
Information flow security for XML transformations
Véronique Benzaken1, Marwan Burelle1, and Giuseppe Castagna21 LRI (CNRS), Université Paris-Sud, Orsay, France2 CNRS, Département d’Informatique, École Normale Supérieure, Paris, France

Abstract. We provide a formal definition of information flows in XML transfor-
mations and, more generally, in the presence of type driven computations and de-
scribe a sound technique to detect transformations that mayleak private or con-
fidential information. We also outline a general framework to check middleware-
located information flows.

In ASIAN '03, Le
ture Notes in Computer S
ien
e, ????:??-??, c
 Springer, 2003.
1 Introduction
XML is becoming thede factostandard document format for data on the Web. Its dif-
fusion however is characterized by two correlated paradoxes:

1. Despite the increasing success of XML for exchanging and manipulating informa-
tion on the Web, little attention has been paid to characterize and analyze informa-
tion flows of XML transformations and, specifically, their security implications.

2. As shown by the standardization process, XML documents are intrinsically typed
(cf. the notions of well-formedness and validity). Nevertheless, the “standard” pro-
gramming languages used to manipulate them are essentiallyuntyped, in the sense
that even when they are equipped with a type system the latterdoes not use the type
information of XML documents.

If we consider the self-descriptive nature of XML documents, these paradoxes are less
surprising than it may seem: XML documents use tags to delimit some content, and
these tags can be considered as type information about the content they delimit. There-
fore, XML documents—even those that do not contain a DTD—arein some sense “self-
typed” constructions and this makes the definition of a type system for XML transform-
ers difficult. As long as a type system often constitutes a first basic step toward the defi-
nition of security analyses of transformations, this may partially explain the absence of
formal tools to characterize insecure information flows.

Goal. The aim of this article is to define and characterize information flows in XML
transformations in order to single out potentially insecure transformations, that is trans-
formations that may leak confidential or private information. To that end we study trans-
formations defined in a typed programming language for XML documents. There are
several candidates for such a language, since several attempts have been made in the
literature to overcome the second of the XML paradoxes (e.g., HaXML [21], JWIG [3],
Xtatic [11], XDuce [13], XQuery [8], and YATL [4]).

In this work we characterize and analyze information flows for transformations de-
fined inCDuce [2]. There are several reasons to chooseCDuce as target language for
our study. First and foremost, unlike other XML-oriented languages,CDuce is general
purpose, in that it provides besides XML types several otherdatatypes, enabling to pro-
gram general (even XML unrelated) applications. Second, among the known languages
for XML, it possesses the richest type algebra. Finally, itssemantic and set theoretic
foundations make it a good candidate for defining or hosting adeclarative query lan-
guage (see [2]) and, as such, it nicely fits our scenario of global queries on the Web.

Problems. We said that the difficulty of defining type systems for XML transforma-
tions resides in the self-typing nature of the documents. More precisely, this self-typing

characteristic induces “type based” (or “type driven”) computations: matching on doc-
ument tags roughly corresponds to matching documents’ types; similarly, producing el-
ements with different tags corresponds to outputting results of different types. In some
sense, typed XML transformations are akin to the application of typecaseconstructions
where the different cases may return differently typed results (this is accounted for inCDuce by the use ofdynamically boundoverloaded functions). The presence of type
driven computations makes the task of capturing information flows much harder and
constitutes the main novelty and challenge of this study. Infact we cannot resort to
classical data flow analyses since they are usually applied to computational frameworks
whose dynamic semantics does not strictly depend on run-time types. A second chal-
lenge is that information flows (more precisely, their absence) are usually characterized
in terms of the so-callednon-interferenceproperty [12]. Our study demonstrates that
in the presence of type driven computations this notion mustbe modified so as to in-
clude static type knowledge, otherwise we end up with very trivial analyses. Finally,
the last challenge is to define flow analysis for a pattern-matching based language—asCDuce is—since this stands at least two obstacles:(i) pattern matching is a dynamic
type-case, therefore we have to propagate type informationin the subsequent matches;(ii) the use of a matching policy (first-match as inCDuce or best match as in XSLT)
induces dependencies among the different components of an alternative pattern as well
as among different cases of a pattern-matching expression and this must be taken into
account when characterizing information flows (the sole fact of knowing that a pattern
did not match may produce a flow of information).

Contributions. The contributions of this article are essentially three:
1. it provides a formal definition and study of information flows in the context of XML

transformations and, more generally, in the presence of type driven computations;
2. it describes a sound technique to detect XML document transformations that cause

insecure information flows, and formally proves its correctness;
3. by defining security annotations and by relating various kind of analyses (static/dy-

namic, sound/complete) to different query scenarios, it proposes a general frame-
work for checking security of middleware-located information flows.

Example. The development of our presentation can be illustrated by anexample. Con-
sider the following XML document which stores names and salaries of the workers of a

<?xml version="1.0"?>
<company>

<worker>
<surname>Durand</surname>

<name>Paul</name>
<salary>6500</salary>

</worker>
<worker>

<surname>Dupond</surname>
<name>Jean</name>
<salary>1800</salary>

</worker>
<worker>

<surname>Martin</surname>
<name>Jules</name>
<salary>1200</salary>

</worker>
</company>

fictive company. We imagine that while generic users
are allowed to perform queries on this document, the
information about salaries must only be accessible to
authorized users. Therefore we need a way to detect
queries that may reveal information about salaries, in
order to reject them when they are performed by unau-
thorized users. A first naive technique to obtain it
would be to mark the salary elements and dynamically
reject all queries that contain marks in their result. Un-
fortunately, this approach is clearly inadequate since
the information about salaries can be deduced as fol-
lows: perform a query that returns the list of all work-
ers whose salary is greater thann and then iterate the

query by varyingn until we obtain as many different results as workers.

A more effective solution is to reject all the queries whose resultaccessesthe value
of the salary elements. For example consider the following two queries:

[Q1] Get the list of all workers
[Q2] Get the list of all workers whose salary is greater thane 1600

The first query can be always safely executed while the secondone must be forbidden
to unauthorized users. This can be obtained by enforcing an access control policy. For
instance this is done in [7,6] by executing a query on aview (in the database sense)
obtained by pruning from the XML documents all data the ownerof the query has not
the right to access.

While enforcing access control is enough for simple policies like the above, it soon
becomes inadequate with slightly more complicated policies. For instance imagine that
instead of forbidding access to salaries we want to allow queries owned by generic users
to access salaries (e.g. for statistical purposes) but in a way that prevents these queries
from associating a specific worker with her/his salary. Thiscorresponds to rejecting
all queries whose resultdependsboth on the value of salary elements and on that of
name or surname elements (but queries like Q1 or a query that returns all salaries are
acceptable). To enforce this constraint we have to switch from anaccessanalysis to a
dependency(or information flow) analysis.3

Causal security policies, such as above, can be formalized by the notion ofnon-
interference, that can be restated for XML documents as follows: a set of elements
does not interfere with the result of a given query if for all possible contents of the
elements the query always returns the same result. In our example, consider the set of
all documents obtained from our XML document by replacing the content of salary
elements by arbitrary numeric values. Query Q1 is interference-free since when it is
applied to all these documents it always returns the same result. Query Q2 instead is
not interference-free since its results may differ.

