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ABOUT THE GLOBULAR HOMOLOGY OF HIGHER
DIMENSIONAL AUTOMATA

by Philippe GA UCHER

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIQ UES

Volume XLIII-2 (2002)

RESUME. On introduit un nouveau nerf simplicial d’automate pa-
rall6le dont 1’homologie simpliciale d6cal6e de 1 foumit une nou-
velle definition de 1’homologie globulaire. Avec cette nouvelle d6-
finition, les inconv6nients de la construction d’un article ant6rieur
de 1’auteur disparaissent. De plus les importants morphismes qui as-
socient a tout globe les zones correspondantes de branchements et
de confluences de chemins d’ex6cution deviennent ici des mor-

phismes d’ensembles simpliciaux.

1 Introduction

One of the contributions of [11] is the introduction of two homology theo-
ries as a starting point for studying branchings and mergings in higher di-
mensional automata (HDA) from an homological point of view. However
these homology theories had an important drawback : roughly speaking,
they were not invariant by subdivisions of the observation. Later in [9], us-
ing a model of concurrency by strict globular w-categories borrowed from
[ 19], two new homology theories are introduced : the negative and positive
comer homology theories H- and H+, also called the branching and the
merging homologies. It is proved in [8] that they overcome the drawback of
Goubault’s homology theories.

Another idea of [9] is the construction of a diagram of abelian groups
like in Figure 1, where Hgl* is a new homology theory called the globular
homology.

Geometrically, the non-trivial cycles of the globular homology must cor-
respond to the oriented empty globes of C, and the non-trivial cycles of
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the branching (resp. the merging) homology theory must correspond to the
branching (resp. merging) areas of execution paths. And the morphisms h-
and h+ must associate to any globe its corresponding branching area and
merging area of execution paths. Many potential applications in computer
science of these morphisms are put forward in [9].

Globular homology was therefore created in order to fulfill two condi-
tions :

. Globular homology must take place in a diagram of abelian groups
like in Figure 1. And the geometric meaning of h- and h+ must be
exactly as above described.

. Globular homology must be an invariant of HDA with respect to rea-
sonable deformations of HDA, that is of the corresponding W-category.

What is a reasonable deformation of HDA was not yet very clear in [9].
This question is discussed with much more details in [10].

The old globular homology (i.e. the construction exposed in [9]) satis-
fied the first condition, and the second one was supposed to be satisfied by
definition (cf. Definition 8.2 of two homotopic w-categories in [9]), even if
some problems were already mentioned, particularly the non-vanishing of
the "old" globular homology of 11, and more generally of In for any n &#x3E; 1

in strictly positive dimension.
This latter problem is disturbing because the n-cube 11 (i.e. the cor-

responding automaton which consists of n 1-transitions carried out at the
same time) can be deformed by crushing all the p-faces with p &#x3E; 1 into an

w-category which has only 0-morphisms and 1-morphisms and because the
globular homology is supposed to be an invariant by such deformations. The
philosophy exposed in [10] tells us similar things : using S-deformations
and T-deformations, the n-cube and the oriented line must be the same up to

homotopy, and therefore must have the same globular homology.
The non-vanishing of the second globular homology group of I’ (see

Figure 2(c)) is due for instance to the 2-dimensional globular cycle
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Figure 1: Associating to any globe its two comers

It is the reason why it was suggested in [9] to add the relation A *1 B =
A + B at least to the 2-dimensional stage of the old globular complex.

But there is then no reason not to add the same relation in the rest of the

definition of the old globular complex. For example, if we take the quotient
of the old globular complex by the relation A *1 B = A + B for any pair
(A, B) of 2-morphisms, then the w-category defined as the free cv-category
generated by the globular set generated by two 3-morphisms A and B such
that t1A = s1B gives rise to a 3-dimensional globular cycle A *1 B - A - B
because s2(A *1 B - A - B) = 82A *1 s2B - s2A - s2B = 0 and t2(A *1
B - A - B) = t2A *1 t2B - t2A - t2B = 0. So putting the relation A *1 B -
A - B = 0 in the old globular complex for any pair of morphisms (A, B)
of the same dimension sounds necessary. Similar considerations starting
from the calculation of the (n - 1)-th globular homology group of I" entail 
the relations A *n B - A - B for any n § 1 and for any pair (A, B) of
p-morphisms with p &#x3E; n + 1 in the old globular chain complex.

The formal globular homology of Definition 9.3 is exactly equal to the
quotient of the old globular complex by these missing relations. It is con-

jectured (see conjecture 9.5) that this homology theory will coincide for free
w-categories generated by semi-cubical sets with the homology theory of
Definition 5.2, this latter being the simplicial homology of the globular sim-
plicial nerve Ngl shifted by one.

