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Abstract. Among various proposals for primitives for deconstructing XML data
two approaches seem to clearly stem from practise: path expressions, widely
adopted by the database community, and regular expression patterns, mainly de-
veloped and studied in the programming language community. We think that the
two approaches are complementary and should be both integrated in languages
for XML, and we see in that an opportunity of collaboration between the two
communities. With this aim, we give a presentation of regular expression pat-
terns and the type systems they are tightly coupled with. Although this article
advocates a construction promoted by the programming language community,
we will try to stress some characteristics that the database community, we hope,
may find interesting.

1 Introduction

Working on XML trees requires at least two different kinds of language primitives:
(i) deconstruction/extraction primitives (usually called patterns or templates) that pin-
point and capture subparts of the XML data, and (if) iteration primitives, that iterate
over XML trees the process of extraction and transformation of data.

For what concerns iteration primitives, there are many quite disparate proposals: in
this category one can find such different primitives as the FLWR (i.e., for-let-where-
return) expressions of XQuery [7], the select-from-where of Cw [6] and CQL [5], the
select-where of Lorel [1] and loto-ql [51], the filter primitive of XDuce [40, 39], the
xtransform primitive of CDuce [4], the iterate primitive of Xtatic [31], while for
other languages, for instance XSLT [22], the iterator is hard-coded in the semantics
itself of the language.

For what concerns deconstructing primitives, instead, the situation looks clearer
since, among various proposals (see the related work section later on), two different and
complementary solutions clearly stem from practice: path expressions (usually XPath
paths [21], but also the “dot” navigations of Co or Lorel [1], caterpillar expressions [12]
and their “looping” extension [33]) and regular expression patterns [41].

Path expressions are navigational primitives that pinpoint where to capture data sub-
components. XML path expressions (and those of Cw and Lorel in particular) closely
resemble the homonimic primitives used by OQL [23] in the context of OODB query
languages, with the difference that instead of sets of objects they return sets or se-
quences of XML elements: more precisely all elements that can be reached by follow-
ing the paths at issue. These primitives are at the basis of standard languages such as
XSLT and XQuery.

More recently, a new kind of deconstruction primitive was proposed: regular expres-
sion patterns [41], which extends by regular expressions the pattern matching primitive



as popularised by functional languages such as ML and Haskell. Regular expression
patterns were first introduced in the XDuce programming language and are becoming
more and more popular, since they are being adopted by such quite different languages
as CDuce [4] (a general purpose extension of the XDuce language) and its query lan-
guage CQL [5], Xtatic [31] (an extension of C#), Scala [54] (a general purpose Java-
like object-oriented language that compiles to Java bytecode), XHaskell [45] as well as
the extension of Haskell proposed by Broberg et al. [11].

The two kinds of primitives are not antagonist, but rather orthogonal and comple-
mentary. Path expressions implement a “vertical” exploration of data as they capture
elements that may be at different depths, while patterns perform a “horizontal” explo-
ration of data since they are able to perform finer grained decomposition on sequences
of elements. The two kinds of primitives are quite useful and they complement each
other nicely. Therefore, it would seem natural to integrate both of them in a query or
programming language for XML. In spite of this and of several theoretical works on
the topic (see the related work section), we are aware of just two running languages
in which both primitives are embedded (and, yet, loosely coupled): in CQL [5] it is
possible to write select-from-where expressions, where regular expression patterns are
applied in the from clause to sequences that are returned by XPath-like expressions (see
the example at the end of Section 2.3); Gapeyev and Pierce [32] show how it is possible
to use regular expression patterns with an all-matches semantics to encode a subset of
XPath and use this encoding to add XPath to the Xtatic programming language.

The reason for the lack of study of the integration of these two primitives may be
due to the fact that each of them is adopted by a different community: regular patterns
are almost confined to the programming language community while XPath expressions
are pervasive in the database community.

The goal of this lecture is to give a brief presentation of the regular pattern ex-
pressions style together with the type system they are tightly coupled with, that is the
semantic subtyping-based type systems [19,29]. We are not promoting the use of these
to the detriment of path expressions, since we think that the two approaches should be
integrated in the same language and we see in that a great opportunity of collaboration
between the database and the programming languages communities. Since the author
belongs to latter, this lecture tries to describe the pattern approach addressing some
points that, we hope, should be of interest to the database community as well. In par-
ticular, after a general overview of regular expression patterns and types (Section 2) in
which we show how to embed patterns in a select-from-where expression, we discuss
several usages of these semantic subtyping based patterns/types (henceforward, we will
often call them “‘semantic patterns/types”): how to use these patterns and types to give
informative error messages (Section 3.2), to dig out errors that are out of reach of pre-
vious type checker technologies (Section 3.3) and how the static information they give
can be used to define very efficient and highly optimised runtimes (Section 3.4); we
show that these patterns permit new logical query optimisations (Section 3.5) and can
be used as building blocks to allow the programmer to fine-grainedly define new iter-
ators on data (Section 3.6); finally, the techniques developed for the semantic patterns
and types can be used to define optimal data pruning and other optimisation techniques
(Section 3.7-3.8)



Related work. In this work we focus on data extraction primitives coming from the
practice of programming and query languages manipulating XML data. Thus, we re-
strict our attention to the primitives included in full-featured languages with a stable
community of users. There are however many other proposals in the literature for de-
constructing, extracting, and querying XML data.

First and foremost there are all the languages developed from logics for unranked
trees whose yardstick in term of expressiveness is the Monadic Second Order Logic.
The list here would be too long and we invite the interested reader to consult the excel-
lent overview by Leonid Libkin on the subject [44]. In this area we want to single out
the work on composition of monadic queries in [26], since it looks as a promising step
toward the integration of path and pattern primitives we are promoting in this work: we
will say more about it in the conclusion. A second work that we want to distinguish
is Neven and Schwentick’s ETL [49], where regular expressions over logical formule
allow both horizontal and vertical exploration of data; but, as the authors themselves re-
mark, the gap with a usable pattern language is very important, especially if one wants
to define non-unary queries typical of Hosoya’s regular expressions patterns.

Based on logics also are the query languages developed on or inspired to Ambient
Logic, a modal logic that can express spatial properties on unordered trees, as well as
to other spatial logics. The result is a very interesting mix of path-like and pattern-like
primitives (cf. the dot notation and the spatial formulae with capture variables that can
be found in TQL) [24, 13, 16,14, 15, 17].

In the query language research, we want to signal the work of Papakonstantinou
and Vianu [51] where the loto-ql query language is introduced. In loto-ql it is possible
to write select x where p, where p is a pattern in the form of tree which uses regular
expressions to navigate both horizontally and vertically in the input tree, and provides
bindings of x.

2 A brief introduction to patterns and types for XML

In this section we give a short survey of patterns and types for XML. We start with a pre-
sentation of pattern matching as it can be found in functional languages (Section 2.1),
followed by a description of “semantic” types and of pattern-based query primitives
(Section 2.2); a description of regular expression patterns for XML (Section 2.3) and
their formal definition (Section 2.4) follow, and few comments on iterators (Section 2.5)
close the section. Since we introduce early in this section new concepts and notations
that will be used in the rest of the article, we advise also the knowledgeable reader to
consult it.

