In ASIAN '03, Lecture Notes in Computer Science, 7777:77-77, @ Springer, 2003.

Information flow security for XML transformations

Véronigue Benzakén Marwan Burellé, and Giuseppe Castagna

' LRI (CNRS), Université Paris-Sud, Orsay, France
2 CNRS, Département d’Informatique, Ecole Normale SupégeBaris, France

Abstract. We provide a formal definition of information flows in XML teor-
mations and, more generally, in the presence of type drivempeitations and de-
scribe a sound technique to detect transformations that leegy private or con-
fidential information. We also outline a general framewarlcheck middleware-
located information flows.

1 Introduction

XML is becoming thede factostandard document format for data on the Web. Its dif-
fusion however is characterized by two correlated parasloxe

1. Despite the increasing success of XML for exchanging aadipulating informa-
tion on the Web, little attention has been paid to charazgeaind analyze informa-
tion flows of XML transformations and, specifically, theiccseity implications.

2. As shown by the standardization process, XML documersrdrinsically typed
(cf. the notions of well-formedness and validity). Neveittss, the “standard” pro-
gramming languages used to manipulate them are esseniidilped, in the sense
that even when they are equipped with a type system the tits not use the type
information of XML documents.

If we consider the self-descriptive nature of XML documetitese paradoxes are less
surprising than it may seem: XML documents use tags to deBome content, and
these tags can be considered as type information about therddahey delimit. There-
fore, XML documents—even those that do not contain a DTD—eseme sense “self-
typed” constructions and this makes the definition of a tystesn for XML transform-
ers difficult. As long as a type system often constitutes alfssic step toward the defi-
nition of security analyses of transformations, this mastiply explain the absence of
formal tools to characterize insecure information flows.

Goal. The aim of this article is to define and characterize infororaflows in XML
transformations in order to single out potentially insecuwansformations, that is trans-
formations that may leak confidential or private informatido that end we study trans-
formations defined in a typed programming language for XMkutoents. There are
several candidates for such a language, since severalpttdrave been made in the
literature to overcome the second of the XML paradoxes,(Bl@gXML [21], JWIG [3],
Xtatic [11], XDuce [13], XQuery [8], and YATL [4]).

In this work we characterize and analyze information flowstfansformations de-
fined inCDuce [2]. There are several reasons to chafBece as target language for
our study. First and foremost, unlike other XML-orienteddaages{CDuce is general
purpose, in that it provides besides XML types several aflagatypes, enabling to pro-
gram general (even XML unrelated) applications. Seconayanthe known languages
for XML, it possesses the richest type algebra. Finallys#smantic and set theoretic
foundations make it a good candidate for defining or hostidgelarative query lan-
guage (see [2]) and, as such, it nicely fits our scenario dfajlqueries on the Web.

Problems. We said that the difficulty of defining type systems for XMLnsforma-
tions resides in the self-typing nature of the documentgdyoecisely, this self-typing

characteristic induces “type based” (or “type driven”) qartations: matching on doc-
ument tags roughly corresponds to matching documentsstygamilarly, producing el-
ements with different tags corresponds to outputting tesafldifferent types. In some
sense, typed XML transformations are akin to the applicatidypecaseconstructions
where the different cases may return differently typed ltedihis is accounted for in
CDuce by the use aflynamically boundaverloaded functions). The presence of type
driven computations makes the task of capturing infornmatiows much harder and
constitutes the main novelty and challenge of this studyatt we cannot resort to
classical data flow analyses since they are usually apmiedrhputational frameworks
whose dynamic semantics does not strictly depend on ruaypes. A second chal-
lenge is that information flows (more precisely, their ale®grare usually characterized
in terms of the so-calledon-interferenceroperty [12]. Our study demonstrates that
in the presence of type driven computations this notion rbesnodified so as to in-
clude static type knowledge, otherwise we end up with vawatranalyses. Finally,
the last challenge is to define flow analysis for a patternchiay based language—as
CDuce is—since this stands at least two obstadl@spattern matching is a dynamic
type-case, therefore we have to propagate type informéatitme subsequent matches;
(1) the use of a matching policy (first-match asGBuce or best match as in XSLT)
induces dependencies among the different components diesinadive pattern as well
as among different cases of a pattern-matching expressaibthis must be taken into
account when characterizing information flows (the solé édd&nowing that a pattern
did notmatch may produce a flow of information).

Contributions. The contributions of this article are essentially three:

1. it provides a formal definition and study of informationf®in the context of XML
transformations and, more generally, in the presence & tiyfjyen computations;

2. it describes a sound technique to detect XML documenstoamations that cause
insecure information flows, and formally proves its cornasts;

3. by defining security annotations and by relating variousl lof analyses (static/dy-
namic, sound/complete) to different query scenarios, dppses a general frame-
work for checking security of middleware-located inforioatflows.

Example. The development of our presentation can be illustrated kgxample. Con-
sider the following XML document which stores names andrgedaf the workers of a

<oxml version="1.0"2> fictive company. We imagine that while generic users

<company> are allowed to perform queries on this document, the
<worker> ; ; ; ;
<surname>Durand</surname> INformation about salaries must only be accessible to
<name>Paul</name> authorized users. Therefore we need a way to detect
rsalary>6500</salary> queries that may reveal information about salaries, in
<worker> order to reject them when they are performed by unau-
<surname>Duponds/sumname> - thorized users. A first naive technique to obtain it
<name>Jean</name> .
<salary>1800</salary> would be to mark the salary elements and dynamically
:C‘Og’r{(keer': reject all queries that contain marks in their result. Un-
<surname>Martin</surname> fortunately, this approach is clearly inadequate since
:gzgffluz'gnglgigf>> the information about salaries can be deduced as fol-
</W0rke,>y Y lows: perform a query that returns the list of all work-
</company> ers whose salary is greater tharand then iterate the

query by varyingn until we obtain as many different results as workers.

A more effective solution is to reject all the queries whossultaccessethe value
of the salary elements. For example consider the followivmdueries:

[Q1] Get the list of all workers
[Q2] Get the list of all workers whose salary is greater tkat600

The first query can be always safely executed while the seonadnust be forbidden
to unauthorized users. This can be obtained by enforcingeasa control policy. For
instance this is done in [7,6] by executing a query ovieaw (in the database sense)
obtained by pruning from the XML documents all data the owsfehe query has not
the right to access.

While enforcing access control is enough for simple potidike the above, it soon
becomes inadequate with slightly more complicated pdidi®r instance imagine that
instead of forbidding access to salaries we want to allowiga®wned by generic users
to access salaries (e.g. for statistical purposes) but inyathat prevents these queries
from associating a specific worker with her/his salary. Téusresponds to rejecting
all queries whose resuttependsoth on the value of salary elements and on that of
name or surname elements (but queries like Q1 or a queryehatns all salaries are
acceptable). To enforce this constraint we have to switcimfanaccessanalysis to a
dependencyfor information flow) analysis.

Causal security policies, such as above, can be formaligettido notion ofnon-
interference that can be restated for XML documents as follows: a set efehts
does not interfere with the result of a given query if for aflsgible contents of the
elements the query always returns the same result. In omnea consider the set of
all documents obtained from our XML document by replacing tdontent of salary
elements by arbitrary numeric values. Query Q1 is interfeeefree since when it is
applied to all these documents it always returns the samstré€duery Q2 instead is
not interference-free since its results may differ.

