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coinciding in the unlabelled case with the right adjoint to the truncation functor. This non-
functorial construction is necessary since the labelled coskeleton functor of the category

{)(fgf:\}/g;dfs. of labelled precubical sets does not fulfil the above requirement. We prove in this paper
Precubical set that it is possible to force the labelled coskeleton functor to be well behaved by working
Left adjoint with labelled transverse symmetric precubical sets. Moreover, we prove that this solution
Concurrency is the only one. A transverse symmetric precubical set is a precubical set equipped with
Process algebra symmetry maps and with a new kind of degeneracy map called transverse degeneracy.

Finally, we also prove that the two settings are equivalent from a directed algebraic
topological viewpoint. To illustrate, a new semantics of the calculus of communicating
systems (CCS), equivalent to the old one, is given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Presentation of the results

Directed algebraic topology is a field of research aiming at modelling time flows of concurrent processes and their
properties by various algebraic topological models [13,17,20,24,28,14,23] (see [36] for other references). In this work, we
are interested in concurrent processes arising from process algebras [38,31,6], and more precisely in the labelling process of
these objects, which is related to combinatorics in a non-trivial way. By borrowing several ideas from [39,22] (see also
[34,8,36,11,12]), with several slight modifications, [18] presented a semantics of process algebras in terms of labelled
precubical sets. We consider in this paper only the case of Milner’s calculus of communicating systems (CCS). The adaptation
to other synchronization algebras and therefore to other process algebras is straightforward and is left to the reader.

The principle of this semantics is that the concurrent execution of n actions is abstracted by a full labelled n-cube. Each
coordinate corresponds to one of the n actions, and therefore two opposite faces are labelled by the same action (e.g., Fig. 1
represents the concurrent execution of two actions a and b). The core of the construction of [18] is the non-functorial
notion of a labelled directed coskeleton. It is applied to the fibered product of the 1-dimensional parts of two full labelled
cubes representing two higher-dimensional transitions. This construction is the key ingredient to defining the parallel
composition with synchronization of CCS in [18]. It is defined as a subobject of the labelled (1-dimensional) coskeleton.
The latter coincides with the usual coskeleton, i.e. the right adjoint to the truncation functor, when the set of labels is a

singleton. The labelled directed coskeleton construction CET«Y takes a particular kind of 1-dimensional labelled precubical
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Fig. 1. Concurrent execution of a and b.

set K (the set of vertices Ky must be a cube) to a higher-dimensional labelled precubical set CET(Z (K) such that each set of n
actions running concurrently is assembled to an n-cube, in exactly one way. This role cannot be played by the full labelled
1-dimensional coskeleton functor cosk?’): (see Proposition 2.3.4) of the category of labelled precubical sets since the latter
may add several different n-cubes for the same set of n actions running concurrently.

The purpose of this paper is to introduce the notion of a labelled transverse symmetric precubical set. A transverse
symmetric precubical set is a precubical set equipped with symmetry maps as in [21] and with a new kind of degeneracy
map called transverse degeneracy. To the best of our knowledge, the latter maps seem to be new. In this new category
of precubical sets, the labelled coskeleton functor is well behaved, as explained in Theorems 3.1.24 and 4.1.8. Indeed, the

labelled transverse symmetric precubical set DC(CE@: (K)) freely generated by the labelled directed coskeleton co—)skz (K) of

K is isomorphic to the labelled coskeleton functor cosk]D'E (K) of the category of labelled transverse symmetric precubical
sets applied to K if K is the 1-dimensional part of an n-cube or a fibered product over a synchronization algebra. Since

the labelled transverse symmetric precubical set £(m—57<(1< )) and the labelled precubical set co—sl)<(l( ) generate the same
topological space of execution paths by Proposition 2.2.10 and Fig. 3, this result gives a functorial interpretation of the
labelled directed coskeleton construction which is equivalent to the non-functorial construction from a directed algebraic
topological point of view.

The labelled coskeleton functor in the category of labelled transverse symmetric precubical sets is therefore a categorical
machinery allowing the understanding of the combinatorics of the labelling process in the parallel composition with
synchronization of CCS. The advantage of this labelled coskeleton functor is twofold: (1) it is a functorial construction; (2) it
is defined for any labelled 1-dimensional [transverse symmetric]! precubical set, allowing future generalizations.

This enables us to give a semantics of CCS in terms of labelled transverse symmetric precubical sets which is equivalent
to the one of [ 18] in terms of labelled precubical sets from a directed algebraic topological point of view: see Theorem 4.3.3
and Fig. 3.

1.2. Outline of the paper and reading guide

The paper is divided into three parts:

(1) Section 2.1, Section 2.2 and Section 2.3 generalize notions previously introduced in [ 18] to any category of cubes.

(2) Section 3.1 contains the mathematical treatment. A reader only interested in computer-scientific applications will only
have to read the statement of Theorem 3.1.24.

(3) Section 4.1, Section 4.2 and Section 4.3 are the computer-scientific part of the paper.

The core of the paper is the categorical interpretation of the non-functorial labelled directed coskeleton construction
using a generalization of the notion of a labelled precubical set. The notion of the category of cubes, and the generalized
notion of labelled precubical sets are presented in Section 2.1. The main difficulty is the definition of the generalized
precubical set of labels. Section 2.2 proves that all the notions of labelled precubical sets are equivalent from a directed
algebraic topological point of view, in particular that they generate the same path space of execution paths. This section is
the only topological one of the paper. Proposition 2.2.10 is only used in Theorem 4.3.3 to conclude that the two semantics of
CCS generate the same spaces of execution paths. There is also a small application (Proposition 2.2.13) which is used inside
the proof of Theorem 4.1.8. The topological material of Section 2.2 is not necessary for the proof of Proposition 2.2.13 but
a pure combinatorial proof would be far more complicated. Section 2.3 generalizes the labelled coskeleton functor to all
categories of precubical sets. It is defined as a right adjoint of a truncation functor, as in the setting of labelled precubical
sets.

Section 3.1 is the mathematical core of the paper. It proves that all labelled coskeleton functors but one are defective.
Indeed, the labelled coskeleton of the 1-dimensional part of the n-cube is never contractible in a directed algebraic
topological sense, except for the unique shell-complete category of cubes, the maximal one containing all adjacency-
preserving maps. This is the key property to obtaining a well-behaved labelled coskeleton functor (see Theorem 3.1.24).
A presheaf over the unique shell-complete category of cubes is called a transverse symmetric precubical set.

1 The words “transverse symmetric” can be omitted here by Propositions 2.1.19 and 2.1.28.
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Section 4.1 is the first section of the computer-scientific part of the paper. It explains how one can use the preceding
constructions to represent the parallel composition in CCS of an m-transition with an n-transition, modelled by a full labelled
m-cube and a full labelled n-cube respectively. In other words, it studies parallel composition in the local case. It is shown
that the definition of the fibered product in CCS must be slightly modified to allow the use of the labelled coskeleton functor
of the category of labelled transverse symmetric precubical sets. Section 4.2 then studies parallel composition in CCS in the
global case. It compares the two notions of synchronized tensor products in the category of labelled precubical sets and in
that of labelled transverse symmetric ones. It is then proved in Section 4.3 that the two semantics of CCS in terms of labelled
precubical sets and labelled transverse symmetric ones are equivalent from a directed algebraic topological point of view.

Finally, Section A.1 is an additional section treating the particular case of labelled symmetric precubical sets. This
formalism will enable us to establish a link between concurrent processes viewed as precubical sets and Cattani-Sassone
higher-dimensional transition systems in [19].

1.3. Prerequisites

The paper [ 18] contains an introduction to CCS for mathematicians which is sufficient to understand Sections 4.2 and 4.3
of this paper. Computer scientists might prefer [31,38]. For the rest of the paper, only general knowledge in category theory
[32,33] is required, in particular in presheaf theory and in the theory of locally presentable categories [3]. A few model
category techniques are used in Section 2.2. In fact, except for Section 2.2, the rest of the paper is purely combinatorial.
Possible references for model categories are [10,26,25].

2. About labelled precubical sets over categories of cubes

2.1. Labelled precubical set over a category of cubes

We want to generalize the notion of labelled precubical set introduced in [ 18] by working on a category of cubes 4 (see
Definition 2.1.7) instead on the reduced box category O (see Definition 2.1.2) as in [ 18]. The particular case A = 0O will give
back the notion of a labelled precubical set.

Category of cubes (definition and examples)

The category of partially ordered sets or posets together with the strictly increasing maps (x < y implies f(x) < f(y))
is denoted by PeoSet. It is worth noting that it is not the usual category of partially ordered sets since we restrict ourselves
to strictly increasing maps. Let [0] = {()} and [n] = {0, 1}" for n > 1. By convention, one has {0, 1}° = [0] = {()}. The set

[n] is equipped with the product ordering {0 < 1}": (€1, ..., €y) < (€7, ..., €,) if and only if, for every 1 < i < n, one has
€; < €. The poset [n] is also called the n-cube.

Definition 2.1.1. Let 67 : [n — 1] — [n] be the set map defined for 1 < i < nand«a € {0, 1} by 67 (€1, ..., €n—1) =
(€1,...,€_1,, €, ..., €,_1). These maps are called the face maps.

fori < jand forall (o, B) € {0, 1}%.

Definition 2.1.2. The reduced box category, denoted by [, is the subcategory of PoSet with the set of objects {[n],n > 0}
and generated by the morphisms §;*.

They satisfy the cocubical relations 8}3 8 = o7 (Sfi T

It is well known that the face maps together with the cocubical relations give a presentation by generators and relations
of the small category 00 [21].

Proposition 2.1.3. Letn > 1. Let (ey, ..., €,) and (€], .. ., €,) be two elements of the poset [n] with (¢4, ..., €) < (€], ...,
€,)- Then there existiy > --- > in_yand s, ..., @y € {0, 1} such that (1, ..., &) =8 ...8""(0...0)and (€], ..., €)
= (Sz‘ .. .(Sf;"_‘rr(l ... 1), where r > 0 is the number of Os (resp. 1s) in the arguments 0...0 (resp. 1...1). In other words,
(€1, ..., €n) is the bottom element and (€], . . ., €,) the top element of an r-dimensional subcube of [n].
Proof. The set {1, ..., n}is equal to the disjoint union
fie{l,....ne=¢}uiie{l,...,n}, & <€}
In the latter case, one necessarily has¢; = 0and €] = 1. O
Definition 2.1.4. Letn > 1. Let (¢, ..., €,) and (€], ..., €;) be two elements of the poset [n]. The integer r of Proposi-
tion 2.1.3 is called the distance between (eq, ..., €,) and (€], ..., €,). Let us denote this situation by r = d((eq, ..., €n),
(€1, - .., €})). By definition, one has
i=n
r= Z lei — €l
i=1
Definition 2.1.5. A set map f : [m] — [n] is adjacency preserving if it is strictly increasing and if d((eq, ..., €m),

(€1, ...,€,)) = limpliesd(f (e, ..., €m), f(€], ..., €)) = 1.
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An adjacency-preserving map does not necessarily preserve distance. For example, the map y; : [2] — [2] defined by
y1(€1, €2) = (max(eq, €;), min(eq, €;)) is adjacency preserving and not distance preserving because y;(1,0) = y4(0, 1) =
(1, 0). We shall later see that y, is an example of transverse degeneracy map (see Definition 3.1.11).

Proposition 2.1.6. For any n > 1, the set map & : [n — 1] — [n] is adjacency preserving. Any strictly increasing map from
{0 < 1}" to itself is adjacency preserving as well.

Proof. That the set map &7 : [n — 1] — [n] is adjacency preserving is clear. Let f be a strictly increasing map from {0 < 1}"
to itself. Let x and y be two elements of {0 < 1}" with d(x,y) = 1 and, for example, x < y. Then there exists a strictly
increasing chain (0,...,0) =xp < x; < --- <X, = (1,..., 1) of {0 < 1}" withx = x;_; and y = x; for some i > 1. Then
f(x0) < f(x1) < --- < f(xp) is a strictly increasing chain of {0 < 1}". Therefore one has f (xg) = x¢ and f (x,) = x,. It is easy
to see that n = d(f (xo), f (1)) = Z?zl d(f (%i—1), f(x;)). So for all i > 1, one has d(f (x;_1), f (x;)) = 1. Thus, f is adjacency
preserving. O

Definition 2.1.7. A category of cubes + is a subcategory of PoSet such that:

o the set of objects is {[n], n > 0},
e there is the inclusion O C #4, and
e every morphism of #4 is adjacency preserving.

The minimal category of cubes for inclusion is the reduced box category .
Notation 2.1.8. Let us denote by O the subcategory of PoSet containing all adjacency-preserving maps.

The category 0 is the maximal category of cubes for inclusion. In other words, a small category € is a category of cubes
if and only there are the inclusions 0 C ¢ C 0.

Notation 2.1.9. In what follows, 4 always denotes a category of cubes.

Definition 2.1.10. [21] Let 0; : [n] — [n] be the set map defined for 1 < i < n— 1landn > 2 by oi(eq,...,€) =
(€1, ..., €i—1, €i+1, €, €i12, - . ., €;). These maps are called the symmetry maps.

The symmetry maps are clearly adjacency preserving.
Notation 2.1.11. Let us denote by (s the smallest category of cubes containing the symmetry maps.

We have the inclusions of categories of cubes O C Os C 4.

Unlabelled A-set
Definition 2.1.12. An (unlabelled) 4-set is a presheaf over +. The corresponding category is denoted by A°PSet.

Let K be an object of 4A°Set. The set K ([n]) will be also denoted by K,. Amap f : K — L of A°Set will be also denoted
by (fo)ns0, Where f, : K, — L, is the corresponding set map. For any map k : [m] — [n] of 4 and any #-set K, denote by
k* : K, — Ky, the set map induced by k.

Let p > 0. The p-dimensional A-cube or p-cube A[p] is by definition the presheaf A4(—, [p]). In other words, A[p]y is the
set of maps from [k] to [p] in the category of cubes «. The boundary dA[p] of the p-dimensional A-cube is the presheaf
defined by d.4[plx = Alplkif k < p and d.4[pl, = @ otherwise. In particular, the boundary of the 0-dimensional #-cube is
the empty presheaf.