2.1 Pattern matching in functional languages

Pattern matching is used in functional languages as a convenient way to capture subparts
of non-functional! values, by binding them to some variables. For instance, imagine that

! We intend non-functional in a strict sense. So non-functional values are integer and boolean
constants, pair of values, record of values, etc., but not A-abstractions. Similarly a non-
functional type is any type that is not an arrow type.



e is an expression denoting a pair and that we want to bind to x and y respectively to
the first and second projection of e, so as to use them in some expression e’. Without
patterns this is usually done by two let expressions:

let x = first(e) in
let y = second(e) in ¢

With patterns this can be obtained by a single let expression:
let (x,y) = e in ¢

The pattern (x,y) simply reproduces the form of the expected result of e and variables
indicate the parts of the value that are to be captured: the value returned by e is matched
against the pattern and the result of this matching is a substitution; in the specific case, it
is the substitution that assigns the first projection of (the result of) e to x and the second
one to y.

If we are not interested in capturing all the parts that compose the result of e, then
we can use the wildcard “_" in correspondence of the parts we want to discard. For
instance, in order to capture just the first projection of e, we can use the following
pattern:

let (x,_) = ¢ in ...

which returns the substitution that assigns the result of first(e) to x. In general, a pattern
has the form of a value in which some sub-occurrences are replaced by variables (these
correspond to parts that are to be captured) and other are replaced by “_” (these corre-
spond to parts that are to be discarded). A value is then matched against a pattern and if
they both have the same structure, then the matching operation returns the substitution
of the pattern variables by the corresponding occurrences of the value. If they do not
have the same structure the matching operation fails. Since a pattern may fail—and here
resides the power of pattern matching—it is interesting to try on the same value several
different patterns. This is usually done with a match expression, where several patterns,
separated by |, are tried in succession (according to a so-called “first match” policy).
For instance:

match e with
| (_,_) -> true
| _ -> false

first checks whether e returns a pair in which case it returns true, otherwise it returns
false. Note that, in some sense, matching is not very different from a type case. Ac-
tually, if we carefully define the syntax of our types, in particular if we use the same
syntax for constructing types and their values, then the match operation becomes a type
case: let us write (s,7) for the product type of the types s and ¢ (instead of the more
common s X ¢ or s *¢ notations) and use the wildcard “_" to denote the super-type of all
types (instead of the more common Top, 1, or T symbols), then the match expression
above is indeed a type case (if the result of e is in the product type (_,_) —the type
of all products—, then return true else if it is of type top—all values have this type—,
then return false). We will see the advantages of such a notation later on, for the time
being just notice that with such a syntactic convention for types and values, a pattern is
a (non-functional) type in which some variables may appear.



Remark 1. A pattern is just a non-functional type where some occurrences
may be variables.

The matching operation is very useful in the definition of functions, as it allows the
programmer to define them by cases on the input. For instance, imagine that we en-
code lists recursively a la lisp, that is, either by a nil element for the empty list, or
by pairs in which the left projection is the head and the right projection the tail of the
list. With our syntax for products and top this corresponds to the recursive definition
List = ‘nil | (_,List): alistis either ‘nil (we use a back-quote to denote constants
so to syntactically distinguish them in patterns from variables) or the product of any
type and a list. We can now write a tail recursive function? that computes the length of
alist®

fun length ((List,Int) -> Int)
| (‘nil , n) -> n
| ((_,t), n) -> length(t,n+1)

which is declared (see Footnote 3 for notation) to be of type (List,Int) -> Int, thatis,
it takes a pair composed of a list and an integer and returns an integer. More precisely, it
takes the list of elements still to be counted and the number of elements already counted
(thus length(a,0) computes the length of the list a). If the list is ‘nil, then the function
returns the integer captured by the pattern variable n, otherwise it discards the head of
the list (by using a wildcard) and performs a recursive call on the tail, captured in t,
and on n+1. Note that, as shown by the use of ‘nil in the first pattern, patterns can also
specify values. When a pattern contains a value v, then it matches only values in which
the value v occurs in the same position. Remark 1 is still valid even in the case that
values occur in patterns, since we can still consider a pattern as a type with variables:
it suffices to consider a value as being the denotation of the singleton type that contains
that value.

2.2 Union, intersection, and difference types

In order to type-check match expressions, the type-checker must compute unions, in-
tersections, and differences (or, equivalently, negations) of types: let us denote these

2 A function is tail recursive if all recursive calls in its definition occur at the end of its execu-
tion flow (more precisely, it is tail recursive if the result of every call is equal to result of its
recursive calls): this allows the compiler to optimise the execution of such functions, since it
then becomes useless to save and restore the state of recursive calls since the result will be
pushed on the top of the stack by the last recursive call.

3 We use two different syntaxes for functions. The usual notation is standard: for instance, the
identity function on integers will be written as fun id(x :Int):Int = x. But if we want to feed
the arguments of a function directly to a pattern matching, then the name of the function will
be immediately followed by the type of the function itself. In this notation the identity for
integers is rather written as fun id(Int->Int) x -> x. This is the case for the function length
that follows, which could be equivalently defined as

fun length (x :(List,Int)):Int =
match x with
| (fnil , n) -> n
| ((_,t), n) -> length(t,n+1)



operations by | for the union, & for the intersection, and \ for the difference. The reason
why the type-checker needs to compute them can be better understood if we consider a
type as a set of values, more precisely as the set of values that have that type: t+ = {v | v
value of type ¢}.* For instance, the product of the singleton type ‘nil and of the type
Int, denoted by (‘nil,Int), will be the set of all pairs in which the first element is the
constant ‘nil and the second element is an integer. Notice that we already implicitly did
such an hypothesis at the end of the previous section, when we considered a singleton
type as a type containing just one value.

As we did for types, it is possible to associate also patterns to sets of values (actu-
ally, to types). Specifically, we associate to a pattern p the type ] p§ defined as the set
of values for which the pattern does not fail: {p§ = {v | v matches pattern p}. Since
we use the same syntax for type constructors and value constructors, it results quite
straightforward to compute ] p{: it is the type obtained from p by substituting “_" for
all occurrences of variables: the occurrences of values are now interpreted as the corre-
sponding singleton types.

Let us check whether the function length has the type (List,Int) — Int it declares
to have. The function is formed by two branches, each one corresponding to a differ-
ent pattern. To know the type of the first branch we need to know the set of values
(i.e., the type) that can be bound to n; the branch at issue will be selected and exe-
cuted only for values that are arguments of the function—so that are in (List,Int)—
and that are accepted by the pattern of the branch—so that are in ] (¢nil,n) | which
by definition is equal to (‘nil,_)—. Thus, these are the values in the intersection
(List,Int)&(‘nil,_ ). By distributing the intersection on products and noticing that
List&‘nil= ‘nil and Int&_= Int, we deduce that the branch is executed for values in
(‘nil,Int) and thus n is (bound to values) of type Int. The second branch returns a
result of type Int (the result type declared for the function) provided that the recursive
call is well-typed. In order to verify it, we need once more to compute the set of values
for which the branch will be executed. These are the arguments of the function, minus
the values accepted by the first branch, and intersected with the set of values accepted
by the pattern of second branch, thatis: ((List,Int)/(‘nil,_)) & ((_,.),_). Again,
it is easy to see that this type is equal to ((_,List),Int) and deduce that variable ¢ is
of type List and the variable n is of type Int: since the arguments have the expected
types, then the application of the recursive call is well typed. The type of the result of
the whole function is the union of the types of the two branches: since both return in-
tegers the union is integer. Finally, notice also that the match is exhaustive, that is, for
every possible value that can be fed to the match, there exists at least one pattern that
matches it. This holds true because the set of all arguments of the the function (that is,
its domain) is contained in the union of the types accepted by the patterns.