A precise definition of non-interference constitutes thst fatep of our approach
since it defines the set of queries that are safe. The follpwiap is to devise one or
more techniques to determine the safety/unsafety of gai€ftethat end we first classify
components that store confidential information by annogatiata elements by labels
of the form/;. The/ intuitively represents a security classification of theoimfiation
stored in the element (e.g., public or private, but it coudddmy label from a possibly
unordered set) while is a type that describes the static information publiclyilatde
about the data’s content (e.g. for salaries it records theetement stores an integer
in a given rang€) Next we recast the notion of non-interference in terms b&lad
elements, namely, we say that a transformation is free effiatence from all elements
labeled by, if its result does not change when the content of dfigbeled elements
vary over the type indicated in the label. Our research ptamsists of the definition
of three different analyses to be used as in the scenarioguir€il in the next page.
According to it an interactive query (that is, a query thaswaitten to be executed just
once) will first pass through a complete static analysist fijacts transformations that

3 While for this specific example it is still possible to resmriaccess control techniques (execute the query
on two different views obtained by stripping in one all searand in the other all names and surnames)
these sole techniques soon become insufficient, as showrelexample in Section 6.

4 We do not require the existence of any order on such labelsuirframework security policies will be
expressed in terms of presence/absence rather than eetaitier of label), therefore our labels must not
to be confounded with the security labels used in multileesurity systems

are manifestly unsafe) and then through a sound dynamigsisalnstead, programs
that are expected to be used several times will pass througttla of sound static
analysis (possibly preceded by a complete analysis) béfirgy executed without any
further dynamic check. In this paper we concentrate on tnedaynamic analysis for
CDuce programs, that is, the grayed part of the figure.

Outline. We start in Section 2 by a brief overview of the functionaleof CDuce.

In Section 3 we formally define the non-interference propéot CDuce programs
and introduceCDuce; a conservative extensidmf CDuce in which expressions oc-
curring in a program may appear labeled by security labedsti@n 4 is the core of
our work. It defines the dynamic analysis that detects iaterfce free programs. The
idea is to define an operational semantics @uce: such that(i) it preserves the
semantics of unlabeled programs &fid) it ensures that whenever a lalfels absent
from the final result of a program, then the program is freeméiference from all
expressions labeled b§ Thanks to these properties the analyzer has simply to la-
bel and run a transformation and to refuse to return the baial) result when this
contains unauthorized labels. Of course
the heart of the problem s label propa
gation in pattern matching, whose def
inition is made difficult by the type :
driven semantics, the presence of sub:
typing, and the use of a first-match ‘
policy. In Section 5 we prove that our
analysis satisfies the aforementioned
properties; this goes through prov;
ing thatCDuce. satisfies the subject-
reduction property, that it preserves L Sound Dynamic analysis
the semantics ofCDuce, and that A

it constitutes a sound analysis for Evaluami/Exewﬁon .
the non-interference property. The lag

two points present some technical dif:
fiCUItieS (W|th0ut any praCtical im' F|glAna|ys|S scenarios

pact) due to the type system®@Dbuce

that does not satisfy the minimum typing property and induceCDuce: a non-
deterministic semantics: thus the two properties must beqat to hold forall possible
reductions of a program. In Section 6 we comment a more sigmfiexample that il-
lustrates some security policies that cannot be expressiedms of access control. We
conclude our presentation by sketching in Section 7 sonearek perspectives.

Transformations
"one time"

Programs/methods
"many times"

error

Complete Static analysis|-------- >~ Sound Static analysis

—

Related work. Security issues for XML have been addressed by several warks
none of them tackles the problem of information flows. Theyesi focus on access
control (e.g., [10,7,6]) or on lower level security featsigich as encryption and dig-
ital signatures for which commercial products are beconzingjlable (e.g [14]). For

instance, Damiani et al. [7,6] detect accesses to confalatdia by applying a static
marking of the documents and by dynamically stripping offkea elements. In other
words, they deal with access control (confidentiatais accessedor computing the

5 The extension is conservative with respect to both the tigpery and the equational (reduction) theory.

result) whereas our approach accounts for implicit flowsifdentialinformationcan
beinferred from the result) like the detection of covert channels. Tames holds true
for the work of Gabillon and Bruno [10] where access contsgdérformed by running
queries orviewsof the XML documents dynamically generated by strippingufau-
thorized data. Other works devise flow analyses for progrargianguages for XML
(e.g., [3]) but these analyses are not developed to veriyrig properties.

The study presented here draws ideas from several sourbesdyihamic prop-
agation of labels was first introduced in Abadi et al. [1], wha dependency anal-
ysis for call-by-name\-calculus is defined by extending the reduction semantics to
labeledA-terms. Although their work was not motivated by securitggens (they ad-
dress optimization issues) what we describe here esdgradpts their technique to
type driven reductions. Label propagation was successiugd for security purposes
in later works, for instance [5,15,16,17]. In particular,[lL5] Myers and Liskov use
labels for the same purposes as we do; however their secuaitiel is defined for and
relies on languages that explicitly manipulate labels,levii our or in Abadi’s et al.
approach, properties are stated for an unlabeled languabkhbels are introduced on
the top of it as a technique to identify (unlabeled) prograassfying these proper-
ties. Finally, all the cited label-based approaches furetdally differ from the study
presented here in that they do not account for type driveraséins (nor for pattern
matching) distinctive of XML transformations.

The presence of type driven computations preclude us thefusassical definitions
and detection techniques of non-interference (e.g. thd®®0]), since in this case ig-
noring static type information would yield a far too weak défon of non-interference.
Actually, our notion of non-interference differs from thiassical one in that the latter
usually relies on a hierarchical structuring of securityels (high-level inputs do not
interfere with low-level outputs) while here we spot noteitierence of single pieces
of code (the value of some data does not interfere with thdtrefa query). This dif-
ference must be understood as the fact that we want to ckazcthe flows in a single
transformation while classical non-interference rathmgles to system-wide flows.

2 The CDuce language

CDuce is a functional programming language tailored to theipdation of XML
documents, for which it uses its own nota<company>|

tion. The XML document in the previous <worker>l .
<surname>"Durand

section becomes iiDuce the expression on <name>"Paul”

the right. The syntax is mostly self describ- _ <salary>[6500]]
<worker>[

ing: tags are denoted by angle brackets and <surname>"Dupond"
are followed by sequences. Sequences are zgggfi[i%%%”
delimited by square brackets and in this case<WorkerZ[_
are formed by other elements, but in general :i:m221§>lehga“'n
. . u
they may contain expressions of any t'ype <salary>[1200]]
(note that some tags are followed by strings
as the latter are encoded @uce as S€- yype Company = <company>[Worker]
quences of characters). This expression hage \éVorker = <worker>[Sr§me Name Salary]
. . . type Sname = <surname>String
the typeCompany defined nght belowit. The gne Name = <name>String
types of sequences are defined by regular expe Salary = <salary>[Int]

pressions on types. For example, the first type declaratmiessthat a company is a
sequence tagged Bycompany> and composed of zero or more worker elements. Had
we defined the type of workers as follows:

Worker2 = <worker ceo=?Bool>[Sname Name Salary (Email | Tel)?]

then workers elements would have an optional (as indicaged®) boolean attribute
and list a last optional element that is either of tyfaeor of type Email. Note also that
Worker is a subtype ofworker2 since every value of the former type is also a value of
the latter type. The queries defined in the previous sectiorbe expressed as:

[Q1:] let <company>x = mycompany in transform x with <worker>[y z _] 0 [<worker>[y z]]

[Q2:] type MoreThanMe = <salary>[1600--*]
let <company>x = mycompany in transform x with <worker>[y z MoreThanMe] O [<worker>[y z]]

wheremycompany is a variable that denotes our previctsmpany> XML document.

