bool}). This choice of 𝑡 is motivated by the fact that

the analysis of the first term is exact (since the Boolean flag is true), therefore it is safe to assume

that the values that make the first guard succeed, never end up in the second guard. Because this is

a disjunction, the two ways that the guard succeeds are not mixed into a single environment, but

split into two distinct solutions that are concatenated. Then, a little of administrative work on the

Boolean flags ensures which results are exact and which are not.

So far our guards could not error, but it is a common feature in Elixir that guards that error

short-circuit a branch of a case expression. For example, the guard

{𝑥,𝑦} when (size 𝑥 = 2) or 𝑥 ? bool
only succeeds when the first projection of the matched value is a tuple of size two, and fails for all

other values including when the first projection is a boolean (in which case size raises an error).

This is handled by rule [Or] as well, by considering the non-erroring environment of a guard and

using it as a base to analyze the second term of a disjunction. In our example, the non-erroring

environment is (𝑥 : tuple, 𝑦 : 1), and the second term is found instantly to be false. This could

potentially raise a warning, as a part of a guard that only evaluates to false is a sign of a mistake.

In a last processing step, the guard analysis judgment Γ ⊢ 𝑔 ↦→ R, is used to derive the judgment

Γ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑠𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖
to be used during the typing of a case expression. Rule [accept]

takes care of a single pattern-guard pair, and translates a list of possible success environments

(Δ𝑖 , 𝔟𝑖)𝑖≤𝑛 into a list of pairs formed by an accepted type and its precision (H𝑝IΔ𝑖
, 𝔟𝑖)𝑖≤𝑛 . Guards

that always fail are handled by rule [fail].

[accept]

Γ, 𝑡/𝑝 ⊢ 𝑔 ↦→ {_; (Δ𝑖 , 𝔟𝑖)}𝑖≤𝑛
Γ; 𝑡 ⊢ 𝑝𝑔 { (H𝑝IΔ𝑖

, 𝔟𝑖)𝑖≤𝑛
[fail]

Γ, 𝑡/𝑝 ⊢ 𝑔 ↦→ F
Γ; 𝑡 ⊢ 𝑝𝑔 { (O, true)

The sequence of successive guard-pattern pairs in a case expression is handled by [Seqence], which

takes care to refine the possible types as the analysis advances, by subtracting from the potential

type 𝑡 the surely accepted types

∨
(𝑠,true) ∈A 𝑠 of the analysis of the current guard-pattern.

[seqence]

Γ; 𝑡 ⊢ 𝑝𝑔 { A Γ; 𝑡 ∖
(∨

(𝑠,true) ∈A 𝑠
)
⊢ 𝑝𝑔 { A

Γ; 𝑡 ⊢ 𝑝𝑔 𝑝𝑔 { A A
This last rule will then be used to produce the auxiliary types Γ ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖

used in typing case expressions.

4 Arity (and Strong Arrows)
Function arity plays an important role both in Elixir and in Erlang, being it used to identify functions.

This is reflected by the presence among the guards of the test is_function(f, n) whose usage we

20 Giuseppe Castagna and Guillaume Duboc

showed for curry in lines 23–24. To encompass multi-arity, we extend the syntax as follows:

Expressions 𝑒 ::= · · · | 𝜆I 𝑥 .𝑒 | 𝑒(𝑒)
Types 𝑡 ::= · · · | 𝑡 −→ 𝑡

In the previous sections we assumed the subtyping relation to be given and working out of the

box. This is true for all the types we used, except for strong types and, now, non-unary functions.

This illustrates a difficulty of semantic subtyping from a practical point of view: it requires some

difficult machinery to be implemented, and although this machinery is extensively explained in

the literature (e.g., [6, 8, 10, 26]), it is not obvious how to adapt it to specific situations. There are

two ways to do so: either by defining an encoding of your custom types into existing types or by

extending the machinery to support it. For instance, it is possible to encode functions with a given

arity by using a tuple type with two fields: one that contains the arrow type, and one that contains

the arity. But this is not always possible: strong arrows require checking properties that are usually

not within the scope of the existing theory of semantic subtyping. Thus, the steps required to

extend semantic subtyping with a new type consist of:

(1) defining the semantic interpretation of the new type;

(2) deriving from this interpretation the decomposition rules to check subtyping for the new type.

We succinctly describe below these steps for multi-arity functions, assuming the basic definition of

semantic subtyping, and defer to Appendix G the corresponding development for strong arrows.

Introducing a new type constructor in the form of multi-arity function type requires an interpre-

tation in the domain of semantic subtyping.

Definition 4.1. Let 𝑋1, .. , 𝑋𝑛 and 𝑌 be subsets of the domain 𝐷 . We define

(𝑋1, .. , 𝑋𝑛) −→ 𝑌 =
{
𝑅 ∈ P𝑓 (𝐷𝑛×𝐷𝜔) | ∀(𝑑1, .. , 𝑑𝑛, 𝛿) ∈ 𝑅. (∀𝑖 ∈ {1, ..., 𝑛}. 𝑑𝑖 ∈ 𝑋𝑖) =⇒ 𝛿 ∈ 𝑌

}
In a nutshell, the space of multi-arity functions is defined as the set of finite sets of 𝑛 + 1-tuples

(𝑑1, .. , 𝑑𝑛, 𝛿) such that if the first 𝑛 components are in the domain of the function type, then the

last component 𝛿 is in its codomain. This definition is used to define the interpretation J.K of types
for multi-arity function types, and define their subtyping relation. In particular, using set-theoretic

equivalences, the subtyping problem 𝑡1 ≤ 𝑡2 is simplified to an emptiness checking problem:

𝑡1 ≤ 𝑡2 ⇐⇒ J𝑡1K ⊆ J𝑡2K ⇐⇒ J𝑡1K ∖ J𝑡2K ⊆ ∅ ⇐⇒ J𝑡1 ∖ 𝑡2K ⊆ ∅. This emptiness check

can itself be decomposed over each disjoint component of a type (i.e., tuples, integers, etc.); such

algorithms are described by Castagna [6, Section 4] and are defined for disjunctive normal forms of
literals ℓ that range over the different possible type components. For multi-arity functions, this

means that we have the form

∨
𝑖∈𝐼

∧
𝑗∈ 𝐽 ℓ𝑖 𝑗 where all the ℓ𝑖 𝑗 are multi-arity arrows 𝑡 −→ 𝑡 or their

negations. To simplify the problem of checking that such a form is empty, consider that, according

to the interpretation of Definition 4.1, intersections of different arity are empty; so the problem

simplifies into checking that every member of the union above, where the literals go over arrows

of the same arity 𝑛 ∈ 𝑁 , is contained in the union of the negations:∧
𝑖∈𝑃

(𝑡 (1)
𝑖
, ..., 𝑡

(𝑛)
𝑖

) −→ 𝑡𝑖 ≤
∨
𝑗∈𝑁

(𝑡 (1)
𝑗
, ..., 𝑡

(𝑛)
𝑗

) −→ 𝑡 𝑗 (1)

(note that if any negative arrow were not of arity 𝑛, then the subtyping relation above would not

hold). Since each literal can be interpreted as a set using Definition 4.1 above, this problem is then

reformulated and solved as a set-containment problem in Theorem 4.2 (proof in Appendix F.3)

using set manipulation techniques devised by Frisch [24].

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 21

Theorem 4.2 (Multi-arity Set-Containment). Let 𝑛 ∈ N. Let (𝑋 (1)
𝑖

)𝑖∈𝑃 , .. , (𝑋 (𝑛)
𝑖

)𝑖∈𝑃 , (𝑋𝑖)𝑖∈𝑃 ,
(𝑌 (1)
𝑖

)𝑖∈𝑁 , .. , (𝑌 (𝑛)
𝑖

)𝑖∈𝑁 , (𝑌𝑖)𝑖∈𝑁 be families of subsets of the domain 𝐷 . Then,

⋂
𝑖∈𝑃

(
𝑋

(1)
𝑖
, .. , 𝑋

(𝑛)
𝑖

)
−→ 𝑋𝑖 ⊆

⋃
𝑗∈𝑁

(
𝑌

(1)
𝑗
, .. , 𝑌

(𝑛)
𝑗

)
−→ 𝑌𝑗 ⇐⇒

∃ 𝑗0 ∈ 𝑁 . such that
∀𝜄 : 𝑃→[1, 𝑛 + 1]


∃𝑘 ∈ [1, 𝑛] . 𝑌 (𝑘)

𝑖0
⊆

⋃
{𝑖∈𝑃 | 𝜄 (𝑖)=𝑘 }

𝑋
(𝑘)
𝑖

or
⋂

{𝑖∈𝑃 | 𝜄 (𝑖)=𝑛+1}
𝑋𝑖 ⊆ 𝑌𝑗0

This theorem reduces subtyping on multi-arity arrows to multiple smaller subtyping checks on

their domain and return types; thus, it enables the definition of a recursive algorithm that decides

subtyping. Following Frisch [24], we can define a backtrack-free algorithm that for all 𝑛 ∈ N decides

∧
𝑓 ∈𝑃 𝑓 ≤ (𝑡1, .. , 𝑡𝑛) → 𝑡 (2)

where 𝑃 is a set of arrows of arity 𝑛. This is expressed by function Φ𝑛 of 𝑛 + 2 arguments defined

as:

Φ𝑛 (𝑡1, .. , 𝑡𝑛, 𝑡,∅) = (∃𝑘 ∈ [1, 𝑛] . 𝑡𝑘 ≤ O) or (𝑡 ≤ O)
Φ𝑛 (𝑡1, .. , 𝑡𝑛, 𝑡, {(𝑡 ′1, .. , 𝑡 ′𝑛) → 𝑡 ′} ∪ 𝑃) = (Φ𝑛 (𝑡1, .. , 𝑡𝑛, 𝑡 ∧ 𝑡 ′, 𝑃) and

∀𝑘 ∈ [1, 𝑛] . Φ𝑛 (𝑡1, .. , 𝑡𝑘∖𝑡 ′𝑘 , .. , 𝑡𝑛, 𝑡, 𝑃))
Now, calling Φ𝑛 (𝑡1, .. , 𝑡𝑛,¬𝑡, 𝑃) decides (2) (see Theorem F.4). Thus, because an intersection of

arrows is a subtype of a union if and only if it is a subtype of one of the arrows in the union (which

is a Corollary of Theorem 4.2: see the ∃ 𝑗0∈𝑁 in the statement), the subtyping problem formulated

in (1) consists in finding one negative arrow (𝑗0 ∈ 𝑁) such that Φ𝑛 (𝑡 (1)𝑗0
, .. , 𝑡

(𝑛)
𝑗0
, 𝑡 𝑗0 , 𝑃) returns true.

Strong Arrows. A similar process is required to integrate strong arrows in the semantic subtyping
framework; their semantics is in Definition G.1 of the Appendix, followed by a subtyping algorithm G.2.

5 Inference
The problem of inference for Elixir consists of finding the right type for functions defined by

several pattern-matching clauses. Inference appears in this work mainly as a convenience tool:

indeed, one could simply decide that every function must be annotated, and inference would not

be required. In our case, it is both an interesting research question and a practical one: writing

annotations for untyped code is not without effort, and inference can help by suggesting annotations

to the programmer. In the case of anonymous functions, being able to infer their types means that

annotating can be made optional (e.g., this is convenient when passing short anonymous functions

created on the fly, to a module enumerable data, as done by the code in line 28). To study inference,

we add non-annotated 𝜆-abstractions with pattern-matching to the syntax of Core Elixir:

𝑒 ::= · · · | 𝜆(𝑝𝑔 −→ 𝑒)

To infer the type of such functions, we use the guard analysis defined in Section 3 to infer a list of

accepted types 𝑡𝑖 that represent every type potentially accepted by the clause patterns. We then

type the body of the function for each of these types, producing 𝑡 ′𝑖 , and take the intersection of the

resulting types

∧
𝑖 (𝑡𝑖 −→ 𝑡 ′𝑖) as the type of the function. For instance, the analysis of the guard in

𝜆(𝑥 when (𝑥 ? int or 𝑥 ? bool) −→ 𝑥)

produces the two accepted types int and bool; type-checking the function with int as input gives

int as result, and likewise for bool. Hence, the inferred type is (int −→ int) ∧ (bool −→ bool).
Formally, the new expression is typed by the rule (infer) below

22 Giuseppe Castagna and Guillaume Duboc

(infer)

Γ ;1 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖
∀𝑖 ∀𝑗 Γ, 𝑥 : 𝑡𝑖 𝑗 ⊢ case𝑥 do (𝑝𝑔 −→ 𝑒) : 𝑡 ′𝑖 𝑗

Γ ⊢ 𝜆(𝑝𝑔 −→ 𝑒) :

∧
𝑖 𝑗 (𝑡𝑖 𝑗 −→ 𝑡 ′

𝑖 𝑗
)

where 𝑥 is a fresh variable, 1 is chosen as the initial type (meaning that the argument could be of

any type), and the Boolean flags 𝔟𝑖 𝑗 are discarded (the exactness analysis is not required). Note that

this typing rule shows how to encode multi-clause definitions into a case expression.

In some cases, this analysis may fail to infer the precise domain of the function (i.e.,

∨
𝑖 𝑗 𝑡𝑖 𝑗), in

which case, we can imagine the programmer may help the inference process by providing it: in this

case, it would suffice to replace this type for 1 in the rule (infer). For example if, in the first clause

of test in line 17, we swap the order of the or-guards, then the type inferred for the function would

be the one in lines 19–22 but where the second arrow (line 20) has domain {:int, ..} instead of

{:int, term(), ..} . Although, the type checker would produce a warning (because of the use of

(proj𝜔)), this type would accept as input {:int} , which fails. This can be avoided if the programmer

provides the input type {tuple(), tuple(), ..} or {boolean()} to the inference process.

Inference in a Dynamic Language. Inferring static function types for existing code in a dynamic

language can disrupt continuity, as existing code may rely on invariants that are not captured by

types. Furthermore, in a set-theoretic type system, no property guarantees that a given inferred

type is the most general; consider, for example, that the successor function could be given types

int −→ int but also any variation of (0 −→ 1) ∧ (1 −→ 2) ∧ ((int\(0∨1)) −→ int) using singleton

types. While both types are correct and can be related by subtyping, it is the role of the programmers

to choose the one that corresponds to their intent and to annotate the function accordingly.

Thus, we need to introduce some flexibility so that inferred static types do not prematurely

enforce this choice. We achieve this by adding a dynamic arrow intersection that points the full

domain (the union of the 𝑡𝑖 ’s) to ?.

(infer★)
Γ ;1 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖

∀𝑖 ∀𝑗 Γ, 𝑥 : 𝑡𝑖 𝑗 ⊢ case𝑥 do (𝑝𝑔 −→ 𝑒) : 𝑡 ′𝑖 𝑗
Γ ⊢ 𝜆(𝑝𝑔 −→ 𝑒) :

∧
𝑖 𝑗 (𝑡𝑖 𝑗 −→ 𝑡 ′

𝑖 𝑗
) ∧ (∨𝑖 𝑗 𝑡𝑖 𝑗 −→ ?)

Now ‘?’ gets automatically intersected with each possible return type during function application.

While using rule (infer★) by default appears necessary when typing a dynamic language, being

able to type-check using only rule (infer) gives a stronger type safety guarantee, as eliminating

the use of ‘?’ during type-checking (and thus, of gradual rules) allows controlling for explicit errors
(see Theorems 2.1, 2.2, 2.3).

Multi-arity. We have presented inference for single-arity functions, but the same principle straightfor-
wardly applies to multi-arity functions presented in Section 4: anonymous functions become 𝜆(𝑝𝑔 −→ 𝑒),
and the current guard analysis can be repurposed to produce accepted types for each argument by
wrapping these arguments into a tuple pattern.