More generally, to deduce the type of an expression (for the sake of simplicity we
use a match expression with just two patterns)

match e with pj->e; | pr->e;
4 Formally, we are not defining the types, we are giving their semantics. So a type “is interpreted

as” or “denotes” a set of values. We prefer not to enter in such a distinction here. See [19] for
a more formal introduction about these types.



one must: (i) deduce the type ¢ of e, (ii) calculate the type ¢, of e; in function of the val-
ues in t&] p1 §, (i) calculate the type 1, of e in function of the values in (1\] p; §)&] p2§
and, finally, (iv) check whether the match is exhaustive that is, r < ] p; § | p2§: the type
of the expression is then the union ¢ 17,.

The example with match clearly shows that for a precise typing of the programs
the type-checker needs to compute unions, intersections, and differences of types. Of
course, the fact that the type-checker needs to compute unions, intersections, and nega-
tions of types does not mean that we need to introduce these operations in the syntax
of the types (namely, in the type system): they could be meta-operations whose usage
is confined to the type-checker. This is for instance the choice of XDuce (or of XQuery
whose types borrow many features from XDuce’s ones), where only union types are
included in the type system (they are needed to define regular expression types), while
intersections and negations are meta-operations computed by the subtyping algorithm.

We defend a choice different from XDuce’s one and think that unions, intersec-
tions, and differences must be present at type level since, we argue, having these type
constructors in the type system is useful for programming> This is particularly true for
programs that manipulate XML data—as we will see next— in particular if we com-
pletely embrace the “pattern as types” analogy of Remark 1. We have seen that in the
“pattern as types” viewpoint, the pattern (‘nil,_) is matched by all values that have
type (‘nil,_). This pattern is built from two very specific types: a singleton type and
the “_" type. In order to generalise the approach, instead of using in patterns just sin-
gleton and “_" types, let us build patterns using as building blocks generic types. So, to
give some examples, let us write patterns such as (x,Int) which captures in x the first
projection of the matched value only if the second projection is an integer; if we want to
capture in y also the second projection, it suffices to use an intersection: (x,y&Int) as
to match an intersection a value must match both patterns (the variable to capture and
Int to check the type); if the second projection of the matched value is an integer, then
(x,y&Int) | (_,x&y) will capture in x the first projection and in y the second projection,
otherwise both variables will capture the second projection.

We can then write the pattern (x & (Car&(Guarantee|(_\Used)))) that captures in
x all cars that, if they are used have a guarantee (these properties being expressed by the
types Car, Guarantee, and Used, the type _\Used being equivalent to —Used) and use it
to select the wanted items in a catalogue by a select-from-where expression. We have
seen at the very beginning of Section 2.1 that patterns can be used instead of variables
in let bindings. The idea underlying CQL [5] is to do the same with the bindings in the
from clause of a select-from-where. So if catalogue denotes a sequence of items, then
we can select from it the cars that if used then have a guarantee, by

select x from
(x & (Car&(Guarantee|(_\Used))) in catalogue

As customary, the select-from-where iterates on all elements of catalogue; but instead
of capturing every element, it captures only those elements that match the pattern, and

5 From a theoretical point of view the XDuce’s choice is justified by the fact that XDuce types
are closed with respect to boolean operations. This is no longer true if, as in CDuce, one also
has function types. However, the point we defend here is that it is useful in practice to have all
the boolean operations in the syntax of types, even in the presence of such closure properties.



then binds the pattern variables to their corresponding subparts. These variables are
then used in the select and in the subsequent “from” and “where” clauses to form the
result. In some sense, the use of patterns in the from clauses corresponds to a syntactic
way to force the classic logical optimisation of remounting projections, where here the
projection is on the values that match the pattern (we say more about it in Section 3.5).
The general form of the select-from-where we will consider here is then the one of
CQL, namely:

select ¢ from
pineé,...,p in ¢
where e

where p are patterns, e’ expressions that denote sequences, and ¢” a boolean expression.
The select iterates on the ¢’ sequences capturing the variables in the patterns only for
the elements that match the respective pattern and satisfy the condition e”. Note that the
usual select-from-where syntax as found in SQL is the special case of the above where
all the patterns are variables. The same of course holds true also for the FLWR expres-
sions of XQuery, which are nothing but a different syntax for the old select expression
(the let binding would appear in the e expression following the select).

The select-from-where expressions we just introduced is nothing but a query-oriented
syntax for list comprehensions [56], which are a convenient way to define a new list in
terms of another list. As discussed by Trinder and Wadler [55] a list comprehension is
an expression of the form [e | p — e c] where e is a list expression, p a pattern, e a
generic expression, and ¢ a boolean condition; it defines the list obtained by evaluating
¢’ in the environment produced by matching an element of the result of e against p pro-
vided that in the same environment the condition ¢ holds. It is clear that the expression
above is just a different syntax for select ¢’ from p in e where c, and that the general
case with several from clauses is obtained by nesting list comprehensions in e’.

2.3 Regular Expression Patterns

If we want to use patterns also to manipulate XML data, then the simple and some-
how naive approach is to define XML patterns as XML values where capture variables
and wildcards may occur. To the best of our knowledge, this was first proposed in the
programming language community by XMA [47] and in the database community by
XML-QL [25] (whose query primitive is a simpler version of the pattern-based select-
from-where introduced in the previous section). This corresponds to extend the classic
“patterns as values with variables (and wildcards)” analogy of functional languages to
XML data. However, in the previous sections we introduced a more expressive analogy,
the one of “patterns as fypes with capture variables” as stated in Remark 1. Since val-
ues denote singleton types, then the latter analogy extends the former one, and so it is
in principle more expressive. The gain in expressiveness obtained by using the second
analogy becomes clear also in practice as soon as we deal with XML, since the types for
XML can be more richly combined than those of classic functional languages. Indeed,
XML types are usually defined by regular expressions. This can be best shown by using
the paradigmatic example of bibliographies expressed by using the CDuce (and CQL)
type syntax:



type Bib = <bib>[Bookx*]

type Book = <book year=String>[Title (Author+|Editor+) Price?]
type Author = <author>[Last First]

type Editor = <editor>[Last First]

type Title = <title>[PCDATA]

type Last = <last>[PCDATA]

type First = <first>[PCDATA]

type Price = <price>[PCDATA]

The declarations above should not pose any problem to the reader familiar with XML,
DTD, and XML Schema. The type Bib classifies XML-trees rooted at tag bib that
delimits a possibly empty list of books. These are elements with tag book, an attribute
year, and containing a sequence formed exactly by one element title, followed by either
a non empty list of author elements, or a non empty list of editor elements, and ended
by an optional element price. Title elements are tagged by title and contain a sequence
of characters, that is, a string (in XML terminology “parsed character data”, PCDATA).
The other declarations have similar explanations.

We used the CDuce syntax (which slightly differs from the XDuce’s one for tags and
attributes) foremost because it is the syntax we are most familiar with, but also because
CDuce currently possesses the richest type and pattern algebras among the languages
that use regular expression patterns.