Let A, C 4 be the full subcategory of A whose set of objects is {[k], k < n}. The category of presheaves over A, is
denoted by ., Set. Its objects are called the n-dimensional 4-sets. The category of n-dimensional #-sets can be identified
with the full subcategory of the category of A-sets K such that K, = @ forp > n.

Let K be an #-set. Let K, be the A-set obtained from K by keeping the p-dimensional cubes of K only for p < n.In
particular, K¢y = Kp. Note that one has d.4[n] = 4[n],_1 for every n > 0 since our precubical sets contain no degeneracy
maps in the usual sense.

Definition 2.1.13. A O-set is called a precubical set [5]. A Os-set is called a symmetric precubical set [21]. A G-set is called a
transverse symmetric precubical set.?

The inclusion functor O C # induces a forgetful functor w,, : A°°Set — [(0°°’Set which has both a left and a right adjoint
obtained respectively as a left and a right Kan extension along the inclusion 0% C A°. The right adjoint is denoted by R 4 :
(1°’Set — A°PSet. The left adjoint .£ 4 : °PSet — A°PSet is of special interest since it formally adds all additional operators
defining an A-set. The two following propositions state some elementary remarks about £ which will be reused later.

Proposition 2.1.14. Let K be a precubical set. Then one has the isomorphism

LK) = 11_11)1 Aln].
O[n]—K

In particular, there is the isomorphism of A-sets £ 4(0[n]) = A[n].

2 Note that the last notion is new.
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Proof. For every #-set K, one has K, = (w4K), for all n > 0 since the inclusion functor O C « is the identity on objects.
So one has the bijections of sets

APSet(L 4(0[n]), K) = 0PSet(0[n], wK) = (wxK)n = K, = APSet(A[n], K).

By the Yoneda lemma, one obtains the isomorphism £ 4 (O[n]) = «[n] for all n > 0. Since £ is a left adjoint, it preserves
colimits. So one obtains for every precubical set K

OCA(K):cﬁ,A( h_r)rl D[n])% h_r)n Aln]. O

O[n]—K O[n]—K

Proposition 2.1.15. Let K be a precubical set. The identity map Id, ,«, induces by adjunction an inclusion of presheaves
ix : K C Q)AGCA(K)
Proof. Since the functor K — K, from precubical sets to sets is colimit preserving for every p > 0, one has the bijections
K, = h_l)n Olnl,
O[n]—K

and

waLa(K)p = lim wqAln], = lim A(p], [n]).
O[n]—K O[nl—K

Each set map O[n], — w[n], is one-to-one because of the inclusions of sets O([p], [n]) C A([p], [n]) for everyp > 0.
For any map g : [n] — [n] of O, one has the commutative diagram of sets

C

O[nl, o'l

waAnly = A(p], [n]) —————— wAln'], = A(lp], [0']).

The bottom map is one-to-one since it consists of composing by g which is one-to-one as any map of 0. So each set
map wuA[nl, — wuA[n'], of the diagram calculating w, £, (K), is one-to-one as well. One deduces that the map
Ky = w4 L4 (K)pis one-to-one. 0O

Notation 2.1.16. Since K C w L 4 (K) is an inclusion, ix (y) will be simply denoted by y foranyy € K.

The 1-dimensional case

This paragraph proves that the 1-dimensional case does not depend on the choice of the category of cubes. The crucial
facts are that a category of cubes contains all face maps and that all morphisms are adjacency preserving.
Proposition 2.1.17. For every m > n, one has A([m], [n]) = @. For every n > 0, the inclusion O C - implies the bijections
[n] = O([0], [n]) = A([0], [n]) and O([1], [n]) = A([1], [n]).

Note that this implies that A cannot have any degeneracies.
Proof. It is clear that A([m], [n]) # @ implies m < n. One has the inclusions

0([0], [n]) € A([0], [n]) C O([0], [n]) = O([O, [n]) = {8 ... 87", (€1, ..., &) € [n]};

hence the second assertion. For every n > 0, the inclusion O([1], [n]) C A([1], [n]) is a bijection since every map of 4 is
adjacency preserving by definition of a category of cubes; hence the third assertion. O

Proposition 2.1.18. Let K be a precubical set. Then the inclusion of precubical sets K C w 4L 4(K) induces the isomorphism of
1-dimensional precubical sets K<1 = w4 L 4 (K) <.

Proof. We already know by Proposition 2.1.17 that, for every n > 0, the inclusions O([0], [n])
C A([0], [n]) and O([1], [n]) C A([1], [n]) are bijective. So the inclusion of presheaves O[n]<; C w4s[n]<; is an iso-
morphism for every n > 0. Since the forgetful functor w, : A°?Set — [°PSet is a left adjoint, it is colimit preserving. Hence
the proof is complete. O

Proposition 2.1.19. The category of 1-dimensional precubical sets is equivalent to the category of 1-dimensional A-sets.
Proof. The adjunction £, : 0O%Set = A%Set : w, induces an adjunction (£4)<; : 07 Set = A'Set : (w4)<i by
Proposition 2.1.14. We already know by Proposition 2.1.18 that there is the isomorphism (w)<1(L4)<1 = Idu‘;Psm- One

has (L4)<1(wa)<1(A[0]) = A[O0] by Proposition 2.1.14 and (L) <1(w4)<1(4[1]) = «[1] by Proposition 2.1.17 and
Proposition 2.1.14. Hence the isomorphism of functors (£4)<1(w4)<1 = Id(Agleet. O
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Labelled A-set

We fix a non-empty set X' of labels or of actions. It always contains a distinguished label denoted by 7. We want to label
the cubes of a A-set with the elements of X. A labelled A-set will be a map of A-sets K — L, where L is the 4-set of labels.
Let us start by recalling the construction of the precubical set of labels.

Proposition 2.1.20 (Variant of Goubault’s Construction [22]). Let

o (X)) = {0} (the empty word),
e forn>1,(1%), = X", and
e 3(ay,...,a,) =93/ (a1,...,a,) = (ar, ..., Qi ..., ay), where the notation ; means that a; is removed.

Then these data generate a precubical set denoted by ! X.

Definition 2.1.21. Let K be an A-set. Let x € K, with p > 1. The boundary of x is the composite map dx : d.A[p] C A[p] =
K.

The main feature of the precubical set ! X' is that, for every p > 2, a p-cube of ! X, which labels the concurrent execution
of p actions like in Fig. 1, is determined by its boundary. In other words, a commutative square of precubical sets of the form

oolp] ——1x

op] ——1

with p > 2, where 1 is the terminal precubical set, admits at most one lift k. An equivalent mathematical formulation of the
preceding condition is that for every commutative square of precubical sets of the form

a0[p] —— = Olp]

Op] —— 1%,

one has f = g. So every commutative square of precubical sets of the form

f.8)
Olp] Uacyp) Olp] ————— 1%
7
Ve
Kk~
7
7
7
Ve
Ve
Olp] 1

with p > 2 admits exactly one lift k = f = g. In other words, the precubical set ! X' turns out to be orthogonal to the set of
maps {O[p] Usogp; Olp] — Olpl, p > 2} in the sense of [3, Definition 1.32].

Because of the inclusion K C w L 4 (K) for every precubical set K, we need more cubes for the A-set of labels as soon as
the inclusion O C 4 is strict. Indeed, we must be able to label all cubes of £ 4 (K) for every labelled precubical set K —!X.
The first candidate for the 4-set of labels is then the A-set £ 4 (1Y) freely generated by ! X. However, it is not well behaved.
Consider the two set involutions o7 : [2] — [2] and Id[y) : [2] — [2]. Let us suppose that oy € 4. Then the two 2-cubes
(o1)*(t, 7) and (7, 1) of £ 4(!X') have the same boundary. This means that the commutative square of A-sets

(o)) *(r,1)=3(t,T
3.4[p] (01)*(7,71)=0(z,7) £405)
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has two distinct lifts k = (o7)*(t, t) and k = (7, 7). In other words, the A-set £,4(!X) is never orthogonal to the set
of morphisms {A[p] Uyarp; Alp] — A[pl,p > 2} assoon as oy : [2] — [2] belongs to «. In fact, the A-set £, (!{t})
is even not the terminal 4-set in this case. Yet, the notion of A-set must coincide with the unlabelled notion if the set
of labels is equal to {r}. The full subcategory {A[p] Uyaip Alpl — Alpl,p > 2} of A-sets orthogonal to the set of
maps {A[p] Usap Alp] — Alpl,p > 2} is a full reflective subcategory of the locally presentable category of A-sets by
[3, Theorem 1.39]. Let

Shy @ APSet — {A[p] Ugarp Alp] — Alpl,p > 2}*

be the left adjoint to the inclusion functor {A[p] Uy #Alp] = 4Alpl, p > 2}t C A%Set.
Definition 2.1.22. The A-set of labels is the A-set Sh4L£.4(!X).

In ShyL4(!X), the two 2-cubes (o1)*(7, ) and (t, ) are forced to be equal. Note that there is the isomorphism of
precubical sets Sho Lo (1Y) =12,

Definition 2.1.23. A labelled A-set (over X') is an object of the comma category
AOpSet¢ShA£A (' 2)
That is, an object is a map of A-sets £ : K — Sh4L£4(!X) and a morphism is a commutative diagram

K L

N 7

Shul4(1X).

The ¢ map is called the labelling map. The A-set K is sometimes called the underlying A-set of the labelled +4-set.
The functor £ 4 : 0’Set — A°PSet induces a functor (denoted in the same way)
Lo DOpSeti,‘Z‘ — AOpSet¢ShA£A('E)

which takes £ : K — !X to the composite £ 4 (K) %) LA(1X) > ShyLh(1X).

Proposition 2.1.24. Let K be an A-set. Then the map of A-sets K — Sh 4 (K) induces the isomorphism of 1-dimensional A-sets
Ko = Shi(K) <.

Proof. For every p > 2 and for every commutative diagram of solid arrows

A[P] Uy appy A[P] — K

A[p] 1,

there exists at most one lift k. So an «A-set K is orthogonal to the set of morphisms {A[p] Uyp Alp] — Alpl,p > 2}if
and only if the canonical map K — 1 satisfies the right lifting property with respect to the same set of morphisms. So the
A-set Sh 4 (K) can be obtained by a small object argument by factoring the map K — 1 as a composite K — Sh(K) — 1,
where K — Sh,(K) is a relative {A[p] Uy 4[p] — [pl,p > 2}-cell complex and where the map Sh,(K) — 1
satisfies the right lifting property with respect to the same set of morphisms. The small object argument is possible by
[4, Proposition 1.3] since the category of #-sets is locally presentable, as every presheaf category. Since, for every p > 2, the
map of A-sets A[p] Uyap A[p] — A[p] induces an isomorphism

(ALP] Uaarp) =>‘*[P])gl = Alpl,
one deduces that the canonical map K — Sh, (K) induces an isomorphism K¢; = Sh,(K)<1. O

Proposition 2.1.25. There is the isomorphism Sh4 £ 4(!{t}) = 1. Therefore, when X = {1}, the category of labelled A-sets is
equivalent to the category of unlabelled A-sets.

Proof. Indeed, both the functors Sh,, and £ 4 do not modify the set of 0-cubes and the set of 1-cubes by Proposition 2.1.18
and Proposition 2.1.24. Moreover, for any #-set K such that K is a singleton, it is clear by induction on p > 1 that the set
(Sh4K)p is a singleton. So Sh 4L 4 (!{t}) = 1(the terminal object of A%Set). O
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Notation 2.1.26. Let (ay, ..., a,) € X" withn > 1. The labelled precubical set O[ay, . .., a,] denotes the map £ : O[n] —!X
such that £(Id,)) = (as, ..., Gp).

Fig. 1 gives the example of the labelled 2-cube O[a, b]. It represents the concurrent execution of a and b. It is important
to notice that two opposite faces of Fig. 1 have the same label.

Notation 2.1.27. Let (aq,...,a,) € X" withn > 1. The labelled A-set A[aq, ..., a,] denotes the labelled A-set £ 4(0[ay,
ooy Op)).

Proposition 2.1.28. The category of labelled 1-dimensional precubical sets is equivalent to the category of labelled 1-dimensional
A-sets.

Proof. This is a consequence of Proposition 2.1.19 and Proposition 2.1.24. O

2.2. Geometric realization of a labelled A-set

The purpose of this section is to prove that the geometric realization functor 0°’Set !> — Flow | ? X of [ 18] which takes
a labelled precubical set to the corresponding labelled flow factors as a composite 0°’Set|!> — A%Set|Sh L4(1X) —
Flow | ? X, where the left-hand functor is induced by £ 4. This result ensures that all the notions of labelled A-sets are
equivalent from a directed algebraic topological point of view. The results of this section are used only in Theorem 4.3.3 and
in Theorem 4.1.8.

Unlabelled flow

The category Top of compactly generated topological spaces (i.e. of weak Hausdorff k-spaces) is complete, cocomplete
and cartesian closed (more details for these kinds of topological spaces are in [7,30], the Appendix of [29] and also in the
preliminaries of [ 17]). In what follows, all topological spaces will be supposed to be compactly generated. A compact space
is always Hausdorff.

Definition 2.2.1 ([17]). A (time) flow X is a small topological category without identity maps. The set of objects is denoted
by X°. The topological space of morphisms from « to 8 is denoted by Py gX. The elements of X° are also called the states of
X. The elements of P, gX are called the (non-constant) execution paths from « to 8. A flow X is loopless if, for every o € X°,
the space P, X is empty.

Notation 2.2.2. Let PX = |_|(a, £ex0xx0 Pa, pX. The topological space IPX is called the path space of X. The source map (resp. the
target map) PX — X is denoted by s (resp. t).

Definition 2.2.3. Let X be a flow, and let « € X° be a state of X. The state « is initial if o ¢ t(PX), and the state « is final if
o ¢ s(PX).

Definition 2.2.4. A morphism of flows f : X — Y consists in a set map f° : X° — Y° and a continuous map Pf : PX — PY
such that s(Pf (x)) = fO(s(x)), t(Pf(x)) = fO(t(x)) and Pf (x * y) = Pf(x) * Pf(y) for every x,y € PX. The corresponding
category is denoted by Flow.