6 Implementation
All the features presented in this paper have been implemented in Elixir 1.17 and (forthcoming) 1.18.

We used the latter version to assess the overhead introduced by our typechecker on five substantial

codebases: Remote is one of the largest Elixir codebases; Credo, Livebook, and Phoenix are among

the most popular Elixir packages; and Hex is the package manager for the Elixir ecosystem.

Codebase LoC Files Modules Type Checking Time Total Compilation Time

Remote 1,000,000+ 10,000+ 18,059 11.116 s 707.598 s

Livebook 61093 254 299 0.177 s 4.112 s

Credo 29181 252 264 0.059 s 1.305 s

Phoenix 21389 71 88 0.049 s 0.525 s

Hex 15632 196 241 0.091 s 1.339 s

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 23

The “type-checking time” includes type-checking, checking for deprecated APIs, and verifying

function definitions. These overheads are comparable to previously existing checks embedded

within the Elixir compiler, which have since been replaced by our type system. It is important

to stress that type-checking essentially consists of checking subtyping relations and that the

complexity of subtype checking for arrow types is not greater than the one for tuple types or for

map types (included in 1.18). Thus, the 1.18 implementation of gradual set-theoretic types, with

atom singletons, tuple and map types provides a precise assessment of the performances of the

monomorphic system presented here, and the results demonstrate that our implementation scales

effectively, handling large codebases with minimal performance impact.

The initial implementation of our type system in Elixir 1.17, has being distributed since June

2024 and has already garnered positive feedback from developers, particularly for its ability to

uncover previously hidden errors without introducing significant overhead. Notably, it has identified

concealed bugs in widely-used open-source libraries such as Phoenix and Livebook, some of which

had persisted undetected in production code for over two years. For instance, a bug in the Phoenix

framework, used by over 14,600 public websites, was discovered and fixed [23].

The implementation in the Elixir compiler is directly based on the system presented here. There

is just a slight gap between the guards of Core Elixir and the one used in Elixir. To fill this gap we

defined a more concrete Elixir syntax, we dubbed Featherweight Elixir, together with its translation

into Core Elixir. For space reasons, their presentation is deferred to Appendix A.

7 Related work
Two works closely align with ours by using semantic subtyping to establish a type system for Erlang

and Elixir (the latter being a compatible superset of the former with which it shares a common

functional core). The work most akin to ours is by Castagna et al. [9] focusing on the design

principles of incorporating semantic subtyping to Elixir, but omitting all the technical specifics. Our

work complements [9], since we develop and formalize the type system and all the technical details

that make their design possible. The other relevant work is by Schimpf et al. [35] who propose a

type system for Erlang based on semantic subtyping, implement it, and provide useful benchmarks

regarding its expressiveness compared both to Dialyzer [31] and Gradualizer [37]. The work by

Schimpf et al. [35] is rather different from ours, since they adapt the existing theory of semantic

subtyping to Erlang, while the point of our work is to show how to extend semantic subtyping with

features specific to Elixir: how to add gradual typing without modifying Elixir’s compilation and

how to extract the most information from the expressive guards of Erlang/Elixir. Notably, both

Castagna et al. [9] and Schimpf et al. [35] provide extensive comparison of the semantic subtyping

approach with existing typing efforts for Erlang and Elixir, which we defer to their analyses.

Elixir and Erlang are among the latest languages to embrace semantic subtyping techniques.

Other languages in this category include CDuce [18] which lacks gradual typing and guards, but

supply the latter with powerful regular expression patterns; Ballerina [2] which is a domain-specific

language for network-aware applications whose emphasis is on the use of read-only and write

only types and shares with Elixir the typing of records given by Castagna [7]; Luau [28, 32]

Roblox’s gradually typed dialect of Lua, a dynamic scripting language for games with emphasis on

performance, with a type system that switches to semantic subtyping when the original syntactic

subtyping fails [1]; Julia [3] with a type system that is based on a combination of syntactic and

semantic subtyping and sports an advanced type system for modules. Although some of these

languages use gradual typing and/or guards, none of them have the same focus on these features

as Elixir and, ergo, on the typing techniques we developed in this work. Nevertheless, we believe

that some of our work could be transposed to these languages, especially the techniques for safe

24 Giuseppe Castagna and Guillaume Duboc

erasure gradual typing (strong functions and dynamic propagation) and the extension of semantic

subtyping to multi-arity function spaces.

The thesis by Lanvin [29] defines a semantic subtyping approach to gradual typing, which

forms the basis of the gradual typing aspects of our system, since we borrow from Lanvin [29]

the definitions of subtyping, precision, and consistent subtyping for gradual types. The main

difference with [29] is that he considers that sound gradual typing is achievable by inserting casts

in the compiled code whenever necessary, while our work shows a way to adapt gradual typing

to achieve soundness while remaining in a full erasure discipline. The relations defined by [29]

are also implemented at Meta for the gradual typing of the (Erlang) code of WhatsApp [22], and

whose differences with the semantic subtyping approach are detailed in [9], to which we defer this

discussion. Lanvin [29] builds on and extends the work by [11] who show how to perform ML-like

type reconstruction in a gradual setting with set-theoretic types. As anticipated in Section 1.2, this

is one of the limitations of our work. To address it we count on adapting the results of [12] on type

inference for dynamic languages. An alternative option is to utilize the approach by Castagna et al.

[16] which employs traditional, less computationally demanding type reconstruction techniques

than those in [12], but lacks the capability to infer intersection types for functions.

The erasure discipline is a design choice that is popular in industry (as per [27]). For instance, in

TypeScript [4], the types leave no trace in the JavaScript emitted by the compiler. But Typescript

forgoes soundness, and it requires alterations to the compiler (by addition of static checks [34])

in order to recover it. This issue is shared with Flow [19] and others [30, 33]. Our improvement

on this status-quo is to introduce and promote an approach that maintains soundness, in a full

erasure context, but recovers as much static information as possible by type-checking functions

with strong types that can filter out the dynamic type.

The system we present controls dynamic types via proxies that exist at the type level: strong

functions. Thus, we can state that functions with a strong type will work in the wild (i.e., when

called with dynamic code) and still give a static type (or error on an explicit type test). This property

can be related to the notion of open-world soundness developed in [40] which states that if a program

is well-typed and translated from a gradually-typed surface language into an untyped target, it may

interoperate with arbitrary untyped code without producing uncaught type errors. In a sense, our

type system can be seen as a proof that Elixir follows already the open-world soundness property

when endowed with a gradual type system.

8 Conclusion
This work establishes the theoretical foundation for the Elixir type system, by extending the

existing theory of semantic subtyping with key features to capture Elixir programming patterns:

safe-erasure gradual typing, multi-arity functions, guard analysis. The resulting type system is

expressive enough to capture idiomatic Elixir code, and provide relevant type information to

the developer, via warnings and error messages. It is progressively being integrated in Elixir

since release 1.17 [21] and, for the time being, has met with a positive reception from the Elixir

developer community. This type information can be used to improve the quality of the code and

to provide better tooling support. Although the aspects we developed are tailored to Elixir, the

theoretical foundation we established can be used to extend the theory of semantic subtyping to

other languages, notably dynamic ones, and to provide a more general framework for the design

of gradual type systems therein. Our next steps, already underway, are to implement the missing

parts of the type system in the Elixir compiler according to the roadmaps sketched by [9, 20], and

to evaluate its performance and usability in real-world scenarios. From a theoretical standpoint we

aim to extend the type system to include Elixir’s first-class module system and to devise types to

support concurrency and distribution.

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 25

References
[1] 2023. Luau .594 Release. GitHub release. https://github.com/luau-lang/luau/releases/tag/0.594 Released on September

the 8th 2023.

[2] Ballerina. [n. d.]. Ballerina. https://ballerina.io/ Accessed on Feb 28, 2024.

[3] Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral B. Shah, Jan Vitek, and Lionel Zoubritzky. 2018.

Julia: Dynamism and Performance Reconciled by Design. Proc. ACM Program. Lang. 2, OOPSLA, Article 120 (oct 2018),
23 pages. https://doi.org/10.1145/3276490

[4] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP 2014 – Object-Oriented
Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 257–281.

[5] Mauricio Cassola, Agustín Talagorria, Alberto Pardo, and Marcos Viera. 2020. A gradual type system for Elixir. In

Proceedings of the 24th Brazilian Symposium on Context-oriented Programming and Advanced Modularity. Association
for Computing Machinery, New York, NY, USA, 17–24.

[6] Giuseppe Castagna. 2020. Covariance and Controvariance: a fresh look at an old issue (a primer in advanced type

systems for learning functional programmers). Logical Methods in Computer Science Volume 16, Issue 1 (Feb. 2020).

https://doi.org/10.23638/LMCS-16(1:15)2020

[7] Giuseppe Castagna. 2023. Typing Records, Maps, and Structs. Proc. ACM Program. Lang. 7, ICFP, Article 196 (Sept.
2023). https://doi.org/10.1145/3607838

[8] Giuseppe Castagna. 2024. Programming with union, intersection, and negation types. In The French School of
Programming, Bertrand Meyer (Ed.). Springer, 309–378. https://doi.org/10.1007/978-3-031-34518-0_12 Preprint at

arXiv:2111.03354.

[9] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2024. The Design Principles of the Elixir Type System. The Art,
Science, and Engineering of Programming 8, 2 (2024). https://doi.org/10.22152/programming-journal.org/2024/8/4

[10] Giuseppe Castagna and Alain Frisch. 2005. A gentle introduction to semantic subtyping. In Proceedings of the
7th ACM SIGPLAN international conference on Principles and practice of declarative programming. 198–199. https:

//doi.org/10.1145/1069774.1069793

[11] Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G Siek. 2019. Gradual typing: a new perspective.

Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–32. https://doi.org/10.1145/3290329

[12] Giuseppe Castagna, Mickaël Laurent, and Kim Nguyen. 2024. Polymorphic Type Inference for Dynamic Languages.

Proc. ACM Program. Lang. 8, POPL, Article 40 (Jan. 2024). https://doi.org/10.1145/3632882

[13] Giuseppe Castagna, Mickaël Laurent, Kim Nguyen, and Matthew Lutze. 2022. On type-cases, union elimination, and

occurrence typing. Proceedings of the ACM on Programming Languages 6, POPL (2022), 75. https://doi.org/10.1145/

3498674

[14] Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic functions with set-theoretic

types. Part 2: local type inference and type reconstruction. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’15). Association for Computing Machinery, New York, NY,

USA, 289–302. https://doi.org/10.1145/2676726.2676991

[15] Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic

Functions with Set-Theoretic Types. Part 1: Syntax, Semantics, and Evaluation. In Proceedings of the 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). Association for Computing

Machinery, New York, NY, USA, 5–17. https://doi.org/10.1145/2676726.2676991

[16] Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-Theoretic Types for Polymorphic Variants. In

ICFP ’16, 21st ACM SIGPLAN International Conference on Functional Programming. 378–391. https://doi.org/10.1145/

2951913.2951928

[17] Giuseppe Castagna and Zhiwu Xu. 2011. Set-theoretic Foundation of Parametric Polymorphism and Subtyping. In

ICFP ’11: 16th ACM-SIGPLAN International Conference on Functional Programming. 94–106. https://doi.org/10.1145/

2034773.2034788

[18] cduce [n. d.]. CDuce. https://www.cduce.org/ Accessed on Feb 28, 2024.

[19] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and precise type

checking for JavaScript. Proceedings of the ACM on Programming Languages 1, OOPSLA (Oct. 2017), 48:1–48:30.

https://doi.org/10.1145/3133872

[20] Elixir. 2024. Elixir documentation: Gradual set-theoretic types. https://hexdocs.pm/elixir/gradual-set-theoretic-

types.html

[21] Elixir. 2024. Elixir v1.17 released: set-theoretic types in patterns, calendar durations, and Erlang/OTP 27 support. https:

//elixir-lang.org/blog/2024/06/12/elixir-v1-17-0-released

[22] eqWAlizer [n. d.]. eqWAlizer. https://github.com/WhatsApp/eqwalizer.

[23] Phoenix Framework. 2023. Bug fix commit: "Address bug found by typesystem". Retrieved October 10, 2024 from

https://github.com/phoenixframework/phoenix/commit/34d0ffef6aebcb5d4f210978aabca53b0e57f1ae

https://github.com/luau-lang/luau/releases/tag/0.594
https://ballerina.io/
https://doi.org/10.1145/3276490
https://doi.org/10.23638/LMCS-16(1:15)2020
https://doi.org/10.1145/3607838
https://doi.org/10.1007/978-3-031-34518-0_12
https://arxiv.org/abs/2111.03354
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3632882
https://doi.org/10.1145/3498674
https://doi.org/10.1145/3498674
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/2034773.2034788
https://www.cduce.org/
https://doi.org/10.1145/3133872
https://hexdocs.pm/elixir/gradual-set-theoretic-types.html
https://hexdocs.pm/elixir/gradual-set-theoretic-types.html
https://elixir-lang.org/blog/2024/06/12/elixir-v1-17-0-released
https://elixir-lang.org/blog/2024/06/12/elixir-v1-17-0-released
https://github.com/WhatsApp/eqwalizer
https://github.com/phoenixframework/phoenix/commit/34d0ffef6aebcb5d4f210978aabca53b0e57f1ae

26 Giuseppe Castagna and Guillaume Duboc

[24] Alain Frisch. 2004. Théorie, conception et réalisation d’un langage de programmation adapté à XML. Ph. D. Dissertation.
PhD thesis, Université Paris 7.

[25] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2002. Semantic Subtyping. In LICS ’02, 17th Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer Society Press, 137–146. https://doi.org/10.1109/LICS.2002.

1029823

[26] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: dealing set-theoretically with

function, union, intersection, and negation types. J. ACM 55, 4 (2008), 1–64. https://doi.org/10.1145/1391289.1391293

[27] Ben Greenman, Christos Dimoulas, andMatthias Felleisen. 2023. Typed–Untyped Interactions: A Comparative Analysis.

ACM Transactions on Programming Languages and Systems 45, 1 (March 2023), 1–54. https://doi.org/10.1145/3579833

[28] Alan Jeffrey. 2022. Semantic Subtyping in Luau. Blog post. https://blog.roblox.com/2022/11/semantic-subtyping-luau

Accessed on May 6th 2023.

[29] Victor Lanvin. 2021. A semantic foundation for gradual set-theoretic types. Ph. D. Dissertation. Université Paris Cité.
[30] Jukka Lehtosalo, G v Rossum, Ivan Levkivskyi, Michael J Sullivan, David Fisher, Greg Price, Michael Lee, N Seyfer, R

Barton, S Ilinskiy, et al. 2017. Mypy-optional static typing for python. URL: http://mypy-lang. org/[cited 2021-11-30]
(2017).

[31] Tobias Lindahl and Konstantinos Sagonas. 2006. Practical type inference based on success typings. In ACM-SIGPLAN
International Conference on Principles and Practice of Declarative Programming. Association for Computing Machinery,

New York, NY, USA, 167–178.

[32] Luau [n. d.]. Luau. https://luau-lang.org/.
[33] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The ins and outs of gradual type inference. In Proceedings of the

39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL
’12). Association for Computing Machinery, New York, NY, USA, 481–494. https://doi.org/10.1145/2103656.2103714

[34] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & efficient gradual

typing for TypeScript. In POPL ’15. ACM, 167–180.

[35] Albert Schimpf, Stefan Wehr, and Annette Bieniusa. 2023. Set-theoretic Types for Erlang. In Proc. of IFL 2022. ACM,

Copenhagen, Denmark, Article 4. https://doi.org/10.1145/3587216.3587220

[36] Erik Stenman. 2024. The Erlang Runtime System. Retrieved February 28, 2024 from https://blog.stenmans.org/

theBeamBook/

[37] Josef Svenningsson. [n. d.]. Gradualizer. https://github.com/josefs/Gradualizer.