The declarations above give a rather complete presentation of CDuce types. There
are XML types, that are formed by a tag part and a sequence type (denoted by square
brackets). The content of a sequence type is described by a regular expression on types,
that is, by the juxtaposition, the application of #, +, 7 operators, and the union | of types.
Besides these types there also are all the type constructors we saw earlier in this section,
namely: (i) values which are considered singleton types, so for instance "Buneman" is
the type that contains only the string "Buneman", (ii) intersection of types, denoted by
s&t that contains all the values that have both type s and type ¢, (iii) difference “\” of
types, so that <book year=String\"1999">[Title (Author+|Editor+) Price?] isthe
type of all books not published in 1999, (iv) the “_" type, which is the type of all values
and is also noted Any, and its complement the Empty type.

According to Remark 1, patterns are the above types enriched with capture vari-
ables. With respect to XMA’s approach of “patterns as values with capture variables”,
this approach yields regular expression patterns. For instance, <bib>[(x: :Book) *] is
a pattern that captures in x the sequence of all books of a bibliography. Indeed, the *
indicates that the pattern x: :Book must be applied to every element of the sequence de-
limited by <bib>. When matched against an element, the pattern x: :Book captures this
element in the sequence x, provided that the element is of type Book.® Patterns can then
be used in match expressions:

match biblio with <bib>[ (x::Book)* ] -> x

6 The reader may have noticed that we used both x&f and x::7. The double semicolon indicates
that the variable x captures sequences of t elements: while the first x is of type ¢ the second
one is of type [ #*]. Since inside regular expression patterns, variables capture sequences, then
only the latter can be used (see the formal syntax at the beginning of Section 2.4).



This expression matches biblio against our pattern and returns x as result, thus it makes
nothing but stripping the <bib> tag from biblio. Note that if we knew that biblio
has type Bib, then we could have used the pattern <bib>[(x::_)#*] (or, equivalently,
<bib>[(x::Any)#]), since we statically know that all elements have type Book.

Besides capture variables there is just one further difference between patterns and
types, namely the union operator |, which is commutative for types while it obeys a first
match policy in patterns. So for instance the following expression returns the sequence
of all books published in 1999:

match biblio with <bib>[( (x::<book year="1999">_) | _ )*] -> x

Again, the pattern ((x: :<book year="1999">_) | _ ) isapplied to each element of the
sequence. This pattern first checks whether the element has the tag <book year="1999">
whatever its sequence of elements is, and if such is the case it captures it in x; other-
wise it matches the element against the pattern “_”, which always succeeds without
capturing anything (in this way it discards the element). Note that, if we had instead
used <bib>[ (x::<book year="1999">_)* ] this pattern would have succeeded only
for bibliographies composed only by books published in 1999, and failed otherwise.

As we said in the introduction, an extraction primitive must be coupled with iterator
primitives to apply the extraction all over the data. There are several kinds of iterators
in CDuce, but for the sake of the presentation we will use the one defined in the query
sub-language CQL, that is the select-from-where defined in the previous section. So,
for example, we can define a function that for each book in a sequence extracts all titles,
together with relative authors or editors.

fun extract(x : [Book*]) : [ [Title (Author+|Editor+)]* ] =
select (flatten[z y]) from
<book ..>[ z::Title y::(Author|Editor)+ _* ] in x

The function extract takes a possibly empty sequence of books and returns a possibly
empty sequence of sequences that start by a title followed by a non-empty uniform
sequence of authors or editors. The operator flatten takes a sequence of sequences and
returns their concatenation, thus flatten[z y] is nothing but the concatenation of the
sequences z and y. The select-from-where applies the pattern before the in keyword to
each element of the sequence x and returns flatten[z y] for every element matching
the pattern. In particular, the pattern captures the title in the sequence variable z, the
sequence of authors or editors in the sequence variable y, and uses “..” (the wildcard
that matches any set of attributes) to discard the year attribute. Had we wanted to return
a sequences of pairs (title,price), we would have written

fun extract2(x : [Book*]) : [ (Title,Price)* ] =
select (t,p) from
<book ..>[ t&Title _* p&Price ] in x

where we used “&” instead of “::” to denote that variables capture single elements
rather than sequences (see Footnote 6).

Both examples show one of the advantages of using patterns, that is the ability to
capture different subparts of a sequence of elements (in the specific case the title and
the authors/editors) in a single pass of the sequence.
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The select-from-where expression is enough to encode XPath-like navigation ex-
pressions. In CDuce/ CQL one can use the expression e/¢, which is syntactic sugar for
flatten(select x from <_ ..>[(x::f|_)*] in e) and returns all children of type ¢
of elements of the sequence e. We can compose these expressions to obtain an XPath-
like expression. For instance, if bibs denotes a sequence of bibliographies (i.e., it is of
type [Bib*]), then bibs/Book/ (Author|Editor) returns the sequence of all authors and
editors appearing in the bibliographies. In order to match more closely the semantics
of XPath, we will often write bibs/<book ..>_/(<author ..>_|<editor ..>_), since
this kind of expression checks only tags while, in principle, the previous path expres-
sion checks the whole type of the elements (not just the tag). As a matter of fact, by
using the static type of bibs, CDuce compiles the first expression into the second one,
as we will explain in Section 3.4. Similarly, the expression e/@id is syntactic sugar for
select x from <_ id=x ..> in e, which returns all the values of the attribute id oc-
curring in the children of elements in e. One can combine select-from-where and path
expressions and write queries such as

select name from
<book year="2005">[Title a::Author+ <price>p] in bibs/Book,
name in a/<last>(String\"anonymous")

where int_of(p) << 100

which returns the sequence of last name elements of the authors of all the books in
bibs published this year for which a list of authors is given, a price lower than 100
is specified, and the last name is different from "anonymous". The reader is invited to
verify that the query would be far more cumbersome if we had to write it either using
only patterns or, as it would be for XQuery, using only paths (in this latter case we also
would need many more nested loops). A pattern-based encoding of XPath completely
different from the one presented here has been proposed by Gapeyev and Pierce [32].

2.4 Pattern and type algebras

Patterns and types presented in the previous sections are summarised below:

Types

tu=b | tlt | t&t | 1\t | (t,0) | <t £=t...0=t>t | [R] | Empty | Any
Type regular expressions

R:=t | RR | RIR | R | R+ | R7
Patterns

pu=x |t | pep | plp | (p,p) | <p t=p ... t=p>p | [r]
Pattern regular expressions

ra=p | xuzr | rlr | rr | r+ | x| r?

where b ranges over basic types, that is Char, Int, etc., as well as singleton types (de-
noted by values). As a matter of fact, most of the syntax above is just syntactic sugar.
These types and patterns can indeed be expressed in a much more compact system, com-
posed only the very simple constructors we started from: basic and product types and

11



their boolean combination. In this short section we will deal with more type-theoretic
aspects and give an outline of the fact that all the patterns and types above can be ex-
pressed in the system defined as follows.

Definition 1. A type is a possibly infinite term produced by the following grammar:
t = b | () | bl | n&n | ot | 0] 1

with two additional requirements:
1. (regularity) the term must be a regular tree (it has only a finite number of distinct
sub-terms);
2. (contractivity) every infinite branch must contain an infinite number of pair nodes
(t1,12).