The strictly associative composition law

[Pa,ﬂX X ]PﬂﬁyX —> ]P’O,.VX
*,y) > xxy

models the composition of non-constant execution paths. The composition law * is extended in a usual way to states, that
is to constant execution paths, by x x t(x) = x and s(x) * x = x for every non-constant execution path x.
Here are two fundamental examples of flows:

(1) Let S be a set. The flow associated with S, still denoted by S, has S as a set of states and the empty space as path space.
This construction induces a functor Set — Flow from the category of sets to that of flows. The flow associated with a
set is loopless.

(2) Let (P, <) be a poset. The flow associated with (P, <), and still denoted by P is defined as follows: the set of states of P
is the underlying set of P; the space of morphisms from « to 8 is empty if @« > 8 and equal to {(«, 8)} if« < § and the
composition law is defined by («, B) * (8, ¥) = («, y). This construction induces a functor PoSet — Flow from the
category of posets together with the strictly increasing maps to the category of flows. The flow associated with a poset
is loopless as well.?

There is an important model structure on Flow which is characterized as follows [17]:

3 And must be loopless! This is one of the reasons for working with small categories without identity maps.
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o~ o~ (6,*) o~
0,0 0,1

(*.0)

PR %) PPN
1L,0)—>(1,1)

Fig. 2. The flow {6 < T}Z (Note that (x, x) = (ﬁ, *) * (*,T) = (*,6) * (T, *)).

e The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms of flows f : X — Y such that
fO: X% — Y9 is a bijection of sets and such that Pf : PX —> PY is a weak homotopy equivalence.
e The fibrations are the morphisms of flows f : X — Y such that Pf : PX —> PY is a Serre fibration.*

This model structure is cofibrantly generated. The cofibrant replacement functor is denoted by (—).

Labelled flow

Definition 2.2.5 ([18]). The flow of labels ? ¥ is defined as follows: (?£)° = {0} and P?X is the discrete free commutative
semigroup generated by the elements of X.

Definition 2.2.6 ([18]). A labelled flow is an object of the comma category Flow|? X That is an object is a map of flows
£ : X —?X and a morphism is a commutative diagram

X——Y

N

The £ map is called the labelling map. The flow X is sometimes called the underlying flow of the labelled flow.

Geometric realization of a labelled precubical set L L

A state of the flow associated with the poset {0 < 1}" (i.e. the product of n copies of {0 < 1}) is denoted by an n-tuple of
elements of {0, 1}. By convention, {0 < J\}?\: {O}. The unique morphism/execution path from (xy, ..., X;) to (y1, ..., ¥n)
is denoted by an n-tuple (z1, ..., z;) of {0, 1, *} with z; = x; if X, = y;and z; = * if x; < y;. For example, in the flow {0 < 1}?
(see Fig. 2), one has the algebraic relation (x, x) = (0, *) * (*, 1) = (*, 0) * (1, *). R

Let 0 — PoSet C Flow be the functor defined on objects by the mapping [n] — {0 < 1}" and on morphisms by the
mapping

5?‘ = (€1, ..., €—1) P> (€1, ..., €621, QL €, oo, €q21))

o~

where the ¢; are elements of {O,T, *}. The functor [n] — {6 < T}“ from O to Flow induces a bad realization functor from
0°PSet to Flow defined by

Klpoa == lim {0 < 1}"|
O[n]—K

Theorem 2.2.7 ([18, Theorem 7.1] and [18, Proposition 8.1]). Foralln > 3, the inclusion 00[n] C O[n] induces an isomorphism
of flows |00[n]|paa = |O[n]|paa- One has the isomorphism of flows |! X|peg = ? X.

Definition 2.2.8 ([18]). Let K be a precubical set. By definition, the geometric realization of K is the flow

- : N _ Tyn\cof
K| := lim ({0 <TH|
O[n]—K

The natural trivial fibrations ({6 < T}")C"f — {6 < /l\}” forn > 0induce a natural map |[K| —> |K|pqq for any precubical
set K. Let K — !X be a labelled precubical set. Then the composition |[K| — [!X| — |!X|peq =?X gives rise to a labelled
flow.

4 Thatis, a continuous map having the right lifting property with respect to the inclusion D" x0 C D" x [0, 1] foranyn > 0, where D" is the n-dimensional
disk.
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K| = L4 (K)]

13

192 - | LA(1E2)] ————————= [ShaLa(!2)]

7Y = 12 pgg —> |La(! D) lbgg — [ShALA(Z) |pad
Fig. 3. Labelled precubical sets and labelled A-sets equivalent from the directed algebraic topological point of view.

Geometric realization of a labelled A-set
Let A — PoSet C Flow be the functor defined on objects by the mapping [n] — {0 < 1}" and on morphisms as

follows. Let f : [m] — [n] be a map of A with m,n > 0. Let (¢1, ..., €,) € {0, 1, %}™ be an r-cube. Since f is adjacency
preserving, the two elements f(s(e1, ..., €n)) and f(t(eq, .. ., €n)) are respectively the initial and final states of a unique
r-dimensional subcube denoted by f (e, ..., €y) of [n] with f(eq, ..., €,) € {0, 1, *}". Note that the composite functor

O C A — PoSet C Flow is the functor defined above. The functor [n] — {0 < 1}" from 4 to Flow induces a bad
realization functor from 4°Set to Flow defined by

Klpaa == lim {0 < 1}" |
Aln]—K

Definition 2.2.9. Let K be an A-set. By definition, the geometric realization of K is the flow

T N _ Tyn\cof
K| :=lim ({0 < 1}")™|
A[n]—K

Note that the two geometric realizations of A-sets are colimit preserving. In fact, it is easy to prove that both are left
adjoints.

Proposition 2.2.10. Let K be a precubical set. Then there are the natural isomorphisms of flows |L£4(K)|pagg = |K|pea and
[LAK)| = K]

Proof. Since all functors involved in the statement of the proposition are left adjoint and therefore colimit preserving, it
suffices to check the isomorphism for K = O[n]. The proof is complete after Proposition 2.1.14. O

Corollary 2.2.11. For all n > 3, the inclusion d A[n] C A[n] induces an isomorphism of flows |0 A[n]|pea = |A[N]|pad-

Proof. Since .£ 4 is colimit preserving, one has .£ 4, (d0[n]) = d+A[n].So by Proposition 2.2.10 and Theorem 2.2.7, one obtains
[0A[N]bad = [00[N][bag = |0[N]|pad = [A[N]|pag- O

Proposition 2.2.12. Let K be an A-set. The canonical map K — Sh 4 (K) induces an isomorphism of flows |K |pag = |Sh 4 (K)|pag-

Proof. We already know that the map K — Sh,(K) is obtained by factoring the canonical map K — 1 as the composite
K — Sh,(K) — 1, where K — Sh,(K) is a relative {A[p] Usarp Alp] — «lpl,p > 2}-cell complex and the map
Sh4(K) — 1 satisfies the right lifting property with respect to the same set of morphisms. So the map |K|pqg = [Sh4 (K)|pad
is a relative {|A[2]lpaa Ujaar2lipeg 1#4[2]lbaa —> 4[2]]paa}-cell complex by Corollary 2.2.11. Fig. 2 explains why the map of
flows |A[2][pad Ujg.Ar211peg 1#4[2]bad = [4[2][paq is in fact an isomorphism.” Hence the proof is complete. O

The commutative diagram of flows of Fig. 3 concludes the section. It proves that labelled precubical sets and labelled
A-sets are equivalent from a directed algebraic topological point of view, K being any labelled precubical set.

5 Intuitively, adding an algebraic relation is an idempotent operation.
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An application

We give now a small application of the notion of geometric realization of labelled 4-set which will be reused later. The
following proposition could of course be proved without using the topological material of this section. However, the proof
would be more complicated (see the proof of [18, Theorem 7.1]).

Proposition 2.2.13. Let ¢ : A[p] — ShuL4(!X) be a full labelled p-dimensional A-cube with p > 2. Then there exists
(ai,...,a) € XP such that, for every maximal path (ci,...,c,) of Alpl, ie. for any p-tuple of 1-cubes of A[p] with
3%(c1) = (0,...,0), 01 (c)) = 3(cip1) for 1 <i<p—1land 3} (c,) = (1,..., 1), one has £(cy) * - - - * £(cy) = a1 * - - - * ap.

Proof. Let (cq,...,¢p) and (ci, ..., c;,) be two maximal paths. Since there is a unique morphism from (6, . ,5) to
(T, ... ,T) in |A[p]|paq (this is the key point!), one has €(cy) * - - - * £(cp) = £(c}) * - - * E(c{,) in the flow |Sh L 4 (! X)|pad-
But the semigroup P(|Sh, £ 4 (! X)|pea) = P(?X) is the free commutative semigroup generated by the elements of X'. Hence
theresult. O

2.3. Labelled coskeleton over a category of cubes

In this section we give the generalization of the notion of a labelled coskeleton to any category of labelled precubical sets.
The particular case A = O will give back the situation of [18]. The unlabelled version, i.e. when X = {t}, is the classical
coskeleton functor, right adjoint to the truncation functor [5].

The unlabelled case
Proposition 2.3.1. Letn > 0.

(1) Thelfupcto;1< r—f)l K, from A" Set to 4, Set has a right adjoint denoted by cosk;', | : Ay Set — A" Set. There is an
inclusion of presheaves

K C cosky .1 (K)

natural with respect to the n-dimensional A-set K. This inclusion induces the isomorphism K = coskn“‘fn 1 <n.

(2) The functor K + K., from A°Set to 4, Set has a right adjoint denoted by cosk:* : A;’Set — A°PSet. There is an inclusion
of presheaves K C coskn“* (K) natural with respect to the n-dimensional 4-set K. This inclusion induces the isomorphism
K = cosk:* (K) <n.

(3) Let cosk?* . = cosk

A
it o cosk,

n,n’

.+ o cosk?

A where the functor

A
n+p—1,n+p °
cosk?* : A%PSet — APSet

denotes the identity functor. Then there is an isomorphism of functors

A

A~ 1:
cosky = h_r)ncoskm +pr

Proof. Let us prove the first assertion. The functor K — K, from Agilset to 4 Set is induced by the inclusion of categories

n C s, . Thus, the right adjoint is obtained by taking the right Kan extension along ;" C .," ;. The isomorphism of
presheaves K, = K for an n-dimensional 4-set K induces by adjunction a natural map K — cosk,.,”‘;n+1 (K).Letp < n.There
is a bijection APSet(A[p], K) = A°PSet(A[p], Cosk;‘:nﬂ (K)) because of the isomorphism 4[p]<, = 4[p]. Hence we obtain
the desired inclusion. The proof of the second assertion is similar to the above proof. The third assertion is obvious. O

Definition 2.3.2. Let K be an #-set. An (n + 1)-cube ofcosk;;“jnJrl (K<n), i.e.amap dA[n+ 1] — K, is called an n-dimensional
shell or n-shell of K. '
The labelled case

Before giving the labelled version of Proposition 2.3.1, let us prove the following general categorical fact.

Proposition 2.3.3. Let L : C = D : R be a categorical adjunction, where L is the left adjoint and R the right one. Let us suppose
that € has all pullbacks. Let A be an object of C. Then the functor L, : CJA — D L(A) defined by Ly(X — A) := L(X) — L(A)
has a right adjoint R, defined by the following pullback diagram of C:

Ra(Y) ————R() ,

A——— > R(L(A))

where the map A — R(L(A)) is the unit of the adjunction.
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Note that we are going to use Proposition 2.3.3 with € and D locally presentable. In this situation, the categories C|A

and D | L(A) are both locally presentable as well by [3, Proposition 1.57]. In particular, the category € | A has a generator and

is co-wellpowered. The functor L4 : CJA — D|L(A) is colimit preserving since L is colimit preserving. So by the opposite
of the Special Adjoint Functor Theorem, the functor L, has a right adjoint.

Proof. Let X — Abe an object of €| A.Let Y — L(A) be an object of D | L(A). There is a bijection between the commutative
diagrams of the form

|

and the commutative diagrams of the form

E-—————— |

X ———R()

A——>R(LA)

because of the universal property of pullback. And there is a bijection between the latter diagrams and the commutative
diagrams of the form

LX) —————— Y

L(A) =——=1LA)
by universality of adjunction. Hence the result. O
Here is now the labelled analogue of Proposition 2.3.1.

Proposition 2.3.4. Letn > 0.

(1) The functor K +> Koy from A, Set|Sh,L4(1X) to Ay 'Set|Sh L4 (!X) has a right adjoint denoted by cosk,f;i]

An Set|ShaL,(1X) — Ay Set|ShL.(IX). There is an inclusion of presheaves

K C cosk;‘;;ﬁ](K )

natural with respect to the n-dimensional labelled A-set K. This inclusion induces the isomorphism K = coskn”‘fﬁl(K )<n-

(2) The functor K + K., from A%Set|Sh,L4(!2) to ArSet|ShL4(!X) has a right adjoint denoted by coskn*"*):
AFSet|ShaL (1Y) — APSet)Sh,L,(!X). There is an inclusion of presheaves K C coskn"“’*z(K) natural with respect
to the n-dimensional labelled A-set K. This inclusion induces the isomorphism K = Coskn"*”E(K)gn.

(3) Let coskyni, = coskiiy_ i, 0 -+ o coskniiy o coskiE, where the functor coskE i AYSet|ShyLa(1X) —

AP Set | Sh L. (1X) denotes the identity functor. Then there is an isomorphism of functors coskM% = h_r)n cosk,‘f‘:’,frp.

Proof. We note that the categories A, Set}Sh,L..(!X) and A, Set|, (Sh4£.4(! X)), are isomorphic. So the theorem is a
consequence of Propositions 2.3.1and 2.3.3. O
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Note that, for every n > 1 and for every n-dimensional labelled A-set K, one has the pullback diagram of 4-sets

cosk** (K) cosk:* (K)

]

Syl (15) ————> cosk* (ShaL s (! X)) ).

Intuitively, this means that the labelled coskeleton functor keeps from the unlabelled one only the shells which are
compatibly labelled. For example, the boundary of a square is compatibly labelled if and only if opposite sides are labelled
in the same way.

Definition 2.3.5. Let K be a labelled 4-set. An (n+ 1)-cube of cosk;f‘j’nx+1 (K<) is called a labelled n-dimensional shell or n-shell
of K. '

The following proposition generalizes [18, Definition 3.12 and Proposition 3.13].