[38] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of Typed Scheme. In POPL ’08.
ACM, Association for Computing Machinery, New York, NY, USA, 395–406.

[39] Michael M. Vitousek. [n. d.]. Reticulated Python. https://github.com/mvitousek/reticulated.

[40] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big types in little runtime: open-world soundness

and collaborative blame for gradual type systems. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL ’17). Association for Computing Machinery, New York, NY, USA, 762–774. https:

//doi.org/10.1145/3009837.3009849

https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/3579833
https://blog.roblox.com/2022/11/semantic-subtyping-luau
https://luau-lang.org/
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/3587216.3587220
https://blog.stenmans.org/theBeamBook/
https://blog.stenmans.org/theBeamBook/
https://github.com/josefs/Gradualizer
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1145/3009837.3009849

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 27

Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆(𝑝𝑔 −→ 𝑒) | 𝑒(𝑒) | {𝑒} | 𝜋𝑒 𝑒 | case 𝑒 𝑝𝑔 −→ 𝑒 | 𝑒 + 𝑒
Patterns 𝑝 ::= 𝑐 | 𝑥 | {𝑝}
Guards 𝑔 ::= 𝑎 ?𝜏 | 𝑎 = 𝑎 | 𝑎 != 𝑎 | 𝑔 and 𝑔 | 𝑔 or 𝑔
Guard atoms 𝑎 ::= 𝑐 | 𝑥 | 𝜋𝑎 𝑎 | size𝑎 | {𝑎}
Test types 𝜏 ::= 𝑏 | 𝑐 | function𝑛 | {𝜏} | {𝜏 } | 𝜏 ∨ 𝜏 | ¬𝜏
Base types 𝑏 ::= int | bool | function | tuple
Types 𝑡 ::= 𝑏 | 𝑐 | 𝑡 −→ 𝑡 | {𝑡 } | {𝑡, ..} | 𝑡 ∨ 𝑡 | ¬ 𝑡 | ?

Fig. 9. Core Elixir

Expressions E ::= L | 𝑥 | fn P when G -> E end | E (E1, .., E𝑛) | E + E

| case E P when G -> E | { E1, .., E𝑛 } | elem(E, E)
Singletons L ::= 𝑛 | 𝑘 | {L}
Patterns P ::= L | 𝑥 | {P1, .., P𝑛}
Guards G ::= D | C | not G | G and G | G or G | G == G | G != G

Selectors D ::= L | 𝑥 | elem(D, D) | tuple_size(D) | {D}
Checks C ::= is_integer(D) | is_atom(D) | is_tuple(D)

| is_function(D) | is_function(D, 𝑛)
(where 𝑥 ranges over variables, 𝑛 ranges over integers, and 𝑘 ranges over atoms)

Fig. 10. Featherweight Elixir

A Language Formalization
Throughout this paper, we have used Core Elixir as the language for technical discussions. This

appendix provides a comprehensive overview of Core Elixir’s syntax and its relationship to Feath-

erweight Elixir, a subset of the full Elixir language.

Figure 9 presents the full syntax of Core Elixir, which encompasses all the language features

discussed in the main body of the paper. This includes expressions, patterns, guards, guard atoms,

test types, base types, and types.

To bridge the gap between Core Elixir and a more concrete Elixir syntax, we introduce Feather-

weight Elixir (FW-Elixir). FW-Elixir is a strict subset of Elixir that covers all the language features

discussed in this paper, including tuples, anonymous and multi-arity functions, case-expressions

with patterns and guards, and more. Figure 10 presents the formal syntax for FW-Elixir.

It’s important to note that all the examples provided in the main text of the paper are valid syntax

for both Elixir and FW-Elixir. FW-Elixir actually extends beyond the examples shown in the main

text, as it allows for negated guards, which are absent from both the previous examples and Core

Elixir. For instance, consider the following alternative definition of the negate function:

29 def negate(x) when not(is_function(x) or is_tuple(x)), do: not x

This definition is equivalent to the one presented earlier in the paper, assuming integer() and

boolean() are the only basic types used in FW-Elixir. The type boolean() is the complement of

integer() or function() or tuple() (where the type function() denotes the type of all functions)

and all values of type integer() are captured by the first clause of negate.

To illustrate how Core Elixir relates to the examples discussed in the main text, consider the

function second_strong from the paper. It can be encoded in Core Elixir as:

𝜆{{1,int}−→int}(𝑥).case𝑥 ({1, int} −→ 𝜋1 𝑥)

28 Giuseppe Castagna and Guillaume Duboc

TG (D) = TD (D) ? true
TG (𝐶) = TC (𝐶)

TG (G1 and G2) = TG (G1) and TG (G2)
TG (G1 or G2) = TG (G1) or TG (G2)

TG (not G) = NG (G)
TG (G1 == G2) = TG (G1) = TG (G2)
TG (G1 != G2) = TG (G1) != TG (G2)

TD (elem(D1, D2)) = 𝜋TD (D1) TD (D2)
TD (tuple_size(D)) = size TD (D)

TD ({D1, .., D𝑛 }) = {TD (D1), ..,TD (D𝑛)}

TC (is_integer(D)) = TD (D) ? int
TC (is_atom(D)) = TD (D) ? atom
TC (is_tuple(D)) = TD (D) ? tuple

TC (is_function(D)) = TD (D) ? function
TC (is_function(D, 𝑛)) = TD (D) ? function𝑛

NG (D) = TD (D) ? false
NG (C) = NC (C)

NG (G1 and G2) = NG (G1) or NG (G2)
NG (G1 or G2) = NG (G1) and NG (G2)

NG (not G) = TG (G)
NG (G1 == G2) = TG (G1) != TG (G2)
NG (G1 != G2) = TG (G1) = TG (G2)

NC (is_integer(D)) = TD (D) ? (¬int)
NC (is_atom(D)) = TD (D) ? (¬atom)
NC (is_tuple(D)) = TD (D) ? (¬tuple)

NC (is_function(D)) = TD (D) ? (¬function)
NC (is_function(D, 𝑛)) = TD (D) ? (¬function𝑛)

Fig. 11. Guard Compilation

where 1 denotes the top type. Similarly, the second clause of the test function can be expressed in

Core Elixir as a branch of a case-expression with pattern 𝑥 and guard:

(𝑥 ? bool) or (𝜋0 𝑥 = 𝜋1 𝑥)

An important point is the link between our analysis of guards, and the assumptions behind it.

In our study, we only considered guards with disjunctions and conjunctions, because we had a

technique to eliminate negations in the first place. This technique relies on a compilation step for

guards, that we now present.

In Figure 11 we define two mutually recursive functions from the set GElixir of Elixir concrete

guards of FW-Elixir to the set GCore of Core Elixir guards (syntax in Figure 6). Precisely, the

T : GElixir → GCore function compiles a concrete guard into a core guard, and theN : GElixir → GCore

does so as well, but also pushes down a logical negation into the guard, which means that, say,

a type-check of int becomes a type-check of ¬ int, and that conjunctions and disjunctions are

swapped using De Morgan rules. There is noN defined on selectors D:N is just an auxiliary function

for T, which does not call it on D productions (a selector D is directly translated into checking

whether it has the singleton type true).

A.1 Operational Semantics
The language has strict reduction semantics defined by the reduction rules in the Figures from 12 to

15. The semantics is defined in terms of values (ranged over by 𝑣), evaluation contexts (ranged over

by E), and guard evaluation contexts (ranged over by G), the latter used to define the semantics of

pattern matching. They are defined as follows:

Values 𝑣 ::= 𝑐 | 𝜆I𝑥 .𝑒 | {𝑣 }
Context E ::= □ | E(𝑒) | 𝑣(E) | {𝑣, E, 𝑒} | 𝜋E 𝑒 | 𝜋𝑣 E | case E (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼

| E + 𝑒 | 𝑣 + E | size E | case E 𝑝𝑔 −→ 𝑒

Guard Context G ::= □ | G and 𝑔 | G or 𝑔 | G ? 𝑡 | G = 𝑎 | 𝑣 = G | G != 𝑎 | 𝑣 != G
Since patterns contain capture variables, the reduction of pattern matching implies the creation

of a substitution 𝜎 that binds the capture variables of the pattern to the values they capture.

Finally, the semantics of pattern matching includes the evaluation of guards. A given branch

succeeds iff the value matches a pattern, and the guard evaluates to true. Note that a guard can fail,

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 29

[App] (𝜆I𝑥 .𝑒) 𝑣 ↩→ 𝑒 [𝑣/𝑥]
[Proj] 𝜋𝑖 {𝑣0, .. , 𝑣𝑛} ↩→ 𝑣𝑖 if 𝑖 ∈ [0 .. 𝑛]
[Plus] 𝑣 + 𝑣 ′ ↩→ 𝑣 ′′ where 𝑣 ′′ = 𝑣 + 𝑣 ′

and 𝑣, 𝑣 ′ are integers
[Size] size {𝑣1, .. , 𝑣𝑛} ↩→ 𝑛

[Match] case 𝑣 do (𝑝𝑖𝑔𝑖 −→ 𝑒𝑖)𝑖<𝑛 ↩→ 𝑒 𝑗 𝜎 if 𝑣/(𝑝 𝑗𝑔 𝑗) = 𝜎 and

∀(𝑖 < 𝑗 <𝑛). 𝑣/(𝑝𝑖𝑔𝑖) = fail
[Context] E[𝑒] ↩→ E[𝑒′] if 𝑒 ↩→ 𝑒′

[App𝜔] 𝑣 (𝑣 ′) ↩→ 𝜔
BadFunction

if 𝑣 ≠ 𝜆I𝑥 .𝑒

[Proj𝜔,bound] 𝜋𝑣 {𝑣0, .. , 𝑣𝑛} ↩→ 𝜔
OutOfRange

if 𝑣 ≠ 𝑖 for 𝑖 = 0 .. 𝑛

[Proj𝜔,nonTuple] 𝜋𝑣′ 𝑣 ↩→ 𝜔
NotTuple

if 𝑣 ≠ {𝑣 }
[Plus𝜔] 𝑣 + 𝑣 ′ ↩→ 𝜔

ArithError
if 𝑣 or 𝑣 ′ not integers

[Size𝜔] size 𝑣 ↩→ 𝜔
Size

if 𝑣 ≠ {𝑣}
[Match𝜔] case 𝑣 do (𝑝𝑖𝑔𝑖 −→ 𝑒𝑖)𝑖<𝑛 ↩→ 𝜔

CaseEscape
if 𝑣/𝑝𝑖𝑔𝑖 = fail for all 𝑖 < 𝑛

[Context𝜔] E[𝑒] ↩→ 𝜔𝑝 if 𝑒 ↩→ 𝜔𝑝
Fig. 12. Standard and Failure Reductions

𝑣/𝑐 = {} if 𝑣 = 𝑐

𝑣/𝑥 = {𝑥 ↦→ 𝑣}
𝑣/(𝑝1&𝑝2) = 𝜎1 ∪ 𝜎2 if 𝑣/𝑝1 = 𝜎1 and 𝑣/𝑝2 = 𝜎2
{𝑣1, . . . , 𝑣𝑛}/{𝑝1, . . . , 𝑝𝑛} =

⋃
𝑖=1..𝑛 𝜎𝑖 if 𝑣𝑖/𝑝𝑖 = 𝜎𝑖 for all 𝑖 = 1..𝑛

𝑣/𝑝 = fail otherwise

𝑣/(𝑝𝑔) = 𝜎 if 𝑣/𝑝 = 𝜎 and 𝑔 𝜎 ↩→∗ true
𝑣/(𝑝𝑔) = fail otherwise

where 𝜎 denotes substitutions from variables to values

Fig. 13. Definition of 𝒗/𝒑 and 𝒗/(𝒑𝒈)

[And⊤] true and 𝑔 ↩→
𝑔

[And⊥] 𝑣 and 𝑔 ↩→
false if 𝑣 ≠ true

[Or⊤] true or 𝑔 ↩→
true

[Or⊥] false or 𝑔 ↩→
𝑔

[Eq⊤] 𝑣 = 𝑣 ′ ↩→
true if 𝑣 = 𝑣 ′

[Eq⊥] 𝑣 = 𝑣 ′ ↩→
false else

[NEq⊤] 𝑣 != 𝑣 ′ ↩→
true if 𝑣 ≠ 𝑣 ′

[NEq⊥] 𝑣 != 𝑣 ′ ↩→
false else

[OfType⊤] 𝑣 ? 𝑡 ↩→
true if 𝑣 ∈ 𝑡

[OfType⊥] 𝑣 ? 𝑡 ↩→
false else

[Ctx] G[𝑔] ↩→ G[𝑔′] if 𝑔
↩→

𝑔′

[CtxAtom] G[𝑎] ↩→ G[𝑎′] if 𝑎
↩→

𝑎′

[Context] G[𝑎] ↩→
false if 𝑎

↩→
𝜔

Fig. 14. Guard Reductions.

in which case the branch is skipped (it does not constitute a failure of the whole pattern matching):

this is stated by the rule Context in Figure 14

30 Giuseppe Castagna and Guillaume Duboc

[Size] size ({𝑣1, .. , 𝑣𝑛}) ↩→ 𝑛 where 𝑛 ∈ N
[Size𝜔] size (𝑣) ↩→ 𝜔

Size
if 𝑣 ≠ {𝑣}

[Proj] 𝜋𝑖 {𝑣1, .. , 𝑣𝑛} ↩→ 𝑣𝑖 if 𝑖 ∈ {1, .. , 𝑛}
[Proj𝜔,bound] 𝜋𝑣 {𝑣1, .. , 𝑣𝑛} ↩→ 𝜔

OutOfRange
if 𝑣 ∉ {1, .. , 𝑛}

[Proj𝜔,nonTuple] 𝜋𝑣′ 𝑣 ↩→ 𝜔
NotTuple

if 𝑣 ≠ {𝑣 }
[Context] E[𝑎] ↩→ E[𝑎′] if 𝑎 ↩→ 𝑎′

Fig. 15. Guard Atom Reductions.

B Soundness for Section 2
Definition B.1. The terms constituting the source language of Section 2 are defined by the

following grammar:

Terms 𝑒 ::= 𝑥 | 𝑐 | 𝜆I𝑥 .𝑒 | 𝑒 𝑒 | case 𝑒 (𝜏𝑖 → 𝑒𝑖)𝑖∈𝐼
Values 𝑣 ::= 𝑐 | 𝜆I𝑥 .𝑒
Interfaces I ::= {𝑡𝑖 → 𝑠𝑖 | 𝑖 ∈ 𝐼 }

In this section we consider, without loss of generality only interfaces I = {𝑡𝑖 → 𝑠𝑖 | 𝑖 ∈ 𝐼 } that
satisfy the conditions ∀(𝑖, 𝑗) ∈ 𝐼 2, (𝑡𝑖 ∧ 𝑡 𝑗)⇑ ≤ O, and ∀𝑖 ∈ 𝐼 , 𝑡

⇑
𝑖
≰ O. In words, the domains of

the arrows in the interface must always be pairwise disjoint, meaning that they do not overlap.

While this restriction might seem limiting, any arbitrary interface can be statically converted into

a valid one that adheres to this rule, though this conversion process may lead to a considerable

increase in the size of the interface. Consider, for instance, the following interface that does not

satisfy this restriction: {int → int; 5 → 5; ? → ?}. Through static transformation, we can derive

an (intuitively) equivalent, valid interface:

{(int \ 5) → int; (int ∧ 5) → (int ∧ 5); (5 \ int) → 5; (? \ (int ∧ 5)) → ?}
which simplifies to:

{(int \ 5) → int; 5 → 5; (? \ (int ∧ 5)) → ?}
This technique extends to interfaces containing multiple overlapping gradual types. As an illustra-

tion, the interface {? → int; ? → 5} can be simplified to {? → int ∨ 5}.
Such transformations enhance type safety while preserving the original interface’s semantic

intent, albeit at the cost of increased complexity in some cases.