A precise definition of non-interference constitutes the first step of our approach
since it defines the set of queries that are safe. The following step is to devise one or
more techniques to determine the safety/unsafety of queries. To that end we first classify
components that store confidential information by annotating data elements by labels
of the form`t. The` intuitively represents a security classification of the information
stored in the element (e.g., public or private, but it could be any label from a possibly
unordered set) whilet is a type that describes the static information publicly available
about the data’s content (e.g. for salaries it records that the element stores an integer
in a given range)4. Next we recast the notion of non-interference in terms of labeled
elements, namely, we say that a transformation is free of interference from all elements
labeled by`, if its result does not change when the content of the`-labeled elements
vary over the type indicated in the label. Our research plan consists of the definition
of three different analyses to be used as in the scenario of Figure 1 in the next page.
According to it an interactive query (that is, a query that was written to be executed just
once) will first pass through a complete static analysis (that rejects transformations that

3 While for this specific example it is still possible to resortto access control techniques (execute the query
on two different views obtained by stripping in one all salaries and in the other all names and surnames)
these sole techniques soon become insufficient, as shown by the example in Section 6.

4 We do not require the existence of any order on such labels (inour framework security policies will be
expressed in terms of presence/absence rather than relative order of label), therefore our labels must not
to be confounded with the security labels used in multilevelsecurity systems

are manifestly unsafe) and then through a sound dynamic analysis. Instead, programs
that are expected to be used several times will pass through acycle of sound static
analysis (possibly preceded by a complete analysis) beforebeing executed without any
further dynamic check. In this paper we concentrate on the sound dynamic analysis forCDuce programs, that is, the grayed part of the figure.

Outline. We start in Section 2 by a brief overview of the functional core of CDuce.
In Section 3 we formally define the non-interference property for CDuce programs
and introduceCDuceL a conservative extension5 of CDuce in which expressions oc-
curring in a program may appear labeled by security labels. Section 4 is the core of
our work. It defines the dynamic analysis that detects interference free programs. The
idea is to define an operational semantics forCDuceL such that(i) it preserves the
semantics of unlabeled programs and(ii) it ensures that whenever a label` is absent
from the final result of a program, then the program is free of interference from all
expressions labeled bỳ. Thanks to these properties the analyzer has simply to la-
bel and run a transformation and to refuse to return the (unlabeled) result when this

Complete Static analysis Sound Static analysis

Programs/methods
"many times"

Transformations
"one time"

re
je

ct

er
ro

r

Sound Dynamic analysis

Evaluation/Execution

Fig. 1.Analysis scenarios

contains unauthorized labels. Of course
the heart of the problem is label propa-
gation in pattern matching, whose def-
inition is made difficult by the type
driven semantics, the presence of sub-
typing, and the use of a first-match
policy. In Section 5 we prove that our
analysis satisfies the aforementioned
properties; this goes through prov-
ing thatCDuceL satisfies the subject-
reduction property, that it preserves
the semantics ofCDuce, and that
it constitutes a sound analysis for
the non-interference property. The last
two points present some technical dif-
ficulties (without any practical im-
pact) due to the type system ofCDuce
that does not satisfy the minimum typing property and induces in CDuceL a non-
deterministic semantics: thus the two properties must be proved to hold forall possible
reductions of a program. In Section 6 we comment a more significant example that il-
lustrates some security policies that cannot be expressed in terms of access control. We
conclude our presentation by sketching in Section 7 some research perspectives.

Related work. Security issues for XML have been addressed by several worksbut
none of them tackles the problem of information flows. They either focus on access
control (e.g., [10,7,6]) or on lower level security features such as encryption and dig-
ital signatures for which commercial products are becomingavailable (e.g [14]). For
instance, Damiani et al. [7,6] detect accesses to confidential data by applying a static
marking of the documents and by dynamically stripping off marked elements. In other
words, they deal with access control (confidentialdata is accessedfor computing the

5 The extension is conservative with respect to both the type theory and the equational (reduction) theory.

result) whereas our approach accounts for implicit flows (confidentialinformationcan
be inferred from the result) like the detection of covert channels. The same holds true
for the work of Gabillon and Bruno [10] where access control is performed by running
queries onviewsof the XML documents dynamically generated by stripping offunau-
thorized data. Other works devise flow analyses for programming languages for XML
(e.g., [3]) but these analyses are not developed to verify security properties.

The study presented here draws ideas from several sources. The dynamic prop-
agation of labels was first introduced in Abadi et al. [1], where a dependency anal-
ysis for call-by-name�-calculus is defined by extending the reduction semantics to
labeled�-terms. Although their work was not motivated by security reasons (they ad-
dress optimization issues) what we describe here essentially adapts their technique to
type driven reductions. Label propagation was successively used for security purposes
in later works, for instance [5,15,16,17]. In particular, in [15] Myers and Liskov use
labels for the same purposes as we do; however their securitymodel is defined for and
relies on languages that explicitly manipulate labels, while in our or in Abadi’s et al.
approach, properties are stated for an unlabeled language and labels are introduced on
the top of it as a technique to identify (unlabeled) programssatisfying these proper-
ties. Finally, all the cited label-based approaches fundamentally differ from the study
presented here in that they do not account for type driven semantics (nor for pattern
matching) distinctive of XML transformations.

The presence of type driven computations preclude us the useof classical definitions
and detection techniques of non-interference (e.g. those of [19,20]), since in this case ig-
noring static type information would yield a far too weak definition of non-interference.
Actually, our notion of non-interference differs from the classical one in that the latter
usually relies on a hierarchical structuring of security levels (high-level inputs do not
interfere with low-level outputs) while here we spot non-interference of single pieces
of code (the value of some data does not interfere with the result of a query). This dif-
ference must be understood as the fact that we want to characterize the flows in a single
transformation while classical non-interference rather applies to system-wide flows.

2 The CDuce languageCDuce is a functional programming language tailored to the manipulation of XML
<company>[

<worker>[
<surname>"Durand"
<name>"Paul"
<salary>[6500]]

<worker>[
<surname>"Dupond"
<name>"Jean"
<salary>[1800]]

<worker>[
<surname>"Martin"
<name>"Jules"
<salary>[1200]]

]

type Company = <company>[Worker*]
type Worker = <worker>[Sname Name Salary]
type Sname = <surname>String
type Name = <name>String
type Salary = <salary>[Int]

documents, for which it uses its own nota-
tion. The XML document in the previous
section becomes inCDuce the expression on
the right. The syntax is mostly self describ-
ing: tags are denoted by angle brackets and
are followed by sequences. Sequences are
delimited by square brackets and in this case
are formed by other elements, but in general
they may contain expressions of any type
(note that some tags are followed by strings
as the latter are encoded inCDuce as se-
quences of characters). This expression has
the typeCompany defined right below it. The
types of sequences are defined by regular ex-

pressions on types. For example, the first type declaration states that a company is a
sequence tagged by<company> and composed of zero or more worker elements. Had
we defined the type of workers as follows:

Worker2 = <worker ceo=?Bool>[Sname Name Salary (Email | Tel)?]

then workers elements would have an optional (as indicated by =?) boolean attribute
and list a last optional element that is either of typeTel or of typeEmail. Note also that
Worker is a subtype ofWorker2 since every value of the former type is also a value of
the latter type. The queries defined in the previous section can be expressed as:

[Q1:] let <company>x = mycompany in transform x with <worker>[y z _] ➔ [<worker>[y z]]