Proposition 2.3.6. Let K be a labelled A-set. The set of labelled n-dimensional shells of K is in bijection with the set of
commutative diagrams of the form

aA[n+ 1] K

AN+ 1] ————>Sh L4 (1 X).
Since Sh 4L 4 (!{t}) is the terminal A-set by Proposition 2.1.25, the case X' = {r} coincides with the unlabelled notion of
Definition 2.3.2.

Proof. Let A[n + 1] — cosk;f:‘ri] (K<n) be a labelled n-shell of K. By adjunction, one obtains the commutative diagram of
labelled A-sets

dANn + 1] Ko

Al + 1] ————— cosk? | (Kep).

A,

0. il (K<n) — ShyuL4(1X), one obtains the commutative diagram of A-sets

By composing with the labelling map cosk

dAln + 1] K

AN+ 1] —————Sh L4 (12).
Conversely, from such a diagram, one obtains the commutative diagram of A-sets
Aln + 1]@«, Kgn

Shadl 4(1X) =————=Sh\L4(!X);

hence the result by adjunction. O
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3. Mathematical treatment
3.1. Shell-complete category of cubes

The purpose of this combinatorial section is to address the following question. Is it possible to find a category of
cubes 4 such that cosk'{‘”z(ﬁ[al, ..., 0pl<1) is exactly the labelled n-cube A[ay, ..., a,] for every n > 0 and every
ai,...,a, € X?Letusrepeat one more time that there is always a strict inclusion O[ay, . .., a,] C cosk?’z Ola, ..., anl<1)
for every n > 2 by [18, Proposition 3.15] and that this is the reason for introducing in [ 18] the non-functorial subobject of
cosk?’z(El[al, ..., pl<1) called the labelled directed coskeleton of O[ay, .. ., a,]<1 (see Definition 3.1.22). For ¥ = {r},i.e.
for the unlabelled case, the previous equality reduces to finding a category of cubes 4 such that cosk;“’(ﬁ[n]@) = wAln]
for every n > 0. Such a category A will be called a shell-complete category of cubes. We will see in Theorem 3.1.24 that
such a category of cubes answers the question above. We will see in Theorem 3.1.15 that there exists one and only one such
category of cubes.

Definition and elementary properties
Proposition 3.1.1. Let p, g > 0. The natural bijection

A%Set(A[p], Alq]) = A([p], [q])

induced by the mapping f + f,(Idp,)) given by the Yoneda lemma takes f : A[p] — Al[q] tofo : [p] = A([0], [p]) — A([0O],
[qD) = [q].

Proof. Let f : A[p] — +[q] be a map of A°Set. The map 8;” e 8? : [0] — [p] induces a commutative square of sets

I

A([pl, [P)) ———— A([p]. [qD
6P..87H* &..87H*

A([0], [p) ———— A([0]. [q])

forany ey, ..., €, € {0, 1} since 4 is a category of cubes. So
fo@F .8 Udp) = (85 ... 87 ().
Therefore fo = f,(Id,). O
The following proposition motivates the notion of shell-complete category of cubes.

Proposition 3.1.2. For any q > 0, the canonical map 4[q] — cosk‘{"(A[q]@) induced by the isomorphism A[ql<; = Alql< is
an inclusion of presheaves. For ¢ = 0 or q = 1, this inclusion is always an equality for any category of cubes .

Proof. Let x and y be two k-cubes of 4[q] having the same image by the map
Alq] — coski (Algl<y).
So one has the commutative diagram of A-sets

X
L
y

A[q] ———— cosk? (Alql<1).

By adjunction, one obtains the commutative diagram of A-sets

X1
_—
A[k]gl >
y<1

Alql< - Alql<1.

In particular, the two set maps xq, Yo : [k] = [q] are equal. Thus, by Proposition 3.1.1, one obtains x = y. The last assertion
is a consequence of Proposition 2.3.1. O

Hence the definition:

Definition 3.1.3. A category of cubes 4 is shell complete if, for every p > 2, the canonical inclusion of presheaves A[p] C
cosk‘{"(A[p]gl) is an isomorphism.

The category of cubes O is of course not shell complete by [18, Proposition 3.15]. For example, the precubical set
coskE‘(D[Z]él) contains the 2-cube x : O[2] — cosk?(D[Z]gl) corresponding by adjunction to the map dx : 90[2] =
0O[2]<1 — O[2]«; characterized by xq (€1, €2) = (€3, €7). It is not a 2-cube of 0[2] since the only 2-cube of the precubical set
0O[2] is the identity of [2].
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In general, for any p, g > 2, there exists at most one lift X in the commutative diagram of solid arrows

dA[p] ——— A[q]
7

7
Ve
x 7
7
Ve
7
e
Ve

Alp] ——1,

where 1 is the terminal object. Indeed, by Proposition 3.1.1, the bijection of sets
APSet(A[p], Alq]) = A(lp, [q])
takes x to xq. Shell-completeness means that this lift always exists.

Theorem 3.1.4. Let A be a category of cubes. The following conditions are equivalent:

(1) The category A is shell complete.
(2) Foranyp, q > 2, forany map x : 0A[p] — +[q], the set map xo : [p] — [q] belongs to A.
(3) Forany p, q > 2, any map x : dA[p] — +[q] factors uniquely as a composite x : dA[p] — A[p] — Alq].

Proof. Let us prove the implication (1) = (2). Let x : dA[p] — +A[q] be a map of A-sets with p, ¢ > 2. One can suppose
that p < g by Proposition 2.1.17. Then x factors (uniquely) as a composite

X1 0A[p] = Alplp—1 —> Alqlep—1 —> Alql.
One has the isomorphisms
Alqlep1 = coski (Alqlcr)<p1 = cosks,_; (Alq]<1)
since » is shell complete and by Proposition 2.3.1. So x factors as a composite
X : dA4[p] — A[p] — coskp""_l,p(cosk‘{‘:p_l(,A[q]gl)) = Alqle, — Alql.

So xo : [p] — [q] is a morphism of 4 by Proposition 3.1.1.
Let us prove now the implication (2) = (1). Propositions 2.3.1 and 3.1.2 imply that there is an inclusion of presheaves

Alqlep C (coski' (Alglr))<p = cosky, (Alql<r)

for any p > 1. This inclusion is trivially an equality for p = 1. Let us prove by induction on p that this inclusion is an
equality. This will establish the shell-completeness of +. Let us suppose the equality proved forp > 1. Letx : A[p + 1] —
cosk‘{.‘jpﬁ (+Alql<1) be a (p + 1)-dimensional A-cube of cosk‘{fp“ (+Alql<1)- By adjunction and by induction hypothesis, one
obtains a map

ax: AP+ 1y = dAp+ 1] — cosk{‘jp(ﬂ[q]gl) = 4lqly C Algl.

By hypothesis, the map xo : [p + 1] — [q] belongs to ». Thus, by Proposition 3.1.1, there is a commutative diagram of
A-sets

dAp+1] —— = cosk'{‘jp(a%[q]gl) = Alqlep

Alp + 1] Alqlpr1.

Hence the equality for p + 1.
The equivalence (2) <= (3) is a consequence of Proposition 3.1.1. O

Examples of shell-complete categories of cubes

Theorem 3.1.5. The category of cubes O (i.e. the maximal category of cubes containing all adjacency-preserving maps) is shell
complete.
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Proof. Let x : d0J[p] — Ol[q] be a morphism of 0%Set with p, g > 2. For all k such that 1 < k < p — 1, one has the
commutative diagram of sets

A1k, [pl) ———— O([K], [q])
ok Ak

Ao, [pl) ———— A([01. [q])

forall e, ..., e € {0, 1} since x : 80[p] — Olq] is a map of 0°Set and where the set map 8;1 e B,f" is induced by the
morphism ;¥ ... 85" : [0] — [k] of . With ¢ € EI([k], [p]), that means that x; (¢) (5" . . . 87") = xo(@(8; ... 8")). Thus, one
obtains xi (@) (€1, ..., €x) = Xo(@(€1, ..., €)). So xk(¢p) = xo¢ with the identification O([0], [p]) = [p]. Let (€1, ..., &)
and (¢}, ..., e;) be two elements of [p] with ; = ¢/ for all i but one denoted by iy. Suppose moreover that €;, = 0 and

efo = 1.Since p > 2, there exists i; € {1, ..., p}\{ip}. Consider 8;"1 :[p— 1] — [p]. Then xp_l(éflil) = xoésl.The preceding

1
equality applied to (e, ..., &, ..., €) gives

€j -~
Xo(€1, .., €p) = Xp—1(8;, )€1, .o, Eyy et €p)
€ -~
< xp,l(Sill)(e;,...,eh,...,e’)
= Xo(€}, ..., €,)

since the map x,_; (8,?1 ) : [p — 11 — [g] is a morphism of the small category 0. So the set map xo : [p] — [q] is adjacency
preserving, i.e. it belongs to the small category Tl. Thus, the small category O is shell complete by Theorem 3.1.4. O
Proposition 3.1.6. Let 4 be a category of cubes. Let p,q > 2. The set A°PSet(dA[p], A[q]) is equal to the set of families
(¥ : Alp — 1] — Alql) of morphisms of A°PSet with 1 < i < pand « € {0, 1} with (135)05;1 = (f,."‘)oﬁﬁ]for anyi < j
and any o, B € {0, 1}.
Proof. Let f : d4[p] — +[q] be a morphism of A°’Set. The 2p inclusions A[p — 1] C dA[p] with1 < i< pand« € {0, 1}
induce 2p maps f* : A[p — 1] C d4A[p] — «[q] such that (f*)o = foé{ with 1 < i < pand « € {0, 1}. The equalities
();ﬁ )odf = (ﬁ-"‘)oéﬁ ;foranyi < jandanyc, B € {0, 1} are then a consequence of the cocubical relations.

Conversely, let (f* : A[p — 1] — «[q]) be a family of morphisms of A°Set with 1 < i < pand « € {0, 1} such that

(/;ﬁ)osz‘ = (f,l"‘)ochi1 foranyi < jand any «, 8 € {0, 1}. Consider the set map g : [p] — [q] defined by g(e1, ..., €p) =
(f;p)o(q, ..., €p—1). Thengé; = (f;")o by definition of g, and for any 0 < i < p, one has

g6 (€1, ..., 6p1) = (fpépil)o(s,q(él, c €p2) = (f,-“)oS;”_T (€1, ..., 6p2) = (Foler, ..., 6p-1)

for any o, €,—1 € {0, 1} thanks to the cocubical relations. So one obtains g6 = (f*)o for0 < i < pand a € {0, 1}. The
mapping ¢ — g¢ gives rise foreach0 < k < p — 1to aset map g : dA[plk := A(K], [p]) — Alqlk := A(k], [q]). For
any morphism v : [k'] — [k] of A with 0 < k' < k < p — 1, one obtains a diagram of sets

dA[ply ————— Alqlk

dAlply ———— Alqle
which is commutative since the two boundaries of the square take ¢ € A[ply togey. O

Proposition 3.1.7. Let A and B be two categories of cubes such that A C B. Let p,q > 2. Then one has the inclusion
APSet(0A[p], Alq]) C BPSet(dB[p]l, Blql) by identifying the maps f with the corresponding set maps f, from [p] to [q].

Proof. This is a corollary of Proposition 3.1.6 and of the fact that A([p — 1], [q]) C 8([p — 1], [q]). O

Theorem 3.1.8. There exists a smallest shell-complete category, denoted by Cl.

Proof. Let (0?);; be the class of all shell-complete small categories of cubes. This class is non-empty by Theorem 3.1.5, and
small since, for any i, there is the inclusion 0 C PoSet. Consider the small category 0 = ()., 0. Let f : 90[p] — O[q] be
a map of (0°’Set with p, g > 2. By Proposition 3.1.7, the morphism of presheaves f gives rise for each i € I to a morphism of

presheaves f© : 907 [p] — 07 [q]. By Theorem 3.1.4, fo = (f)o is a morphism of O for each i € I. So, by Theorem 3.1.4
again, the category O is shell complete. O
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Some combinatorial lemmas

Let us recall that o; : [n] — [n] is the set map defined for 1 < i <n—1andn > 2byoi(eq,...,€) = (€1, ..., €1,
€it1, €i, €42, - - - , €n) (see Definition 2.1.10).
Proposition 3.1.9 ([21] p195). Let o; : [n] — [n] be the set map defined for 1 < i < n— landn > 2 by oi(€1,...,€,) =
(€1, - .., €i_1, €it1, €i, €ir2, - - ., €y). One has the relations 0,8"‘ = 8 oi_1forj <1i, 0,8"‘ = d}  forj=1i o,»SJ‘?‘ =46 forj=i+1

and 01815" = Sfaiforj >i+ 1
Proposition 3.1.10. ¢; € 0.

Proof. Let us prove by induction onn > 2 that the set maps o; : [n] — [n]for1 < i < n— 1Dbelong to 0. The composite

map do : BD[Z] C 0O[2] AN 0[2] mduces amap doy : a0[2] — O[2] by Proposmon 3.1.7since0 C O. S0 07 : [2] = [2]
is a map of & by Theorem 3.1.4 since J is shell complete. Hence the proof is complete for n = 2. Now assume thatn > 2. By
Proposition 3.1.9 and by induction hypothesis, the 2n set maps 0181‘” : [n—=1] C [n] — [n] belong to OJ. These 2n morphisms

of O induce a morphism 30[n] — Oln] by Proposition 3.1.6. So o; : [n] — [n] belongs to 0 by shell-completeness. O

To our knowledge, the structure maps introduced below are new. They are related to the notion of connection in the
setting of cubical sets, see [1,2]; indeed, with their notation of ¢; for degeneracies and I'* for connections, one has I;" = &;y;
and I = &i41);. An example of use of these connections in directed algebraic topology can be found in [15,16].

Definition 3.1.11. Let y; : [n] — [n] be the set map defined for 1 <i<n— 1andn > 2 by
Yi€1, ..., &) = (€1, ..., €i_1, MaAX(€;, €i11), MIN(E;, €11), €42, - - -, €n).
These maps are called the transverse degeneracy maps.

Propositi0n3 1.12. One has the relations ;67 = 87 y;forj <i—1,y;6% = 687'y;—1 forj > i+ 1, y;6F =67, forj=1i— 1and
i =0y g forj=1i.