To simplify the typing rule for pattern matching (and the associated proof of soundness), we

assume that the restriction also applies to gradual domains, that is, ∀(𝑖, 𝑗) ∈ 𝐼 2, 𝑖 ≠ 𝑗 ⇒ 𝜏𝑖 ∧ 𝜏 𝑗 ≤ O.
This definition is not restrictive either, as any non-disjoint case expression can be compiled into a

disjoint one by subtracting the union of the previous cases from the current one for each branch.

The typing rules for Core Elixir are given in a declarative style, and grouped into two figures:

Figure 16 shows the gradual type system that is used to typecheck programs, Figure 17 shows the

strong system which is used as an auxiliary stystem in the inference of strong function types. We

prove subject reduction for this latter system.

When type-checking gradually typed programs, rule (𝜆1★) from Figure 16 is used instead of rule

(𝜆) given in Figure 3. Once again this modification does not affect the set of well-type terms since

the (𝜆1★) is admissible for the system of Figure 3, as its extra premise Γ, 𝑥 : ? ⊢ 𝑒 : 1 is verified when

no ill-typed expression can hide in an unreachable branch of a case expression, which is guaranteed

by the condition of Remark 1. In other terms, under the hypothesis of Remark 1, rules (𝜆1★) and (𝜆)

are equivalent.

Type-checking a program using only the static rules of Figure 16, which are those not annotated

with any subscript ★ or ?, gives the strongest safety guarantee as it prevents all runtime errors

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 31

(cst)

𝑐 : 𝑐 ∧ ?
(var)

Γ(𝑥) = 𝑡
Γ ⊢ 𝑥 : 𝑡

(𝜆)
∀(𝑡𝑖 −→ 𝑠𝑖) ∈ I (Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑠𝑖)

Γ ⊢ 𝜆I𝑥 . 𝑒 : ∧𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)

(𝜆1★)
∀(𝑡𝑖 → 𝑠𝑖) ∈ I (Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑠𝑖) Γ, 𝑥 : ? ⊢ 𝑒 ⦂ 1

Γ ⊢ 𝜆I𝑥 . 𝑒 : ∧𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)

(𝜆★)
Γ ⊢◦ 𝜆I𝑥 .𝑒 : 𝑡1 −→ 𝑡2 Γ, 𝑥 : ? ⊢ 𝑒 ⦂ 𝑡2 ∧ ?

Γ ⊢◦ 𝜆I𝑥 .𝑒 : (𝑡1 −→ 𝑡2)★

(app)

𝑒1 : 𝑡1 → 𝑡2 𝑒2 : 𝑡1

𝑒1(𝑒2) : 𝑡2
(app★)

𝑒1 : (𝑡1 → 𝑡)★ 𝑒2 : 𝑡2

𝑒1(𝑒2) : 𝑡 ∧ ?
(𝑡2 ≤∼ 𝑡1)

(app?)
Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ 𝑒1(𝑒2) : ?
(∃𝑡 .(𝑡1 ≤∼ 𝑡 −→ 1) and (𝑡2 ≤∼ 𝑡))

(case)
Γ ⊢ 𝑒 : 𝑡 ∀𝑖 ∈ 𝐼 . (𝑡 ∧ 𝑡𝑖 ≰ O =⇒ Γ ⊢ 𝑒𝑖 : 𝑡 ′)

Γ ⊢ case 𝑒 (𝜏𝑖 → 𝑒𝑖)𝑖 : 𝑡 ′
(𝑡 ≤ ∨𝑖𝜏𝑖)

(case?)
Γ ⊢ 𝑒 : 𝑡 ∀𝑖 ∈ 𝐼 . (𝑡 ∧ 𝑡𝑖 ≰ O =⇒ Γ ⊢ 𝑒𝑖 : 𝑡 ′)

Γ ⊢ case 𝑒 (𝜏𝑖 → 𝑒𝑖)𝑖 : 𝑡 ′ ∧ ?
(𝑡 ≤∼ ∨𝑖𝑡𝑖)

(plus)
𝑒1 : int 𝑒2 : int

𝑒1 + 𝑒2 : int
(plus?)

𝑒1 : 𝑡1 𝑒2 : 𝑡2

𝑒1 + 𝑒2 : int ∧ ?

{
𝑡1 ≤∼ int

𝑡2 ≤∼ int
(sub)

𝑒 : 𝑡1 𝑡1 ≤ 𝑡2
𝑒 : 𝑡2

Fig. 16. Typing rules for the gradual system

defined in the operational semantics. For extra clarity, any judgement of a proof that uses only this

kind of rules is denoted by Γ ⊢static 𝑒 : 𝑡 .
Type-checking with the full gradual system ensures that a well-typed program evaluates to a

value of the expected type, but admits various runtime errors.

After that, we show how to extend the type system to handle tuples and projections, and

show that different static rules can be used to provide different levels of safety (see Figure 18 and

Theorem B.17).

B.1 Static safety
Lemma B.2 (Permutation). For every expression 𝑒 , types 𝑡, 𝑡1, 𝑡2, environment Γ, and variables

𝑥,𝑦 ∉ dom (Γ),
(Γ, 𝑥 : 𝑡1, 𝑦 : 𝑡2 ⊢ 𝑒 : 𝑡) ⇒ (Γ, 𝑦 : 𝑡2, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡)

Proof of Lemma B.2. By induction on the size of the derivation tree and case analysis on the

last typing rule used to derive Γ, 𝑥 : 𝑡1, 𝑦 : 𝑡2 ⊢ 𝑒 : 𝑡 . Every non-base case is handled by directly

applying the induction hypothesis to the premises. □

Lemma B.3 (Weakening). For every expression 𝑒 , types 𝑡, 𝑠 , environment Γ, and variable 𝑥 ∉

dom (Γ),
𝑥 ∉ fv (𝑒) ∧ (Γ, 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡) ⇒ (Γ ⊢ 𝑒 : 𝑡)

Proof of Lemma B.3. By induction on the size of the derivation tree and case analysis on the

last typing rule used to derive Γ, 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡 .
(var): 𝑒 = 𝑦 and 𝑦 ≠ 𝑥 by assumption. This implies (𝑦 : 𝑡) ∈ Γ, hence Γ ⊢ 𝑒 : 𝑡 by rule (var).

32 Giuseppe Castagna and Guillaume Duboc

(cst): Immediate since 𝑒 is a constant so its typing does not depend on the environment.

(𝜆): 𝑒 = 𝜆I𝑦.𝑒′. By inversion of the typing rule, we have Γ, 𝑥 : 𝑠,𝑦 : 𝑡𝑖 ⊢ 𝑒′ : 𝑠𝑖 for all 𝑖 ∈ 𝐼 .

Rearranging the environment by Permutation B.2, and by induction hypothesis, we deduce

that Γ, 𝑦 : 𝑡𝑖 ⊢ 𝑒′ : 𝑠𝑖 for all 𝑖 ∈ 𝐼 . Therefore, Γ ⊢ 𝜆I𝑦.𝑒′ : 𝑡 ′ → 𝑡 .

(tuple), (app), (case), (plus), (≤): These rules maintain the same environment in the conclusion

and premises, and involve sub-expressions in the premises.

□

Lemma B.4 (Static Substitution). For all expressions 𝑒, 𝑒1, types 𝑡, 𝑡1 and variable 𝑥 ∉ dom (Γ),

(Γ, 𝑥 : 𝑡1 ⊢static 𝑒 : 𝑡) ∧ (Γ ⊢static 𝑒1 : 𝑡1) =⇒ (Γ ⊢static 𝑒 [𝑒1/𝑥] : 𝑡)

Proof of Lemma B.4. By induction on the size of the derivation tree and case analysis on the

last typing rule used to derive Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡 .
(cst). Immediate since 𝑒 is a constant and does not depend on 𝑥 .

(var). 𝑒 = 𝑦. There are two cases:

• 𝑦 = 𝑥 . Then 𝑒 [𝑒1/𝑥] = 𝑒1 so by assumption Γ, 𝑥 : 𝑡1 ⊢ 𝑥 : 𝑡 and 𝑥 ∉ dom (Γ). By
inversion of rule (≤), we have 𝑡1 ≤ 𝑡 . Applying rule (≤) to Γ ⊢ 𝑒1 : 𝑡1 concludes.

• 𝑦 ≠ 𝑥 . Then 𝑒 [𝑒1/𝑥] = 𝑦, and the result follows since Γ, 𝑥 : 𝑡1 ⊢ 𝑦 : 𝑡 .

(𝜆). 𝑒 = 𝜆I𝑦.𝑒1. By inversion, Γ, 𝑥 : 𝑡1, 𝑦 : 𝑡𝑖 ⊢ 𝑒𝑖 : 𝑠𝑖 for all (𝑡𝑖 −→ 𝑠𝑖) ∈ I. Rearranging the variables
by Permutation B.2, and by induction hypothesis, Γ, 𝑦 : 𝑡𝑖 ⊢ 𝑒𝑖 [𝑒1/𝑥] : 𝑠𝑖 for all 𝑖 ∈ 𝐼 . This
concludes by re-applying the (𝜆) typing rule.

(tuple), (app), (case), (proj), (proj𝜔), (proj
1
𝜔), (+), (≤). maintain the same environment in the

conclusion and premises, and involve sub-expressions in the premises. Hence, they are

handled in the same way as the (𝜆) rule by directly applying the induction hypothesis to

their premises.

□

Lemma B.5 (Static Progress). If ∅ ⊢static 𝑒 : 𝑡 , then either:

• ∃𝑣 s.t. 𝑒 = 𝑣 ;
• ∃𝑒′ s.t. 𝑒 ↩→ 𝑒′;

Proof. Our set of reduction rules (see Figure 2), including failure reductions, is complete. This

means that every expression that is not a variable—thus, a fortiori, every closed expression—is

either a value, or it can be reduced to another expression (which will be closed, too) or to a failure

𝜔 ∈ {𝜔
CaseEscape

, 𝜔
OutOfRange

, 𝜔
NotTuple

, 𝜔
BadFunction

, 𝜔
ArithError

}.
We will prove that for a well-typed expression in ⊢static, the failure cases are impossible. Let’s

assume there exists an expression 𝑒 such that 𝑒 ↩→ 𝜔𝑝 , where 𝑝 is one of the failure cases. We’ll

analyze each case:

(1) Case 𝑝 = CaseEscape: In this case, 𝑒 = case 𝑣 (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 where 𝑣 ∉
∨
𝑖∈𝐼 𝜏𝑖 . However, by

inverting the (case) typing rule used for 𝑒 , we have ∅ ⊢ 𝑣 : 𝑡 ′ where 𝑡 ′ ≤ ∨
𝑖∈𝐼 𝜏𝑖 . This

contradicts our assumption, as 𝑣 must belong to

∨
𝑖∈𝐼 𝜏𝑖 .

(2) Case 𝑝 = NotTuple: Here, 𝑒 = 𝜋𝑣′ 𝑣 where 𝑣 is not a tuple. The rules that introduce projections

imply, by inversion, that either 𝑣 : {𝑡0, .., 𝑡𝑛, ..} or 𝑣 : tuple. In both cases, 𝑣 must be a

tuple, contradicting our assumption.

(3) Case 𝑝 = BadFunction: In this scenario, 𝑒 = 𝑣(𝑣 ′) where 𝑣 is not a lambda-abstraction. By

inverting the (app) typing rule, we have 𝑣 : 𝑡1 −→ 𝑡2 and 𝑣 ′ : 𝑡1. This contradicts our

assumption, as 𝑣 must be a lambda-abstraction.

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 33

(4) Case 𝑝 = NonIntPlus: Here, 𝑒 = 𝑣1 + 𝑣2 where either 𝑣1 or 𝑣2 is not an integer. Inverting the (+)

typing rule gives us 𝑣1 : int and 𝑣2 : int. This contradicts our assumption, as both 𝑣1 and

𝑣2 must be integers.

It’s worth noting that 𝑝 = OutOfRange is not prevented by the typing rules (proj𝜔) and (proj
1
𝜔),

which allow expressions like 𝜋3 {1, 2} to be typed as 1 ∨ 2 or 1. While these rules seem necessary

to avoid burdening programmers with statically proving index bounds, a practical implementation

should include a rule that raises a type error for 𝜋𝑒 𝑒
′
when 𝑒′ : {𝑡0, .., 𝑡𝑛} and 𝑒 : ¬[0..𝑛]. □

Lemma B.6 (Static Preservation). If ∅ ⊢static 𝑒 : 𝑡 and 𝑒 ↩→ 𝑒′, then ∅ ⊢static 𝑒′ : 𝑡

Proof. By induction on the size of the derivation tree and case analysis on the typing rule used

to derive ∅ ⊢ 𝑒 : 𝑡 . The reduction hypothesis excludes rules (cst), (var) and (𝜆). In every case, if

𝑒 ↩→ 𝑒′ is a context reduction, then we apply the induction hypothesis to its premises and conclude

by re-applying the typing rule. Thus, we only explicitly treat rules for which there is a distinct

reduction:

(app). 𝑒 = 𝑒1(𝑒2). By inversion of the typing rule, we have ∅ ⊢ 𝑒1 : 𝑡1 −→ 𝑡2 and ∅ ⊢ 𝑒2 : 𝑡1. Since
the reduction is 𝛽-reduction, we have 𝑒1 = 𝜆

I𝑥 .𝑒′
1
and 𝑒′ = 𝑒′

1
[𝑒2/𝑥]. By Substitution B.4, we

deduce that ∅ ⊢ 𝑒′
1
[𝑒2/𝑥] : 𝑡2.

(case). 𝑒 = case 𝑒′ (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 . By inversion of the typing rule, we have ∅ ⊢ 𝑒′ : 𝑡 ′ and ∀𝑖 ∈
𝐼

(
(𝑡 ′ ∧ 𝜏𝑖) ∖ (∨𝑗<𝑖 𝜏 𝑗) ≰ O⇒ 𝑒𝑖 : 𝑡

)
. Due to the (case) reduction, 𝑒′ is a value of type

𝑡 ′. The exhaustiveness condition on the case typing rule tells us that 𝑡 ′ ≤ ∨
𝑖∈𝐼 𝜏𝑖 , so

there exists 𝑖0 ∈ 𝐼 (the first 𝜏𝑖 that matches) such that case 𝑒′ (𝜏𝑖 −→ 𝑒𝑖)𝑖∈𝐼 ↩→ 𝑒𝑖0 and

(𝑡 ′ ∧ 𝜏𝑖0) ∖ (∨𝑗<𝑖0
𝜏 𝑗) ≰ O, thus ∅ ⊢ 𝑒𝑖0 : 𝑡 which concludes.

□

Theorem B.7 (Static Type Safety). If ∅ ⊢static 𝑒 : 𝑡 then either:

• 𝑒 ↩→∗ 𝑣 and ∅ ⊢static 𝑣 : 𝑡 ;
• 𝑒 diverges

Proof. By standard application of Lemmas B.5 and B.6. □

B.2 Safety of the Gradual System
The safety of the gradual type system is established on judgments Γ ⊢ 𝑒 ⦂ 𝑡 , for which we prove

progress and preservation lemmas.

Lemma B.8 (Progress). If ∅ ⊢ 𝑒 ⦂ 𝑡 then either:

• ∃𝑣 s.t. 𝑒 = 𝑣 ;
• ∃𝑒′ s.t. 𝑒 ↩→ 𝑒′;
• or ∃𝑝 s.t. 𝑒 ↩→ 𝜔𝑝 .

Proof. Straightforward by the definition of the reduction semantics. □

Lemma B.9 (Substitution). If Γ, 𝑥 : 𝑠 ⊢ 𝑒 ⦂ 𝑡 then, for all Γ ⊢ 𝑒′ ⦂ 𝑠 , we have Γ ⊢ 𝑒 [𝑒′/𝑥] ⦂ 𝑡 .