A pattern is a type in which (possibly infinitely many) occurrences of finitely many cap-
ture variables may appear anywhere provided that

1. no variable occurs under a negation,

2. patterns forming an intersection have distinct sets of occurring variables,

3. patterns forming an union have the same sets of occurring variables. a

In the definition b ranges again overs basic types and 0 and 1 respectively repre-
sent the Empty and Any types. The infiniteness of types/patterns accounts for recur-
sive types/patterns. Of course these types must be machine representable, therefore we
impose a condition of regularity (in practice, this means that we can define types by
recursive equations, using at most as many equations as distinct subtrees). The contrac-
tivity condition rules out meaningless terms such as X = =X (that is, an infinite unary
tree where all nodes are labelled by —). Both conditions are standard when dealing with
recursive types (e.g. see [2]). Also pretty standard are the conditions on the capture vari-
ables for patterns: it is meaningless to capture subparts that do not match (one rather
captures parts that match the negation); in intersections both patterns must be matched
so they have to assign distinct variables, while in union patterns just one pattern will
be matched so always the same variables must be assigned whichever alternatives is
chosen.

Definition 1 formalises the intuition given in Remark 1 and explains why in the in-
troduction we announced that patterns and types we were going to present were closely
connected.

These types and patterns (which are the semantic subtyping based ones hinted at
in the introduction) are enough to encode all the regular expression types and patterns
we used in Section 2.3 (actually, they can do much more than that): sequences can be
encoded a la Lisp by pairs, pairs can also be used to encode XML types, while regular
expression types are encoded by recursive patterns. For instance, if we do not consider
attributes, the type

type Book = <book>[Title (Author+|Editor+) Price?]
can be encoded as Book = (‘book, (Title,X|Y)), X = (Author,X |(Price, ‘nil)| ‘nil) and
Y = (Editor,Y|(Price, ‘nil)| ‘nil), where ‘book and ‘nil are singleton (basic) types. More
details about the encoding, such as the use of non-linear capture variables to match se-

quences and the use of record patterns to match attributes, as well as the formal defini-
tion of pattern matching are given elsewhere [4].
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The core syntax of the semantic types and patterns is very simple and this turns
out to be quite useful in the formal treatment of the system. The other characteristic
that makes life easier is that the boolean combinators on types are interpreted set the-
oretically: types are sets of values and intersection, union, and difference of types are
interpreted as the corresponding operators on these sets (this is the essence of the se-
mantic subtyping approach). Although this simplifies significantly both the theoretical
development (types can be transformed by using the classical set-theoretic laws, e.g.
De Morgans’s, etc.) and the practice (e.g. for a programmer it is easier to understand
subtyping in terms of set containment, than in terms of an axiomatisation), the devel-
opment of the underlying theory is quite complex (see for instance [19,37, 35, 34, 38,
30, 29, 39]). Fortunately, this complexity is hidden from the programmer: all (s)he has
to know is that types are set of values and subtyping is set inclusion. Such theoretical
complexity is the counterpart of the expressiveness of the system; expressiveness that
is manifest in the simplicity of the query language: value constructors (constants, pairs,
and XML values), operators for basic types (e.g. arithmetic and boolean operators), the
flatten operator, and the pattern-based select-from-where (i.e., list comprehensions)
constitute the complete definition of the CQL query language [5]. We are in the pres-
ence of few primitives that permit to query complex data in XML format: of course the
power comes from the use of patterns in the select-from-where expressions.

2.5 [Iterators

In the introduction we said that in order to manipulate XML data besides extraction
primitives we also need iterators. Therefore, let us spend a final word about them. In
the previous section we used just one iterator, the select-from-where expression. This
iterator is very simple but not very expressive: it cannot transform complex trees but just
query them (it returns sequences not whole trees) and it applies just one pattern to each
element of the scanned sequences (while we have seen that the power of pattern match-
ing resides in the possibility of trying several alternative patterns on the same element).
Of course, a select-from-where is meant to be so: it is a query primitive, not a trans-
formation primitive. Therefore it was designed to be simple and not very expressive
in order to be easily optimisable (see Section 3.5). But if we want to define concisely
more complex transformations, then the language has to provide more powerful built-in
operators. For instance, the CDuce language provides three different iterators: the map
constructor, whose syntax is map e with p1->ei | ... | p,->e,, which applies the spec-
ified matching alternatives to each element of the sequence e and returns the sequence
of results; the transform constructor which acts like map but filters out elements that
are not matched; the xtransform constructor which performs the same operation but
on trees, leaving unmatched subtrees unmodified. Of course, the same behaviour could
be obtained by programming these operators by using functions but, as we explain in
Section 3.6, we would not obtain the same precision of type checking as we obtain by
hard-coding them as primitive constructions of the language.
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3 Eight good reasons to use regular expression
patterns and types in query languages

As its title clearly states, in this section we try to advocate the use of regular expression
patterns and of the union, intersection, and negation types we introduced in the previous
section. A first reason to be interested in this approach is that its theoretical core is very
compact (which does not mean “simple”): we have seen that an expressive query lan-
guage can be simply obtained by adding list comprehensions to the types and patterns
of Definition 1. Rather than concentrating on the theoretical aspects, in the rest of this
work we will focus on more practical issues. We already said that we are not promoting
the use of regular expressions to the detriment of path expressions, but we would like
to invite the database and programming language community to share their skills to
find a suitable way to integrate the two mechanisms. Since the author belongs to latter
community this paper has described up to now the pattern approach and will now try to
address some points which, hopefully, should interest the database community as well:
we apologise in advance for the naiveties that might slip in such a démarche.

3.1 Classic usage

The most obvious usages of the type system presented here are those typical of every
type system: e.g. static detection of type errors, partial correctness, and database schema
specification. In this respect, semantic types do not differ significantly from other type
systems and we will no spend much time on this aspect.

The only point that is worth noticing is that union, intersection, and difference types,
form quite a natural specification language to express schema constraints. This looks
particularly interesting from the database perspective, in particular for the definition of
different views. Notwithstanding that the specification of complex views requires com-
plex queries, union intersection and negation types constitute a powerful specification
language for simple views. Defining views by restriction or extension looks like a nat-
ural application of boolean combinators of types. To give a naive example define the
following types

type WithPrice = <_ ..>[_#* Price _%*]
type ThisYear = <_ year='"2005">_

The first is the type of every element (whatever its tag and attributes are) that has at
least a child element of type Price, the second types every element (whatever its tag
and its content is) that has an attribute year equal to “2005”. We can then use the type
<bib>[((Biblio&ThisYear)\WithPrice)#*] to specify a view of our bibliography con-
taining only those books published in 2005 that do not have a price element.

3.2 Informative error messages

The use of boolean combinators for types is quite useful in producing informative error
messages at compile time. When type checking fails it is always because the type-
checker was expecting an expression of some type s and found instead an expression
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of a type ¢ that is not a subtype of s. Showing the two types s and ¢ is not always
informative enough to help the programmer to find the error, especially in case of XML
data where s and ¢ can be quite complex (just think of the type describing XHTML
documents). Thanks to boolean combinators of types we can compute the difference of
these two types, #\s, inductively generate a sample value belonging to this difference,
and return it to the programmer. This value is a witness that the program is ill-typed,
and the generation of just enough of the sample value to outline the error usually allows
the programmer to rapidly localise the problem.