Proof. The relation y;6{ = &'y for j < i — 11is obvious. One has

Vol (€1, ..., €n—1) = Vi(€1, ..., €ii1, A, €iy ooy €q1) = 6 Vim1(€1y oo, En—1)
forj > i+ 1.Forj=1i— 1, one has

yjéf(e], v €nm1) = Y€, .o €6m1, L€, €qm) = 61171(61, e, €n—1)
and

yj&o(e], v €qm1) =Yi(er, ., €621,0,€6, 0, €qm1) = 5?(61, e, €n_1).
Finally, for j = i, one has

)/1-81»1(61, v €qm1) =Yi(er, o €6m1, L€, €qm) = 8,-1(61, e, €n_1)
and

yjcS?(ﬁ, v €qm1) = Y€, ..., €621,0,€6, ., €q) = 8&1(61, .., €q-1). O
Proposition 3.1.13. y; € C0.
Proof. The proof is mutatis mutandis the one of Proposition 3.1.10. O

Proposition 3.1.14. Let 0 < m < n. Every adjacency-preserving (resp. adjacency-preserving one-to-one) map f : [m] — [n]

factors uniquely as a composite [m] L [m] i) [n] with ¢ € O and  adjacency preserving (resp. adjacency preserving
one-to-one).

Note that, by a cardinality argument, if ¢ : [m] — [m] is one-to-one, then it is bijective.

Proof. One has d(f(0, ..., 0),f(1,...,1)) = m. So, by Proposition 2.1.3, f([m]) is an m-subcube of [n]. So the assertion is
a consequence of Proposition 2.1.6. O

The uniqueness and a negative result
Theorem 3.1.15. The category of cubes Tis the unique shell-complete category of cubes.

Proof. It suffices to prove that the inclusion & O is an equality since the category of cubes O is the maximal category of
cubes.

_ Foranyp,g > 0, there is the inclusion O([p], [q]) C ﬁ([p], [qh) C ﬁ([p], [q]), and one wants to prove the equality
O(lpl, [gh = Odpl, [gD).
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(1,0,0) ——(1,1,0)
(0,0,0) ——(0,1,0) (1,0,1) —— (1,1, 1)

(05 Oa 1) —_— (05 13 1)
Fig. 4. Poset of vertices of the 3-cube.

0,0,1) —— (0,1, 1)
(0,0,0) —— (0,0, 1) (1,0,1) —— (1,1, 1).

(07 07 1) _— (07 17 1)
Fig. 5. Image of the vertices of the 3-cube by f.

Forp > g,one hasO([pl, [q]) = O([p]. [q]) = O([p], [q]) = @ by Proposition 2.1.17. One has 1([0], [g]) = D([0], [q]) =
[q] and O([1], [q]) = O([1], [q]) by Proposition 2.1.17 again. It remains to prove the equality O([p], [q]) = O([p], [q]) for
2 < p < q for a fixed g by induction on p.

First of all, let us treat the case p = 2. Let f € TI([2], [g]). By Proposition 3.1.14, the set map f factors uniquely as a

composite of set maps f : [2] i> [2] l> [q] with ¢ € T and Y € O.lItis easy to see that the set ﬁ([Z], [2]) consists
of the four set maps Idpy) : (€1, €2) > (€1, €2), 01 : (€1, €2) > (€2, €1), Y1 : (€1, €2) > (max(ey, €2), min(ey, €;)) and
o1 - (el, €) (mm(e], €7), max(eq, €)). So D([Z] [2]) = D([Z] [2]) by Propositions 3.1.10 and 3.1.13. Therefore one
obtains D([ 1, [qD) = D([ 1, [q]) for any q > 0.

Let us now treat the case p > 3. Every set map f € O([p], [q]) forp > 3 glves rlse toamapx : Slp] — Olq] such
that x = f by Proposition 3.1.1. By composition, one obtains a map dx : d0[p] C O[p] — Oilgl. By Proposition 3.1.6,
one obtains 2p maps x{ : A[p - 1] —» ﬁ[q] with 1 < i < pand @ € {0, 1} such that (xf)géf‘ = (X)o f—] foranyi < j
and danya, B € {0, 1}. By Proposition 3.1.1, the 2p set maps (x)o : [p — 1] — [qlfor 1 < i < pand & € {0, 1} belong
to . So, by induction hypothesns the latter set maps belong to O as well. By Proposmon 3.1.1 again, one obtains 2p maps

:8p — 1] —» Dlg] with 1 < pandoe € {0, 1} such that (yﬂ)OS"‘ (y"‘)o ~,foranyi <jandanyc, B € {0, 1} and
such that (y{")o = (x{")o for all l p and o € {0, 1}. So, by Proposition 3. 1 6, one obtains a map dy : a0[p] — Olq]
such that (dy)od; = y forall 1 < i < pand a € {0, 1}. By Theorem 3.1.4 and since O is shell complete, the set map
(0¥)o = x0 = f : [p] — [q] then belongs to 0. The induction on p is complete. O

Theorem 3.1.16. The category of cubes O generated by the 5%, o; and y; operators is not shell complete. In other words, the
inclusion of small categories T C Tl is strict.

Proof. It suffices to find a morphism of & which does not belong to T.. Consider the set map f : [3] — [3] sending the poset
of vertices of the 3-cube (Fig. 4) to the poset depicted in Fig. 5.
It is clear that f is adjacency preserving, i.e. f € 0. One has

¢ f(0,0,0) = (0,0, 0),f(0,1,0) = (0,0, 1), (0,0, 1) = (0,0, 1), (0,1, 1) = (0, 1, 1), 50 f 8% = 6%, y1.
e f(1,0,0) = (0,0, 1),f(1,0,1) = (1,0, 1), f(1,1,0) = (0, 1, 1), f(1, 1, 1) = (1, 1, 1), 50 f§] = 8}07.
¢ f(0,0,0) = (0,0,0),f(1,0,0) = (0,0, 1), f(0,0, 1) = (0,0, 1),f(1,0, 1) = (1,0, 1), 50 f 85 = 8301
e f(0,1,0) = (0,0, 1),f(1,1,0) = (0, 1, 1), f(0, 1, 1) = (0, 1, 1), f(1, 1, 1) = (1, 1, 1), 50 f8; = 8301 11.
e f(0,0,0) = (0,0,0),f(1,0,0) = (0,0, 1), f(0, 1,0) = (0,0, 1),f(1,1,0) = (0, 1, 1), s0 {85 = 8% 7.
e f(0,0,1) = (0,0, 1),f(1,0,1) = (1,0, 1), f(0, 1, 1) = (0, 1, 1), f(1, 1, 1) = (1, 1, 1), s0f§] = 3.

The six set maps 89, f81, £89, f81, f82 and f81 belong to T, giving rise to a morphism of presheaves d0[3] — T[3] by
Proposition 3.1.6. Any set map g : [2] — [3] of T factors uniquely as a composite [2] i>A[2] N [3] with g; € T and
g, € O by Proposition 3.1.14. So the set map fo = o1y; : [2] — [2] is the unique set map of (J such thath? = S?fo. And the
setmap f; = o1 : [2] — [2] is the unique set map of O such thath} = S;fl. Since fy # f1, the set map f : [3] — [3] cannot
be a composite of o; : [3] — [3] and y; : [3] — [3] withi = 1, 2 by Propositions 3.1.9 and 3.1.12. Therefore f ¢ 0. O

In fact, we do not know any “small” presentation by generators and relations of the small category O. This is an interesting
and open question. It seems to be related to similar questions arising in combinatorics.
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Definition 3.1.17. An extremal path of [n] is an n-tuple (A, ..., A;) of [n] suchthatA; =0, <Ay < -+ <A1 <Ay = 1.
The set of extremal paths of [n] is denoted by P;,.

Notation 3.1.18. Let ¢; be the element (¢4, . . ., €,) of [n] such that ¢, = 1if and only ifi € I
There is a bijection p : X, — P, from the n-th symmetric group X, to P, defined by p(0) = (ez, e(s(1)}, €{o(1),0(2)}>

Proposition 3.1.19. Let o € X,. Let s; be the transposition (i i 4+ 1). Then one has the equalities
p(osi) = (0i(es), oi(els 1)), Gi(e(1),02)}))s - - - » Oi(€(1,....n}))

and
p(o.7i) = (Yi(ew), vilelo)))s Vi€l ().o@))s - - - » Vil€(1,..n)))s

where 7t; are the elementary increasing bubble sort operators (see [27]) defined by o0 . w; = o ifo (i) < o(i+ 1) ando.T; = 05;
otherwise.

Proof. Trivial. O

As a corollary, the monoid O([n], [n]) is isomorphic to the monoid (s;, T;)i—1
by the operators s; and 7;. In particular, it satisfies the following relations.

» of set maps from X, to itself generated

Proposition 3.1.20. Letn > 1. The monoid of set maps from [n] to itself generated by the o; and y; operators satisfies the relations:

e 0i0; = ld, oj0j0; = ojoio; fori = j — 1 and o;0; = ojo; fori < j — 1 (the Moore relations for symmetry operators).
® Vivi = Y YiViYi = viyiy; fori=j— 1and y;y; = vy fori < j — 1(the Moore relations for transverse degeneracy).
e Yo =oyyforj> i+ landj <i—1, yioi = ¥, 0i41Vi0it1 = OiVi410i.

Proof. The Moore relations for symmetry operators are explained for example in [21, Theorem 8.1]. Let us prove the Moore
relations for transverse degeneracy maps. The relations y;; = y; and y;y; = y;¥i fori < j — 1 are obvious. One wants to
prove that yi¥iy1¥i = Vir1¥iviv1- It suffices to prove the identity y1y,y1(€1, €2, €3) = y2¥1Y2(€1, €2, €3). One has
Y1Y2v1(€1, €2, €3) = y1y2(max(ey, €2), min(ey, €2), €3)
= y1(max(eq, €2), max(min(es, €;), €3), Min(e, €, €3))
= (max(eq, €2, min(ey, €3), €3), min(max(ey, €2), max(min(ey, €2), €3)), min(ey, €, €3))
= (max(ey, €, €3), min(max(eq, €;), max(min(ey, €;), €3)), min(ey, €, €3))
and
Y2v1v2(€1, €2, €3) = yay1(€1, Max(e,, €3), min(ey, €3))
= y2(max(€y, €, €3), min(e;, max(ey, €3)), min(ey, €3))
= (max(eq, €2, €3), max(min(eq, max(ey, €3)), min(ey, €3)), min(eq, max(ez, €3), €2, €3))
= (max(eq, €, €3), max(min(e, max(e, €3)), min(ey, €3)), min(ey, €2, €3)).
It remains to check the equality
min(max(e1, €2), max(min(es, €;), €3)) = max(min(e;, max(ez, €3)), min(ez, €3))
for any (e, €2, €3) € {0, 1}3. By distributivity of min and max over each other, one has
min(max(ey, €2), max(min(ey, €3), €3)) = max(min(ey, €3), min(ey, €3), min(ey, €3))
= max(min(e;, max(ey, €3)), min(e,, €3)).

The proof will be complete by establishing the relations between transverse degeneracy maps and symmetry operators.
The equalities yjo; = ojy;forj > i+1andj < i—1and y;0; = y; are obvious. One wants to prove that o;1y;0i+1 = 0iYi+10i.
It suffices to prove the identity o2y102 (€1, €2, €3) = 01Y201(€1, €2, €3). One has

02Y102(€1, €2, €3) = 02y1(€1, €3, €2)
= oz(max(ey, €3), min(ey, €3), €2)
= (max(ey, €3), €2, min(ey, €3))
and
01Y201(€1, €2, €3) = o1)2(€2, €1, €3)
= o01(€2, max(ey, €3), min(ey, €3))
= (max(e1, €3), €2, min(ey, €3)). O

[27, Conjecture 3.5 and Paragraph 3.1.1] suggest the following conjecture:
Conjecture 3.1.21. Proposition 3.1.20 gives a presentation by generators and relations of the monoid O([n], [n]) foreveryn > 2.
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Functorial interpretation of the labelled directed coskeleton

For n > 2, and for every ay,...,a, € X, the inclusion Olay,...,a,] C cosk?’x(D[a1, ..., Qplc1) is strict by
[18, Proposition 3.15]. The strictness of the latter inclusion means that the concurrent execution of n actions always
assemble in cosk?’E(D[al, ..., anl<1) to several labelled n-cubes. To remedy this problem, the labelled directed coskeleton
construction is introduced in [ 18]. Its main feature is to select one n-cube (the non-twisted one) for each multiset of n actions
running concurrently:
Definition 3.1.22. Let K be a 1-dimensional labelled precubical set with K, = [p] for some p > 0. The labelled directed

coskeleton of K is the labelled precubical set ELZ (K) defined as the subobject of cosk?‘x (K) such that:

o cosk® (K)-, = cosky (K).1,
—
e foreveryn > 2,x € cosk?’E(K)n is an n-cube of cosk” (K) if and only if the set map xo : [n] — [p] is non-twisted, i.e.
Xo : [n] = [p]is a composite®
¢ v
Xo : [n] — [q] — [pl.

where 1 is a morphism of the small category O and where ¢ is of the form

(€15 ..., €n) > (€ips .-, €)
such that {1,...,n} C {i1,..., g} and such that the first appearance of ¢; is before the first appearance of €;;1 in
(€iy, - - -, €,) forany 1 < i < n by reading from the left to the right.

The fundamental property of the labelled directed coskeleton is then:

Theorem 3.1.23 ([18, Proposition 3.21]). Letn > 1.Let (a4, ..., a,) € X". Then one has the isomorphism of labelled precubical
sets

T ~
cosk™ (Olay, ..., anl<1) = 0Olay, ..., ayl.
The following theorem gives the functorial interpretation of the labelled directed coskeleton construction.

Theorem 3.1.24. The category of cubes A = O (i.e. the maximal category of cubes containing all adjacency-preserving maps) is

the only category of cubes such that, for everyn > 1 and every (ay, ..., a,) € X", there is the isomorphism of labelled A-sets
—
L4(cosk® (Ofay, . . ., aylc1)) = cosk}> (Alay, ..., ala)(Z Alay, ..., ).

Proof. This is a consequence of Theorem 3.1.23, Proposition 2.1.14 and Theorem 3.1.15. O

The commutative diagram of Fig. 3 proves that the labelled directed coskeleton construction and the labelled transverse
symmetric coskeleton functor are equivalent from a directed algebraic topological point of view.