Proof of Substitution. By induction on the derivation of Γ, 𝑥 : 𝑠 ⊢ 𝑒 ⦂ 𝑡 .
(1) Rule (var). 𝑒 = 𝑦.

If 𝑦 = 𝑥 , then 𝑠 ≤ 𝑡 by inversion, Thus 𝑒 [𝑒′/𝑥] = 𝑒′ and we conclude from Γ ⊢ 𝑒 ⦂ 𝑠 by
subsumption.

Otherwise, 𝑦 ≠ 𝑥 and 𝑒 [𝑒′/𝑥] = 𝑦. By weakening from Γ, 𝑥 : 𝑠 ⊢ 𝑦 ⦂ 𝑡 , we get Γ ⊢ 𝑦 ⦂ 𝑡 .
(2) Rule (cst). Immediate by weakening.

34 Giuseppe Castagna and Guillaume Duboc

(cst
◦
)

Γ ⊢ 𝑐 ⦂ 𝑐 ∧ ?
(var

◦
)

Γ(𝑥) = 𝑡
Γ ⊢ 𝑥 ⦂ 𝑡

(𝜆◦)
∀(𝑡𝑖 → 𝑠𝑖) ∈ I (Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒 ⦂ 𝑠𝑖) Γ, 𝑥 : ? ⊢ 𝑒 ⦂ 1

Γ ⊢ 𝜆I𝑥 . 𝑒 ⦂ ∧
𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)

(𝜆◦★)
Γ ⊢ 𝜆I𝑥 .𝑒 ⦂ 𝑡1 −→ 𝑡2 Γ, 𝑥 : ? ⊢ 𝑒 ⦂ 𝑡2 ∧ ?

Γ ⊢ 𝜆I𝑥 .𝑒 ⦂ (𝑡1 → 𝑡2)★
(𝜆◦?)

Γ ⊢ 𝜆I𝑥 .𝑒 ⦂ 𝑡
Γ ⊢ 𝜆I𝑥 .𝑒 ⦂ ?

(app
◦
)

Γ ⊢ 𝑒1 ⦂ 𝑡1 → 𝑡2 Γ ⊢ 𝑒2 ⦂ 𝑡1
Γ ⊢ 𝑒1(𝑒2) ⦂ 𝑡2

(app◦
?
)

Γ ⊢ 𝑒1 ⦂ 𝑡1 Γ ⊢ 𝑒2 ⦂ 𝑡2
Γ ⊢ 𝑒1(𝑒2) ⦂ ?

(app◦★)
Γ ⊢ 𝑒1 ⦂ (𝑡1 → 𝑡)★ Γ ⊢ 𝑒2 ⦂ 𝑡2

Γ ⊢ 𝑒1(𝑒2) ⦂ 𝑡 ∧ ?

(case◦?)
Γ ⊢ 𝑒 ⦂ 𝑡 ∀𝑖 ∈ 𝐼 . (𝑡 ∧ 𝜏𝑖 ≰ O =⇒ Γ ⊢ 𝑒𝑖 ⦂ 𝑡 ′)

Γ ⊢ case 𝑒 (𝜏𝑖 → 𝑒𝑖)𝑖 ⦂ 𝑡 ′ ∧ ?

(plus◦?)
Γ ⊢ 𝑒1 ⦂ 𝑡1 Γ ⊢ 𝑒2 ⦂ 𝑡2
Γ ⊢ 𝑒1 + 𝑒2 ⦂ int ∧ ?

(sub◦)
Γ ⊢ 𝑒 ⦂ 𝑡1 𝑡1 ≤ 𝑡2

Γ ⊢ 𝑒 ⦂ 𝑡2
Fig. 17. Typing rules for the strong system

(3) Rule (app).

We have: 𝑒 = 𝑒1 𝑒2, Γ, 𝑥 : 𝑠 ⊢ 𝑒1 ⦂ 𝑡1 → 𝑡2, Γ, 𝑥 : 𝑠 ⊢ 𝑒2 ⦂ 𝑡1.
By IH: Γ ⊢ 𝑒1 [𝑒′/𝑥] ⦂ 𝑡1 → 𝑡2 and Γ ⊢ 𝑒2 [𝑒′/𝑥] ⦂ 𝑡1.
Applying (app) gives: Γ ⊢ (𝑒1 𝑒2) [𝑒′/𝑥] ⦂ 𝑡2

(4) Rule (app?).

We have 𝑒 = 𝑒1 𝑒2, Γ, 𝑥 : 𝑠 ⊢ 𝑒1 ⦂ 𝑡1, Γ, 𝑥 : 𝑠 ⊢ 𝑒2 ⦂ 𝑡2.
By IH: Γ ⊢ 𝑒1 [𝑒′/𝑥] ⦂ 𝑡1 and Γ ⊢ 𝑒2 [𝑒′/𝑥] ⦂ 𝑡2.
Applying (app?) gives Γ ⊢ (𝑒1 𝑒2) [𝑒′/𝑥] ⦂ ?.

(5) Rule (app★). Same as above.

(6) Rule (𝜆). 𝑒 = 𝜆I𝑦.𝑒0
By inversion, {

∀(𝑡𝑖 → 𝑠𝑖) ∈ I, (Γ, 𝑥 : 𝑠,𝑦 : 𝑡𝑖 ⊢ 𝑒0 ⦂ 𝑠𝑖)
Γ, 𝑥 : 𝑠,𝑦 : ? ⊢ 𝑒0 ⦂ 1

We use the permutation lemma to switch 𝑥 and 𝑦.

Then, by IH, {
∀(𝑡𝑖 → 𝑠𝑖) ∈ I, (Γ, 𝑦 : 𝑡𝑖 ⊢ 𝑒0 [𝑒′/𝑥] ⦂ 𝑠𝑖)
Γ, 𝑦 : ? ⊢ 𝑒0 [𝑒′/𝑥] ⦂ 1

Applying (𝜆) gives: Γ ⊢ (𝜆I𝑦.𝑒0) [𝑒′/𝑥] ⦂
∧
𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)

(7) Rule (𝜆★).

By inversion Γ, 𝑥 : 𝑠 ⊢ 𝜆I𝑦.𝑒 ⦂ (𝑡1 −→ 𝑡2)★ and Γ, 𝑥 : 𝑠,𝑦 : ? ⊢ 𝑒 ⦂ 𝑡2.
By permutation on the second premise and IH, Γ, 𝑦 : ? ⊢ 𝑒 [𝑒′/𝑥] ⦂ 𝑡2.
By IH on the first premise, Γ ⊢ 𝜆I𝑦.𝑒 [𝑒′/𝑥] ⦂ 𝑡1 −→ 𝑡2.

We can then reapply (𝜆★) to conclude.

(8) Rule (𝜆?). Immediate by IH.

(9) Rule (case?). 𝑒 = case 𝑒 (𝑡𝑖 → 𝑒𝑖)𝑖 and Γ ⊢ 𝑒 ⦂ 𝑡 .

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 35

For all 𝑖 , if 𝑡 ∧ 𝜏𝑖 ≰ O, Γ ⊢ 𝑒𝑖 ⦂ 𝑡 ′.
By IH, Γ ⊢ 𝑒 [𝑒′/𝑥] ⦂ 𝑡 and for all 𝑖 , 𝑡 ∧ 𝜏𝑖 ≰ O =⇒ Γ ⊢ 𝑒𝑖 [𝑒′/𝑥] ⦂ 𝑡 ′.
Applying (case?) gives Γ ⊢ case 𝑒 [𝑒′/𝑥] (𝜏𝑖 → 𝑒𝑖 [𝑒′/𝑥])𝑖 ⦂ 𝑡 ′.

(10) Rule (plus?). Immediate by IH.

(11) Rule (sub). Immediate by IH.

□

Definition B.10 (Value type operator). We define the operator type(·) from values to types:

type(𝑐) = 𝑐 ∧ ?

type(𝜆I𝑥 .𝑒) =
∧

(𝑡→𝑠) ∈I
(𝑡 −→ 𝑠)

Lemma B.11 (Value type operator). If ∅ ⊢◦ 𝑣 ⦂ 𝑡 , then ∅ ⊢◦ 𝑣 ⦂ type(𝑣).

Proof. Trivial for a constant 𝑐 as it is typed with 𝑐 ∧ ? ≤ ?. A simple application of subsumption

concludes.

For a lambda-abstraction, both rules (𝜆?) and (𝜆★) rely on rule (𝜆) being applied earlier, and (𝜆)

typechecks exactly the interface of a function, which is type(𝑣). □

In the system for ⊢ 𝑒 ⦂ 𝑡 , every well-typed closed expression can be typed with ?.

Lemma B.12 (Static typing implies dynamic typing). If ∅ ⊢ 𝑒 ⦂ 𝑡 then ∅ ⊢ 𝑒 ⦂ ?

Proof. We proceed by induction on the derivation of Γ ⊢ 𝑒 ⦂ 𝑡 .
Rule (cst): By subtyping, 𝑐 ∧ ? ≤ ?.
Rule (var): Impossible in an empty context.

Rules (𝜆), (𝜆★): Add one use of the (𝜆?) rule.

Rule (𝜆?): Immediate.

Rules (app), (app★): Replace the use of (app) with (app?).

Rule (app?): Immediate.

Rule (case?): By induction hypothesis, all branches can be typed with ?. Re-apply the rule with

𝑡 ′ = ?.
Rule (plus?): Immediate by subtyping int ∧ ? ≤ ?.
Rule (sub): Immediate by induction hypothesis.

□

Lemma B.13 (Substitution by value). If Γ, 𝑥 : ? ⊢ 𝑒 ⦂ 𝑡 then, for all well-typed value ∅ ⊢ 𝑣 ⦂ 𝑡 ′, we
have Γ ⊢ 𝑒 [𝑣/𝑥] ⦂ 𝑡 .

Proof of Substitution by value. By induction on 𝑒 .

• Case 𝑒 = 𝑐: Immediate since 𝑒 [𝑣/𝑥] = 𝑐 .
• Case 𝑒 = 𝑦 ≠ 𝑥 : Immediate since 𝑦 ∈ Γ and 𝑒 [𝑣/𝑥] = 𝑦.
• Case 𝑒 = 𝑥 : Then necessarily 𝑥 is typed by rule (var) with 𝑥 : ?. Hence ? ≤ 𝑡 with either

𝑡 = ? or 𝑡 = 1. Since 𝑣 is well-typed, we have ∅ ⊢ 𝑣 ⦂ ? by Lemma B.12. 𝑒 [𝑣/𝑥] = 𝑣 and we

conclude by subsumption.

• Case 𝑒 = 𝑒1 𝑒2: Consider the typing rule used to type 𝑒 .

– Rule (app): By inversion, Γ, 𝑥 : ? ⊢ 𝑒1 ⦂ 𝑡1 −→ 𝑡2 and Γ, 𝑥 : ? ⊢ 𝑒2 ⦂ 𝑡1. By IH,

Γ ⊢ 𝑒1 [𝑣/𝑥] ⦂ 𝑡1 −→ 𝑡2 and Γ ⊢ 𝑒2 [𝑣/𝑥] ⦂ 𝑡1. So by (app), Γ ⊢ (𝑒1 𝑒2) [𝑣/𝑥] ⦂ 𝑡2.
– Rule (app?): Immediate by IH similar to above.

– Rule (app★): Immediate by IH similar to above.

• Case 𝑒 = 𝜆I𝑦.𝑒0: Consider the typing rule used.

36 Giuseppe Castagna and Guillaume Duboc

– Rule (𝜆): By inversion,{
∀(𝑡𝑖 → 𝑠𝑖) ∈ I, (Γ, 𝑥 : ?, 𝑦 : 𝑡𝑖 ⊢ 𝑒0 ⦂ 𝑠𝑖)
Γ, 𝑥 : ?, 𝑦 : ? ⊢ 𝑒0 ⦂ 1

We use the permutation lemma to switch 𝑥 and 𝑦. Then, by IH,{
∀(𝑡𝑖 → 𝑠𝑖) ∈ I, (Γ, 𝑦 : 𝑡𝑖 ⊢ 𝑒0 [𝑣/𝑥] ⦂ 𝑠𝑖)
Γ, 𝑦 : ? ⊢ 𝑒0 [𝑣/𝑥] ⦂ 1

So we re-apply (𝜆) to get Γ ⊢ 𝜆I𝑦.𝑒0 [𝑣/𝑥] ⦂
∧
𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖).

– Rule (𝜆?): Immediate by IH.

– Rule (𝜆★): By inversion Γ, 𝑥 : ? ⊢ 𝜆I𝑦.𝑒 ⦂ 𝑡1 −→ 𝑡2 and Γ, 𝑥 : ?, 𝑦 : ? ⊢ 𝑒 ⦂ 𝑡2. By

permutation on the second premise and IH, Γ, 𝑦 : ? ⊢ 𝑒 [𝑣/𝑥] ⦂ 𝑡2 By IH on the first

premise, Γ ⊢ 𝜆I𝑦.𝑒 [𝑣/𝑥] ⦂ 𝑡1 −→ 𝑡2. We can then reapply (𝜆★) to conclude.

• Case 𝑒 = case 𝑒′ (𝜏𝑖 → 𝑒𝑖)𝑖 : Rule (case?). By inversion, Γ, 𝑥 : ? ⊢ 𝑒′ ⦂ 𝑡 and ∀𝑖 , if 𝑡 ∧ 𝜏𝑖 ≰ O
then Γ, 𝑥 : ? ⊢ 𝑒𝑖 ⦂ 𝑡 ′. By IH, Γ ⊢ 𝑒′ [𝑣/𝑥] ⦂ 𝑡 and for all 𝑖 , if 𝑡 ∧ 𝜏𝑖 ≰ O then Γ ⊢ 𝑒𝑖 [𝑣/𝑥] ⦂ 𝑡 ′.
We can then reapply (case?) to conclude.

• Case 𝑒 = 𝑒1 + 𝑒2: By inversion, Γ, 𝑥 : ? ⊢ 𝑒1 ⦂ 𝑡1 and Γ, 𝑥 : ? ⊢ 𝑒2 ⦂ 𝑡2. By IH, Γ ⊢ 𝑒1 [𝑣/𝑥] ⦂ 𝑡1
and Γ ⊢ 𝑒2 [𝑣/𝑥] ⦂ 𝑡2. We can then reapply (plus?) to conclude.

• Rule (sub): Immediate by IH and reapplying (sub).

□

Lemma B.14. (Subject Reduction) If Γ ⊢ 𝑒 ⦂ 𝑡 and 𝑒 ↩→ 𝑒′, then Γ ⊢ 𝑒′ ⦂ 𝑡 .

Proof of Subject Reduction. By induction on the derivation of Γ ⊢ 𝑒 ⦂ 𝑡 and case analysis on

the reduction rule: If the last rule is subsumption, we can directly apply the IH to the premise and

obtain the result.

Reduction E: 𝑒 = E[𝑒0] with 𝑒0 ↩→ 𝑒′
0
and E ≠ □. Expression 𝑒0 is typed by a subtree of the

derivation tree of Γ ⊢ 𝑒 ⦂ 𝑡 . Thus, by IH, its type is preserved after reduction. Hence the

type of E[𝑒′
0
] is preserved.

Reduction [𝛽]: 𝑒 = (𝜆I𝑥 .𝑒1) 𝑣2
Consider the last rule used to type the application.