In the first query the let expression matchegompany against a pattern that binds
the variablex to the sequence of worker elementsrafcompany. The transform ex-
pression applies to each element of a sequence a patterrethats a sequence and
then concatenates all the results (non matching elemeatsiraply discarded). In this
case it transforms the sequencenadrker elements into a sequence<fiorker>-tagged
elements containing just surname and name elemgrasdz respectively capture the
surname and name elements, while theattern matches every value). Had we defined
the type Company as <company>[(Worker|Client)*], that is a heterogeneous sequence
of workers and clients, the@1 would still have returned the same result as transform
would discard client elements. The qued is similar, with the only difference that
the transform pattern matches only if the salary elementymsMoreThanMe, that is,
if its content is an integer greater than or equal to 1600.

A detailed presentation dDuce is out of the scope of this paper. The interested
reader can refer to [2] and try the interactive prototypevatv.cduce.org. For the pur-
pose of this work it will suffice to say that a@llDuce constructions are encoded in the
following core language defined in [9]:

ti=a|C|paC Cu=A|-C|CVC|CANC Au=t—>t|itxt|b|0]1

We uset to range over types, over boolean combinationsg, over atoms, and over
basic types (Int, Char, ... and1 denote respectively the empty and top type, and to-
gether with arrows and products they form the atoms of ahjtboolean combinations
(negation, union, and intersection types) and recursipedya.C.” The expressions of
the language are:

ei=c| x| fun f1s05tn=8) (1) e | erey | (e1,e2) | matche with pyOeq| podes

The syntax is essentially that of a higher-order functidaagiuage with constants, pairs
and pattern-matching. What distinguishes it from simitarduages is the definition of
patterns (given later) and of functions. In the latter ndiat the name of a function
(which may appear in its body as functions can be recursv@ninotated by a non
empty list of arrow types (this list is called tlirgerfaceof the function). The presence

6 The results the two queries are the central and right exjoresén Figure 4 from which we erase all the
label annotations of the forry:, m¢:, orn;:

7 The distinction between atoms and combinations is intrediia order to avoid meaningless recursive
types such aga.a V o

of more than one arrow type declares the overloaded natuteedfinction, which has
all these types, thus their intersection as well (see thiagyqule for functions later on).

The operational semantics is defined in terms of th&’sgftvalues ranged over by
v and formed by altlosedandwell-typedCDuce expressions of the form

v = ¢ | fun fisiitaos) (1) e | (vg,00)

The semantics is given by the reduction relatienwhich is defined as follows:

(v1v9) ~ elv1]/ f;va /) (v1 = funfC)(a).e)
(match v with p1Oeq| poOes) ~ eqr[v/p1] (v/p1 # 2)
(match v with p1[|€1| p2|:| 62) ~ 62[7)/]32] (v/p1=2902, v/paA£2)

where(? denotes the matching failure anfd/p] is the expression obtained by applying
the substitution;/p to e. The first rule is standard-reduction for recursive functions.
The second rule states that if the first pattern matches,ttiepaxpression of the first
branch is executed after having applied to it the subsbituii/p, of the variables cap-
tured byp; when matching. The second rule states that the same happens for the
second branch when the first pattern fails and the seconchemfthe static type sys-
tem of CDuce ensures that the patterns cannot both fail).

Reductions can take place in aeyaluation contextA context denoted by is an
expression with a hole substituted for a sub-expressiorevatuation contexidenoted
by £, is a context whose hole is not in the scope of an abstractiaf @ pattern and
which induces a (leftmost) evaluation order on applicatiand pairs. Formally, ~ ¢’
implies&le] ~ £[e'], wheref is defined as

Ex=1]](&e)] (v,€)]| Ee|vE | match & with pyOeq| poOes

As anticipated, key definitions f@tDuce are those of pattern and pattern matching. A
regular tree built from the following grammar

pu=a | t | p&pe | plp2 | (pp2) | (z:=0)

is a pattern if(i) on every infinite branch of it there are infinite occurrencethe pair
constructa?, (ii) patterns in an alternative capture the same variablegiangatterns
in a conjunction capture pairwise distinct variables. Témantics of patterns is defined
by the matching operation: the matching of valuegainst a patterpis denoted by /p
and returns eithef2 (matching failure) or a substitution from the variablegonto V:

v/t ={} ifv:t v/t =12 if v:~t

v/ ={x — v} v/(x:=¢) ={z ¢}

v/p1lps = v/m if v/p1 £ 0 v/p1lp2 = v/p2 if v/pr =0
v/p1&ps = v/p1 @ v/ps v/(p1,p2) = 2 if v is not a pair

(v1,02)/(p1,p2) = v1/p1 ® v2/p2
wherey; ® 72 is 2 when~; = 2 or v = (2 and otherwise is the substitution
v € Ybomn)ubom:) defined asy(x) = vi(z) whenz € Dom(y;)\Dom(y;), as
7(#) = ~2(x) whenz € Dom(y2)\Dom(y), and asy(z) = (m()72(x)) when
xz € Dom(~y;) N Dom(ys).

The semantics of patterns is rather intuitive. There arepgossible causes of fail-
ure for a pattern matching: a type constraint which is noisatl by the matched

8 Infinite trees represent recursive patterns while the dmrdon infinite branches endows the set of patterns
with a well-founded order that ensures termination for tlywathms of typing and matching.

(var) I'kFei:t1 I'keo:ts (palr) I'kFe :t1 I'kFeos:ts (a |)
'tz:I'(x) 't (e15e2) i t1 X t2 I'teies:tr oty PP
(fors1 = sAp1f, sa =sA=1pif)
I'Fe:s< V1 p: I (si/pi) Fei:t;
< lp_lf Up2§ I (si/pi) (match
I' - match e with piOe;| p20es : VMS#O} t;
Vi) I(x:t:i),(f: A=y ,ti—>si)bFers; .
) I). U Azt) (absty ~LFe:sst (subsum
[E fun fa=sitn=a) () oo Aot — s I'te:t

Fig. 2. Typing rules

value, or a pair pattern applied to a value that is not a pdie <ernative pattern
p1|p2 has a first-match policy: the object is matched agajnstf and only if the
matching againsp; fails. When a variabler appears on both sides of a pair pat-
tern, the two captured elements are paired together as ssqatéy the third case of
the definition of®. The default-value patterfr := ¢) usually appears in the right-
hand side of an alternative pattern to return a default valben the left-hand side
fails. The combination of multiply-occurring variableschaahefault-value patterns within
recursive patterns allow very expressive captures: folaimse, the recursive pattern
p = (z&Int,p)|(L,p)|(= := nil) bindsz to the sublist of all integers occurring in a het-
erogeneous list (encodeédla lisp) when this is matched against it. On the whole, all
a pattern does is to decompose values in subcomponentsr¢ghbband to variables
and/or matched against types, whence the type driven catigiit

Values are also at the basis of the definition of subtypindeé&d, the key charac-
teristic of CDuce (from which all others derive) is that the subtypingtieln is defined
semantically via a set theoretic interpretation of the g/pehis interpretation is very
easy to define: a type is interpreted as the set of all valsdtve that type. So for ex-
amplet; x t, is the set of all expressior{s; ,u») wherew; is a value of type;; t; — t,
is the set of all closed functional expressida f¢1i-*=)z)e that when applied to a
value of typef; return a result irt,; union, intersection, and negation of types have the
usual set theoretic meaning. This (semantic) interpiatasi used to define the (syntac-
tic) subtyping relation: a typeis a subtype of if the interpretation of is contained in
the interpretation of.