4. Computer-scientific application

A short introduction to process algebra can be found in [38]. An introduction to CCS (Milner’s calculus of communicating
systems [31]) for mathematicians is available in [18].

4.1. Parallel composition (local case)

We want to explain in this section how it is possible to use the labelled transverse symmetric coskeleton functor to model
the parallel composition in CCS of two labelled cubes representing two higher-dimensional transitions.

The fibered product in CCS
Notation 4.1.1. £ := L7, Sh := Shy and w = ws.

The set X'\ {r}, which may be empty, is now supposed to be equipped with an involution a — a. In Milner’s calculus of
communicating systems (CCS) [31], which is the only case treated of this paper, one has a # a. However, this mathematical
hypothesis is not used in this paper. The involution on X'\{z} is used only in Definition 4.1.2 of the fibered product (and in
the new definition given with the proof of Theorem 4.1.8) of two 1-dimensional labelled (transverse symmetric) precubical
sets over X. For other examples of fibered products over other synchronization algebras than the one of CCS, see [31,38].

Definition 4.1.2. Let K and L be two 1-dimensional labelled (transverse symmetric) precubical sets. The fibered product of
K and L over X is the 1-dimensional labelled precubical set K x x L defined as follows:

° (K XEL)OZK()XL(), R
o (KxyL)y; = (K xL)u Ko x L) U{(x,y) € Ky x Ly, £(x) = £(y)},

6 The factorization is necessarily unique.
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Fig. 6. Representation of O[a, b]<; X » O[a], labelled over X.

o 07 (x,y) = (87 (x), y) forany (x,y) € K; x Lo,
o 07 (x,y) = (x, 07 (y)) forany (x,y) € Ko x Ly,
e 07(x,y) = (37 (%), 37 () for any (x,y) € K1 x Ly,

£(x,y) = £(x) for any (x,y) € K1 X Ly,
o {(x,y) =4L(y)forany (x,y) € Ky x Ly,
e {(x,y) = t forany (x,y) € K; x Ly with £(x) = £(y).
The 1-cubes (x, y) of (K x5 L); N (K; x L;) are called synchronizations of x and y.

The 1-dimensional labelled precubical set K x s Lis the key ingredient in the definition of the synchronized tensor product
of labelled precubical sets given in [18], and recalled in Section 4.2. Fig. 6 describes O[a, b]l<1 x 5 O[a].

We want to prove in this section that, for everym > Oand n > 0, forevery ay, ..., antn € X, the labelled precubical set
R
cosk¥ (Olay, ..., aml<1 Xz O[@mt1, - - - » Gmenl<1) can be interpreted as a full labelled coskeleton in the category of labelled

transverse symmetric precubical sets.
Propositior)\4.1.3. Let K be a precubical set. For any p-cube x of wL(K) with p > 0, there exists a p-cube y of K C wL(K) and
amap v € O([p], [p]) such that x = w*(y), where u* : L(K), — L(K), is the image of by the presheaf £(K) € OSet.
Proof. Let
X € wL(K)p = h_n)] Olnl, = l]_n)] O([p], [n]).
O[n]—K O[n]—K

Then there exists an n-cube z : On] — KandXx € ﬁ([p], [n]) (the copy corresponding to z) such that z o X = x. By
Proposition 3.1.14, x : [p] — [n] factors as a composite [p] BN [p] i> [n] with € Jand ¢ € O.Then ¢*(z) is a p-cube
of K and u*(¢*(z)) = x.Soy = ¢*(z) is a solution. O

Note that the decomposition x = w*(y) is unique. But this fact will not be used in what follows. Indeed, let us consider

another decomposition x = p™*(y'),z’ : OM'] — K,z' o X = X, where X : [pl] LL [p] N [n'] belongs to the copy
of O([p], [n']) corresponding to z’ and y' = ¢™(z'). Since x € T([p], [n]) and X e T([p], [n']) are equal in the colimit
calculating w£(K),, the two sets O([p], [n]) and O([p], [n']) are related in the colimit by a zig-zag sequence of maps of O
(this is the crucial point) relating X and X'. We can suppose that there exists amap h : [n] — [n’] suchthathoX = X’
and such thatz = 7/ o’lg. Then the composite [p] BN [p] i> [n] —h> [n'] gives the unique decomposition of X’ as the
composite of a map of O([p], [p]) followed by a map of O by Proposition 3.1.14. Thus, u© = ' and h o ¢ = ¢'. Therefore
V=¢*Z)=2Z ochop=zo0¢p =1y.
We will need the following combinatorial lemma twice in what follows.
Proposition 4.1.4. Let x : [p] — [r] be a strictly increasing set map. Then there exists a unique decomposition of x as

o] > [p'] -2 [q] -5 [r]

such that ¢ is non-twisted, ¥ € Oand . = (g1, . .., &), where the g; : [p] — [1] are non-constant and mutually distinct (i.e.
g = g implies i = j). Moreover, p < p/, u is strictly increasing, and it is also adjacency preserving if and only ifp = p'.

Proof. Let x = (x(V, ..., x("), where the maps x® : [p] — [1] are the r projection maps. The map 1/ is necessarily the
composite §;' ... 5", where {iy > --- > i} = {i € {1,...,71} | xX? = 00orx? = 1} and where X (ey, ..., €,) = a for
all (e1,...,€p) € [pl.LetA C {1,...,r} be the subset of i such that x¥ is a non-constant map. Consider the equivalence
relation on the set A defined by i ~ j if and only if xX = x0, Let p’ = card(A/ ~), where card(S) denotes the cardinality
of the set S. The map p = (U7, .. ., x(jﬂ’)) is obtained by taking in each equivalence class of ~ the representative x¥ with
the smallest j and by imposing j; < --- < jy. The non-twisted map ¢ is then defined so that the repetitions encode the
equivalence relation ~. Since x is strictly increasing, the set map w is also strictly increasing. Therefore p < p’. Since none
of the set maps xU¢ are constant, one has (0, ...,0) = (0,...,0) and u(1,...,1) = (1,..., 1). Thus, if p < p/, then u
cannot be adjacency preserving. And if p = p/, then w is adjacency preserving by Proposition 2.1.6. This decomposition is
clearly unique. O
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Theorem 4.1.5. Let O[ay, .. ., ay] and Olapy1, - - - , Gmen] be two labelled cubes with m > 0 and n > 0. Then there is an
inclusion of presheaves

oSk 8.5 (= ~
£ (cosk (Clas, ..., Gnlar X5 Olamr, - - . am+n]<1)) C cosky"™ (Olay, - .., amler X5 Oldmit, - - - Aminl<r) -
Moreover, when X'\{t} is non-empty, there exist two labelled cubes such that the above inclusion is strict.

Proof. Let K be a labelled precubical set. Consider the composite set map, natural with respect to K:

(OSet | !x) (K, cosk® (Olay, ..., amlet X5 Olamst, .-, am+n]<1))
— (O7Set|!%) (K, cosk"* (Dlay, ..., amlcr X5 Olamit, - ., Gmenl<t))
= (D?pSetUZ‘) (th Olay, ..., Gnl<1 Xz Ol@mg, .- -, am+n]<1)

= (BPsetyShe (1)) (£ K)oy, Olar, - - -, Gmler Xz Olami1, - - - Gmgnl<r)

= ([B7set|she (2)) (£ (), cosky™ (Blar, ... anle x5 Blamsn, . Aminlar) )

—
the first and last isomorphisms by adjunction and the second one by Proposition 2.1.28. Take K = cosk® (O[a, . .., aml<1 X 5
Oldm+1, - - - » Gminl<1)- The identity of K yields a map of labelled transverse symmetric precubical sets
—
f:L (cosk (Olas, ..., aml<r x5 Olamg, - - -, am+n]g1))
—> cosk* (Blay, ..., amlar X5 Ol@mit, - -, Qmnler) -

The case K = O[p] for p > 0 gives the injection of sets
e = o~ ~
(coskz (Olay, ..., anlar X5 Oldmga, - - ., am+n]g1)) c (cosk?‘x (Clay, ..., aml<r x5 Olamy1, - - -, am+n]g1)) )
p p

The set map f,, is therefore one-to-one for every p > 0 by Propositions 4.1.3 and 4.1.4. Suppose now that X'\ {r} is non-empty.
Leta € X'\{r}. The transverse symmetric precubical set

cosk?’z(ﬁ[a, alag Xz ﬁ[ﬁ, al<r)
contains a 2-cube x such that x¢(0, 0) = (0, 0, 0, 0),x¢(0, 1) = (1,0, 0, 1),x9(1,0) = (1,0, 1,0) and xo(1, 1) = (1, 1,1, 1)

since all llgubes of x are labelled by t. The set map X : [2] — [4] cannot be written as a composite [2] L 2] —¢> 4]
with u € 8([2], [2]) and ¢ : [2] — [4] non-twisted (see Definition 3.1.22) since xg = (xV, x®, x®, x@), where the set
maps x? : [2] — [1] are four different set maps. So, by Proposition 4.1.3, one obtains

x¢ L (coskz(D[a, al« xx O[a, a]gl)) .
Therefore the inclusion of presheaves

£ (cosk” (Ola, alr x5 [, @le1) ) € cosky” (Bla, aler x5 O, aler)
is strict. O
Functorial construction of the parallel composition

Theorem 4.1.5 does not mean that the labelled coskeletqg functor of the category of labelled transverse symmetric

precubical sets is badly behaved. The coskeleton functor of [I°°Set does the job it is designed for: filling all compatibly
labelled shells. To avoid this problem, we have to keep the memory of what is synchronized by 7, as depicted in Fig. 7. By
labelling the 1-cube x(0, *) by (2, 3) instead of t, the 1-cube x(1, *) by (2, 4) instead of t, the 1-cube x(x, 0) by (1, 3) instead

of t and the 1-cube x(x, 1) by (1, 4) instead of 7, it becomes impossible to fill the new shell since the opposite faces are not
labelled anymore in the same way. Hence the definition of the new labelling:

Notation 4.1.6. Letay, ..., Gyy € X withm > O0andn > 0. Let ¥ := ¥ U (N* x N*) where N* is the set of strictly positive
integers. Let us define the 1- dlmenswnallabelled (transverse symmetric) precubical set C[as, . . <y Umlaa X ;D[amﬂ, ey Gmanl<
as follows (the boxed part is the only new part):

o The underlying 1-dimensional precubical set is the one of
Olat, - -, Gml<1 X5 Ol@mgts - -+ 5 Gmanl<

o The labelling map is defined by: N .
- L(x,y) = £(x) forany (x,y) € Olay, ..., aml X Oldm+1, - - -, Gminlo,
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Fig. 7. Representation of O[a, b]<; X y0[a], labelled over ¥ = X U (N* x N*¥).

- £(x,y) = () forany (x,y) € Olar, ..., mlo X Olm1, - - -, Gmsnlt,
- ’E(x,y) =(r,s) € N* x N* ‘7 for any (x,y) € Ola,...,aml1 X Oldmits .-, Guenl With £x) = £(y), where
1<r <mandm+1 < s < m+nare the unique integers such that (xo (@), yo(c)) = 8¢ 8% (X) for some X € [m+n —2]
and fora = 0, 1.
Lemma4.1.7. Let ¢ : O[1] — Olay, ..., anlc1Xs0[@ng1s - - - » Gmanl<1 be a 1-cube of Olay, ..., Gplc1 X s0[Amars - - -

Gm+nl<1- Then the set map co : [1] — [m + n] satisfies co(0) < co(1) and there are two mutually exclusive possibilities:

e d(co(0), co(1)) = 1and co(e) = §¥(X) forsomeX € [m+n — 1]with1 < r < m+ nand fora = 0, 1. In this case,
l(c)=a, € X.

e d(cp(0), co(1)) = 2 and cp(ar) = 8¢8%(X) forsomeX € [m4+n —2]with1 <r <mandm+ 1 < s < m+ nand for
o =0, 1. In this case, £(c) = (r,s) € N* x N*,

Proof. Obvious. O

Note that Lemma 4.1.7 holds for O[ay, . . ., aml<1 Xz ﬁ[am+1, ..+, Gminl<1 as well by replacing £(c) = (r,s) € N* x N*
in the last sentence by £(c) = .

We are now ready to give the categorical interpretation of the labelled directed coskeleton construction when applied
to the fibered product of two 1-dimensional labelled precubical sets.

Theorem 4.1.8. Let O[ay, ..., an] and O[am+1, - - - » Amin] be two labelled cubes with m > 0 and n > 0. Then one has the
isomorphism of labelled transverse symmetric precubical sets

.z ~ 0% (5 - =
£ (cosk* (Olay, ..., Gnl<r X5 Ol@nits - - ., Gminl<r) ) = cosky™ (Olay, . . ., mlar X s00my1, - .-, Gminl<r) s

where the right-hand labelled transverse symmetric precubical set over§ is viewed as labelled over X' by composing its labelling
map with the morphism of transverse symmetric precubical sets Sh.£(!X) — ShL(!X), where the set map X — X is defined
as the identity on X and by the mapping (p, q) — T on the complement.

Note that, with m = 0 or n = 0, we have the isomorphism of Theorem 3.1.24.