• Rule (app): This case implies type preservation by substitution lemma. Indeed, by

inversion we have Γ ⊢ 𝜆I𝑥 .𝑒1 ⦂ 𝑡 ′ −→ 𝑡 . With Γ ⊢ 𝑣2 ⦂ 𝑡 ′, by substitution lemma,

Γ ⊢ 𝑒1 [𝑣2/𝑥] ⦂ 𝑡 .
• Rule (app ?): We prove that the result of the reduction is "⦂-well-typed". By inversion,

Γ, 𝑥 : ? ⊢ 𝑒1 ⦂ 1. Since Γ ⊢ 𝑣2 ⦂ 𝑡2, by Lemma B.13, we have Γ ⊢ 𝑒1 [𝑣2/𝑥] ⦂ 1. We

conclude by Lemma B.12 that Γ ⊢ 𝑒1 [𝑣2/𝑥] ⦂ ?.
• Rule (app★): By inversion, Γ, 𝑥 : ? ⊢ 𝑒1 ⦂ 𝑡 ∧ ?. Since Γ ⊢ 𝑣2 ⦂ 𝑡2, by lemma B.13,

Γ ⊢ 𝑒1 [𝑣2/𝑥] ⦂ 𝑡 ∧ ? which concludes.

Reduction [+]: The result is immediately a well-typed integer.

Reduction [case]: We reduce to a branch of the same type.

□

To link back to the gradual system, we use the fact that every expression well-typed in the former

is well-typed in the latter.

Lemma B.15 (Gradual typing implies strong typing). If Γ ⊢ 𝑒 : 𝑡 then Γ ⊢ 𝑒 ⦂ 𝑡 .

Proof. Every rule in the gradual system of Figure 16 has a more general counterpart in 17,

hence this is trivial. □

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 37

(tuple)

∀𝑖 = 1..𝑛. (𝑒𝑖 : 𝑡𝑖)
{𝑒1,...,𝑒𝑛} : {𝑡1,...,𝑡𝑛, ..}

(proj)

𝑒′ :
∨
𝑖∈𝐾 𝑖 𝑒 : {𝑡0,...,𝑡𝑛, ..}

𝜋𝑒′ 𝑒 :
∨
𝑖∈𝐾 𝑡𝑖

𝐾 ⊆ [0, 𝑛]

(proj𝜔)

𝑒′ : int 𝑒 : {𝑡0,...,𝑡𝑛}

𝜋𝑒′ 𝑒 :
∨
𝑖≤𝑛 𝑡𝑖

(proj
1
𝜔)

𝑒′ : int 𝑒 : tuple

𝜋𝑒′ 𝑒 : 1

Fig. 18. Typing rules for tuples

Now, the type safety in the gradual system is ensured by the safety of the strong system.

Theorem B.16. If ∅ ⊢ 𝑒 : 𝑡 , then either 𝑒 diverges, or 𝑒 crashes on a runtime error 𝜔 , or 𝑒 evaluates

to a value 𝑣 such that ∅ ⊢ 𝑣 ⦂ 𝑡 .

Proof of Type safety. Corollary of the subject reduction B.14 and progress B.8 lemmas. □

B.3 Extension for tuples
The rules to type-check tuples and projections are in Figure 18. Using only rules (tuple) and (proj) is

going to prevent runtime errors 𝜔
OutOfRange

in the system ⊢, while adding rules (proj𝜔) and (proj
1
𝜔)

allows to type-check unsafe projections.

Deriving a type using the static rules of ⊢static and the 𝜔 rules will be written ⊢static𝜔 .
Adapting previous Lemmas to account for the new runtime errors gives us this type safety result:

Theorem B.17 (Type Safety with Tuples). If ∅ ⊢static𝜔 𝑒 : 𝑡 then either 𝑒 diverges, or 𝑒 crashes on

a runtime error 𝜔 , or 𝑒 evaluates to a value 𝑣 such that ∅ ⊢ 𝑣 ⊢static𝜔 𝑡 .

C Dynamic type tests

𝐵(𝑐) maps constants onto their base types (e.g. integers 𝑖 onto int)

∀𝑐 𝑐 ∈ 𝐵(𝑐)
∀𝑥, 𝑒, 𝑡 (𝜆I𝑥 .𝑒) ∈ function
∀𝑣1, .. , 𝑣𝑛 {𝑣1, .. , 𝑣𝑛} ∈ {𝜏1, .. , 𝜏𝑛} ⇐⇒ ∀𝑖 = 1..𝑛 𝑣𝑖 ∈ 𝜏𝑖

Fig. 19. Inductive Definition for 𝑣 ∈ 𝜏 (Section 2)

D Gradual Strong Function Types
Definition D.1 (Gradual Strong function type). Consider 𝐹 the operator (•)★ that, given a type 𝑡 ,

returns its strong type. This operator is not monotonic, so with Remark 6.16 of [29] we define its

gradual extension as:

𝐹 (𝑡) = (𝐹 (𝑡⇓) ∧ 𝐹 (𝑡⇑)) ∨ ((𝐹 (𝑡⇓) ∨ 𝐹 (𝑡⇑)) ∧ ?)

For instance, (? −→ ?)★ = (𝐹 (1 −→ O) ∧ 𝐹 (O −→ 1)) ∨ ((𝐹 (1 −→ O) ∨ 𝐹 (O −→ 1)) ∧ ?) What are

those?

• O −→ 1 cannot be applied. Every function is a subtype of it;

• (O −→ 1)★ ≃ O −→ 1 (it is already strong, in that if a value is returned, it will be of type 1);

• 1 −→ O is a function that, for every input, errors or diverges;

• (1 −→ O)★ puts a strong condition that every input outside the domain leads to a value in

the codomain. But the domain is 1 so there are no such values. Thus (1 −→ O)★ ≃ 1 −→ O.

• similarly, for every static type 𝑡 , (1 −→ 𝑡)★ = 1 −→ 𝑡 (the negation of the domain is empty)

and (𝑡 −→ 1)★ = 𝑡 −→ 1 (the codomain is 1), but also

38 Giuseppe Castagna and Guillaume Duboc

Fig. 20. Guard Judgments.

with 𝔟, 𝔠 ∈ {true, false}
Pattern Matching Analysis Γ; 𝑡 ⊢ 𝑝𝑔 { A
Guard Analysis Γ; 𝑝 ⊢ 𝑔 ↦→ R

Accepted Types A ::= (𝑡, 𝔟)
Results R ::= {𝒮 ; 𝒯} | F
Environments 𝒮,𝒯 ::= (Γ, 𝔟)
Failure Results F ::= 𝜔 | {𝒮 ; false}

Fig. 21. Guard Syntax.

Guards 𝑔 ::= 𝑎 ?𝜏 | 𝑎 = 𝑎 | 𝑎 != 𝑎 | 𝑔 and 𝑔 | 𝑔 or 𝑔
Guard atoms 𝑎 ::= 𝑐 | 𝑥 | 𝜋𝑎 𝑎 | size𝑎 | {𝑎}
Test types 𝜏 ::= 𝑏 | 𝑐 | function𝑛 | {𝜏} | 𝜏 ∨ 𝜏 | ¬𝜏

In the end,

(? −→ ?)★ = ((1 −→ O)★ ∧ (O −→ 1)★) ∨ (((1 −→ O)★ ∨ (O −→ 1)★) ∧ ?)
= (1 −→ O) ∧ (O −→ 1) ∨ (((1 −→ O) ∨ (O −→ 1)) ∧ ?)
= (1 −→ O) ∨ ((O −→ 1) ∧ ?)

Another example (contravariant dynamic):

(? −→ int)★ = ((1 −→ int)★ ∧ (O −→ int)★) ∨ (((1 −→ int)★ ∨ (O −→ int)★) ∧ ?)
= ((1 −→ int) ∧ (O −→ int)★) ∨ (((1 −→ int) ∨ (O −→ int)★) ∧ ?)
= (1 −→ int) ∨ ((O −→ int)★ ∧ ?)

Another example (covariant dynamic):

(int −→ ?)★ = ((int −→ O)★ ∧ (int −→ 1)★) ∨ (((int −→ O)★ ∨ (int −→ 1)★) ∧ ?)
= ((int −→ O)★ ∧ (int −→ 1)) ∨ (((int −→ O)★ ∨ (int −→ 1)) ∧ ?)
= (int −→ O)★ ∨ ((int −→ 1)★ ∧ ?)

E Guard Analysis
Note that in Figure 21 there is no negation on guards. Indeed, the first thing we do is eliminate all

negations from guards by pushing them on the terminal guards, e.g., not𝑎 = 𝑎 becomes 𝑎 ≠ 𝑎.

Fig. 22. Accepted Types Productions

[accept]

Γ, 𝑡/𝑝 ⊢ 𝑔 ↦→ {_; (Δ𝑖 , 𝔟𝑖)}𝑖
Γ; 𝑡 ⊢ 𝑝𝑔 {

(
H𝑝IΔ𝑖

, 𝔟𝑖

)
𝑖

[fail]

Γ, 𝑡/𝑝 ⊢ 𝑔 ↦→ F
Γ; 𝑡 ⊢ 𝑝𝑔 { (O, 1)

[seq]

Γ; 𝑡 ⊢ 𝑝𝑔 { A Γ; 𝑡∖
(∨

(𝑠,true) ∈A 𝑠
)
⊢ 𝑝𝑔 { A

Γ; 𝑡 ⊢ 𝑝𝑔 𝑝𝑔 { A A

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 39

Fig. 23. Guard Analysis Rules

[true]

Γ ⊢ 𝑎 : 𝑡

Γ ⊢ 𝑎 ? 𝑡 ↦→ {(Γ, 1) ; (Γ, 1)} [false]

Γ ⊢ 𝑎 : 𝑠 𝑠 ∧ 𝑡 ≃ O

Γ ⊢ 𝑎 ? 𝑡 ↦→ {(Γ, 1) ; false}

[var]

Γ(𝑥) ≰ 𝑡 Γ(𝑥) ∧ 𝑡 ; O
Γ ⊢ 𝑥 ? 𝑡 ↦→

{
(Γ, 1) ;

(
Γ [𝑥 =

∧
𝑡]𝑝 , 1

)} [size]

Γ ⊢ 𝑎 ? tuple ↦→ {_; (Φ, 𝔟)}
Γ ⊢ 𝑎 ? tuple𝑖 ↦→ {_; 𝔄}
Γ ⊢ size𝑎 ? 𝑖 ↦→ {(Φ, 𝔟) ; 𝔄}

[proj]

Γ ⊢ 𝑎′ : 𝑖
Γ ⊢ 𝑎 ? tuple>𝑖 ↦→ {_; (Δ, 𝔟)} Δ ⊢ 𝑎 ? {

𝑖 times︷ ︸︸ ︷
1,...,1 , 𝑡, ..} ↦→ 𝒯

Γ ⊢ 𝜋𝑎′ 𝑎 ? 𝑡 ↦→ {(Δ, 𝔟) ; 𝒯}

[eq1]

Γ ⊢ 𝑎1 : 𝑐 Γ ⊢ 𝑎2 ? 𝑐 ↦→ R
Γ ⊢ 𝑎1 = 𝑎2 ↦→ R [eq2]

Γ ⊢ 𝑎2 : 𝑐 Γ ⊢ 𝑎1 ? 𝑐 ↦→ R
Γ ⊢ 𝑎1 = 𝑎2 ↦→ R

Fig. 24. Guard Analysis Boolean Rules

[and]

Γ ⊢ 𝑔1 ↦→ {(Φ𝑖 , 𝔟𝑖) ; (Δ𝑖 , 𝔠𝑖)}𝑖=1..𝑛
∀𝑖 such that Δ𝑖 ⊢ 𝑔2 ↦→

{
(Φ𝑖 𝑗 , 𝔟𝑖 𝑗) ; (Δ𝑖 𝑗 , 𝔠𝑖 𝑗)

}
𝑗=1..𝑚𝑖

Γ ⊢ 𝑔1 and𝑔2 ↦→
{
𝔄𝑖 𝑗 ; (Δ𝑖 𝑗 , 𝔠𝑖 & 𝔠𝑖 𝑗)

}
𝑖 𝑗

𝔄𝑖 𝑗 =


(Φ𝑖 , 𝔟𝑖) if 𝔟𝑖 𝑗 = 1

and Φ𝑖 𝑗 = Δ𝑖

(Φ𝑖 𝑗 , 𝔟𝑖 & 𝔟𝑖 𝑗) else

[or]

Γ ⊢ 𝑔1 ↦→ {(Φ𝑖 , 𝔟𝑖) ; (Δ𝑖 , 𝔠𝑖)}𝑖=1..𝑛
∀𝑖 Γ, 𝑡𝑖/𝑝 ⊢ 𝑔2 ↦→

{
(Φ𝑖 𝑗 , 𝔟𝑖 𝑗) ; (Δ𝑖 𝑗 , 𝔠𝑖 𝑗)

}
𝑗=1..𝑚𝑖

Γ ⊢ 𝑔1 or𝑔2 ↦→ {(Φ𝑖 , 𝔟𝑖) ; (Δ𝑖 , 𝔠𝑖)}𝑖 @
{
𝔄𝑖 𝑗 ; (Δ𝑖 𝑗 , 𝔠𝑖 & 𝔠𝑖 𝑗)

}
𝑖 𝑗

𝔄𝑖 𝑗 =


(Φ𝑖 , 𝔟𝑖) if 𝔟𝑖 𝑗 = 1

and Φ𝑖 𝑗 = Γ,
(
𝑡𝑖/𝑝

)
(Φ𝑖 𝑗 , 𝔟𝑖 & 𝔟𝑖 𝑗) else

𝑡𝑖 =

{
H𝑝IΦ𝑖

\ H𝑝IΔ𝑖
if 𝔠𝑖 = 1

H𝑝IΦ𝑖
if 𝔠𝑖 = 0

Fig. 25. Guard Analysis Approx Rules

[proj]

Γ ⊢ 𝑎′ ? int ↦→ {_; (Φ, 𝔟)}
Φ ⊢ 𝑎 ? tuple ↦→ {_; (Δ, 𝔠)}

Γ ⊢ 𝜋𝑎′ 𝑎 ? 𝑡 ↦→ {(Δ, 0) ; (Δ, 0)} [eq]

Γ ⊢ 𝑎0 ?1 ↦→ {_; (Φ, 𝔟)}
Φ ⊢ 𝑎1 ?1 ↦→ {_; (Δ, 𝔠)}

Γ ⊢ 𝑎0 = 𝑎1 ↦→ {(Δ, 𝔟 & 𝔠) ; (Δ, 0)}

[size]

Γ ⊢ 𝑎 ? tuple ↦→ {_; (Δ, 𝔠)} 𝑡 ∧ int ≰ O

Γ ⊢ size𝑎 ? 𝑡 ↦→ {(Δ, 𝔠) ; (Δ, 0)}

Fig. 26. Guard Analysis False/Failure Rules

[size𝜔]

Γ ⊢ 𝑎 ? tuple ↦→ F
Γ ⊢ size𝑎 ? 𝑡 ↦→ 𝜔

[eq𝜔]

Γ ⊢ 𝑎𝑖 ? 1 ↦→ F
Γ ⊢ 𝑎0 = 𝑎1 ↦→ 𝜔

𝑖 ∈ {0, 1} [proj𝜔]

Γ ⊢ 𝑎 ? tuple ↦→ F
Γ ⊢ 𝜋𝑎′ 𝑎 ? 𝑡 ↦→ 𝜔

[proj𝜔]

Γ ⊢ 𝑎′ ? int ↦→ F
Γ ⊢ 𝜋𝑎′ 𝑎 ? 𝑡 ↦→ 𝜔

[bound𝜔]

Γ ⊢ 𝑎′ : 𝑖 Γ ⊢ 𝑎 ? tuple>𝑖 ↦→ F
Γ ⊢ 𝜋𝑎′ 𝑎 ? 𝑡 ↦→ 𝜔

[orF]

Γ ⊢ 𝑔1 ↦→ {(Φ, 𝔟) ; false}
Φ ⊢ 𝑔2 ↦→ R

Γ ⊢ 𝑔1 or𝑔2 ↦→ R [andF]