To give a practical example of this fact, imagine we want to define a function that
returns the list of books of a given year, stripped of the Editors and Price elements.
Consider the following solution:

fun onlyAuthors (year :Int , books :[Book*]) :[Bookx*] =
select <book year=y> (flatten[ t a ]) from
<book year=y>[ (t::Title | a::Author | _)+] in books
where int_of(y) = year

The idea is that for each book the pattern captures the year in y, the title in the sequence
variable t, and the sequence of authors in a. Then, the expression preceding the from
clauses rebuilds the book by concatenating the sequences stored in t and a, provided
that the year is the one specified at the argument of the function. The function above is
not well-typed and the CDuce compiler returns the following error message

Error at chars 81-95:
select <book year=y> ( flatten[ t a ]) from
This expression should have type:
[ Title Editor+ | Title Editor+ Price | Title Author+ | Title Author+ Price ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
[ <title>[ ] ]

The sample value at the end of the message shows at once the origin of the problem: the
expression flatten[ t a ] outlined in the error message (i.e., the expression at chars
81-95) may return a sequence that contains just a title, but no author or editor. This
allows the programmer to understand that the problem is that a may denote the empty
sequence (the case in which a book specifies a list of editors) and, according to the
intended semantics of the program, make her/him correct the error by modifying either
the return type of the function (i.e., [(<book year=String>[Title Authorx*])#*]), or
the pattern (typically, a pattern like <book year=y>[ t::Title a::Author+ _x]).

Of course in such a simple example the expected and inferred types would have
been informative enough: it is easy to see that the former type in the error message is
equivalent to [Title (Author|Editor)+ Price?] while the latter is [Title Author*]
and hence to arrive to the same conclusion. But in practice types are seldom so simple
and from our experience in programming with CDuce we have found that sample values
in error messages play an essential role in helping the programmer to rapidly spot where
bugs lie. We invite the reader to verify this claim by trying the CDuce online interpreter
at www.cduce.org.

15



3.3 Error mining

Patterns and types are powerful enough to spot some subtle errors that elude current type
checking technology. Suppose we had programmed the function extract of Section 2.3
as follows

fun extract(x : [Book*]) : [ [Title (Author+|Editor+)]* ] =
select (flatten[z y]) from
<book ..>[ z::Title y::(<author>_|<edtor>_)+ _* ] in x

Note that despite the typo we outlined in bold in the program, the function above is
well-typed: no typing rule is violated and the pattern is not a useless one since it can
still match authors. However, all the books with editors would be filtered out from the
result. Since there are cases in which the pattern matches, a possible static emptiness
check of the result (as, for instance, recommended in Section 4, “Static Type Analysis”
subsection of the XQuery 1.0 and XPath 2.0 Formal Semantics’) of would not uncover
the error. Such an error can only be detected by examining the result and verifying that
no book with editors appear. This kind of error is not the exclusive resort of patterns,
but can happen also with paths. For instance, if we want to extract each title together
with the relative price, from our bibliographic collection bibs we can write

bibs/<book ..>_/(<title>_|<prize>_)

which contains an error, as prize occurs instead of price. But since the result is not
always empty no warning is raised. Again, the error is hidden by the fact that the pattern
is partially correct: it does find some match, even if, locally, <prize>_ never matches,
hence is incorrect. Once more, as price is optional, by looking at the query output,
when seeing only titles, we do not know whether prices are not present in that database
or something else went wrong.

These errors can be roughly characterised as the presence of dead code in extraction
primitives, that is, the presence of subcomponents (of the patterns or paths) that have no
chance to match data. The presence of such errors is very likely in writing programs that
process typed XML data, since programmers tend to specify only the part of the schema
that is strictly necessary to recover desired data. To that end they make extensive usage
of wildcards and alternations that are an important (but not exclusive) source of this
kind of errors.

The consequence of these errors is that some desired data may end up not contribut-
ing to partial and/or final results, without having the possibility of becoming aware of
this problem at compile time. So, this problem may be visible only by carefully ob-
serving the results of the programs. This makes error detection quite difficult and the
subsequent debugging very hard. And it is made even harder by the fact that, as argued
in [18], such errors are not just created by typos—as shown here—but they may be of
more conceptual nature.

It has been shown [18] that the errors of this kind can be formally characterised
and statically detected by using the set-theoretic operators of the types and patterns
we presented here. In particular given a type ¢ and a pattern p, it is not difficult to

7 See http://www.w3.org/TR/2005/WD-xquery-semantics-20050915/#processing_static.
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characterise the parts of p which are used for at least one value v in ¢ (and hence the
dead parts that are never used). This is done by applying a rewriting system to the
pair (¢, p) which decomposes the matching problem for each subcomponent of p, by
applying the set-theoretic properties of the semantic types and patterns. So for instance
(t,p1|p2) is rewritten into (7, p;) and (1&—1 p1§, p2); the set of sub-patterns of p that
may be used when matching values of type 7 is formed by all patterns p’ such that (¢, p)
rewrites in zero or more steps into (¢, p’) and & p'§ = 0.

Finally, the implementation of such a technique in the current type-checkers of,
among others, Xtatic, CDuce, and XDuce, does not produce any noticeable overhead,
since the rewriting can be performed by the normal type inference process itself. Further
details are available elsewhere [18].

3.4 Efficient execution

The benefits of semantic patterns/types are not confined to the static aspects of XML
programming. On the contrary they are the key ingredient that makes languages as
CDuce and Xtatic outperform the fastest XML processors. The idea is quite simple:
by using the static type information and the set-theoretic properties of the semantic
patterns/types one can compile data queries (e.g. the patterns) so that they perform a
minimum number of checks. For instance, if we look in an XML tree for some given
tag and the type of the tree tells us that this tag cannot occur in the left subtree, then
we will skip the exploration of this subtree and explore only the right one. As a more
concrete example consider the following definitions (see Footnote 3 for notation)

<a>[Ax]
<b>[B*]

type A
type B

fun check( A|B -> Int ) A ->1 ] B ->0

The type A types all the XML trees where only the <a> tags occurs, the type B does the
same for <b>, while the function check returns either 1 or 0 according to whether its
argument is of type A or B. A naive compilation schema would yield the following be-
haviour for the function: first check whether the first pattern matches the argument, by
checking that all the elements of the argument are <a>; if this fails, try the second branch
and do all these tests again with <b>. The argument may be run through completely sev-
eral times. There are many useless tests: since we statically know that the argument is
forcedly either of type A or of type B, then the check of the root tag is enough. It is thus
possible to use the static type information to compile pattern matching so that it not
only avoids backtracking but it also avoids checking whole parts of the matched value.
In practice check will be compiled as

fun check( A|B -> Int ) <a>_ -> 1| _ ->0

As a second example consider the query at the end of Section 2.3. By using the infor-
mation that bibs has static type [Bib#], it will be compiled as:

17



select name from
<_ year="2005">[ _ a::Author+ <price>p ] in bibs/_,
name in a/<last>(_\"anonymous")

where int_of(p) << 100

While in both cases the solutions are easy to find, in general computing the optimal so-
lution requires fully exploiting intersections and differences of types. These are used to
reduce the problem of generating an optimal test to that of deciding to which summand
of a union of pairwise disjoint types the values of a given static type belong to. To find
the solution, the algorithm—whose description is outside the scope of this paper (see
the references below)—descends deep in the static type starting from its root and accu-
mulates enough information to stop the process as soon as possible. The information is
accumulated by generating at each step of the descent a new union of pairwise distinct
types, each type corresponding to a different branching of the decision procedure.

This algorithm was first defined and implemented for CDuce and it is outlined in [4]
(whose extended version contain a more detailed description). The tree-automata theory
underlying has been formally described [28] and generalised [30]. Levin and Pierce
have adapt this technique to Xtatic and extend it with heuristics (their work is included
in these proceedings [43]).