Typing rules forCDuce are summarized in Figure 2. For a more detailed exptanat
the reader can refer to [9]. Rulesa(), (pair), and 6ubsun are standard. The rule
(app)) is less common, since one usually expé¢t be of the forms; — s, and the
rule to infer for the application the type provided that, < s;. However because of
the presence of boolean combinatiorsuld be for example of the forif{s; — u1) A
(s2 = us)). To that end we introduce a partial binary operator on typdstuitively
t e s denotes the least type (if it exists) such that s — (te s) and the ruledppl) does
not fail only if the operator is defined (in practice, we sulngd; to the least arrow type
with domaint,). So, for example, if our function of typs; — u1) A (s2 = u2)) is
applied to an expression of type; V s,), then the type system will infer that the result
of the application has typés; — u1) A (s2 = uz2)) e (s1V s2) = (ug V uz). Similarly
we introduce two projections operatars andm, such thatr; (¢) (respectivelyrs(t))
is the least type that makes< 7, (¢) x 1 (respectivelyl x 5 (t)) hold. It is important
to note thas, 71, andm, are all computable (once more see [9]).

Rule @bstn is not very standard, either. It states that a (possiblyloaeed) func-
tion is typed by the intersection of all the types declareiisrinterface: we repeat the
check for each type in the interface and handle the typingairsive calls by recording
for f the expected type. Actually the rule in Figure 2, is a simgdifion of theCDuce
rule in [9], the latter is very technical and makes the minimtyping property fail (so
that there does not exist a canonical type representingehefsll types of a given
expression). However, we will see that this does not affactamalysis and, therefore,
that the rule defined in Figure 2 is enough.

Finally the rule (natch states that the type of a matching operation is the union of
the types of the branch&sand for that it uses several auxiliary notatioasdenotes
syntactic equivalence of types whereaslenotes the semantic one+ ¢ only if s and
t denote the same set of values)p denotes the type environment that assigns types to
the capture variables a@f when this is matched against a value of typ@p§ denotes
thetypeaccepted by, that is, the type whose interpretation is the set of all @alfor
whichp does not fail]p§ = {v | v/p # 2}. Again,] § is computable. The type system
is sound since it satisfies the subject reduction propdriy:t e : ¢ ande ~* €', then
I' + €' : t (where~* means “reduces in zero or more steps”).

3 Non-interference and labels

The first step toward the definition of our security analysishie characterization of
information flows. In general, these are difficult to defind #rerefore it is customary to
rather characterize their absence viatioa-interferenc@roperty: given an expression
e, a sub-expressio#l occurring ine does not interfere witle if and only if whenever
e returns some result, then also every expression obtaineddiby replacinge’ by a
different expression yields the same result. Note that(thfsrmal) definition does not
involve types and because of that it is unsuitable to desardn-interference for type
driven semantics. A definition of non-interferenceuce transformations must take
types into account.

Types have been widely used in previous work on languageehaformation-flow
security (see [18] for a very broad review) and non-interfere definitions have been
given for typed languages. What is new in our framework id tha essence of the
definition of non-interference relies on types. In partaauthanging the type of an ex-
pression occurrence in a program can change the non-irdade properties of that
expression occurrence. Therefore our definition of noeffietence is statedith re-
spect toa typet:

Definition 1 (Occurrence).Lete be aCDuce expression. AaccurrenceA of e is a
(root starting) path of the abstract syntax treeeofif A is an occurrence of, we use
e to denote the sub-expressioneobccurring atA, andC¢ [] to denote the context
obtained frone by inserting a hole at\. Thuse = C¢ [ea].

Definition 2 (Non-interference w.r.t. t). Let e be aCDuce expressionA an occur-
rence ofe, andt a type. The occurrencd does not interfere i with respect tor if
and only if for allCDuce values andv’, if @ F o':t ande ~* v thenC4 [v'] ~* v.

Let e be the application of a query to an XML document that storesesmformation
of typet in an element located at. We want to define when the query allows one to

9 Precisely, of the branches that have a chance to match sttfabse for whichs; ¢ 0. This distinction
matters when typing overloaded functions: see [9].

infer information aboutA more precise than its type. The definition above states that
the information stored i\ is not disclosed if the fact of storing any valukof typet
in A does not change the result of the query.

The definition is reasonable as it simply encompasses thie kteowledge about
the type of an occurrence. For instance, on our exampletitsthaat a query is safe
(i.e. interference free) if and only if it cannot distingisvo documents that contain
two differentintegersin corresponding salary elements. Similarly, a query thstirg
guishes documents with integer salaries from documentshichnsalaries elements
contain boolean values is safe, tathis is reasonable to the extent that such a test
cannot in practice be performed as it would contradict thécsknowledge we (or an
attacker) have of the document. This new definition indutssavery nice interpreta-
tion of security, according to which transformation is safe if it does not reveal (about
confidential data) any information that is not already statly known

A last more technical point. In Definition 2 we tested noreiférent occurrences
against values rather than against generic expressions.sirhplifies the definition
inasmuch as we do not have to take into account the typinghanpdssible capture of
variables that are free in the expressions inserted in theegb However, this does not
undermine the generality of our definition as shown by Prijoosl:

Definition 3 ((I"/©)-contexts).Let " and® be type environmentsandt’ types, and
C[] a context.C[]is a (I'/O,t/t")-context if" - C[] : t is provable under the
hypothesis tha®’ I- []:¢' holds for every extensiafl’ of 6.

Proposition 1 (Generality).Let e be aCDuce expression such thatk e : t. Let A
be an occurrence that does not interfereeinv.r.t. t'. Then for allI”’, I'", and €', if
' r,\r're:t, e~*v,andCq [Jisa((I",I")/I'", t/t")-context, ther®s, [¢'] ~*v.

Our next step consists in defining a way to identify occuresndhis can be easily
obtained by marking_Duce expressions by security labels. Thus we defiBeice;
obtained fromCDuce by adding expressions of the fory “ e”, wheret is a type
and/ is a metavariable ranging over a gebf labels. As anticipated labels are indexed
by types that record the static knowledge of the expresdigssae. The type is used
to verify non-interference of the expression. This is cdesed not to interfere with a
given computation if the fact of making the labeled occuceewary over the values of
the type specified by the label does not affect the final regulie computation.

Of course, this is sensible only if the fact of making the goence vary over such
a type yields well-typed expressions. In other terms, ageasigd by Proposition 1,
the type indexing a label must be a viable type for the expres-
sion marked by the label. In order to formalize this properey 't e:s s<t
endowCDuce; with a type system formed by all the typing "I (4;:e) : ¢
rules of CDuce, summarized in Figure 2, plus the one on right.