Γ ⊢ 𝑔1 ↦→ F
Γ ⊢ 𝑔1 and𝑔2 ↦→ F [andF]

Γ ⊢ 𝑔1 ↦→ {(Φ𝑖 , 𝔟𝑖) ; (Δ𝑖 , 𝔠𝑖)}𝑖≤𝑛
∀𝑖 ≤ 𝑛 Δ𝑖 ⊢ 𝑔2 ↦→ F𝑖

Γ ⊢ 𝑔1 and𝑔2 ↦→
{
𝜔 if ∀𝑖, F𝑖 = 𝜔
F 𝑗

𝑗 s.t. F𝑗 ≠ 𝜔

40 Giuseppe Castagna and Guillaume Duboc

Fig. 27. Accepted types

H𝑥IΓ = Γ(𝑥) if 𝑥 ∈ dom (Γ)
H𝑥IΓ = 1 if 𝑥 ∉ dom (Γ)
H{𝑝1, .. , 𝑝𝑛}IΓ = {H𝑝1IΓ, .. , H𝑝𝑛IΓ}

H𝑐IΓ = 𝑐

H𝑝1 &𝑝2IΓ = H𝑝1IΓ ∧ H𝑝2IΓ

Fig. 28. Typing Environments

If 𝑡 ≤ H𝑝I then 𝑡/𝑝 is a map from the variables of 𝑝 to types:

𝑡/𝑥 (𝑥) = 𝑡

𝑡/{𝑝1, . . . , 𝑝𝑛 }(𝑥) = 𝑡/𝑝𝑖 (𝑥) where ∃𝑖 unique s.t. 𝑥 ∈ vars(𝑝𝑖)
𝑡/𝑝1 & 𝑝2 (𝑥) = 𝑡/𝑝1 (𝑥) if 𝑥 ∈ Vars (𝑝1)
𝑡/𝑝1 & 𝑝2 (𝑥) = 𝑡/𝑝2 (𝑥) if 𝑥 ∉ Vars (𝑝1) and 𝑥 ∈ Vars (𝑝2)

Fig. 29. Environment Updates

∀𝑦 ∈ dom (Γ), Γ [𝑥 =
∧
𝑡] (𝑦) =

{
Γ(𝑦) if 𝑦 ≠ 𝑥

Γ(𝑥) ∧ 𝑡 if 𝑦 = 𝑥

Γ [𝑥 =
∧
𝑡]𝑝 = (Γ [𝑥 =

∧
𝑡] , 𝑡 ′/𝑝) where 𝑡 ′ = H𝑝IΓ [𝑥=∧𝑡]

Definition E.1 (Skeleton). For all expressions 𝑒 , we define the skeleton of this expression sk (𝑒)
as:

sk (x) = x

sk ({𝑒1, ... , 𝑒𝑛}) = {sk (𝑒1), ... , sk (𝑒𝑛)}

sk (𝑒) = 1 for any other expression

The skeleton of an expression is a pattern that matches the structure and variables of that expression

while leaving out any functional parts (for example, the skeleton of an application 𝑒(𝑒1, ... , 𝑒𝑛) is 1
which is the pattern that matches any expression).

E.1 Typing with Guards

(case)

Γ ⊢ 𝑒 : 𝑡 (∀𝑖≤𝑛) (∀𝑗≤𝑚𝑖) (𝑡𝑖 𝑗 ≰ O ⇒ Γ, 𝑡𝑖 𝑗/𝑝𝑖 ⊢ 𝑒𝑖 : 𝑠)
Γ ⊢ case 𝑒 (𝑝𝑖𝑔𝑖 → 𝑒𝑖)𝑖≤𝑛 : 𝑠

𝑡 ≤
∨
𝑖≤𝑛

H𝑝𝑖𝑔𝑖I

(case𝜔)

Γ ⊢ 𝑒 : 𝑡 (∀𝑖≤𝑛) (∀𝑗≤𝑚𝑖) (𝑡𝑖 𝑗 ≰ O ⇒ Γ, 𝑡𝑖 𝑗/𝑝𝑖 ⊢ 𝑒𝑖 : 𝑠)
Γ ⊢ case 𝑒 (𝑝𝑖𝑔𝑖 → 𝑒𝑖)𝑖≤𝑛 : 𝑠

𝑡 ≤
∨
𝑖≤𝑛

I

𝑝𝑖𝑔𝑖

H

(case★)

Γ ⊢ 𝑒 : 𝑡 (∀𝑖≤𝑛) (∀𝑗≤𝑚𝑖) (𝑡𝑖 𝑗 ≰ O ⇒ Γ, 𝑡𝑖 𝑗/𝑝𝑖 ⊢ 𝑒𝑖 : 𝑠)
Γ ⊢ case 𝑒 (𝑝𝑖𝑔𝑖 → 𝑒𝑖)𝑖≤𝑛 : ? ∧ 𝑠 𝑡 ≤∼

∨
𝑖≤𝑛

I

𝑝𝑖𝑔𝑖

H

where Γ ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖
and

I

𝑝𝑖𝑔𝑖

H

=
∨
𝑗≤𝑚𝑖

𝑡𝑖 𝑗 and H𝑝𝑖𝑔𝑖I =
∨

{ 𝑗≤𝑚𝑖 | 𝔟𝑖 𝑗 } 𝑡𝑖 𝑗

Fig. 30. Case Typing Rules

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 41

We tie the guard analysis to the operational semantics. First, the

Lemma E.1 (Success environment). If Γ;𝑝 ⊢ 𝑔 ↦→ R then for all {𝒮 ; 𝒯} for all {(Φ, 𝔟) ; (Δ, 𝔠)} ∈ R,

for all value 𝑣 ,

(𝑣/(𝑝𝑔) ↩̸→∗ 𝜔) =⇒ (𝑣 : H𝑝IΔ) (3)

if (𝔟 = true) then (𝑣 : H𝑝IΔ) =⇒ 𝑣/(𝑝𝑔) ↩̸→∗ true) (4)

𝑣/(𝑝𝑔) ↩→★true =⇒ (𝑣 : H𝑝IΔ) (5)

if (𝔠 = true) then (𝑣 : H𝑝IΔ) =⇒ 𝑣/(𝑝𝑔) ↩→★true) (6)

(7)

Lemma E.2 (Surely accepted types are sufficient). Given Γ ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖
, for

all 𝑖, 𝑗 such that 𝔟𝑖 𝑗 , for all value 𝑣 ,

(𝑣 : 𝑡𝑖 𝑗) =⇒ ∃(𝑖0 ≤ 𝑖) s.t. (𝑣/𝑝𝑖0𝑔𝑖0 ≠ fail)

Lemma E.3 (Possibly accepted types are necessary). Given Γ ; 𝑡 ⊢ (𝑝𝑖𝑔𝑖)𝑖≤𝑛 { (𝑡𝑖 𝑗 , 𝔟𝑖 𝑗)𝑖≤𝑛,𝑗≤𝑚𝑖
,

for all 𝑖, 𝑗 such that 𝔟𝑖 𝑗 , for all value 𝑣 ,

(𝑣/(𝑝𝑖𝑔𝑖) ≠ fail) =⇒ ∃ 𝑗 ≤ 𝑚𝑖 s.t. (𝑣 : 𝑡𝑖 𝑗)

Our previous theorem for type soundness can be extended

Theorem E.4 (Static Soundness). For every expression 𝑒 such that ∅ ⊢ 𝑒 : 𝑡 derived with the rules

of Figure 3 except the 𝜔-rules, and the rule (case) of Figure 30, then either:

• ∃𝑣 s.t. 𝑣 : 𝑡 and 𝑒 ↩→∗ 𝑣 ;
• 𝑒 diverges

Proof. Updating this proof to account for the new case expression requires updating the proofs

of progress and preservation. Here is a sketch of the proof:

(1) For progress, if 𝑒 is a case case 𝑒 𝑝𝑔 −→ 𝑒 that reduces to Ω, then for all 𝑖 ≤ 𝑛, 𝑣/𝑝𝑖𝑔𝑖 = fail.
This contradicts the fact that every 𝑣 ∈ ∨

𝑖≤𝑛 H𝑝𝑖𝑔𝑖I is a surely accepted value, i.e. should be

accepted by at least one guarded-pattern per Lemma E.2

(2) Preservation comes almost immediately from rule (case): since every branch is typed with

the same type from the whole case (this is enabled by subtyping), a case reduction will

preserve the typing. Making sure that we always reduce into a well-typed expression comes

from Lemma E.3 which ensures that our value (which is captured and substituted into the

branch) is of type 𝑡𝑖 𝑗 for some 𝑖, 𝑗 ; thus the Substitution Lemma B.4 applies and the branch

is well-typed.

□

Theorem E.5 (Soundness). For every expression 𝑒 such that ∅ ⊢ 𝑒 : 𝑡 derived with the rules of

Figure 3, and the non-gradual rules of Figure 30, then either:

• ∃𝑣 s.t. 𝑣 : 𝑡 and 𝑒 ↩→∗ 𝑣 ;
• 𝑒 ↩→∗ 𝜔

OutOfRange
or 𝑒 ↩→∗ 𝜔

CaseEscape
;

• 𝑒 diverges

Proof. Our analysis of the guarded-patterns is best-case/worst-case: when the surely accepted

types do not coincide with the possibly accepted types, and are too small to type-check the program,

we can use rule (case𝜔) to type-check. But this allows values to escape pattern matching, thus

adding error 𝜔
CaseEscape

to the soudness result. □

42 Giuseppe Castagna and Guillaume Duboc

Theorem E.6 (Gradual Soundness). For every expression 𝑒 such that ∅ ⊢ 𝑒 : 𝑡 derived with the

rules of Figures 3,4,5 and the rules of Figure 30,

• 𝑒 ↩→∗ 𝑣 with 𝑣 : 𝑡 ′ and 𝑡 ′ ≤∼ 𝑡 ;
• 𝑒 ↩→∗ 𝜔𝑝 for some 𝑝;

• 𝑒 diverges

F Semantic subtyping: multi-arity functions
F.1 Set Semantics
Definition F.1. Let 𝑋1, .. , 𝑋𝑛 and 𝑌 be subsets of 𝐷 . We define

(𝑋1, .. , 𝑋𝑛) −→ 𝑌 =
{
𝑅 ∈ P𝑓 (𝐷𝑛×𝐷𝜔) | ∀(𝑑1, .. , 𝑑𝑛, 𝛿) ∈ 𝑅. (∀𝑖 ∈ {1, ..., 𝑛}. 𝑑𝑖 ∈ 𝑋𝑖) =⇒ 𝛿 ∈ 𝑌

}
Lemma F.2. For all 𝑋1, .. , 𝑋𝑛, 𝑌 subsets of 𝐷 ,

(𝑋1, .. , 𝑋𝑛) −→ 𝑌 = P
(
𝑋1

× .. ×𝑋𝑛×𝑌
𝐷𝜔

𝐷𝑛×𝐷𝜔

)
Theorem F.3 (Multi-arity Set-Containment). Let 𝑛 ∈ N. Let (𝑋 (1)

𝑖
)𝑖∈𝑃 , .. , (𝑋 (𝑛)

𝑖
)𝑖∈𝑃 , (𝑋𝑖)𝑖∈𝑃 ,

(𝑌 (1)
𝑖

)𝑖∈𝑁 , .. , (𝑌 (𝑛)
𝑖

)𝑖∈𝑁 , (𝑌𝑖)𝑖∈𝑁 be families of subsets of the domain 𝐷 . Then,

⋂
𝑖∈𝑃

(
𝑋

(1)
𝑖
, .. , 𝑋

(𝑛)
𝑖

)
−→ 𝑋𝑖 ⊆

⋃
𝑖∈𝑁

(
𝑌

(1)
𝑖
, .. , 𝑌

(𝑛)
𝑖

)
−→ 𝑌𝑖 ⇐⇒

∃𝑖0 ∈ 𝑁 . such that
∀𝜄 : 𝑃→[1, 𝑛 + 1]


∃ 𝑗 ∈ [1, 𝑛] . 𝑌 (𝑗)

𝑖0
⊆

⋃
{𝑖∈𝑃 | 𝜄 (𝑖)=𝑗 }

𝑋
(𝑗)
𝑖

or
⋂

{𝑖∈𝑃 | 𝜄 (𝑖)=𝑛+1}
𝑋𝑖 ⊆ 𝑌𝑖0

Proof. Using Theorems (4.7) and (4.8) from [24].⋂
𝑖∈𝑃

(
𝑋

(1)
𝑖
, .. , 𝑋

(𝑛)
𝑖

)
→ 𝑋𝑖 ⊆

⋃
𝑖∈𝑁

(
𝑌

(1)
𝑖
, .. , 𝑌

(𝑛)
𝑖

)
→ 𝑌𝑖

(4.7)
⇔

⋂
𝑖∈𝑃

P
(
𝑋

(1)
𝑖

× .. ×𝑋
(𝑛)
𝑖

×𝑋𝑖
𝐷𝜔

𝐷𝑛×𝐷𝜔

)
⊆

⋃
𝑖∈𝑁

P
(
𝑌

(1)
𝑖

× .. ×𝑌
(𝑛)
𝑖

×𝑌𝑖
𝐷𝜔

𝐷𝑛×𝐷𝜔

)
(4.8)
⇔ ∃𝑖0 ∈ 𝑁 .

⋂
𝑖∈𝑃

𝑋
(1)
𝑖

× .. ×𝑋
(𝑛)
𝑖

×𝑋𝑖
𝐷𝜔

𝐷𝑛×𝐷𝜔

⊆ 𝑌 (1)
𝑖0

× .. ×𝑌
(𝑛)
𝑖0

×𝑌𝑖0
𝐷𝜔

𝐷𝑛×𝐷𝜔

⇔ ∃𝑖0 ∈ 𝑁 .
⋃

𝜄 :𝑃→J1;𝑛+1K

©­«
⋂

{𝑖∈𝑃 ; 𝜄 (𝑖)=1}
𝑋

(1)
𝑖

𝐷

× · · · ×
⋂

{𝑖∈𝑃 ; 𝜄 (𝑖)=𝑛}
𝑋

(𝑛)
𝑖

𝐷

×
⋂

{𝑖∈𝑃 ; 𝜄 (𝑖)=𝑛+1}
𝑋𝑖

ª®¬ ⊆ 𝑌 (1)
𝑖0

× .. ×𝑌
(𝑛)
𝑖0

×𝑌𝑖0
𝐷𝜔

𝐷𝑛×𝐷𝜔

⇔ ∃𝑖0 ∈ 𝑁 .
⋃

𝜄 :𝑃→J1;𝑛+1K

©­«
(
𝑌

(1)
𝑖0

∩
⋂

{𝑖∈𝑃 ; 𝜄 (𝑖)=1}
𝑋

(1)
𝑖

𝐷)
× · · · ×

(
𝑌

(𝑛)
𝑖0

∩
⋂

{𝑖∈𝑃 ; 𝜄 (𝑖)=𝑛}
𝑋

(𝑛)
𝑖

𝐷)
×
(
𝑌𝑖0

𝐷 ∩
⋂

{𝑖∈𝑃 ; 𝜄 (𝑖)=𝑛+1}
𝑋𝑖

)ª®¬ = ∅

□

F.2 Subtyping algorithm
From the proof of Theorem F.3 we know that the subtyping problem∧

𝑖∈𝑃
(𝑡 (1)
𝑖
, ..., 𝑡

(𝑛)
𝑖

) −→ 𝑡𝑖 ≤
∨
𝑗∈𝑁

(𝑡 (1)
𝑗
, ..., 𝑡

(𝑛)
𝑗

) −→ 𝑡 𝑗 (8)