We just want to stress that this compilation schema is semantic with respect to types,
in the sense that the produced code does not depend on the syntax of the types that ap-
pear in patterns, but only on their interpretation as sets of values. Therefore there is no
need to simplify types—for instance by applying any of the many type equivalences—
before producing code, since such simplifications are all “internalised” in the compila-
tion schema itself.

The practical benefits of this compilation schema have been shown [5] by using
XMark [52] and the XQuery Use Cases [20] to benchmark CDuce/ CQL against Qizx [27]
and Qexo [9] two of most efficient XQuery processors (these are several orders of mag-
nitude faster than the reference implementation of XQuery, Galax [3]). The results show
that in main memory processing CQL is on the average noticeably faster than Qizx and
Qexo, especially when computing intensive queries such as joins. Furthermore, since
the execution times of CQL benchmarks always include the type-checking phase, this
also shows that the semantic types presented here are algorithmically tractable in prac-
tice.

3.5 Logical optimisation of pattern-based queries

We already remarked at the end of Section 2.2 that the usual select-from-where as found
in SQL and the for-expressions of XQuery are both special cases of our pattern-based
select-from-where expressions, in which all patterns are variables. Hence, all classic
logical optimisations defined for the former apply also to the pattern-based case. How-
ever, the use of patterns introduces a new class of pattern-specific optimisations [5]
that being orthogonal to the classical optimisations bring a further gain of performance.
These optimisations essentially try to transform the from clauses so as to capture in a
single pattern as much information as possible. This can be obtained essentially in three
ways: (i) by merging into a single pattern two different patterns that work on a com-
mon sequence, (ii) by transforming parts of the where clauses into patterns, and (iif)
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by transforming path expressions into nested pattern-based selections and then merging
the different selects before applying the previous optimisations. As an example consider

select <book>[t] from
b in bibs/<book>_ ,
p in [bl/<price>_ ,
t in [b]/<title>_ ,
y in [b]/@year
where (p = <price>"69.99") and (y="1990")

which is a query written in a XQuery style (the from clauses use path expressions on
right of the in keyword and single variables on its left), and that returns all the titles of
books published in 1990 whose price is “69.99” (this essentially is the query Q1 of the
XQuery Use Cases). After applying pattern-specific optimisations it will be transformed
nto

select <book>[t] from
<bib>[b: :Book*] in bibs,
<book year="1990">[ t&Title _+ <price>"69.99" ] in b

which is intuitively better performing since it computes less nested loops.
The benchmarks mentioned above [5] show that these pattern-specific optimisations
in most cases bring a gain in performance, and in no case degrading it.

3.6 Pattern matches as building blocks for iterators

In the introduction we said that in order to work with XML data one needs two different
primitives: deconstructors and iterators. Although patterns belong to the first class of
primitives, thanks to an idea of Haruo Hosoya, they are useful to define iterators, as
well. More precisely, they allow the programmer to define her/his own iterators. This
is very important in the context of XML processing for two reasons: (i) the complex
structure of data makes virtually impossible for a language to provide a set of iterators
covering, in a satisfactory way, all possible cases® and (ii) an iterator programmed using
the existing primitives of the language would be far less precisely typed than the same
built-in operator and would thus require a massive usage of casting operations.

We have seen that by defining regular expressions over patterns we can perform
data extraction along sequences of elements. But patterns play a passive role with re-
spect to the elements of the sequence: they can capture (part of) them but do not com-
pute any transformation. Haruo Hosoya noticed that if instead of using patterns as basic
blocks of regular expressions one uses pattern matching branches of the form “p ->e”,
then it is possible to define powerful iterators that he dubs filters [36] and that are in-
cluded in the recent versions of XDuce. The idea is that as regular expressions over
patterns describe the way the patterns are matched against the elements of a sequence,
in the same way regular expressions over match branches “p -> ¢ describe the way to

8 No formal expressiveness concern here: just programming experience where the need of a new
iterator that would fit and solve the current problem appears over and over.
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apply the transformation described by the branch to the elements of a sequence pro-
vided that they match p. For instance, the filter” filter [(x&Int -> x+1)*] applied to
[1 2 3] returns [2 3 4], while filter[( x&Int->x+1 | x&Bool->not(x) )*] trans-
forms [1 ‘true ‘true 2] into [2 ‘false ‘false 3]. To show a filter in our paradig-
matic example consider the following translate filter

type Titre = <titre>[PCDATA]
type Auteur = <auteur edt=("oui"|"non")>[Last First]

let translate = filter[
( <title> x -> <titre> x
| <author> x -> <auteur edt="non"> x
| <editor> x -> <auteur edt="oui"> x
| x -> x )*]

which transforms title elements to their French translation, author and editor elements
into “auteur” elements, and leaves other elements unchanged. This filter can then be
applied to the content of a book element to obtain new elements which will have type
<book year=String>[Titre Auteur+ Price].

More generally, filters provide a unique mechanism to implement several primitives.

Forinstance, match ewith pj->e; | ... | p,->eyisjust syntactic sugar for the appli-
cation filter[p;->e; | ... | py->e,]1([el), while a filter such as filter[(p;->e;
[ ... | pu->en)*](e) corresponds to the transform iterator of CDuce we hinted at
in Section 2.5. Filters can also encode the xtransform iterator of Section 2.5 (this is a
little clumsier, since it requires the use of recursive filters). The typing of XDuce filters
is less precise than the one of map, transform and xtransform, but in exchange filters
can do more as they can process several elements at a time while map, transform and
xtransform can just process a single element per iteration (see [36] for details).

We already explained that the reason why we need to give the programmer the pos-
sibility to define iterators is that built-in iterators cannot cover all the possible cases
and that iterations implemented via functions would not be typed precisely enough.
To see why consider the filter translate we defined before, and notice that the type-
checker must be able to deduce that when this filter is applied to a sequence of type
[Title (Author+|Editor+) Price?], thenthe resulthastype [Titre Auteur+ Price?],
while when the same filter is applied to a sequence of type [Author* Editor] the type-
checker must deduce a result type [Auteur+]. This kind of polymorphism goes beyond
the possibilities of parametric polymorphism of, say, ML or System F, which can be ap-
plied only to homogeneous lists. Here instead the result type is obtained by performing
an abstract execution of the iterator on the type of the input. In practice, what the type-
checker does is to execute the iterator on the DTD of the input in order to precisely map
the transformation of each element of the input tree in the resulting output tree. This jus-
tifies the use of a specific syntax for defining iterators, since this sub-language instructs
the type-checker to perform this abstract execution, makes it possible, and ensures its
termination.