Proof. | Injectivity | There is an inclusion of presheaves

O0.x (= — =~ 0,x = ~
cosk;"* (Dlay, ..., anlca X s0[Ams1, - - -, Gminl<r) C cosk]™ (Olay, ..., dmlet X5 Olmit, -, Gminl<r)

since fewer shells are filled in the left-hand term than in the right-hand term because of the labelling over X. Moreover, one
has the equalities

X
<£ (COSk (Olas, ..., anlar X5 Olamga, - - . a,11+,,]<1)))<1
aT A — -
= (coskl (Clas, . ..., amlar X s0lams1, - - -, am+n]<1)><]
’D\’E o~ -~
= (coskl (Clas, ..., anlar X5 Olamir, - - . am+n]<1))<1

by Propositions 2.3.4 and 2.1.18. Let

HE
Xe (£ (cosk (Olay, ..., anl<1 xz Olamg1, - - -, am+n]<l)))p

7 Instead of £(x,y) = 1.
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with p > 2. Then x = u*(y), where & : [p] — [p] is an adjacency-preserving map and where y is a p-cube of the labelled
precubical set

>
cosk* (Olay, ..., aml< Xz Ol@myi, - - -5 Gmenl<)

by Proposition 4.1.3. The map of 1-dimensional precubical sets

—
V<1 1 Oplt — (cosk™ (Olay, - .., aml<1 X5 Ol@mt1s -« - Gminl<1))<
induces by Proposition 2.1.28 a map of transverse symmetric 1-dimensional precubical sets

Y<1 :Opl<t — dlay, ..., Gml< Xz OlAmyts - -5 Gugnl<a-

The latter induces a unique map y : ’D\[p]g] — Olay, ..., am]@;;ﬁ[amﬂ, ..+, Gminl<1 of 1-dimensional precubical sets
which is this time labelled over X' since the underlying precubical sets of O[ay, ..., dnl<1 X Ol@my1, - - -, Gmynl<1 and

-~

Olay, ..., am]gY;ﬁ[amH, ..+, mi+nl<1 are equal. The map y induces by adjunction a unique p-dimensional transverse
symmetric cube of

0T - =
cosky"” (@lay, ..., anl<i X sO[@mg1,s - - -, AGmgnl<t)-

Thus the inclusion
— A5 ~
£ | cosk (D[Ch, ooy Gnlar Xz Olamya, - - am+n]g1) C cosk; (D[Ch, oo Oplar Xz Olamy, - -, am+n]<1)

factors uniquely as a composite of inclusions
—_ 53 J—
= a3 =~ ~
£L (cosk (Clai, ..., anlar X5 Oldmgr, - - . am+n]g1)) C cosky"™ (Dlay, ..., anlca X s0[Ams1, - - -, Gminl<r)

85~ ~
C cosky"* (Dlaq, ..., amlar Xz Oldmits - - -, Gmanl<r) -

Let us call f again the inclusion
—>2 ﬁ,f = = =
£ (cosk™ (Olay, ..., amlar X5 Olamni1s - - -, Gninl<r) ) C cosky™ (Olay, - .., amlar X sOlAmst, - - Qmanl<t) -

It then remains to prove that, for every p > 2, the set map f, is onto.

Surjectivity | Let x ﬁ[p] — cosk?‘z(ﬁ[ah e, am]@;;ﬁ[amﬁ, ..., Gninl<1) be a p-dimensional transverse

symmetric cube of coskla’f(/lj[ah ey Gl X s0[@mars - o -, Guanler) With p > 2. Let x, = (¥, ..., xMt™) where the
x® : [p] — [1] are the m + n projections. Let us apply the decomposition of Proposition 4.1.4. Let n = (xU0, ..., x%").
If one had p < p’, then there would exist a 1-cube ¢ : [1] — [p] such that d(u.(c(0)), ;(c(1))) > 1. By Lemma 4.1.7, one
would have

1 < d(u(c(0)), u(c(1))) < d(ru(c(0)), yéu(c(1))) <2,

and therefore d(i(c(0)), (c(1))) = 2. Thus, one would have pc(a) = 8485 (X) for some u < v, X € [p’ — 2] and for
o = 0, 1. By Lemma 4.1.7, one obtains ¥ ¢ uc(a) = 8}28}1‘1 (Z) for some cube Z € [m + n — 2] and for @ = 0, 1,2 and finally
LW PRE) = Gusjo)- B N o

Use of the particular labelling of X 5. The crucial point is that the labelling of X 5, implies x*) = xU») which contradicts
the definition of 1. By Proposition 2.2.13, the commutative word W = £(xc1) ... £(xc,) of the free commutative monoid
without unit generated by X does not depend on the maximal path (cy, . .., ¢,) of Tlp]. And one of the labels is necessarily
GurJv)-If (€1, ..., €) = (0, ..., 0), thenx (e, ..., €) = xW(eq, ..., €) = 0.Let us suppose now that (e, ..., €,) #
(0, ..., 0). By Proposition 2.2.13, for every maximal path (cy, ..., ¢;) of the r-subcube from (0, ..., 0) to (1, ..., €), the
commutative word W’ = £(xcy) ... £(xc;) is a subword of W which does not depend on (cy, . .., ¢;). If (ju, j,) belongs to
W, then xU (eq, ..., €y) = XU (€y, ..., €) = 1.1f (j,, j,) does not belong to W', then it belongs to the complement of W’
inW.Sox (e, ..., €) =x"(e,..., €)= 0.Hence, x) = xU»), which is the desired contradiction.

End of the proof. Hence, one obtains the equality p = p’ thanks to the particular labelling of x 5. The map p is therefore
adjacency preserving by Proposition 2.1.6. Note that Xy has no reason to be adjacency preserving. By definition of the labelled
directed coskeleton, there exists a p-cube

HE
y : O[p] —> cosk® (Olay, ..., ml<t X5 Olamit, - - minl<t)

8 5o far, the particular labelling of X 5 has not been used in the surjectivity part of the proof. In the counterexample of Theorem 4.1.5, one has p = 2 and
p’ = 4. So we cannot yet conclude thatp = p'.



1476 P. Gaucher / Theoretical Computer Science 411 (2010) 1452-1483

such that yg = ¥ ¢. Then L(y) is a p-cube of the labelled transverse symmetric precubical set GC(tEI)cE Clay, ..., aml<
Xx Ol@mt1s - - - » Gminl<1)) such that L(y)o = ¥¢. Then u*(L(y)) is a p-cube of the labelled transverse symmetric
precubical set

ﬁx
L (COSk Olay, ..., anl<t xz Olamg 1, - - -, am+n]<1))

such thaAt&u* (L))o = Yo u.By construction of f, the p-cube f (*(£L(y))) of the labelled transverse symmetric precubical

set cosk?’z(ﬁ[al, el am]glygﬁ[am_l, e, a@nkl) satisfies (f (W*(L(Y))))o = Y = Xq. Since there is at most one 1-
cube between two vertices of O[ay, . . ., Gml<1 X x0O[@m+1, - - -, Gmanl<1, this implies (F (W™ (L(Y))))<1 = X<1, and therefore
f(u*(£L(y))) = x by adjunction. So f is an isomorphism of labelled transverse symmetric precubical sets. O

Theorem 4.1.8 is of course false for any other category of cubes than T Indeed, the particular casen = 0Oanda; = - - - =
a, = t gives back the inclusion of presheaves

Alm) = £, (cosk* (Dlml.1) ) © cosky' (Almler)

which is an equality if and only if the category of cubes .4 is shell complete, so if and only if A4 = O by Theorem 3.1.15. The
crucial point in the proof ofThggrem 4.1.8 is that the map u : [p] — [p] must belong to 4. Therefore, it is really needed to
work with the whole category O of all adjacency-preserving maps.

4.2. Parallel composition (global case)

We can now relate the synchronized tensor product of labelled precubical sets with the synchronized tensor product
of labelled transverse symmetric precubical sets. First of all, let us give the definition of these two synchronized tensor
products.

Definition
Definition 4.2.1 ([18]). Let K and L be two labelled precubical sets. The tensor product with synchronization (or synchronized
tensor product) of K and L is

K®sL:= lim lim cosk
®yl:= lim lim cosk®(O[m]<; x5 Olnl<y).
O[m]—K O[n]—L

Definition 4.2.2. Let K and L be two labelled transverse symmetric precubical sets. The tensor product with synchronization
(or synchronized tensor product) of K and L is

. . 85 ~ — o~
K®ysL:= ) 11_[)1’1 All_r)n cosky” ™ (O[ml<y x s0O[n]<1).
O[m]—K O[n]—L

The two constructions coincide

In which follows, the category of small categories is denoted by Cat. Let H : | — Cat be a functor from a small category
I to Cat. The Grothendieck construction I f H is the category defined as follows [35]: the objects are the pairs (i, a), where i is
an object of I and a is an object of H(i); a morphism (i, a) — (j, b) consistsinamap ¢ : i — jandinamaph : H(¢)(a) — b.

Lemma 4.2.3. Let A be a category of cubes. Let I be a small category, and i — K " be a functor from I to the category of labelled
A-sets. Let K = li_r)ni K'. Let H : I — Cat be the functor defined by H(i) = A|K'. Then the functor ¢ : IfH — A K defined by

(i, Alm] = K') = (A[m] — K) is final in the sense of [32]; that is to say the comma category k.t is non-empty and connected
for all objects k of A|K.

Proof. The proof is similar to the proof of [18, Lemma A.1]. O

Proposition 4.2.4. Let A be a category of cubes. Let F : A x 4 — C be a functor, where C is a cocomplete category. Let
F : (APSet|Sh L4 (!X)) x (APSet|ShL4(!X)) — C be the functor defined by

F(K,L):= lim lim F({m], [n]).
A[m]—=K A[n]—L

Then, for any labelled A-set L, the two functors
F(L, =) : A%Set|ShyLi(!T) — C
and
F(—, L) : APSet|ShyLy(lX) — €

are colimit preserving.
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Proof. The proof is similar to the proof of [ 18, Proposition A.2]. Let K = ]i_H)li K be a colimit of labelled -sets. By definition,
one has the isomorphism
e ~ 1: . .
limF(K', L) =lim lim  lim F([m], [n]).
i i Alm]—Ki Aln]—L
Consider the functor H : | — Cat defined by H(i) = #|K'. Consider the functors F; : H(i) — € defined by

Fi(Alm] — K') = lim F([m], [n]).
Aln]—L

Consider the functor F : I [ H —> C defined by

F(@i, Alm] - K') = lim F([m], [n]).
A[n]—L
Then the composite H(i) C I f H — @€ is exactly F;. Therefore one has the isomorphism
lim lim lim F([m],[n]) = lim lim F([m], [n])

i A[m]—Ki Aln]—>L (i, Alm]— K1) Aln]—L

by [9, Proposition 40.2]. The functor ¢ : IfH — A}K defined by ((i, A[m] — K') = (A[m] — K) is final in the sense
of [32] by Lemma 4.2.3. Therefore, by [32, p. 213, Theorem 1] or [25, Theorem 14.2.5], one has the isomorphism

lim  lim F([m],[n]) = lim lim F([m], [n]) = F(K,L). O
(i, Alm]— K1) Aln]—L Alm]—K A[n]—L

Corollary 4.2.5. Let I be a small category. Let i — K' be a functor from I to the category of labelled transverse symmetric
precubical sets, and let L be a labelled transverse symmetric precubical set. Then one has the natural isomorphism

(lim K ®y L= 11'_11)1(1(" ®xL).
i i

Theorem 4.2.6. Let K and L be two labelled precubical sets. Then there is the natural isomorphism of labelled transverse symmetric
precubical sets

LK Q5 L) = LK) Qx L(L).
Proof. One has

~¢( lim lim cosk®
LK@z =L lm  lim cosk™ (O[m]<; x5 Onl<)

O[m]—K O[n]—L

12

—>
li_r)n ll_n)] L (coskz O[ml« x5 D[n]@)) since £ is a left adjoint
O[m]—K O[n]—L

= 1119 h_n)] cosk?’f(ﬁ[mk]?);ﬁ[n]g]) by Theorem 4.1.8
O[m]—K O[n]—L

12

li_r)n ll_r)n O[m] ®x O[n] by definition of ®
O[m]—K O[n]—L
111)1 h_r)n L(O[m]) ®s £L(O[n]) by Proposition 2.1.14

O[m]—K O[n]—L

12

112

( ll_r)n £(D[m])> Qs < ll_n)l £(D[n])> by Corollary 4.2.5

O[(m]—K O[n]—L

= LK) ®x L(L) since L is aleft adjoint. O

Associativity
As in [18], it is also possible to prove that the synchronized tensor product of labelled transverse symmetric precubical
sets is associative.

Theorem 4.2.7. Let K, L and M be three labelled transverse symmetric precubical sets. Then there is a canonical isomorphism of
labelled transverse symmetric precubical sets

KRsL)@s M=K Qs (LRs M).
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Proof. One has
K®s (L®s M) ﬁ[p]) ®x ( lim lim Olq] ®x ﬁ[r])
K

N Olq)—LOr]—-M

12
T D
A=

= Ah_r)n Ali_r)n Ah_rr)1 Op]l ®s (Olq]l ®s O[r]) by Corollary 4.2.5
Olpl—K Olq]—LO[r]->M

= Ali_r)n Ali_r)n Ali_n)l L ([Op]l ®s (Olql ®s O[r])) by Theorem 4.2.6
Olpl—K Olql—LO[r]-M

= lim lim lim £ ((Op]®s0[q]l) ®s O[r]) by][18, Proposition A.3]

Olp]—K Dlql—LO[r]->M
= All_l’)l‘l Ah_r)n Ah_n)] Olp]l ®x Olq]) ®s O[r] by Theorem 4.2.6
Olpl—K Olq]—=LO[r]-M

(K®sL)®s M byCorollary 4.2.5. O

12

As already pointed out in [ 18], it is false in general that the two labelled precubical sets K ® » L and L® 5 K are isomorphic
as labelled precubical sets. Indeed, let us suppose that X'\{t} contains an element a. Then O[a] ®x O[t] = O[a, 7] and
O[r] ®s Ola] = Olt, a]. Because of the lack of symmetry operators, the two labelled 2-cubes O[a, 7] and O[ 7, a] cannot
be isomorphic as labelled precubical sets. However, the two underlying precubical sets are of course isomorphic, as already
pointed out in [18]. In the category of transverse symmetric precubical sets, the situation is much better. Indeed, one has
the isomorphisms of labelled transverse symmetric precubical sets

Ola, 7] = £L(O[a, 7)) = 0O[r, a] = L[z, a]).
Proposition 4.2.8. Let K and L be two labelled transverse symmetric precubical sets. Then there is a natural isomorphism of
labelled transverse symmetric precubical sets K @ x L= L ®x K.
Proof (Sketch of proof). It suffices to use Corollary 4.2.5 together with the isomorphism
Olay, ..., an] ®x Olby, ..., byl =0by, ..., bl ®5 Olay, ..., anl
(built using the symmetry operators) for all labelled full cubes ﬁ[al, ...,0ay] and ﬁ[b1, ...,by]. O

4.3. Comparison of the two semantics of CCS

Interpreting CCS as labelled precubical sets
The CCS process names are generated by the following syntax:
P ::=nil|a.P| (va)P |P + P |P||P | rec(x)P(x),
where P(x) means a process name with one free variable x. The variable x must be guarded; that is, it must lie in a prefix
term a.P’(x) for somea € X.