[Q2:] type MoreThanMe = <salary>[1600--*]
let <company>x = mycompany in transform x with <worker>[y z MoreThanMe] ➔ [<worker>[y z]]

wheremycompany is a variable that denotes our previous<company> XML document.
In the first query the let expression matchesmycompany against a pattern that binds

the variablex to the sequence of worker elements ofmycompany. The transform ex-
pression applies to each element of a sequence a pattern thatreturns a sequence and
then concatenates all the results (non matching elements are simply discarded). In this
case it transforms the sequence ofWorker elements into a sequence of<worker>-tagged
elements containing just surname and name elements (y andz respectively capture the
surname and name elements, while the_ pattern matches every value). Had we defined
the type Company as <company>[(Worker|Client)*], that is a heterogeneous sequence
of workers and clients, thenQ1 would still have returned the same result as transform
would discard client elements. The queryQ2 is similar, with the only difference that
the transform pattern matches only if the salary element hastype MoreThanMe, that is,
if its content is an integer greater than or equal to 1600.6

A detailed presentation ofCDuce is out of the scope of this paper. The interested
reader can refer to [2] and try the interactive prototype atwww.cduce.org. For the pur-
pose of this work it will suffice to say that allCDuce constructions are encoded in the
following core language defined in [9]:t ::= � j C j ��:C C ::= A j :::C j C___C j C^̂̂C A ::= t!!! t j t���t j b j 0 j 1
We uset to range over types,C over boolean combinations,A over atoms, andb over
basic types (Int, Char, . . .);0 and1 denote respectively the empty and top type, and to-
gether with arrows and products they form the atoms of arbitrary boolean combinations
(negation, union, and intersection types) and recursive types��:C.7 The expressions of
the language are:e : :=
 j x j fun f (t1!!!s1;:::;tn!!!sn)(x):e j e1e2 j (e1;e2) j match e with p1➔e1|p2➔e2
The syntax is essentially that of a higher-order functionallanguage with constants, pairs
and pattern-matching. What distinguishes it from similar languages is the definition of
patterns (given later) and of functions. In the latter note that the name of a function
(which may appear in its body as functions can be recursive) is annotated by a non
empty list of arrow types (this list is called theinterfaceof the function). The presence

6 The results the two queries are the central and right expressions in Figure 4 from which we erase all the
label annotations of the form̀t:, mt:, ornt:

7 The distinction between atoms and combinations is introduced in order to avoid meaningless recursive
types such as��:�___ �

of more than one arrow type declares the overloaded nature ofthe function, which has
all these types, thus their intersection as well (see the typing rule for functions later on).

The operational semantics is defined in terms of the setV of values, ranged over byv and formed by allclosedandwell-typedCDuce expressions of the formv : :=
 j fun f (t1!!!s1;:::;tn!!!sn)(x):e j (v1;v2)
The semantics is given by the reduction relation;, which is defined as follows:(v1v2); e[v1=f ; v2=x℄ (v1 = funf (:::)(x):e)(match v with p1➔e1|p2➔e2); e1[v=p1℄ (v=p1 6=
)(match v with p1➔e1|p2➔e2); e2[v=p2℄ (v=p1=
 ; v=p26=
)
where
 denotes the matching failure ande[v=p℄ is the expression obtained by applying
the substitutionv=p to e. The first rule is standard�-reduction for recursive functions.
The second rule states that if the first pattern matches, thenthe expression of the first
branch is executed after having applied to it the substitution v=p1 of the variables cap-
tured byp1 when matchingv. The second rule states that the same happens for the
second branch when the first pattern fails and the second matches (the static type sys-
tem ofCDuce ensures that the patterns cannot both fail).

Reductions can take place in anyevaluation context. A context, denoted byC is an
expression with a hole substituted for a sub-expression. Anevaluation context, denoted
by E , is a context whose hole is not in the scope of an abstraction or of a pattern and
which induces a (leftmost) evaluation order on applications and pairs. Formally,e; e0
impliesE [e℄; E [e0℄, whereE is defined asE ::= [℄ j (E;e) j (v;E) j Ee j vE j match E with p1➔e1|p2➔e2
As anticipated, key definitions forCDuce are those of pattern and pattern matching. A
regular tree built from the following grammarp : := x j t j p1&&&p2 j p1jjj p2 j (((p1;;;p2))) j (((x :=:=:=
)))
is a pattern if(i) on every infinite branch of it there are infinite occurrences of the pair
constructor8, (ii) patterns in an alternative capture the same variables, and(iii) patterns
in a conjunction capture pairwise distinct variables. The semantics of patterns is defined
by the matching operation: the matching of valuev against a patternp is denoted byv=p
and returns either
 (matching failure) or a substitution from the variables ofp into V :v=t = fg if v : t v=t =
 if v : :::tv=x = fx 7! vg v=(((x :=:=:=
))) = fx 7!
gv=p1jjjp2 = v=p1 if v=p1 6=
 v=p1jjjp2 = v=p2 if v=p1 =
v=p1&&&p2 = v=p1
 v=p2 v=(((p1;;;p2))) =
 if v is not a pair(v1;v2)=(((p1;;;p2))) = v1=p1
 v2=p2
where
1

2 is
 when
1 =
 or
2 =
 and otherwise is the substitution
 2 VDom(
1)[Dom(
2) defined as
(x) =
1(x) whenx 2 Dom(
1)nDom(
2), as
(x) =
2(x) whenx 2 Dom(
2)nDom(
1), and as
(x) = (
1(x);
2(x)) whenx 2 Dom(
1) \ Dom(
2).

The semantics of patterns is rather intuitive. There are twopossible causes of fail-
ure for a pattern matching: a type constraint which is not satisfied by the matched

8 Infinite trees represent recursive patterns while the condition on infinite branches endows the set of patterns
with a well-founded order that ensures termination for the algorithms of typing and matching.

� ` x : � (x) (var) � ` e1 : t1 � ` e2 : t2� ` (e1;e2) : t1��� t2 (pair) � ` e1 : t1 � ` e2 : t2� ` e1e2 : t1 � t2 (appl)
(for s1 � s ^̂̂ ***p1+++; s2 � s ^̂̂ ::: *** p1+++)� ` e : s � ***p1 +++___ *** p2 +++ �; (si=pi) ` ei : ti� ` match e with p1➔e1|p2➔e2 :WWWfijsi 6'0g ti (match)(8i) �; (x : ti); (f :VVVi=1::n ti !!! si) ` e : si� ` fun f(t1!!!s1;:::;tn!!!sn)(x):e :VVVi=1::n ti !!! si (abstr) � ` e : s � t� ` e : t (subsum)

Fig. 2.Typing rules

value, or a pair pattern applied to a value that is not a pair. The alternative patternp1jjjp2 has a first-match policy: the object is matched againstp2 if and only if the
matching againstp1 fails. When a variablex appears on both sides of a pair pat-
tern, the two captured elements are paired together as expressed by the third case of
the definition of
. The default-value pattern(((x :=:=:=
))) usually appears in the right-
hand side of an alternative pattern to return a default valuewhen the left-hand side
fails. The combination of multiply-occurring variables and default-value patterns within
recursive patterns allow very expressive captures: for instance, the recursive patternp = (((x&&& Int;;;p)))jjj(((_;;;p)))jjj(((x :=:=:= nil))) bindsx to the sublist of all integers occurring in a het-
erogeneous list (encodedà la lisp) when this is matched against it. On the whole, all
a pattern does is to decompose values in subcomponents that are bound to variables
and/or matched against types, whence the type driven computation.