By definition aCDuce: expression is &Duce expression where some subexpres-
sions are marked by a list of labels. We tip the function that transforms the former
into the latter by erasing all the lists of labels and we deiifdby | |.

Technically, we consider the syntax @Duce; as a description of a decoration of
the syntax tree ot in the sense that the (lists of) labels are not nodes of theasyn

10 More interestingly, had we defined salaries to be of typalary>[1600- -*], then also the querg2 would
result safe (i.e. interference free).

trees but tags marking these nod&3he reason for this choice is that in this way the
same pathA denotes an occurrence of@uce: expression and the corresponding
occurrence in the stripped expression. In this way we awwoidefine complex map-
pings between occurrences of expression€uce: and the corresponding ones in
the stripped version. In particular this makes the follagyoroperty hold

Proposition 2. Lete be aCDuce; term with an occurrence, then(i) lea| = |e] 4
and(ii) [C4 [ea]] = €57 [le] 4]
which yields a simpler statement of the non-interfereneetbm (Theorem 2).

4 Security analysis

Our analysis is defined by endowiri@Puce: with an operational semantics defined
so that(i) it preservesCDuce semantics on stripped terms~* v = |e] ~* |v])
and (i7) label propagation provides a sound non-interference aigafpr CDuce ex-
pression (i.e., if a label is not propagated, then the labe¥pression does not interfere
with the result). It is not difficult to define a trivially sodranalysis (just propagate all
labels}2. The hard task is to define a fine-grained analysis that patpags few labels
as possible. Needless to say that the core of the definitiabé propagation in pattern
matching, where several kinds of information flows are fussi

e Direct (or “explicit”) information flows, due to the bindingf labeled expressions
to variables, such as in: match e with <worker>[x y <salary>[z] 10 ...z... | ..
where the value of the salary is boundzand flows through it into the first branch
expression.

e Indirect (or “implicit”) information flows due to patternghe information flows by
the deconstruction of the matched value and/or the sdtiisfaof type constraints,
such as in: match e with <worker>[x y <salary>[1--900] |0 e; |
where the information of the range of the salary flows iato

e Indirect information flows due to use of a first match poliayfarmation can be
acquired from the failure of the previous branch:

match e with <worker>[x y <salary>[1--900]] Je; |_ Oe2
where the information that the salary valuaiin (1--900) flows intoe..

The last example also shows that non-interference is uddbld as the non-interference
of the value of the salary element is equivalent to decidimgdquivalence oé, and
e> (CDuce is Turing-complete).

Once we have established whether a label must be propagated, diere comes
the problem to decide with which type we have to decorate iasamot to infringe
subject-reduction. Consider the example of the applioatioca labeled function value
to another value(/,_,;:v1)v2. Surely the function, seen as a piece of data, interferes
with the computation. Therefore its label must be propatjadesound solution is to
reduce the application té,:(v1v2), for a suitable choice ofi. Here the choice fon
is easy: the type system ensures thais of types therefore it suffices to take = t¢.
When the type of the label is not an arrow but a generic typthen we resort to the
operator and set equal tot’ e s’ for somes’ such that; : s

11 More formally we consider that @Duce, term denotes a pair formed by@uce term and a map from
the (root starting) paths of the abstract syntax tree oféhm to possibly empty lists of labels.
12 The analogous trivially complete analysis is the one thasdwt propagate any label

1)//1‘ = Dok

1)//(1‘ = (’) = Dok

cflp = Dok if celpf

cfp = Drai if ¢¢lpf

(b :v)p = Drai if tAlpf~0

(Ly)//t = Gok if (t'<t)

(Ly s v //t—f (vft) if At 20)A(£1t)

(1)1 V2 //t = 1)1//7T1 (t @(U?//ﬂQ t)) if 7T,‘(t) are defined andi//m-(t) 75 Diail
(v1,v2)fJt = Brail otherwise

(Fun fET-t) (1)) ft = Dok if fun FCE1tn) (1) ./t # 0

(fun fC1 1) (2).e) 1t = Drai if fun flritn) (g).e/t = 2

v pr1&ps = Brai if (v1f/p1) = Btail OF (V2 P2) = Brtail
vfpi1&ps = (vffp1)Q(v)p2) otherwise

by =) (p1,p2) =€ (vff(p1,p2)) if (EAUp1,p2)f 2 0)

(1)1 U")//(php") = Dail if (U1//p1) = Diail OF UQ//p') = ail
(1)1,U2)//(p1,p2) = (v1//p1)Q(v2p2) otherwise

(fun FC10) (z).0) [(p1,p2) = Brail

gft sv)pilp2 = ((€e = v)[[p1) if ¢ <1pif

bz v)fpilpe = ((4)//m) if tAlp:1f =0

by = v)prlpz =€ (vffpr|p2) otherwise

vfpilp2 = Dok if vfp1 = Dok

vffpilp: = Brai it v#cv# v’ andvifpr) = (v2f/p2) = Brai
vffpilp: = (vffp1)Q(vjfp2) if v#c,v# b, vffp1 # Dok, and

(vffp1) and(v//p2) are not both equal t@s,;

Fig. 3. Propagating labels with patterns

Formally, we start by(i) definingCDuce. values, which are obtained by adding to
the definition ofCDuce values the productian ::= /; : v; (i7) defining the semantics
of v/t for the new values in the following casé; : (v1,v2))/(p1,p2) = v1/p1Qva2/p2;
and(7i7) adding to evaluation contexts the productior= ¢, : £. Note however that
we do not define a pattern for labels, as we want labels to ibesizrformation flow,
rather than to affect it.

Next we define the operatof™ that calculates the set of labels that must be prop-
agated at pattern matching. More preciseffip denotes the list of all labels that must
be propagated when matching expressi@gainst patterp, and is defined in Figure 3
(where “@" and “::” are the “append” and “cons” list operagprespectively). This def-
inition forms the core of our analysis, therefore it is wosttplaining it in some details.
Let L£(e) denote the set of labels occurringdnthen all the labels im /p are contained
in L(v). The idea is to collect imJ/p all the labels that mark expressions whose value
mayaffect the result of the matching. Intuitively, the defiaitiof “/ " must ensure that
if a label ¢ in £(v) is not inv/p, then for allv’ obtained by substituting in some
{-labeled occurrences by “admissible” (i.e. that respeetyipe constraints indexing
values, the match’ /p either always succeeds or always fatls.

The first two cases in Figure 3 are the easiest ones insofarables and default-
value patterns always succeed; therefore no label needspolpagated.

Matching a constant is also simple as there is no label toguate. Note, however,
that we use an index to distinguish two different cases ofprmpagation: the case in
which labels are not propagated because the pattern ahadgqd:,;) and the case

13 However, this is not enough to ensure non-interferenceinstiance considetlsen : v)J(true&(x :=
1))|(false&(x:=0)) which always succeeds.

in which they are not propagated because the pattern alwmyesd ¢.k). When we
match a labeled value against a patteand the type of the label does not intersect the
type accepted by, then we know that making varying overt always fails.

The case for a type constraint pattern is the key on&asce’s pattern matching
is nothing but a highly sophisticated type-case with captariables: i’ At ~ 0, then
we are in the previous case sgt always fails; ift' < t, then for every of typet', v/t
always succeeds so no label is propagated; otherwise,|fof ial the intersection of
andt’ v'/t succeeds, while foo’ in their difference it fails, thus we propagateand
check for other labels.