Definition 4.3.1. A labelled precubical set £ : K — !X decorated by process names is a labelled precubical set together with
asetmap d : Ko — Procy called the decoration.

Let us define by induction on the syntax of the CCS process name P the decorated labelled precubical set O[P] (see [18]
for further explanations). The labelled precubical set C[P] has a unique initial state canonically decorated by the process
name P, and its other states will be decorated in an inductive way. Therefore, for every process name P, O[P] is an object of

the double comma category {i}|O0°%Set| !X One has Ofnil] := O[0], O[w.nil] := w.nil ), nil, O[P + Q] := O[P] & O[Q]
with the binary coproduct taken in {i} 0°°Set| !X, the pushout diagram of precubical sets

O nil

o[0] = {0} 2="% ofp.nil]

o

OfP] ———— Ofu.P,
the pullback diagram of precubical sets
O[(va)P] —— O[P]
I(Z\{a,a@}) —— 1%,
the formula giving the interpretation of the parallel composition with synchronization

OfPI1Q] == OfP] ®x O[Q]
and finally Ofrec(x)P(x)] defined as the least fixed point of P(—).
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The prefix operator, the direct sum and the restriction operator are w-continuous; that is to say, they preserve the upper
bounds of ascending w-chains of labelled precubical sets K° ¢ K! ¢ K2 C ..., since they are finitely accessible and since
the upper bound is given by the colimit of the chain. The synchronized tensor product is also w-continuous since it is colimit
preserving by [18, Proposition A.2]. Moreover, the condition imposed on P(x) implies that, for all process names Q; and Q,
with OJQ;] C O[Q.], one has O[P(Q;)] C O[P(Q2)]. Therefore the mapping P(—) is w-continuous and non-decreasing.
Thus, the labelled precubical set

Ofrec(X)P(X)] := H_II)]D[[P"(H“)]] = U agP" (nih]
n n=0

will be equal to the least fixed point of P(—). This is a particular case of the Kleene fixed-point theorem on a directed complete
partial order.

Interpreting CCS as labelled transverse symmetric precubical sets
Let us give now the new semantics of CCS in terms of labelled transverse symmetric precubical sets.

Definition 4.3.2. A labelled transverse symmetric precubical set £ : K — Sh.L(!X") decorated by process names is a labelled
transverse symmetric precubical set together with a set map d : K, — Procy called the decoration.

The interpretation of a CCS process name P in terms of a decorated labelled transverse symmetric precubical set ﬁ[[P]] is
defined by induction on the syntax of P, as for the case of labelled precubical sets. The only differences with the latter case
are the pullback diagram

Blva)P] ————T[P]
ShL((X\{a, a})) —— ShL(!Y),
and the equation O[P||Q] := O[P] ®s OJQ], where ® is now the synchronized tensor product of labelled transverse

symmetric precubical sets. Corollary 4.2.5 enables us to construct the least fixed point of P(—) in the same way as in the
case of labelled precubical sets.

The two semantics have same geometric realization

Theorem 4.3.3. For every CCS process name P, thire is an isomorphism of labelled transverse symmetric precubical sets ﬁ[[P]] =
L(O[P]) and an isomorphism of (labelled) flows |QO[P]| = |O[P]|.

Proof. Let K be a labelled precubical set. Let a € X'\{t}. Let (va)K be the labelled precubical set defined by the pullback
diagram

(va)K < K

_

'(P\{a,a})) ——1x.

One obtains the commutative diagram of labelled transverse symmetric precubical sets

C

L((va)K)

LK)

LN(Z\fa, @) ————— £L(12)

Sh£L((X\{a, a})) ———— ShL(!Y).
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The map (va)K — K is an inclusion of presheaves: the labelled precubical set (va)K is the subobject of K containing the
labelled cubes of K not containing a or a as label. By Proposition 2.1.14, the transverse symmetric precubical set £((va)K)
is the subobject of .£(K) containing the p-cubes of £(K) of the form p*(x), where  : [p] — [p]isamap of Jand xis a
p-cube of (va)K. Therefore the map £((va)K) — £L(K) is an inclusion of presheaves as well. Consider now a commutative
diagram of labelled transverse symmetric precubical sets

f

AL
L((va)K) L(K)

Sh£(/(2\{a,d})) —— Sh£(1X)

Every p-cube x of Z is taken to a p-cube f(x) of L(K). By Proposition 4.1.3, f(x) = w*(y) for some p-cube y € K and for
some map  : [p] — [p] of Cl. By construction, y does not use the labels a or @. Thus y € (va)K. Therefore f (x) is a p-cube of
L((va)K). Hence k exists and is unique since the map £((va)K) — £L(K) is an inclusion of presheaves. Thus, the diagram
of labelled transverse symmetric precubical sets

C

L((va)K) L(K)

ShL((2\{a,a@})) —— Sh£(1%)

is a pullback. So the isomorphism ﬁ[[P]] = L£(O[P]) implies the isomorphism ﬁ[[(va)P]] = L£(O[(va)P]). Therefore, the
isomorphism of labelled transverse symmetric precubical sets ﬁ[[P]} = L£(O[P]) is proved by induction on the syntax of
the process name P, using Theorem 4.2.6 and the fact that the functor £ preserves colimits since it is a left adjoint. The
isomorphism of labelled flows |ﬁﬂP]]| = |O[P]| is a consequence of Proposition 2.2.10. O
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Appendix

A.1. The case of labelled symmetric precubical sets

By Theorem 3.1.15, the category of cubes (s is not shell complete. It is interesting anyway for the three following reasons.
(1) It is possible to give an explicit description of the symmetric precubical set of labels with Proposition A.1.3. Such a
description is still an open problem for the transverse symmetric precubical set of labels (see Conjecture 3.1.21). (2) The
category of cubes Cs is the smallest category of cubes 4 such that the labelled cubes A[d, (1), . . ., Gyl Withay, ..., a0, € ¥
for o running over the set of permutations of {1, ..., n} belong to the same isomorphism class. Let us recall that the
labelled precubical sets O[ds(1y, - . ., Gy ] and O[dg(1y, . . ., ds7(my] are not isomorphic as soon as (Ag(1y, - - ., do(m) 7
(As'(1)s - - -, Ag7(my)- (3) There is a strong link between labelled symmetric precubical sets and higher-dimensional transition
systems in the sense of Cattani and Sassone [8]; see [19]. Indeed, it turns out that the category of higher-dimensional
transition systems in the sense of Cattani and Sassone is equivalent to a full reflective subcategory of that of labelled
symmetric precubical sets.

Description of the symmetric precubical set of labels

The following combinatorial lemma is well known (see [37] for a survey).
Lemma A.1.1. Let p > 1. The group of automorphisms of the poset [p] is isomorphic to the symmetric group on {1, ..., p}.
In other words, let f be an automorphism of the poset [p]. Then there exists a permutation 7 of the set {1, ..., p} such that
fler, ..., ep) = (Err(l)v ey 57r(p))~
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Proof. Let I C ({1,...,p}. Let ¢; be the element (e, ..., €p) of [p] such that ¢, = 1 if and only if i € I. Since f is
bijective and strictly increasing, it preserves the distance of Proposition 2.1.3. The distance between e, and f(ef;) is 1.
So there exists a permutation 7 of {1, ..., p} such that f(e;y) = ez Let g(€r, ..., €) = (€,-1(1)s - - -, €z-1(,)). Then

g(f(e)) = g(ezay) = eyy- It then suffices to prove by induction on the cardinality c of I that g(f(e;)) = e;. Let ¢ > 2 with
¢ < p.Assume thatg(f(e;)) = e forall subsetsJ of {1, . .., p} of cardinality c — 1. Let I be a subset of {1, .. ., p} of cardinality
c. Then the distance between g(f (e;\;;)) and g(f (e;)) is 1 for all i € I. By induction hypothesis, one has g(f (en i) = en -
So the only possibility is g(f(e;)) = e. O

Proposition A.1.2. An adjacency-preserving map f : [m] — [n] belongs to Os if and only if f is one-to-one.

Proof. Itis clear that any map of (s is one-to-one. Conversely, let f : [m] — [n] be a one-to-one adjacency-preserving map.

Then, by Proposition 3.1.14, f factors uniquely as a composite [m] <, [m] N [n] with ¢ € Oand v adjacency preserving
one-to-one. A cardinality argument implies that y is a bijection. Therefore f € Os by Lemma A.1.1. O

As for precubical sets, let 37 = (6)*. And let s; = (07)".

Proposition A.1.3. The symmetric precubical set of labels Sh; £, (! X) is isomorphic to the following symmetric precubical set,
denoted by I° X:

o ()9 = {0} (the empty word)

eforn>1 (%), =2"

. 8,-0(a1, e, 0y) = ail(al, ...,ay) = (ai, ..., a,...,a,), where the notation a; means that a; is removed.
e si(ay,...,ay) =(ay,...,qi_1, Qiy1, G, Gira, ..., 0y) for 1 <i < n

Proof. The category of cubes O is the small category freely generated by the 67 and o; operators and by the cocubical
relations, the algebraic relations of Proposition 3.1.9, and the Moore relations for symmetry operators o;0; = Id, oi0j0; =
ojoioj fori = j — 1and 0,0; = gjo; fori < j — 1 by [21, Theorem 8.1].

It is easy to prove that the s; and 9 operators of 1 ¥ satisfy the dual of these algebraic relations. So I° ¥ together with
the 0/ and s; operators is a well-defined symmetric precubical set.

The identity of ! X' yields a map of precubical sets ! ¥ — wp (1° ). Hence, by adjunction, one obtains a map Lo (1Y) —
18 ¥, The symmetric precubical set !* ¥ is orthogonal to the set of morphisms {Js[p] Usogp) Os[p] — Os[pl, p > 2} for the
same reason as ! ¥ is orthogonal to the set of morphisms {O[p] Uy Olp] — Olpl, p > 2}. Hence, by adjunction, one obtains
amap of symmetric precubical sets f : Shy, £ (1 2) — 1 ¥ which is clearly onto: an inverse image of (a4, . .., a,) € (* ),
forn > 1is given by the image of (a1, ..., a;) € £Ln;(!X), by the canonical map £, (!X) — Shg L (1X).

Let us prove by induction on p > 1 that the map f, : (Shog Lo (! X))y — (* X), is one-to-one. The map induces the
isomorphism f.1 : (Sho, Lo, (1X))<1 — (!° X)) by Propositions 2.1.18 and 2.1.24. Hence the proof is complete for p = 1.
Let us suppose that the map f, : (Shn, Lo (1 X)) p — (!SZ‘)@ is an isomorphism for p > 1. Let X,y € (ShpgLr; (X)) pt1
be two (p + 1)-cubes having the same image in !° X. Then they have the same boundary in (!° X)) <p, and therefore x and y
have the same boundary dx = dy by induction hypothesis. One obtains a commutative square of solid arrows

XUpxy

Os[p + 1] Waogp+1) Os[p + 11 Shog Lo (12)

7

-

Os[p + 1] 1.

The lift k exists and is unique. So x = k = y. The induction hypothesis is therefore proved forp + 1. O
The labelled directed symmetric coskeleton construction
The following proposition is similar to Proposition 4.1.3.

Proposition A.1.4. Let K be a precubical set. For any p-cube x of wq,£Lrg(K) with p > 0, there exists a p-cube y of K C
wpgLpg (K) and a map € Os([p], [p]) such that x = p*(y), where u* : Lo, (K)p — £, (K), is the image of u by the
presheaf Lo (K) € 02’ Set.

Note that, as in Proposition 4.1.3, the decomposition is actually unique.

Proof. With the notations of the proof of Proposition 4.1.3. By Propositions 3.1.14 and A.1.2, the set map x : [p] — [n]
factors as a composite [p] AN [p] i) [n]withpu e Osand ¢ € O. O
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By Proposition 2.3.4, the truncation functor
Og’Set | Sho L1 (1 2) — (Ts)?PSet | Sho L (1 X)
has a right adjoint
coskis ¥+ (Os)%PSet | Shr L1 (1 2) — O Set | Sho L1 (1 X).
Definition A.1.5. (Compare with Definition 3.1.22.) Let K be a 1-dimensional labelled symmetric precubical set with Ky =

[p] for some p > 0. The labelled symmetric directed coskeleton of K is the labelled precubical set CEI){? (K) defined as the
subobject of cosk?s’z (K) such that

o coskZ (K)-y = cosk*'% (K-,
e foreveryn > 2,x € cosk‘fs‘z(l()n is an n-cube of CO_57<52 (K) if and only if the set map xo : [n] — [p] is non-twisted, i.e.
Xo : [n] = [p]is a composite®
[ 14
Xo : [n] — [q] — [pl,
where  is a morphism of the small category O and where ¢ is of the form
(617 "~7€n) = (6i15 "'76iq)
such that {1,...,n} C{i1,...,ig}
The link with labelled precubical sets is as follows.
Proposition A.1.6. Let K be a 1-dimensional labelled (symmetric) precubical set with Ky = [p] for some p > 0. Then there is the
isomorphism of labelled symmetric precubical sets
Lo (cosk® (K)) = coskZ (K).

Proof. By a proof similar to that of Theorem 4.1.5, one obtains the inclusion of presheaves

Lo, (cosk® (K)) C cosksZ (K).

It is clear that the inclusion above factors as the composite of inclusions

— —
Lo (cosk® (K)) C coskZ (K) C cosk (" (K).
The left-hand inclusion is an equality by Proposition A.1.4. O

Thanks to Proposition 2.2.10, one obtains the isomorphism of flows
o ~ T
[cosk™ (K)| = |cosks (K)|.

Interpreting CCS as labelled symmetric precubical sets
Definition A.1.7. Let K and L be two labelled symmetric precubical sets. The tensor product with synchronization (or
synchronized tensor product) of K and L is

. =
K®sL:= lim lim cosks (Os[ml<y x5 Os[n]<y).
Os[m]—K Og[n]—L

One can then easily adapt the semantics of CCS to the case of labelled symmetric precubical sets. The interest of this
setting is that it is simpler than that of transverse symmetric precubical sets, and that, as in Proposition 4.2.8, there is an
isomorphism of labelled symmetric precubical sets K ® x L = L ® » K for all labelled symmetric precubical sets K and L.
The synchronized tensor product of symmetric precubical sets is also colimit preserving by Proposition 4.2.4, and therefore
associative.
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