We claim that Definition 5.1 (and its simplicial homology shifted by one)
cancels the drawback of the old globular homology at least for the following
reasons :

. It is noticed in [9] that both comer homologies come from the simpli-
cial homology of two augmented simplicial nerves N- and N+ ; there
exists one and only natural transformation h- (resp. h+) from Ngl to
N- (resp. N+) preserving the interior labeling (Theorem 6.1).
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(c) The w-category J3

Figure 2: Some w-categories (a k-fold arrow symbolizes a k-morphism)
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. In homology, h- and h+ induce two natural linear maps from H2l to
resp. Hy and H+* which do exactly what we want.

. The globular homology (formal or not) of In vanishes in strictly pos-
itive dimension for any n &#x3E; 0. The globular homology of An (the
n-simplex) and of 2n (the free w-category generated by one n-dimen-
sional morphism) as well.

. Using Theorem 9.7 explaining the exact mathematical link between
the old construction and the new one, one sees that one does not lose

the possible applications in computer science pointed out in [9].

. The new globular homology, as well as the new globular cut are invari-
ant by S-deformations, that is intuitively by contraction and dilatation
of homotopies between execution paths. We will see however that it is
not invariant by T-deformations, that is by subdivision of the time, as
the old definition and this problem will be a little bit discussed.

This paper is two-fold. The first part introduces the new material. The
second part justifies the new definition of the globular homology.

After Section 2 which recalls some conventions and some elementary
facts about strict globular w-categories (non-contracting or not) and about
simplicial sets, the setting of simplicial cuts of non-contracting w-categories
and that of regular cuts are introduced. The first notion allows to enclose
the new globular nerve of this paper and both comer nerves in one unique
formalism. The notion of regular cuts gives an axiomatic framework for the

generalization of the notion of negative and positive folding operators of [8].
Section 4 is an illustration of the previous new notions on the case of comer
nerves. In the same section, some non-trivial facts about negative folding
operators are recalled. Section 5 provides the definition of the globular nerve
of a non-contracting w-category.

The organization of the rest of the paper follows the preceding expla-
nations. First in Section 6, the morphisms h- and h+ are constructed. Sec-
tion 7 proves that the globular cut is regular. In particular, we get the globular
folding operators. Section 8 proves the vanishing of the globular homology
of the n-cube, the n-simplex and the free w-category generated by one n-
morphism. At last Section 9 makes explicit the exact relation between the
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new globular homology and the old one. Section 10 speculates about defor-
mations of w-categories considered as a model of HDA and the construction
of the bisimplicial set of [10] is detailed.

2 Conventions and notations

2.1 Globular cv-category and cubical set

For us, an w-category will be a strict globular w-category with morphisms of
finite dimension. More precisely (see [3] [23] [22] for more details) :

Definition 2.1. A 1-category is a pair (A, (*, s, t)) satisfying the following
axioms :

1. A is a set

2. s and t are set maps from A to A respectively called the source map
and the target map

3. for x, y E A, x * y is defined as soon as tx = sy

z as soon as both members of the equality exist

and t(x * y) = ty (this implies
and

Definition 2.2. A 2-category is a triple (A, (*o, so, to), (*1,81, tl)) such that

1. both pairs (A, (*o, so, to)) and (A, (*1, si, tl)) are 1-categories

2. 8081 = sot, = so, tosl = tot, = to, and for i &#x3E; j, sisj = tisj = Sj
and sitj = titj = tj (Globular axioms)

3. (x*0y)*1(z*0t) = (x*1z)*0 (y*1t) (Godement axiom or interchange
law)

4. if and

Definition 2.3. A globular w-category C is a set A together with a family
(*n, Sn, tn)n&#x3E;0 such that
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1. for any n &#x3E; 0, (A, (*n, sn, tn)) is a 1-category

2. for any m, n &#x3E; 0 with m  n, (A, (*m, Sm, tm), (*n, Sn, tn)) is a 2-
category

3. for any x E A, there exists n &#x3E; 0 such that SnX = tnx = x (the
smallest of these n is called the dimension of x).

A n-dimensional element of C is called a n-morphism. A 0-morphism
is also called a state of C, and a 1-morphism an arrow. If x is a morphism
of an w-category C, we call sn (x) = d-n(x) the n-source of x and tn(x)=
d+n(x) the n-target of x. The category of all w-categories (with the obvious
morphisms) is denoted by wCat. The corresponding morphisms are called
w-functors. The set of morphisms of C of dimension at most n is denoted by
trnC ; the set of morphisms of C of dimension exactly n is denoted by Cn.

Sometime we will use the terminology initial state (resp. final state) for
a state a which is not the 0-target (resp. the 0-source) of a 1-morphism.

Definition 2.4. [4] [13] A cubical set consists of

. a family of sets (Kn)n&#x3E;0
aa

. a family of face maps Kn2-&#x3E;Kn-1 for a E 1-, +1

. a family of degeneracy maps Kn-1 Ei-&#x3E;Kn with 1  i  n

which satisfy the following relations

for all and 

for all 2

for and (

for and i

A family (Kn)n&#x3E;0 only equipped with a family offace maps 8ai satisfying the
same axiom as above is called a semi-cubical set.
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Definition 2.5. The corresponding category of cubical sets, with an obvi-
ous definition of its morphisms, is isomorphic to the category of presheaves
SetsDOP over a small category D. The corresponding category of semi-
cubical sets , with an obvious definition of its morphisms, is isomorphic to
the category of presheaves Sets cisemiop over a small category F-1"".