The expressive power of Hosoya’s filters is limited, as they rely on regular expres-
sions. The kind of processing that these filters permits is, roughly, that of the map oper-

9 We use for filters a syntax slightly different from the one of XDuce.
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ator in functional languages. But, for instance, they are not able to express the function
that reverses a list. Also, type inference is less precise than that of map, transform,
and xtransform, and it is further penalised in the presence of recursion. To obviate all
these problems Kim Nguyén has proposed a more radical approach [50]. He proceeds
along the ideas of Haruo Hosoya and takes as basic building blocks the pattern match-
ing branches, but instead of building his filters by defining regular expressions on these
building blocks, Nguyén’s filters are obtained by applying the grammar of Definition 1
to them. His filters are then regular trees generated by the following grammar:

foo=el p=f | (KN | FIF ]SS

where e ranges over expressions and p over patterns. Their semantics is quite natural.
When a filter formed by just an expression is applied, then the expression is executed.
If the filter p — f is applied to e, then the filter f applied to e is executed in the envi-
ronment obtained by matching p against the result of e (failure of this matching makes
the whole filter fail); if (f1,f2) is applied to a pair, then each f; is applied to the cor-
responding element of the pair and the pair of the results is returned; the alternation
applies the first filter to the argument and if this fails it applies the second one; finally,
the sequencing applies the second filter to the result of the application of the first filter to
the argument. Note that with respect to the grammar in Definition 1, sequencing plays
the role of the intersection. Furthermore, as in Definition 1 there cannot be any capture
variable under a negation, so there is no negation filter in Nguyén’s filters. A limited
form of recursion ensures the termination of the type-checking and of the execution of
Nguyén’s filters.

As simple as they are, Nguyén’s filters have many of the sought properties: they are
expressive enough to encode list reversal, while the encodings of map, transform, and
xtransform have same precise typing as in CDuce. The algorithmic properties of their
type system are (at the moment of writing) still a matter of study.

3.7 Type and pattern-based data pruning for memory usage optimisation

XML data projection (or pruning) is one of the main optimisation techniques recently
adopted in the context of main-memory XML query-engines [46, 10]. The underlying
idea is very simple but useful at the same time. In short, given a query g over a docu-
ment d, subtrees of d not necessary for evaluating g are pruned, thus obtaining a smaller
document d’. Then q is executed over d’, hence avoiding the need to allocate and pro-
cess nodes that will never be reached by navigational specifications in g. As has been
shown [46, 10], in general, XML navigation specifications expressed in queries tend to
be very selective. Hence, significant improvements due to pruning can be actually ob-
tained, either in terms of query execution time or in term of memory usage (it is worth
observing that for main-memory XML query engines, very large documents can not be
queried without pruning).

The work we have described in Section 3.4 already provides optimal data pruning
for pattern matching. Even if the actual implementation relies on automata, we have
seen that it essentially consists in computing a set of equivalent minimal patterns. The
“minimality” is given by the presence of “_" wildcards that denote parts of the data that
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need not to be checked. It is clear that the set of the parts denoted by “_" and not in the
scope of any capture variable constitutes an optimal set of data to be pruned.

Of course, extending the technique developed for the compilation of patterns to
general and more complex queries (i.e. not just consisting of simple pattern matching)
requires further work. But this does not seems a far-reached objective: once more set-
theoretic operations should came to rescue, as the process should essentially reduce to
the computation of the intersections of the various optimal patterns met in the query,
and its distribution with respect to the data stored in secondary memory, so that to
individuate its optimal pruning set.

3.8 Type-based query optimisation

Let us conclude this overview by a somewhat vague but nevertheless important remark.
The type system presented in this work is very precise.

Concerning data description the XML components of Xtatic, XDuce, and CDuce’s
type systems are already more expressive than DTDs and XML Schemas. This holds
true from a formal point of view (see [48] for a formal taxonomy) but, above all, in
practice, t0o.'% For the practical aspect let us take a real life example and consider
the Internet Movie Database [42] whose XML Schema cab be found elsewhere [8]:
thanks to singleton types and boolean combinators, CDuce types can express integrity
constraints such as the fact that the type attribute of show elements can only be either
"Movie" or "TV Series", and that only in the former case the show element can contain
abox_office element, and only in the latter case it can contain a season element.

But the real boost with these new types is when typing queries and transformations,
since semantic types are far more precise than the type-systems of current languages for
XML. We have already seen in Section 3.6 the stringent requirements for typing itera-
tors: the type-checker must be able to compute the precise modifications performed on
each element the iterator meets. For instance the system presented here will deduce for
bibs/Book/(Title|Author |Editor) the type [(Title (Author+|Editor+))*] while,
at best, the corresponding XPath expression will be typed by the XQuery type system
as [(Title|Author|Editor)*], which is far less precise. A further example of preci-
sion of the type system is the typing of pattern variables which is exact, in the sense
that the type inferred by the type-checker for a pattern variable is exactly the set of val-
ues that may be assigned to that variable at run-time. The precision of the type system
is also witnessed by the practice, since in languages that use these semantic types and
patterns, downward casts are essentially confined to external data, while internal data
(that is, data generated by the program) have sufficiently precise types that no cast is
needed. Such precision gives a lot of information about the queries at hand and, as in
the case of the pruning presented in the previous section, it should and could be possible
to use this information for the optimisation of secondary memory queries. DTDs and
XML Schemas have already been used to optimise access to XML data in secondary
storage (in particular they were used to map XML into relations, e.g., [8,53]), but for

10 To tell the truth, some fancier aspects of XML Schema, such as integrity of IDREFs are not
captured. But this goes beyond the possibility of any static type system.
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semantic types/patterns this is a research direction that, as far as we know, has not yet
been explored.

4 Conclusion

With this presentation of regular patterns and types for XML we hope to have convinced
the reader that they constitute primitives worthy of consideration. To that end we de-
scribed various problems that can be solved with the help of regular patterns and types.
Apart from the interest of each problem, what really seems important is that regular pat-
terns and types constitute a unique and general framework to understand and solve such
a disparate disparate problems. Despite that, we do not believe that regular patterns are
the solution: as we said repeatedly, we think one should aim at a tight integration, or
even a unification, of path and pattern extraction primitives. We have discussed a query
language, CQL, and hinted at an object-oriented language, Xtatic, in which both prim-
itives coexist (even if one is defined in terms of the other), but the solutions proposed
for these languages are far from being satisfactory since the two primitives are essen-
tially disconnected. We aim at a deeper integration of the approaches in which, say, we
could build paths over patterns (so as to capture intermediate results) or define regular
expression patterns on paths (so as to perform pattern extractions at different depths) . ..
or maybe both. In this perspective the work on the composition of monadic queries [26]
that we cited in the related work section of the Introduction, looks quite promising. The
idea is simple and elegant and consists in concatenating monadic queries so that the set
of the nodes resulting from one query are the input nodes of the query that follows it.
Actually, the concatenation (noted by a dot and denoting composition) is not performed
among single queries but among unions and intersections of queries. This yields the
following composition formalism ¢ :=¢q | ¢.0 | GAd | &V o (where g ranges
over particular monadic queries, called parametrised queries) that closely resembles to
a mix of paths and pattern primitives.

All these considerations concern the extraction primitives, but the need of mixing
horizontal and vertical navigation concerns iterators, as well. For instance, Hosoya’s
filters are inherently characterised by an horizontal behaviour: it is easier to use a
path to apply a filter at a given depth, than to program the latter recursively so that
it can autonomously perform the vertical navigation. Such a problem may be less felt
in Nguyén’s filters, but we are afraid that using them to program a mix of vertical and
horizontal iterations would be out of reach of the average programmer.

As a matter of fact, this last consideration probably holds for patterns already: it
is true that it is easier to write a path than a pattern, and even if the use of the more
sophisticated features of XPath is not for the fainthearted programmer, nevertheless
simple queries are simpler in XPath. So if we want the use of regular expression patterns
to spread outside the community of functional programmers, it will be necessary to
find alternative ways to program them, for instance by developing QBE-style query
interfaces. This will be even more urgent for a formalism integrating both pattern and
path navigational primitives. It looks as a promising topic for future work.
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