Values are also at the basis of the definition of subtyping. Indeed, the key charac-
teristic ofCDuce (from which all others derive) is that the subtyping relation is defined
semantically via a set theoretic interpretation of the types. This interpretation is very
easy to define: a type is interpreted as the set of all values that have that type. So for ex-
amplet1��� t2 is the set of all expressions(v1,v2) wherevi is a value of typeti; t1 !!! t2
is the set of all closed functional expressionsfun f (s1;:::;sn)(x)e that when applied to a
value of typet1 return a result int2; union, intersection, and negation of types have the
usual set theoretic meaning. This (semantic) interpretation is used to define the (syntac-
tic) subtyping relation: a types is a subtype oft if the interpretation ofs is contained in
the interpretation oft.

Typing rules forCDuce are summarized in Figure 2. For a more detailed explanation
the reader can refer to [9]. Rules (var), (pair), and (subsum) are standard. The rule
(appl) is less common, since one usually expectst1 to be of the forms1 !!! s2 and the
rule to infer for the application the types2 provided thatt2 � s1. However because of
the presence of boolean combinationst could be for example of the form((s1 !!! u1) ^̂̂(s2 !!! u2)). To that end we introduce a partial binary operator on types�. Intuitivelyt�s denotes the least type (if it exists) such thatt � s!!! (t�s) and the rule (appl) does
not fail only if the operator is defined (in practice, we subsumet1 to the least arrow type
with domaint2). So, for example, if our function of type((s1 !!! u1) ^̂̂ (s2 !!! u2)) is
applied to an expression of type(s1___ s2), then the type system will infer that the result
of the application has type((s1 !!! u1)^ (s2 !!! u2)) � (s1___ s2) = (u1___u2). Similarly
we introduce two projections operators�1 and�2 such that�1(t) (respectively�2(t))
is the least type that makest � �1(t)� 1 (respectively1� �2(t)) hold. It is important
to note that�, �1, and�2 are all computable (once more see [9]).

Rule (abstr) is not very standard, either. It states that a (possibly overloaded) func-
tion is typed by the intersection of all the types declared inits interface: we repeat the
check for each type in the interface and handle the typing of recursive calls by recording
for f the expected type. Actually the rule in Figure 2, is a simplification of theCDuce
rule in [9], the latter is very technical and makes the minimum typing property fail (so
that there does not exist a canonical type representing the set of all types of a given
expression). However, we will see that this does not affect our analysis and, therefore,
that the rule defined in Figure 2 is enough.

Finally the rule (match) states that the type of a matching operation is the union of
the types of the branches9, and for that it uses several auxiliary notations:� denotes
syntactic equivalence of types whereas' denotes the semantic one (s ' t only if s andt denote the same set of values);s=p denotes the type environment that assigns types to
the capture variables ofp when this is matched against a value of types; ***p+++ denotes
the typeaccepted byp, that is, the type whose interpretation is the set of all values for
whichp does not fail:***p+++ = fv j v=p 6=
g. Again,*** +++ is computable. The type system
is sound since it satisfies the subject reduction property: if � ` e : t ande;� e0, then� ` e0 : t (where;� means “reduces in zero or more steps”).

3 Non-interference and labels
The first step toward the definition of our security analysis is the characterization of
information flows. In general, these are difficult to define and therefore it is customary to
rather characterize their absence via thenon-interferenceproperty: given an expressione, a sub-expressione0 occurring ine does not interfere withe if and only if whenevere returns some result, then also every expression obtained from e by replacinge0 by a
different expression yields the same result. Note that this(informal) definition does not
involve types and because of that it is unsuitable to describe non-interference for type
driven semantics. A definition of non-interference forCDuce transformations must take
types into account.

Types have been widely used in previous work on language-based information-flow
security (see [18] for a very broad review) and non-interference definitions have been
given for typed languages. What is new in our framework is that the essence of the
definition of non-interference relies on types. In particular, changing the type of an ex-
pression occurrence in a program can change the non-interference properties of that
expression occurrence. Therefore our definition of non-interference is statedwith re-
spect toa typet:
Definition 1 (Occurrence).Let e be aCDuce expression. Anoccurrence� of e is a
(root starting) path of the abstract syntax tree ofe. If � is an occurrence ofe, we usee� to denote the sub-expression ofe occurring at�, andCe� [℄ to denote the context
obtained frome by inserting a hole at�. Thuse = Ce� [e�℄.
Definition 2 (Non-interference w.r.t. t). Let e be aCDuce expression,� an occur-
rence ofe, and t a type. The occurrence� does not interfere ine with respect tot if
and only if for allCDuce valuesv andv0, if ? ` v0:t ande;� v thenCe� [v0℄;� v.

Let e be the application of a query to an XML document that stores some information
of type t in an element located at�. We want to define when the query allows one to

9 Precisely, of the branches that have a chance to match, that is those for whichsi 6' 0. This distinction
matters when typing overloaded functions: see [9].

infer information about� more precise than its type. The definition above states that
the information stored in� is not disclosed if the fact of storing any valuev0 of typet
in � does not change the result of the query.

The definition is reasonable as it simply encompasses the static knowledge about
the type of an occurrence. For instance, on our example it states that a query is safe
(i.e. interference free) if and only if it cannot distinguish two documents that contain
two differentintegersin corresponding salary elements. Similarly, a query that distin-
guishes documents with integer salaries from documents in which salaries elements
contain boolean values is safe, too10: this is reasonable to the extent that such a test
cannot in practice be performed as it would contradict the static knowledge we (or an
attacker) have of the document. This new definition induces also a very nice interpreta-
tion of security, according to whicha transformation is safe if it does not reveal (about
confidential data) any information that is not already statically known.

A last more technical point. In Definition 2 we tested non-interferent occurrences
against values rather than against generic expressions. This simplifies the definition
inasmuch as we do not have to take into account the typing and the possible capture of
variables that are free in the expressions inserted in the context. However, this does not
undermine the generality of our definition as shown by Proposition 1:

Definition 3 ((�=�)-contexts).Let� and� be type environments,t andt0 types, andC[℄ a context.C[℄ is a (�=�; t=t0)-context if� ` C[℄ : t is provable under the
hypothesis that�0 ` [℄:t0 holds for every extension�0 of�.

Proposition 1 (Generality).Let e be aCDuce expression such that� ` e : t. Let�
be an occurrence that does not interfere ine w.r.t. t0. Then for all� 0, � 00, ande0, if� 0; �; � 00 ` e0:t0, e;� v, andCe� [℄ is a ((� 0; �)=� 00; t=t0)-context, thenCe� [e0℄;� v.

Our next step consists in defining a way to identify occurrences. This can be easily
obtained by markingCDuce expressions by security labels. Thus we defineCDuceL
obtained fromCDuce by adding expressions of the form “`t : e”, where t is a type
and` is a metavariable ranging over a setL of labels. As anticipated labels are indexed
by types that record the static knowledge of the expression at issue. The type is used
to verify non-interference of the expression. This is considered not to interfere with a
given computation if the fact of making the labeled occurrence vary over the values of
the type specified by the label does not affect the final resultof the computation.

Of course, this is sensible only if the fact of making the occurrence vary over such
a type yields well-typed expressions. In other terms, as suggested by Proposition 1,� ` e : s s � t� ` (`t:e) : tthe type indexing a label must be a viable type for the expres-
sion marked by the label. In order to formalize this propertywe
endowCDuceL with a type system formed by all the typing
rules ofCDuce, summarized in Figure 2, plus the one on right.

By definition aCDuceL expression is aCDuce expression where some subexpres-
sions are marked by a list of labels. We callstrip the function that transforms the former
into the latter by erasing all the lists of labels and we denote if by b
.