When the matched value is a pair then we propagate the unitredébels prop-
agated by matching each sub-value against the corresgpptbjection oft provided
that: (i) the projections are defined, because otherwise we are mgtathpair against
a type with no product among its super-types (esg+> t) and the pattern always
fails, and(ii) none of the two sub-matching fails, because the whole patteuld
then fail and therefore it would be silly to propagate theslalof the other component.
Note that this case uses the distinction betwegp and @t,i, the other cases being
in conjunction and pair patterns—which fail if any sub-ckégils—and in disjunction
patterns—which fail if both sub-checks fail—. Since thesenb pattern that decon-
structs functions, these can be soundly matched only agsjmess (or captured). Note
however that the type of a function value is fixed by its irded. Therefore even if we
make labeled expressions occurring in the function vaig,dbes not affect the type of
the function, ergo the result of pattern matching. For taason(fun f (1) (z).e) Jt
is dealt in the same way as constant values. The cases ohobinju patterns as well as
those for pair patterns need no particular insight. It mayvoeth just noticing that in
the first case of pair patterriss propagated also when the pattern always succeeds (i.e.
t < 1(p1,p2)$) as the simple fact of deconstructing the pair may yieldrietencé?.

The cases for alternative patterns are more interestinigyegstake into account the
use of the first match policy. In particular in the first two atjons for match, propaga-
tion is calculated only op; or p» according to whether the first match always succeeds
or always fails. If instead the result cannot be determingl wertainty, then the label
is propagated and the search for other labels is continued Al remaining rules are
straightforward.

Now that we have determined the labels to propagate we havkadose the type
constraints to decorate them with. Letoe a list[¢1 /2 ... ("] of labels,t a type, and:
an expression, we use the notatidr);:e to denote the expressidh : (7 : ... (7 : e
obtained by prefixing by thet-indexed labels irl.. This notation is used to index the
labels deduced by/* and define the operational semantic€difuce as follows (a bet-
ter definition can be found in the on-line extended versiailalle atvww.cduce.org):

v1v2 ~ e[v1/ f;v2 /) if vy =funfC)(x).e

(br = v1)v2 ~> Lies 1 (V102) if @ vy : sandt e sis defined

match v withpiOei| p2Oes ~ (vffp1)e : ex[v/p1] if v/p1 # 2and@ Feifv/p1] : ¢
match v withpiOei| paOea ~ (vfflp15)e : (vffp2)e : e2[v/p2] if v/p1=02,v/p2#£2
and@ + ea[v/pa] : t

The rule for “unlabeled” applications does not change, alhile one for applications

14 For example , considélgeax ¢ : v)f((true&(x := 1))|(false&(z := 0)), _)

<company>[
<worker>[

<name>ngy;ing:"Paul”
<salary>[¢,,:6500]

<worker>[

<name>nsgying:"Jean"”
<salary>[¢),;:1800]

<worker>[
<surname>mging:"Martin”
<name>ngying-"Jules”
<salary>[¢),;:1200]

]

<surname>mging:"Durand”

<surname>mging:"Dupond”

<company>[
<worker>[

<surname>msgying:"Durand"

<name>ngying:"Paul”

]

<worker>[

<surname>msgying:"Dupond"”

<name>ngying:"Jean”

<worker>[
<surname>msgying."Martin"
<name>nsgying."Jules”

<company>[
[<worker>[Surname Name] :
<worker>[
<surname>mging:"Durand”
<name>ngying:"Paul”

1))

(£<Worker>[Surname Name] :
<worker>[

<surname>msgying:"Dupond"”
<name>nsgying:"Jean"”

D)

]

Fig. 4. Labeled XML document and the results of queries Q1 and Q2.
of a labeled function changes as we explained early in tlisae Matching clearly is
the key rule. Branch selection is performed a€buce but the labels determined iy
and indexed by the type of the reductum are prepended to suét.rin particular if the
first branch is selected, then we just propagate the labelg;in, as the second pattern
is not even checked. But if the second branch is selectediiesesult is prepended by
bothv/p, andv J1p:§: while the first set of labels highlights the first of the twaés
of indirect flows present i€Duce, namely, those due to pattern matching, the second
set of labels fingers the other kind of flows possibl€Duce, that is those generated by
branch dependency induced by first match policy. Since wextad the second branch
es knows thatp, failed and, therefore, that the matched vaugoes not belong to (the
semantic interpretation of) the tyef. Therefore, we must also propagate all those
labels inv whose content can be (even partially) deduced from theréaibdi p,. By
definition these are the labelsof(— 1 p1§) or equivalently (see Lemma 2) off {p:§.

The reduction semantics we obtain is non deterministicesincase of reduction of
a pattern matching or of a labeled function we resort to tpe tgystem for determining
the type decoration of the reductum'’s labels (and we know@Baice type system does
not enjoy the minimum typing property). As a matter of fagts, have not described a
single analysis but a whole family of analyses. This is $ligannoying from a theo-
retical viewpoint since we have to prove tadl of them are sound so that, in practice,
we can use any of them. However this has no consequence Uredpractical aspect:
first, since we deal with a finite number of labels and types élways possible to find
the best analysis; second, since this problem alreadyag#itheCDuce type system
a choice was already made by the implementation. So we fabh@nimplementation
of CDuce and use in Figures 3 and in the operational semanti€®ate; the types
inferred by theCDuce’s type-checker: we end up with the best analysis (irfatraly
described above) that is sound with the current implemiamtaf CDuce.

Let us finally apply the analysis to the queries of Sectiomlorder to trace how
information of each data flows in the queries, we label theetrof each sub-element
of <worker> elements by a different label as shown on the left expregsidigure 4.
The results of the analysis @1 and Q2 respectively are the central and right expres-
sions in Figure 4> Note thatQ1 propagates only the labels of name and surname (the

15 sequences are encoded by right associative nested paid emchil, XML elements<tag attributes-s
become tripleq‘tag, (attributes s)), while transform is obtained by iterating matching expressions on the
elements, and encapsulating the results into a sequence.

propagation is a consequence of an explicit flow), thus tredyais has correctly in-
dicated that it is safe. The analysis QP instead propagates also the salary label and
therefore is rejected as insecure. The propagatidn@fiers[surname Name] IS Caused by
the “/” in the first match rule inCDuce. s operational semantics. In particular when
matching the pattern of transform against an element, ihe e for pairs in Figure 3
decomposes the test over each projection, one of whichletésy say in the first loop,
(£1nt:6500) J MoreThanMe which by the second rule for types in Figure 3 is equal to
£. Note also how the position of the label denotes differentkiof properties: for ex-
ample we specifiedsalary>[¢ :1200] since we wanted to capture only transformations
that depended on the content of the salary element, while ifather had specified:
<salary>[1200] we would have captured also transformations that test tesepice of
this element (in the case it were optional).

We want to stress that our analysis can check very complaxiggentailments.
As explained in the introduction, the independence of tisailtdrom salary can also
be ensured by access control techniques or by strippingyseaddues from the source
document. However, our technique allows one to check thext éa query can access
both salaries and names it cannot correlate them. To that grstisuffices to verify that
the presence of a or of an label in the result implies the absence of thabel, and
vice-versa. According to this policy query Q1 would be a¢edisince/ does not occur
in the result while query Q2 would be rejected since all the¢Habels are in the result.
A query that plainly returned the list of all salaries (witlta@ny name or surname) or
some statistic about them, would be considered safe, toce ienerally, by using label
propagation and some logic (e.g. propositional one) oni¢alve can define complex
security policies whose verification, trivial in our techoe, would be very hard (if not
impossible at all) by standard access control techniqueseashow in Section 6.