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 43

is decided by finding a single arrow on the right hand side such that∧
𝑓 ∈𝑃

𝑓 ≤ (𝑡1, .. , 𝑡𝑛) → 𝑡 (9)

where 𝑃 is a set of arrows of arity 𝑛. Following Frisch [24], we can define a backtrack-free algorithm

that for all 𝑛 ∈ N decides (9). This is expressed by function Φ𝑛 of 𝑛 + 2 arguments defined as:

Φ𝑛 (𝑡1, .. , 𝑡𝑛, 𝑡,∅) =
(
∃ 𝑗 ∈ J1;𝑛K. 𝑡 𝑗 ≤ O

)
or (𝑡 ≤ O)

Φ𝑛 (𝑡1, .. , 𝑡𝑛, 𝑡, {(𝑡 ′1, .. , 𝑡 ′𝑛) → 𝑡 ′} ∪ 𝑃) = (Φ𝑛 (𝑡1, .. , 𝑡𝑛, 𝑡 ∧ 𝑡 ′, 𝑃) and
∀𝑗 ∈ J1;𝑛K. Φ𝑛 (𝑡1, .. , 𝑡 𝑗∖𝑡 ′𝑗 , .. , 𝑡𝑛, 𝑡, 𝑃))

Theorem F.4. For all 𝑛 ∈ N, for 𝑃 a set of arrows of arity 𝑛,∧
𝑓 ∈𝑃

𝑓 ≤ (𝑠1, .. , 𝑠𝑛) → 𝑠 ⇐⇒ Φ𝑛 (𝑠1, .. , 𝑠𝑛,¬𝑠, 𝑃)

Proof. From the proof of F.3, we know that deciding (9) is equivalent to the Boolean proposition

(where the arrows in 𝑃 are indexed by 𝑃 as in (8) – e.g., (𝑡 (1)
𝑖
, ..., 𝑡

(𝑛)
𝑖

) −→ 𝑡𝑖 for 𝑖 ∈ 𝑃 – and the single

arrow is (𝑠1, .., 𝑠𝑛) −→ 𝑠):

∀𝜄 : 𝑃→[1, 𝑛 + 1]


∃ 𝑗 ∈ [1, 𝑛] . 𝑠 𝑗 ≤

∨
{𝑖∈𝑃 | 𝜄 (𝑖)=𝑗 }

𝑡
(𝑗)
𝑖

or
∧

{𝑖∈𝑃 | 𝜄 (𝑖)=𝑛+1}
𝑡𝑖 ≤ 𝑠

Then we can re-arrange the subtyping proposition as emptiness checks:

©­«∃ 𝑗 ∈ [1, 𝑛] . 𝑠 𝑗 ∧
∧

{𝑖∈𝑃 | 𝜄 (𝑖)=𝑗 }
𝑠
(𝑗)
𝑖

≤ Oª®¬ or ©­«(¬ 𝑠) ∧
∧

{𝑖∈𝑃 | 𝜄 (𝑖)=𝑛+1}
𝑡𝑖 ≤ Oª®¬

Exploring the domain space 𝜄 is now equivalent to distributing intersections over (𝑛 + 1) types,
and checking whenever one becomes empty. The values of those initial types being 𝑠1, .. , 𝑠𝑛 and

¬ 𝑠; we have just described the algorithm Φ𝑛 . □

G Semantic subtyping: strong arrows
G.1 Set Semantics
Definition G.1. Let 𝑋 be a subset of 𝐷 .

• dom(𝑋) = {𝑑 : 𝐷 | ∀𝑅 : 𝑋 . (𝑑,Ω) ∉ 𝑅}
• cod(𝑋) = {𝑑 ′ : 𝐷 | (dom (𝑋) = ∅) ∨ (∃𝑅 : 𝑋 . ∃𝑑 : dom(𝑋). (𝑑,𝑑 ′) : 𝑅)}

• 𝑋★ =

{
∅ if 𝑋 ⊈ P𝑓 (𝐷 × 𝐷𝜔)
𝑋 ∩ P𝑓 (𝐷 × (cod(𝑋) ∪ {𝜔})) otherwise

We want to adapt the algorithm for deciding subtyping for strong arrows. According to the

previous section, this means finding an algorithm to decide the containment problem:∧
𝑖∈𝐼

(𝑡𝑖 −→ 𝑠𝑖) ∧
∧
𝑗∈𝑃

(𝑡 𝑗 −→ 𝑠 𝑗)★ ∧
∧
𝑘∈𝑅

¬(𝑡𝑘 −→ 𝑠𝑘) ∧
∧
𝑙∈𝑄

¬(𝑡𝑙 −→ 𝑠𝑙)★ ≤ O

The introduction of strong arrows, compared to Alain Frisch’s thesis [24], requires the new following

set of lemmas to be able to decide the subtyping problem.

44 Giuseppe Castagna and Guillaume Duboc

Lemma G.1. With 𝐼 finite, this lemma is used to simplify intersections of strong arrows:⋂
𝑖∈𝐼

(𝑋𝑖 −→ 𝑌𝑖)★ =

(⋃
𝑖∈𝐼

𝑋𝑖 −→
⋂
𝑖∈𝐼

𝑌𝑖

)★
(10)

Proof. Proving both inclusions.

(1) Suppose 𝑅 ∈ (⋃𝑖∈𝐼 (𝑋𝑖) −→
⋂
𝑖∈𝐼 (𝑌𝑖))★. Let (𝑑, 𝛿) ∈ 𝑅. Let 𝑖 ∈ 𝐼 .

• if 𝑑 ∈ 𝑋𝑖 , then 𝑑 ∈ ⋃
𝑖∈𝐼 (𝑋𝑖) so 𝛿 ∈ ⋂

𝑖∈𝐼 (𝑌𝑖) ⊆ 𝑌𝑖 .
• if 𝑑 ∉ 𝑋𝑖 , then by definition 𝛿 ∈ ⋂

𝑖∈𝐼 (𝑌𝑖 ∪ {Ω}) ⊆ 𝑌𝑖 ∪ {Ω}.
(2) Now, suppose 𝑅 ∈ ⋂

𝑖∈𝐼
(
(𝑋𝑖 −→ 𝑌𝑖)★

)
. Let (𝑑, 𝛿) ∈ 𝑅.

• if 𝑑 ∈ ⋃
𝑖∈𝐼 (𝑋𝑖). For all 𝑖 ∈ 𝐼 , either 𝑑 ∈ 𝑋𝑖 , thus 𝛿 ∈ 𝑌𝑖 , or 𝑑 ∉ 𝑋𝑖 , thus 𝛿 ∈ 𝑌𝑖 ∪ {Ω}.

Since there exists at least one 𝑖0 such that 𝑑 ∈ 𝑋𝑖0 (which does not contain Ω, then we

have proven that 𝛿 ∈ ⋂
𝑖∈𝐼 (𝑌𝑖).

• if 𝑑 ∉
⋃
𝑖∈𝐼 (𝑋𝑖), by the same reasoning, except it’s not certain Ω can be subtracted, we

have 𝛿 ∈ ⋂
𝑖∈𝐼 (𝑌𝑖 ∪ {Ω}).

□

Lemma G.2.⋃
𝑖∈𝐼

(𝑋𝑖 −→ 𝑌𝑖) ∩ (𝑋 −→ 𝑌)★ ⊆ (𝑊 −→ 𝑍) ⇐⇒

𝑊 ⊆ ⋃

𝑖∈𝐼 𝑋𝑖 ∪ 𝑋

∀𝐽 ⊆ 𝐼 .
(
𝑊 ⊆ ⋃

𝑗∈ 𝐽 𝑋 𝑗
)
∨

(⋂
𝑗∈𝐼\𝐽 𝑌𝑗 ∩ 𝑌 ⊆ 𝑍

)
Proof. Using Theorems (4.7) and (4.8) from [24], proof is similar to the one used to derive

subtyping for single-arity arrows (see [24] p.73 Lemma 4.9). □

Lemma G.3. ⋂
𝑖∈𝐼

(𝑋𝑖 −→ 𝑌𝑖) ∩ (𝑋 −→ 𝑌)★ ⊆ P𝑓 (𝐷×𝑍 ∪ {Ω})

⇐⇒
(⋂
𝑖∈𝐼

𝑌𝑖 ∩ 𝑌 ⊆ 𝑍
)
∧ ©­«∀

𝐽 ≠∅
𝐽 ⊆ 𝐼 .

(
𝐷 ⊆

⋃
𝑗∈ 𝐽

𝑋 𝑗

)
∨ ©­«

⋂
𝑗∈𝐼\𝐽

𝑌𝑗 ∩ 𝑌 ⊆ 𝑍ª®¬ª®¬
Proof. Using Theorems (4.7) and (4.8) from [24], proof is similar to the one used to derive

subtyping for single-arity arrows (see [24] p.73 Lemma 4.9). □

Remark: This lemma uses the set 𝑍 to represent the codomain of some function𝑊 −→ 𝑍 ′
. In the

case where𝑊 = ∅, then 𝑍 should be 𝐷 for any value of 𝑍 ′
. Hence why the restriction to 𝑎 ≠ O in

Lemma (G.5).

Lemma G.4.∧
𝑖∈𝐼

(𝑡𝑖 −→ 𝑠𝑖) ∧ (𝑐 −→ 𝑑)★ ≤ (𝑎 −→ 𝑏) ⇐⇒


𝑎 ≤ ∨

𝑖∈𝐼
𝑡𝑖 ∨ 𝑐

∀𝐽 ⊆ 𝐼 .

(
𝑎 ≤ ∨

𝑗∈ 𝐽
𝑡 𝑗

)
∨

(∧
𝑗∈𝐼\𝐽

𝑠 𝑗 ∧ 𝑑 ≤ 𝑏
)

Proof. By application of Lemma (G.2). □

Lemma G.5. If 𝑎 ≠ O, then

∧
𝑖∈𝐼

(𝑡𝑖 −→ 𝑠𝑖) ∧ (𝑐 −→ 𝑑)★ ≤ 𝑎 −→ 𝑏★ ⇐⇒


𝑎 ≤ ∨

𝑖∈𝐼
𝑡𝑖 ∨ 𝑐

∀𝐽 ⊆ 𝐼 .

(∨
𝑗∈ 𝐽
𝑡 𝑗 = 1

)
∨

(∧
𝑗∈𝐼\𝐽

𝑠 𝑗 ∧ 𝑑 ≤ 𝑏
)

Guard Analysis and Safe Erasure Gradual Typing: a Type System for Elixir 45

Proof. By application of Lemmas (G.2) and (G.3). □

Lemma G.6. ⋂
𝑖∈𝐼

P (𝑋𝑖) ⊆
⋃
𝑖∈𝑃

P (𝑌𝑖) ∪
⋃
𝑖∈𝑄

(P (𝑍𝑖) ∩ P (𝑊𝑖))

⇐⇒
(
∃𝑖0 ∈ 𝑃 .

⋂
𝑖∈𝐼

𝑋𝑖 ⊆ 𝑌𝑖0

)
∨

(
∃𝑖0 ∈ 𝑄.

⋂
𝑖∈𝐼

𝑋𝑖 ⊆ 𝑍𝑖0 ∩𝑊𝑖0

)

Proof. Corollary of Lemmas G.2 and G.3 □

Examples
• (𝑡 −→ 𝑠) ∧ (𝑐 −→ 𝑑)★ ≤ (𝑎 −→ 𝑏)★ where 𝑎 ≠ O. This case raises the condition{

(𝑎 ≤ 𝑡 ∨ 𝑐) ∧ (𝑠 ∧ 𝑑 ≤ 𝑏)
(𝑡 = 1) ∨ (𝑑 ≤ 𝑏)

G.2 Subtyping Algorithm
With 𝑡 =

∧
𝑖∈𝑃 𝑢𝑖 and 𝑠 =

∨
𝑖∈𝑃 𝑤𝑖 , using Lemma G.1, we rewrite the containment problem:∧

𝑖∈𝐼 (𝑡𝑖 −→ 𝑠𝑖) ∧
∧
𝑖∈𝑃 (𝑢𝑖 −→ 𝑤𝑖)★ ∧ ∧

𝑖∈𝑅 ¬(𝑡𝑖 −→ 𝑠𝑖) ∧
∧
𝑖∈𝑄 ¬(𝑎𝑖 −→ 𝑏𝑖)★ ≤ O

⇐⇒ ∧
𝑖∈𝐼 (𝑡𝑖 −→ 𝑠𝑖) ∧ (𝑡 −→ 𝑠)★ ≤ ∨

𝑖∈𝑅 (𝑡𝑖 −→ 𝑠𝑖) ∨
∨
𝑖∈𝑄 (𝑎𝑖 −→ 𝑏𝑖)★

𝐺.6⇐⇒ or

∃𝑖0 ∈ 𝑅.

∧
𝑖∈𝐼 (𝑡𝑖 −→ 𝑠𝑖) ∧ (𝑡 −→ 𝑠)★ ≤ (𝑡𝑖0 −→ 𝑠𝑖0)

∃𝑖0 ∈ 𝑄.
∧
𝑖∈𝐼 (𝑡𝑖 −→ 𝑠𝑖) ∧ (𝑡 −→ 𝑠)★ ≤ (𝑎𝑖0 −→ 𝑏𝑖0)★

This last equivalence can now be solved with algorithms derived from Lemmas (G.4) and (G.5).

H Extension: Parameterized Strong Types
A strong function is one that behaves normally on its domain, and outside of it either outputs value

from its codomain or errors on an explicit VM check. In some cases, it is possible to refine this

definition, and parametrize the return type outside of the domain, as long as it is a subtype of the

codomain. For example, the function

30 def f(x) when is_integer(x), do: x+1
31 def f(x) when is_boolean(x), do: not x
32 def f(x), do: 42

clearly always outputs an integer outside of its domain. It has a strong type

((int −→ int) ∧ (bool −→ bool))★

and if we parameterize it we can write it has the more precise parameterized strong type:

((int −→ int) ∧ (bool −→ bool))★(int)

Thanks to such a parametrization we can deduce the type int for the application of this function

to an argument of type ¬(int ∨ bool).
Inference for these types is already supported by the way strong types are checked; instead of

inferring the codomain with the system in Figure 5, inferring any subtype of the codomain will

ensure that the function is strong for this subtype. In particular, a function that is strong for type

O is one that fails on a runtime check on every input outside its domain. E.g. function

46 Giuseppe Castagna and Guillaume Duboc

33 def f(x) when is_integer(x), do: x+1
34 def f(x) when is_boolean(x), do: not x

has the parameterized strong type ((int −→ int) ∧ (bool −→ bool))★(O)

This definition is equivalent to the one presented earlier in the paper, assuming integer() and

boolean() are the only basic types used in FW-Elixir.

In Section A of the main text, we formally demonstrate that negations of guards can be compiled

out during the translation of patterns and guards. This translation process ensures that FW-Elixir

expressions can be properly represented in Core Elixir, which forms the basis of our type system

for Elixir.

For space reasons, some proofs and parts of the system for guard analysis have been omitted

from the main text. These can be found in the full version of this paper.

	Abstract
	1 Introduction
	1.1 A Walkthrough of the Work
	1.2 Contributions and Limitations

	2 Safe Erasure Gradual Typing
	3 Guard Analysis
	3.1 Typing Pattern Matching
	3.2 An Overview of Guard Analysis.

	4 Arity (and Strong Arrows)
	5 Inference
	6 Implementation
	7 Related work
	8 Conclusion
	References
	A Language Formalization
	A.1 Operational Semantics

	B Soundness for Section 2
	B.1 Static safety
	B.2 Safety of the Gradual System
	B.3 Extension for tuples

	C Dynamic type tests
	D Gradual Strong Function Types
	E Guard Analysis
	E.1 Typing with Guards

	F Semantic subtyping: multi-arity functions
	F.1 Set Semantics
	F.2 Subtyping algorithm

	G Semantic subtyping: strong arrows
	G.1 Set Semantics
	G.2 Subtyping Algorithm

	H Extension: Parameterized Strong Types