Technically, we consider the syntax ofCDuceL as a description of a decoration of
the syntax tree ofe in the sense that the (lists of) labels are not nodes of the syntax

10 More interestingly, had we defined salaries to be of type<salary>[1600- -*], then also the queryQ2 would
result safe (i.e. interference free).

trees but tags marking these nodes.11 The reason for this choice is that in this way the
same path� denotes an occurrence of aCDuceL expression and the corresponding
occurrence in the stripped expression. In this way we avoid to define complex map-
pings between occurrences of expressions inCDuceL and the corresponding ones in
the stripped version. In particular this makes the following property hold

Proposition 2. Let e be aCDuceL term with an occurrence�, then(i) be�
 = be
�
and(ii) bCe� [e�℄
 = Cbe
� [be
�℄
which yields a simpler statement of the non-interference theorem (Theorem 2).

4 Security analysis
Our analysis is defined by endowingCDuceL with an operational semantics defined
so that(i) it preservesCDuce semantics on stripped terms (e ;� v) be
 ;� bv
)
and(ii) label propagation provides a sound non-interference analysis for CDuce ex-
pression (i.e., if a label is not propagated, then the labeled expression does not interfere
with the result). It is not difficult to define a trivially sound analysis (just propagate all
labels)12. The hard task is to define a fine-grained analysis that propagates as few labels
as possible. Needless to say that the core of the definition islabel propagation in pattern
matching, where several kinds of information flows are possible:� Direct (or “explicit”) information flows, due to the bindingof labeled expressions

to variables, such as in: match e with <worker>[x y <salary>[z]] ➔ . . . z. . . | . . .
where the value of the salary is bound toz and flows through it into the first branch
expression.� Indirect (or “implicit”) information flows due to patterns:the information flows by
the deconstruction of the matched value and/or the satisfaction of type constraints,
such as in: match e with <worker>[x y <salary>[1--900]] ➔ e1 | . . .
where the information of the range of the salary flows intoe1.� Indirect information flows due to use of a first match policy: information can be
acquired from the failure of the previous branch:

match e with <worker>[x y <salary>[1- -900]] ➔e1 | __ ➔e2
where the information that the salary value isnot in (1- -900) flows intoe2.

The last example also shows that non-interference is undecidable as the non-interference
of the value of the salary element is equivalent to deciding the equivalence ofe1 and
e2 (CDuce is Turing-complete).

Once we have established whether a label must be propagated or not, here comes
the problem to decide with which type we have to decorate it soas not to infringe
subject-reduction. Consider the example of the application of a labeled function value
to another value:(`s!!!t:v1)v2. Surely the function, seen as a piece of data, interferes
with the computation. Therefore its label must be propagated. A sound solution is to
reduce the application tòu:(v1v2), for a suitable choice ofu. Here the choice foru
is easy: the type system ensures thatv2 is of types therefore it suffices to takeu = t.
When the type of the label is not an arrow but a generic typet0, then we resort to the�
operator and setu equal tot0 � s0 for somes0 such thatv2 : s0.
11 More formally we consider that aCDuceL term denotes a pair formed by aCDuce term and a map from

the (root starting) paths of the abstract syntax tree of the term to possibly empty lists of labels.
12 The analogous trivially complete analysis is the one that does not propagate any label

v ////// x = ?okv //////(((x :=:=:=
))) = ?ok
////// p = ?ok if
 2 ***p+++
////// p = ?fail if
 62 ***p+++(`t : v)////// p = ?fail if t ^̂̂ ***p+++ ' 0(`t0 : v)////// t = ?ok if (t0 � t)(`t0 : v)////// t = ` :: (v ////// t) if (t ^̂̂ t0 6' 0) ^ (t0 6� t)(v1; v2)////// t = (v1 ////// �1(t))�(v2 //////�2(t)) if �i(t) are defined andvi ////// �i(t) 6= ?fail(v1; v2)////// t = ?fail otherwise(fun f(t1;:::;tn)(x):e)////// t = ?ok if fun f(t1;:::;tn)(x):e=t 6=
(fun f(t1;:::;tn)(x):e)////// t = ?fail if fun f(t1;:::;tn)(x):e=t =
v ////// p1&&&p2 = ?fail if (v1 ////// p1) = ?fail or (v2 ////// p2) = ?failv ////// p1&&&p2 = (v ////// p1)�(v ////// p2) otherwise(`t : v)//////(((p1;;;p2))) = ` :: (v //////(((p1;;;p2)))) if (t ^̂̂ ***(((p1;;;p2)))+++ 6' 0)(v1; v2)//////(((p1;;;p2))) = ?fail if (v1 ////// p1) = ?fail or (v2 ////// p2) = ?fail(v1; v2)//////(((p1;;;p2))) = (v1 ////// p1)�(v2 ////// p2) otherwise(fun f(t1;:::;tn)(x):e)//////(((p1;;;p2))) = ?fail(`t : v)////// p1jjjp2 = ((`t : v)////// p1) if t � ***p1+++(`t : v)////// p1jjjp2 = ((`t : v)////// p2) if t ^̂̂ ***p1+++ ' 0(`t : v)////// p1jjjp2 = ` :: (v ////// p1jjjp2) otherwisev ////// p1jjjp2 = ?ok if v ////// p1 = ?okv ////// p1jjjp2 = ?fail if v 6=
, v 6= `t:v0 and(v1 ////// p1) = (v2 ////// p2) = ?failv ////// p1jjjp2 = (v ////// p1)�(v ////// p2) if v 6=
, v 6= `t:v0, v ////// p1 6= ?ok, and(v ////// p1) and(v ////// p2) are not both equal to?fail

Fig. 3.Propagating labels with patterns

Formally, we start by(i) definingCDuceL values, which are obtained by adding to
the definition ofCDuce values the productionv ::= `t : v; (ii) defining the semantics
of v=t for the new values in the following case:(`t : (v1; v2))=(((p1;;;p2))) = v1=p1
v2=p2;
and(iii) adding to evaluation contexts the productionE ::= `t : E . Note however that
we do not define a pattern for labels, as we want labels to describe information flow,
rather than to affect it.

Next we define the operator “////// ” that calculates the set of labels that must be prop-
agated at pattern matching. More precisely,e//////p denotes the list of all labels that must
be propagated when matching expressione against patternp, and is defined in Figure 3
(where “@” and “::” are the “append” and “cons” list operators, respectively). This def-
inition forms the core of our analysis, therefore it is worthexplaining it in some details.
LetL(e) denote the set of labels occurring ine, then all the labels inv ////// p are contained
in L(v). The idea is to collect inv ////// p all the labels that mark expressions whose value
mayaffect the result of the matching. Intuitively, the definition of “////// ” must ensure that
if a label ` in L(v) is not in v ////// p, then for allv0 obtained by substituting inv some`-labeled occurrences by “admissible” (i.e. that respect the type constraints indexing̀)
values, the matchv0=p either always succeeds or always fails.13

The first two cases in Figure 3 are the easiest ones insofar as variables and default-
value patterns always succeed; therefore no label needs to be propagated.

Matching a constant is also simple as there is no label to propagate. Note, however,
that we use an index to distinguish two different cases of non-propagation: the case in
which labels are not propagated because the pattern always fails (?fail) and the case

13 However, this is not enough to ensure non-interference: forinstance consider(`Bool : v)//////(true&&&(((x :=:=:=1))))jjj(false&&&(((x:=:=:=0)))) which always succeeds.

in which they are not propagated because the pattern always succeed (?ok). When we
match a labeled value against a patternp and the type of the label does not intersect the
type accepted byp, then we know that makingv varying overt always fails.