Finally, we can recast the analysis scenarios we outlingdearintroduction (Fig-
ure 1) to the present setting. A sound static analysis forsgatem is an analysis that
computes labels that will be surely absent from result ofdjx@amic analysis, while a
complete static analysis will determine labels that willseely present in the same re-
sult. Therefore, here completeness is stated with respeletdynamic analysis rather
than with respect to the non-interference property. Witt tespect the work presented
here constitutes the cornerstone of the outlined architect

5 Properties

In this section we briefly enumerate the various propertfesuo approach. For space
reasons proofs and less important lemmas are omitted osketthed. They are all
reported in extended version of the article available owe-li

In what follows, when we state thais aCDuce orCDuce; expression we implic-
itly mean thaie is awell-typed(CDuce orCDuce;) expression.

Lemma 1 (Strip). Lete be aCDuce: expression. It ~* ¢, then|e] ~* |€’].

This lemma has two important consequences, nafigthatCDuce, is a conservative
extension ofCDuce with respect to the reduction theory, &hi that despite being non-
deterministic the reduction diDuce; preserves the semantics@uce programs:

Corollary 1. Lete be aCDuce; expression. I& ~ €', ande ~ e, then|e'| = [€"].

The soundness @Duce; type system is proved by subject reduction and is instrumen-
tal to the soundness of the analysis.

Theorem 1 (Subject reduction).Let e be aCDuce; expression. Ifl" - e : ¢t and
e~*e' then'F e :t.

The next lemma is useful to understand the match reducties nf CDuce. .
Lemma 2. For every valuey and typet, (vft) = (v//—t) (modulo the indexes af)

In order to prove non-interference we need two lemmas, oaedharacterizef and
a second that is the non-interference counterpart of thelatd substitution lemma in
typedA-calculi:

Lemma 3. Letp be a patterny a CDuce; value with an occurrencé such that o =
Livy . If L & vffp, thenforallv’ suchthaw F o't (v/p # 2 & CY [V] /p # 2) holds
true.

Lemma 4 (Substitution).Letp be a patternpy a CDuce; value whose occurrencé
is such thabx = ¢; : v'. If £ does not occur in the image of p and? ¢ v/ p, then for
all " such thatz v":¢, we have thaf}; [v"] /p is pointwise equal te/p.

We can state the non-interference theorem: note that thelatarminism ofCDuce.'s
reduction is accounted for by the quantifying on all resultf the expressioa.

Theorem 2 (Non-interference).Let e be aCDuce: expression, with an occurrence
A such thatea = ¢; : e;. For every valuev such thate ~* v, if £ ¢ L(v), thenA

is non interfering in|e] with respect ta, i.e., Vo' € CDuce s.t.@ o' : ¢, we have
[CA [']] ~" |v]

By using Proposition 2 it is easy to see that the conclusiotheftheorem implies
the Definition 2 of non-interference, justifying in this wdye “i.e.” we used in the
statement of the theorem.

6 A last example

We end our presentation by commenting a more articulatechpbato illustrate the
use of our technique to define and verify comg . ¢, mpase = <exam_bases[Person]
plex security policies that cannot be expressedtipe Person = <person gender="M"|"F">

; [Name Birth Grade?]
terms of access gontrol. We SUpPOSe t0 StOre iR, \ame = <name>String
XML-documents information about persons thajpe Birth = <birth>[Year Month Day]

; ; e Year = <year>[Int]
have to pass some examination. The form of'tty & Month = <month>MName
documents is described by the type declaratioffpe MName= "Jan"|"Feb"|"Mar"|"Apr"| - - -
on the right. As we see every document record§e Day = <day>[1--31]
. . . . pe Grade = <grade>[Int]

a list of names, with personal information, and
with anoptional <grade> element that stores the numerical result of the examination
The absence of such an element denotes that the person haasssetl (that is, either
not taken or taken and failed) the examination, yet. An XMktulment that verifies this
schema is shown in the left column of Figure 5, while the adrdolumn reports the
result of importing the same document@Duce.

Imagine that examination documents can be accessed bydifierent categories
of users, academic staff, administrative staff, and noumsarls. We want academic staff
to have unconstrained access to the information storedeirexiamination documents
while we may wish to constrain the accesses for administiegind normal users. As

an example of security requirements we may wish to enforchave:

1. Only academic users can have information both on namegratie:s or on names
and birthdays simultaneously.

<?xml version="1.0"?>
<exam_base>
<person gender="M">

let eb : ExamBase =
<exam_base>[
<person gender="M">[

let eb : ExamBase =
<exam_base>[
<person gender= statypg: : "M">[

<name>Durand</name> <name>"Durand" <name> Nameying : "Durand”
<birth> <birth>[<birth>[
<year>1970</year> <year>[1970] <year>[staiy, : 1970]
<month>Aug</month> <month>"Aug" <month> privateuame : "Aug"
<day>10</day> <day>[10] <day>[private;..3;) : 10]
</birth>
<grade>110</grade> <grade>[110] passed;age : <grade>[resulty : 110]
</person>
<person gender="M"> <person gender="M">[<person gender= statye : "M">[
<name>Dupond</name> <name>"Dupond" <name> Nameying : "Dupond”
<birth> <birth>[<birth>[
<year>1953</year> <year>[1953] <year>[staiy : 1953]
<month>Apr</month> <month>"Apr" <month> privateuame : "Apr"
<day>22</day> <day>[22] <day>[private;..3;) : 22]
</birth>
</person>]]

<person gender="F">
<name>Dubois</name>

<person gender="F">[
<name>"Dubois"

<person gender= staty¢ : "F">[
<name> Namey;ing - "Dubois”

<birth> <birth>[<birth>[
<year>1965</year> <year>[1965] <year>[staiy : 1965]
<month>Sep</month> <month>"Sep" <month> privateyame : "Sep”
<day>2</day> <day>[2] <day>[privatg;..a1) : 2]
</birth>
<grade>120</grade> <grade>[120] passegraqe : <grade>[resuliy; : 120]
</person>

</exam base>

]

]

Fig. 5. A database of examinations: in XML, {flDuce, and inCDuce:

2. The administrative users can check whether a persongé#ssexamination (that
is, they can check for the presence okgrade> element) but cannot access the
result.

3. Every user can ask for statistical results on grades upiteria limited to year
of birth and gender (so that they cannot select sufficiergbirictive sets to infer
personal data).