The case for a type constraint pattern is the key one, asCDuce’s pattern matching
is nothing but a highly sophisticated type-case with capture variables: ift0 ^̂̂ t ' 0, then
we are in the previous case sov=t always fails; ift0 � t, then for everyv of typet0, v=t
always succeeds so no label is propagated; otherwise, for all v0 in the intersection oft
andt0 v0=t succeeds, while forv0 in their difference it fails, thus we propagate` and
check for other labels.

When the matched value is a pair then we propagate the union ofthe labels prop-
agated by matching each sub-value against the corresponding projection oft provided
that: (i) the projections are defined, because otherwise we are matching a pair against
a type with no product among its super-types (e.g.,s ! t) and the pattern always
fails, and(ii) none of the two sub-matching fails, because the whole pattern would
then fail and therefore it would be silly to propagate the labels of the other component.
Note that this case uses the distinction between?ok and?fail , the other cases being
in conjunction and pair patterns—which fail if any sub-check fails—and in disjunction
patterns—which fail if both sub-checks fail—. Since there is no pattern that decon-
structs functions, these can be soundly matched only against types (or captured). Note
however that the type of a function value is fixed by its interface. Therefore even if we
make labeled expressions occurring in the function vary, this does not affect the type of
the function, ergo the result of pattern matching. For this reason(fun f (t1;::;tn)(x):e)////// t
is dealt in the same way as constant values. The cases of conjunction patterns as well as
those for pair patterns need no particular insight. It may beworth just noticing that in
the first case of pair patterns` is propagated also when the pattern always succeeds (i.e.t � ***(((p1;;;p2)))+++) as the simple fact of deconstructing the pair may yield interference14.

The cases for alternative patterns are more interesting as they take into account the
use of the first match policy. In particular in the first two equations for match, propaga-
tion is calculated only onp1 or p2 according to whether the first match always succeeds
or always fails. If instead the result cannot be determined with certainty, then the label
is propagated and the search for other labels is continued onv. All remaining rules are
straightforward.

Now that we have determined the labels to propagate we have tochoose the type
constraints to decorate them with. LetL be a list[`1`2 : : : `n℄ of labels,t a type, ande
an expression, we use the notation(L)t:e to denote the expressioǹ1t : `2t : : : : `nt : e
obtained by prefixinge by thet-indexed labels inL. This notation is used to index the
labels deduced by “//////” and define the operational semantics ofCDuceL as follows (a bet-
ter definition can be found in the on-line extended version available atwww.cduce.org):v1v2 ; e[v1=f ; v2=x℄ if v1 = funf (:::)(x):e(`t : v1)v2 ; `t�s : (v1v2) if ? ` v2 : s andt � s is defined
match v with p1➔e1|p2➔e2 ; (v ////// p1)t : e1[v=p1℄ if v=p1 6=
 and? ` e1[v=p1℄ : t
match v with p1➔e1|p2➔e2 ; (v //////***p1+++)t : (v ////// p2)t : e2[v=p2℄ if v=p1=
; v=p26=

and? ` e2[v=p2℄ : t
The rule for “unlabeled” applications does not change, while the one for applications

14 For example , consider(`Bool���t : v)//////((((true&&&(((x :=:=:= 1))))jjj(false&&&(((x :=:=:= 0)))) ;;; _)))

<company>[
<worker>[

<surname>mString:"Durand"
<name>nString:"Paul"
<salary>[`Int:6500]

]
<worker>[

<surname>mString:"Dupond"
<name>nString:"Jean"
<salary>[`Int:1800]

]
<worker>[

<surname>mString:"Martin"
<name>nString:"Jules"
<salary>[`Int:1200]

]
]

<company>[
<worker>[

<surname>mString:"Durand"
<name>nString:"Paul"

]
<worker>[

<surname>mString:"Dupond"
<name>nString:"Jean"

]
<worker>[

<surname>mString:"Martin"
<name>nString:"Jules"

]
]

<company>[
(`<worker>[Surname Name] :
<worker>[

<surname>mString:"Durand"
<name>nString:"Paul"

])
(`<worker>[Surname Name] :
<worker>[

<surname>mString:"Dupond"
<name>nString:"Jean"

])
]

Fig. 4.Labeled XML document and the results of queries Q1 and Q2.
of a labeled function changes as we explained early in this section. Matching clearly is
the key rule. Branch selection is performed as inCDuce but the labels determined by//////
and indexed by the type of the reductum are prepended to the result. In particular if the
first branch is selected, then we just propagate the labels inv ////// p1, as the second pattern
is not even checked. But if the second branch is selected thenthe result is prepended by
bothv ////// p2 andv //////***p1+++: while the first set of labels highlights the first of the two kinds
of indirect flows present inCDuce, namely, those due to pattern matching, the second
set of labels fingers the other kind of flows possible inCDuce, that is those generated by
branch dependency induced by first match policy. Since we selected the second branche2 knows thatp1 failed and, therefore, that the matched valuev does not belong to (the
semantic interpretation of) the type***p+++. Therefore, we must also propagate all those
labels inv whose content can be (even partially) deduced from the failure of p1. By
definition these are the labels ofv //////(::: *** p1+++) or equivalently (see Lemma 2) ofv //////***p1+++.

The reduction semantics we obtain is non deterministic since in case of reduction of
a pattern matching or of a labeled function we resort to the type system for determining
the type decoration of the reductum’s labels (and we know that CDuce type system does
not enjoy the minimum typing property). As a matter of facts,we have not described a
single analysis but a whole family of analyses. This is slightly annoying from a theo-
retical viewpoint since we have to prove thatall of them are sound so that, in practice,
we can use any of them. However this has no consequence under the practical aspect:
first, since we deal with a finite number of labels and types it is always possible to find
the best analysis; second, since this problem already resides in theCDuce type system
a choice was already made by the implementation. So we followthe implementation
of CDuce and use in Figures 3 and in the operational semantics ofCDuceL the types
inferred by theCDuce’s type-checker: we end up with the best analysis (in thefamily
described above) that is sound with the current implementation of CDuce.

Let us finally apply the analysis to the queries of Section 1. In order to trace how
information of each data flows in the queries, we label the content of each sub-element
of <worker> elements by a different label as shown on the left expressionof Figure 4.
The results of the analysis ofQ1 and Q2 respectively are the central and right expres-
sions in Figure 4.15 Note thatQ1 propagates only the labels of name and surname (the

15 Sequences are encoded by right associative nested pairs ended by ‘nil, XML elements<tag attributes>s
become triples(‘tag;(attributes;s)), while transform is obtained by iterating matching expressions on the
elements, and encapsulating the results into a sequence.

propagation is a consequence of an explicit flow), thus the analysis has correctly in-
dicated that it is safe. The analysis ofQ2 instead propagates also the salary label and
therefore is rejected as insecure. The propagation of`<worker>[Surname Name] is caused by
the “////// ” in the first match rule inCDuceL ’s operational semantics. In particular when
matching the pattern of transform against an element, the third rule for pairs in Figure 3
decomposes the test over each projection, one of which calculates, say in the first loop,(` Int:6500)////// MoreThanMe which by the second rule for types in Figure 3 is equal to`. Note also how the position of the label denotes different kinds of properties: for ex-
ample we specified<salary>[` :1200] since we wanted to capture only transformations
that depended on the content of the salary element, while if we rather had specified̀:
<salary>[1200] we would have captured also transformations that test the presence of
this element (in the case it were optional).

We want to stress that our analysis can check very complex security entailments.
As explained in the introduction, the independence of the result from salary can also
be ensured by access control techniques or by stripping salary values from the source
document. However, our technique allows one to check that even if a query can access
both salaries and names it cannot correlate them. To that endit just suffices to verify that
the presence of am or of an label in the result implies the absence of the` label, and
vice-versa. According to this policy query Q1 would be accepted sincè does not occur
in the result while query Q2 would be rejected since all the three labels are in the result.
A query that plainly returned the list of all salaries (without any name or surname) or
some statistic about them, would be considered safe, too. More generally, by using label
propagation and some logic (e.g. propositional one) on labels we can define complex
security policies whose verification, trivial in our technique, would be very hard (if not
impossible at all) by standard access control techniques, as we show in Section 6.

Finally, we can recast the analysis scenarios we outlined inthe introduction (Fig-
ure 1) to the present setting. A sound static analysis for oursystem is an analysis that
computes labels that will be surely absent from result of thedynamic analysis, while a
complete static analysis will determine labels that will besurely present in the same re-
sult. Therefore, here completeness is stated with respect to the dynamic analysis rather
than with respect to the non-interference property. With that respect the work presented
here constitutes the cornerstone of the outlined architecture.

5 Properties
In this section we briefly enumerate the various properties of our approach. For space
reasons proofs and less important lemmas are omitted or justsketched. They are all
reported in extended version of the article available on-line.

In what follows, when we state thate is aCDuce orCDuceL expression we implic-
itly mean thate is awell-typed(CDuce orCDuceL) expression.

Lemma 1 (Strip). Lete be aCDuceL expression. Ife;� e0, thenbe
;� be0
.
This lemma has two important consequences, namely(i) thatCDuceL is a conservative
extension ofCDuce with respect to the reduction theory, and(ii) that despite being non-
deterministic the reduction ofCDuceL preserves the semantics ofCDuce programs:

Corollary 1. Lete be aCDuceL expression. Ife; e0, ande; e00, thenbe0
 = be00
.
The soundness ofCDuceL type system is proved by subject reduction and is instrumen-
tal to the soundness of the analysis.

Theorem 1 (Subject reduction).Let e be a CDuceL expression. If� ` e : t ande;� e0, then� ` e0 : t.
The next lemma is useful to understand the match reduction rules ofCDuceL .
Lemma 2. For every valuev and typet, (v ////// t) = (v //////:::t) (modulo the indexes of?)

In order to prove non-interference we need two lemmas, one that characterizes////// and
a second that is the non-interference counterpart of the standard substitution lemma in
typed�-calculi:
Lemma 3. Letp be a pattern,v a CDuceL value with an occurrence� such thatv� =`t:v1. If ` 62 v ////// p, then for allv0 such that? ` v0:t, (v=p 6=
 , Cv� [v0℄ =p 6=
) holds
true.

Lemma 4 (Substitution).Let p be a pattern,v a CDuceL value whose occurrence�
is such thatv� = `t : v0. If ` does not occur in the image ofv=p and` 62 v //////p, then for
all v00 such that? ` v00:t, we have thatCv� [v00℄ =p is pointwise equal tov=p.

We can state the non-interference theorem: note that the non-determinism ofCDuceL ’s
reduction is accounted for by the quantifying on all resultsv of the expressione.
Theorem 2 (Non-interference).Let e be aCDuceL expression, with an occurrence� such thate� = `t : e1. For every valuev such thate ;� v, if ` 62 L(v), then�
is non interfering inbe
 with respect tot, i.e.,8v0 2 CDuce s.t.? ` v0 : t, we havebCe� [v0℄
;� bv

By using Proposition 2 it is easy to see that the conclusion ofthe theorem implies
the Definition 2 of non-interference, justifying in this waythe “i.e.” we used in the
statement of the theorem.

6 A last example
We end our presentation by commenting a more articulated example to illustrate the

type ExamBase = <exam_base>[Person*]
type Person = <person gender="M"|"F">

[Name Birth Grade?]
type Name = <name>String
type Birth = <birth>[Year Month Day]
type Year = <year>[Int]
type Month = <month>MName
type MName= "Jan"|"Feb"|"Mar"|"Apr"| � � �
type Day = <day>[1--31]
type Grade = <grade>[Int]

use of our technique to define and verify com-
plex security policies that cannot be expressed in
terms of access control. We suppose to store in
XML-documents information about persons that
have to pass some examination. The form of the
documents is described by the type declarations
on the right. As we see every document records
a list of names, with personal information, and
with anoptional <grade> element that stores the numerical result of the examination.
The absence of such an element denotes that the person has notpassed (that is, either
not taken or taken and failed) the examination, yet. An XML document that verifies this
schema is shown in the left column of Figure 5, while the central column reports the
result of importing the same document inCDuce.

Imagine that examination documents can be accessed by threedifferent categories
of users, academic staff, administrative staff, and normalusers. We want academic staff
to have unconstrained access to the information stored in the examination documents
while we may wish to constrain the accesses for administration and normal users. As
an example of security requirements we may wish to enforce wehave:

1. Only academic users can have information both on names andgrades or on names
and birthdays simultaneously.

<?xml version="1.0"?>
<exam_base>

<person gender="M">
<name>Durand</name>
<birth>

<year>1970</year>
<month>Aug</month>
<day>10</day>

</birth>
<grade>110</grade>

</person>
<person gender="M">

<name>Dupond</name>
<birth>

<year>1953</year>
<month>Apr</month>
<day>22</day>

</birth>
</person>
<person gender="F">

<name>Dubois</name>
<birth>

<year>1965</year>
<month>Sep</month>
<day>2</day>

</birth>
<grade>120</grade>

</person>
</exam_base>

let eb : ExamBase =
<exam_base>[

<person gender="M">[
<name>"Durand"
<birth>[

<year>[1970]
<month>"Aug"
<day>[10]

]
<grade>[110]

]
<person gender="M">[

<name>"Dupond"
<birth>[

<year>[1953]
<month>"Apr"
<day>[22]

]
]
<person gender="F">[

<name>"Dubois"
<birth>[

<year>[1965]
<month>"Sep"
<day>[2]

]
<grade>[120]

]
]

let eb : ExamBase =
<exam_base>[

<person gender= stat"M"|"F" : "M">[
<name> nameString : "Durand"
<birth>[

<year>[statInt : 1970]
<month> privateMName : "Aug"
<day>[private(1--31) : 10]

]
passedGrade : <grade>[resultInt : 110]

]
<person gender= stat"M"|"F" : "M">[

<name> nameString : "Dupond"
<birth>[

<year>[statInt : 1953]
<month> privateMName : "Apr"
<day>[private(1--31) : 22]

]
]
<person gender= stat"M"|"F" : "F">[

<name> nameString : "Dubois"
<birth>[

<year>[statInt : 1965]
<month> privateMName : "Sep"
<day>[private(1--31) : 2]

]
passedGrade : <grade>[resultInt : 120]

]
]

Fig. 5.A database of examinations: in XML, inCDuce, and inCDuceL
2. The administrative users can check whether a person passed the examination (that

is, they can check for the presence of a<grade> element) but cannot access the
result.

3. Every user can ask for statistical results on grades upon criteria limited to year
of birth and gender (so that they cannot select sufficiently restrictive sets to infer
personal data).