To dynamically verify these constraints we introduce fivieels that we use to clas-
sify the information stored in documentgrivate (that classifies the month and the
day of birth), stat (that classifies the year of birth and the gender attribute)ne
(that classifies namespassed(that classi-
fies grade elements), aneult(that classifies
the contentof grade elements). Rather tha@;p
document-wise, this classification is describ
directly on types as shown by the definition
on the right. Note that in these definitions la-
bels have no indexes (in documents they will be indexed byyihes they are labeling).
Before executing a query the system uses this specificatigearterate a labeled version
of the document as shown in the last column of Figure 5. Theygsehen executed
on the labeled document (according to the semantic8lnice:) and the following
constraint&® are checked in the result:

If the owner of the query is a normal user, then the result reatssfy:
name=- — (privateV statV resultVv passedl A private = — (statV resulf

type Person = <person gender= stat("M"["F")>
[Name Birth (passedGrade)?]
e Name = <name>(nameString)
e Year = <year>[statInt]
e Month = <month>(private MName)
pe Day = <day>[private:(1--31)]
e Grade = <grade>[resultint]

16 For the sake of the example we expressed these constraiatprispositional logic where the labels are
atoms, but different languages are possible. The defindgfosuch languages is out of the scope of the
paper and matter of future research: see Section 7.

if the owner of the query is an administrative user, then #sailt must satisfy:
name=- — (privateV statV resul) A private = — (statV resulf

where a propositional label is satisfied if and only if thedbis present in the result.
Thus, for instance, the second constraint must be reacke ifatel nameoccurs in the
result therprivate stat, andresultcannot occur in it, and iprivate occurs in the result
thenstat, andresult do not. The difference with respect to the constraint fommailr
users is that the second constraint allavesneandpassedo occur simultaneously in
the same result. Therefore a query that just tested the qpres# a<grade> element
without checking its content would satisfy this second ¢@mst.

If the result of a query satisfies the corresponding constrgen its stripped ver-
sion is returned to the owner of the query.

7 Perspectives

This paper contains exploratory work toward the definitiéimdormation flows secu-
rity in XML transformations. As such it opens several pectpes both for the practical
and the theoretical aspects.

First and foremost the cost of the dynamic analysis must leeladd against an
implementation (we are currently working on it). We expédustcost to be reasonably
low: CDuce’s pattern matching fully relies on dynamic type chagkitherefore if we
embed the dynamic generation of typed security labet®ince’s runtime the resulting
overhead should be small. Also, to fill the gap with practieemust devise expressive
and user-friendly ways to describe the labeling of XML doeunts in the meta-data
(that is, XML Schemas and DTDs) and to express the assoc@atmdity policies (for
instance, in Section 6 we expressed them in propositiogat)oThese security prop-
erties should be defined by sets of constraints (i.e., fosnofd an appropriate logic)
that are automatically generated from a specification esga@in an “ad hoc” language
(e.g., like the authorizations defined in [6]).

The precision of the dynamic analysis must be enhanced oy gmorewriting tech-
nigues. To exemplify, an obvious “optimization” consigstsréwriting all closed (i.e.,
without capture variables) patterns into an equivalent typnstraint pattern, by replac-
ing A for &, Vv for |, andx for (,), so as to transform the pattefn| ¢,u&v) into
the type(sVt) x (uAv). Indeed, the analysis on types is more precise than that on
equivalent patterns as the latter is recursively appliesutacomponents forgetting, in
doing so, many interdependencies. But other subtler rmgstcould improve our anal-
ysis: for instancen; = (z&true)|(z&false) is equivalent tap, = z&(true V false)
but (beea:e) 1 = loou::(ef/p1) While (bgomie) /D2 = Dok. This discrepancy can be
identified with the fact that the analyses of pair, intergerd, and union patterns are
performed independently on the two subpatterns. Thus aljessay to tackle this
problem is by transferring some information from one patter the other, for exam-
ple by mimicking the automaton-based technique use@byce for the just-in-time
compilation of patterns.

Finally note that one of the main technical novelties of thizk is to endow se-
curity labels with constraints. The constraints at issuwecaiite simple, since they just
express the static knowledge of the type of the labeled sgpe. It is then natural
to think of much more expressive constraints. For exampleavethink of endowing
labels with integrity constraints and define non-intenferjust in terms of consistent

databases. In this perspective a program that checkedtémgity of a base would be
always interference-free even if it accessed private magion. Of course checking
non-interference in this case would be even more challgnigin it could pave the way
to (security) proof carrying code for XML.

Acknowledgments:We are very grateful to Nicole Bidoit and Nevin Heintze for

their careful reading and invaluable suggestions, and tdoDB2olazzo, Alain Frisch,
Alban Gabillon, and Massimo Marchiori for their feedback.

References

1.

2.

3.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

M. Abadi, B. Lampson, and J.-J. Levy. Analysis and caclihdependencies. I/CFP "96,
1st ACM Conference on Functional Programmipgges 83-91, 1996.

V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML#fieseneral Purpose Lan-
guage. INCFP '03, 8th ACM Conference on Functional Programmipgges 51-63, 2003.
A. Christensen, A. Mgller, and M. Schwartzbach. Extegdiava for high-level web service
construction ACM TOPLAS2003. To appear.

S. Cluet and J. Siméon. Yatl: a functional and declardéimguage for XML, 2000. Draft
manuscript.

S. Conchon. Modular information flow analysis for proceakuli. INFCS 2002, Proceed-
ings of the Foundations of Computer Security Worksl@gpenhagen, Denmark, 2002.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschil BnSamarati. A fine-grained
access control system for XML documentsCM TOIS$5(2):169—-202, 2002.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, RnfSamarati. Design and imple-
mentation of an access control processor for XML docume@tsmputer Networks33(1—
6):59-75, 2000.

M. Fernandez, J. Siméon, and P. Wadler. An algebra for XMérg InFST&TCS number
1974 in LNCS, pages 11-45, 2000.

A. Frisch, G. Castagna, and V. Benzaken. Semantic Sulgydn LICS '02, Seventeenth
Annual IEEE Symposium on Logic in Computer Sciepages 137-146, 2002.

A. Gabillon and E. Bruno. Regulating access to XML docatseln15th Annual IFIP WG
11.3 Working Conference on Database Secyriyly 15-18 2001.

V. Gapayev and B. Pierce. Regular object typesPriic. of ECOOP '03Lecture Notes in
Computer Science. Springer, 2003.

J.A. Goguen and J. Meseguer. Security policy and sgcomitdels. InProceedings of
Symposium on Secrecy and Privaggges 11-20. IEEE Computer Society, april 1982.

H. Hosoya and B. Pierce. XDuce: A typed XML processingiegage ACM TOIT, 2003. To
appear.

IBM AlphaWorks XML Security Suitehttp://www.alphaworks.ibm.com/tech/xmisecuritysuite.
A. Myers and B. Liskov. A decentralized model for infortioa flow control. InProceedings
of the 16th ACM Symposium on Operating Systems Princip@SP$pages 129-142, 1997.

F. Pottier and S. Conchon. Information flow inferenceffee. InICFP '00, 5th ACM
Conference on Functional Programmingages 46-57, September 2000.

F. Pottier and V. Simonet. Information flow inference fdk. ACM SIGPLAN Notices
31(1):319-330, January 2002.

A. Sabelfeld and A. Myers. Language-based information-security. IEEE Journal on
Selected Areas in Communicatio24(1):5-19, 2003.

D. Volpano and G. Smith. A type-based approach to progracurity. INTAPSOFT '97
number 1214 in Lecture Notes in Computer Science, pagess@d7-Springer, 1997.

D. Wolpano, G. Smith, and C. Irvine. A sound type systensézure flow analysislournal
of Computer Security4(3):167-187, 1996.
C. Wallace and C. Runciman. Haskell and XML: Generic doators or type based trans-

lation? InICFP '99, 4th ACM Conference on Functional Programmipgges 148-159,
1999.