To dynamically verify these constraints we introduce five labels that we use to clas-
sify the information stored in documents:private (that classifies the month and the
day of birth), stat (that classifies the year of birth and the gender attribute),name

type Person = <person gender= stat:("M"|"F")>
[Name Birth (passed:Grade)?]

type Name = <name>(name:String)
type Year = <year>[stat:Int]
type Month = <month>(private:MName)
type Day = <day>[private:(1--31)]
type Grade = <grade>[result:Int]

(that classifies names),passed(that classi-
fies grade elements), andresult(that classifies
the contentof grade elements). Rather than
document-wise, this classification is described
directly on types as shown by the definitions
on the right. Note that in these definitions la-
bels have no indexes (in documents they will be indexed by thetypes they are labeling).
Before executing a query the system uses this specification to generate a labeled version
of the document as shown in the last column of Figure 5. The query is then executed
on the labeled document (according to the semantics ofCDuceL) and the following
constraints16 are checked in the result:

If the owner of the query is a normal user, then the result mustsatisfy:
name) : (private_ stat_ result_ passed) ^ private) : (stat_ result)

16 For the sake of the example we expressed these constraints ina propositional logic where the labels are
atoms, but different languages are possible. The definitionof such languages is out of the scope of the
paper and matter of future research: see Section 7.

if the owner of the query is an administrative user, then the result must satisfy:
name) : (private_ stat_ result) ^ private) : (stat_ result)

where a propositional label is satisfied if and only if the label is present in the result.
Thus, for instance, the second constraint must be read: if the label nameoccurs in the
result thenprivate, stat, andresultcannot occur in it, and ifprivateoccurs in the result
thenstat, andresult do not. The difference with respect to the constraint for normal
users is that the second constraint allowsnameandpassedto occur simultaneously in
the same result. Therefore a query that just tested the presence of a<grade> element
without checking its content would satisfy this second constraint.

If the result of a query satisfies the corresponding constraint, then its stripped ver-
sion is returned to the owner of the query.

7 Perspectives
This paper contains exploratory work toward the definition of information flows secu-
rity in XML transformations. As such it opens several perspectives both for the practical
and the theoretical aspects.

First and foremost the cost of the dynamic analysis must be checked against an
implementation (we are currently working on it). We expect this cost to be reasonably
low: CDuce’s pattern matching fully relies on dynamic type checking, therefore if we
embed the dynamic generation of typed security labels inCDuce’s runtime the resulting
overhead should be small. Also, to fill the gap with practice we must devise expressive
and user-friendly ways to describe the labeling of XML documents in the meta-data
(that is, XML Schemas and DTDs) and to express the associatedsecurity policies (for
instance, in Section 6 we expressed them in propositional logic). These security prop-
erties should be defined by sets of constraints (i.e., formulæ of an appropriate logic)
that are automatically generated from a specification expressed in an “ad hoc” language
(e.g., like the authorizations defined in [6]).

The precision of the dynamic analysis must be enhanced by program rewriting tech-
niques. To exemplify, an obvious “optimization” consists in rewriting all closed (i.e.,
without capture variables) patterns into an equivalent type constraint pattern, by replac-
ing ^̂̂ for &&& , ___ for ||| , and��� for (((;;;))), so as to transform the pattern(((s jjj t;;;u&&&v))) into
the type(s___ t)��� (u ^̂̂ v). Indeed, the analysis on types is more precise than that on
equivalent patterns as the latter is recursively applied tosubcomponents forgetting, in
doing so, many interdependencies. But other subtler rewritings could improve our anal-
ysis: for instancep1 = (x&&& true)jjj(x&&& false) is equivalent top2 = x&&&(true ___ false)
but (`Bool:e)//////p1 = `Bool::(e////// p1) while (`Bool:e)////// p2 = ?ok. This discrepancy can be
identified with the fact that the analyses of pair, intersections, and union patterns are
performed independently on the two subpatterns. Thus a possible way to tackle this
problem is by transferring some information from one pattern to the other, for exam-
ple by mimicking the automaton-based technique used byCDuce for the just-in-time
compilation of patterns.

Finally note that one of the main technical novelties of thiswork is to endow se-
curity labels with constraints. The constraints at issue are quite simple, since they just
express the static knowledge of the type of the labeled expression. It is then natural
to think of much more expressive constraints. For example wecan think of endowing
labels with integrity constraints and define non-interference just in terms of consistent

databases. In this perspective a program that checked the integrity of a base would be
always interference-free even if it accessed private information. Of course checking
non-interference in this case would be even more challenging but it could pave the way
to (security) proof carrying code for XML.

Acknowledgments:We are very grateful to Nicole Bidoit and Nevin Heintze for
their careful reading and invaluable suggestions, and to Dario Colazzo, Alain Frisch,
Alban Gabillon, and Massimo Marchiori for their feedback.

References
1. M. Abadi, B. Lampson, and J.-J. Levy. Analysis and cachingof dependencies. InICFP ’96,

1st ACM Conference on Functional Programming, pages 83–91, 1996.
2. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-Centric General Purpose Lan-

guage. InICFP ’03, 8th ACM Conference on Functional Programming, pages 51–63, 2003.
3. A. Christensen, A. Møller, and M. Schwartzbach. Extending Java for high-level web service

construction.ACM TOPLAS, 2003. To appear.
4. S. Cluet and J. Siméon. Yatl: a functional and declarativelanguage for XML, 2000. Draft

manuscript.
5. S. Conchon. Modular information flow analysis for processcalculi. InFCS 2002, Proceed-

ings of the Foundations of Computer Security Workshop, Copenhagen, Denmark, 2002.
6. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained

access control system for XML documents.ACM TOISS, 5(2):169–202, 2002.
7. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Design and imple-

mentation of an access control processor for XML documents.Computer Networks, 33(1–
6):59–75, 2000.

8. M. Fernández, J. Siméon, and P. Wadler. An algebra for XML query. InFST&TCS, number
1974 in LNCS, pages 11–45, 2000.

9. A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In LICS ’02, Seventeenth
Annual IEEE Symposium on Logic in Computer Science, pages 137–146, 2002.

10. A. Gabillon and E. Bruno. Regulating access to XML documents. In15th Annual IFIP WG
11.3 Working Conference on Database Security., July 15-18 2001.

11. V. Gapayev and B. Pierce. Regular object types. InProc. of ECOOP ’03, Lecture Notes in
Computer Science. Springer, 2003.

12. J.A. Goguen and J. Meseguer. Security policy and security models. InProceedings of
Symposium on Secrecy and Privacy, pages 11–20. IEEE Computer Society, april 1982.

13. H. Hosoya and B. Pierce. XDuce: A typed XML processing language.ACM TOIT, 2003. To
appear.

14. IBM AlphaWorks.XML Security Suite. http://www.alphaworks.ibm.com/tech/xmlsecuritysuite.

15. A. Myers and B. Liskov. A decentralized model for information flow control. InProceedings
of the 16th ACM Symposium on Operating Systems Principles (SOSP), pages 129–142, 1997.

16. F. Pottier and S. Conchon. Information flow inference forfree. In ICFP ’00, 5th ACM
Conference on Functional Programming, pages 46–57, September 2000.

17. F. Pottier and V. Simonet. Information flow inference forML. ACM SIGPLAN Notices,
31(1):319–330, January 2002.

18. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1):5–19, 2003.

19. D. Volpano and G. Smith. A type-based approach to programsecurity. InTAPSOFT ’97,
number 1214 in Lecture Notes in Computer Science, pages 607–621. Springer, 1997.

20. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.Journal
of Computer Security, 4(3):167–187, 1996.

21. C. Wallace and C. Runciman. Haskell and XML: Generic combinators or type based trans-
lation? In ICFP ’99, 4th ACM Conference on Functional Programming, pages 148–159,
1999.