In a simplicial set, the face maps are always denoted by ai, the degener-
acy maps by ei. Here are the other conventions about simplicial sets (see for
example [17] for further information) :

1. Sets : category of sets

2. SetsAop : category of simplicial sets

3. Comp(Ab) : category of chain complexes of abelian groups

4. C(A) : unnormalized chain complex of the simplicial set A

5. H* (A) : simplicial homology of a simplicial set A

6. Ab : category of abelian groups

7. Id : identity map

8. ZS : free abelian group generated by the set S

HDA means higher dimensional automaton. In this paper, this is another
term for semi-cubical set, or the corresponding free w-category generated by
it.

Various homology theories (see the diagram of Theorem 9.7) will ap-
pear in this paper. It is helpful for the reader to keep in mind that the total
homology of a semi-cubical set is used nowhere in this work.

2.2 Non-contracting w-category
Let C be an w-category. We want to define an w-category PC (P for path)
obtained from C by removing the 0-morphisms, by considering the 1-mor-
phisms of C as the 0-morphisms of PC, the 2-morphisms of C as the 1-
morphisms of PC etc. with an obvious definition of the source and target
maps and of the composition laws (this new w-category is denoted by C[l]
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in [10]). The map P : C -&#x3E; PC does not induce a functor from wCat to itself
because w-functors can contract 1-morphisms and because with our conven-
tions, a 1-source or a 1-target can be 0-dimensional. Hence the following
definition

Proposition and definition 2.6. For a globular w-category C, the following
assertions are equivalent :

(i) PC is an w-category ; in other terms, *i, si and ti for any i &#x3E; 1 are

internal to PC and we can set *PCi = *Ci+1, *PCi = *Ci+1 and *PCi = *Ci+1
for any i &#x3E; 0.

(ii) The maps S1 and t1 are non-contracting, that is if x is of strictly posi-
tive dimension, then six and tlx are 1-dimensional (a priori, one can
only say that SIX and t1x are of dimension lower or equal than 1)

If Condition (ii) is satisfied, then one says that SI and t1 are non-contracting
and that C is non-contracting.

Proof. Suppose s1 and t 1 non-contracting. Let x and y be two morphisms
of strictly positive dimension and p &#x3E; 1. Then s1 spx = SIX therefore spx
cannot be 0-dimensional. If x *p y then sl (x *p y) = S1 x if p = 1 and if
p &#x3E; 1 for two different reasons. Therefore x *p y cannot be 0-dimensional
as soon as p &#x3E; 1. D

Definition 2.7. Let f be an w-functor from C to D. The morphism f is
non-contracting iffor any 1-dimensional x E C, the morphism f (x) is a 1-
dimensional morphism of D (a priori, f (x) could be either 0-dimensional or
1-dimensional).

Definition 2.8. The category of non-contracting w-categories with the non-
contracting w-functors is denoted by wCat1.

Notice that in [9], the word "non-1-contracting" is used instead of sim-
ply "non-contracting". Since [10], the philosophy behind the idea of de-
forming the w-categories viewed as models of HDA is better understood. In
particular, the idea of not contracting the morphisms is relevant only for 1-
dimensional morphisms. So the "I" in "non- I -contracting" is not anymore
necessary.
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Definition 2.9. Let C be a non-contracting w-category. Then the w-category
PC above defined is called the path w-category of C. The map C H PC
induces a functor from cvCatl to wCat.

Here is a fundamental example of non-contracting w-category. Consider
a semi-cubical set K and consider the free w-category II(K) := fnED Kn.In
generated by it where

. In is the free w-category generated by the faces of the n-cube, whose
construction is recalled in Section 4.

. the integral sign denotes the coend construction and Kn. In means the
sum of "cardinal of Kn" copies of I" (cf. [15] for instance).

Then one has

Proposition 2.10. For any semi-cubical set K, II(K) is a non-contracting
w-category. The functor Il : Sets 0.9emiop -&#x3E; wCat from the category of semi-
cubical sets to that of w-categories yields a functor from S etsDsemiop to the
category of non-contracting w-categories wCat1.

Proof. The characterization of Proposition 2.6 gives the solution. D

3 Cut of globular higher dimensional categories
Before introducing the globular nerve of an w-category, let us introduce the
formalism of regular simplicial cuts of w-categories. The notion of simpli-
cial cuts enables us to put together in the same framework both comer nerves
constructed in [9, 8] and the new globular nerve of Section 5. The notion of
regular cuts enables to generalize the notion of negative (resp. positive) fold-
ing operators associated to the branching (resp. merging) nerve (cf. [8]). It is
also an attempt to finding a way of characterizing these three nerves. There
are no much more things known about this problem.

Definition 3.1. [5] An augmented simplicial set is a simplicial set
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together with an additional set X-1 and an additional map 8-1 from Xo to
X-1 such that 8-180 = 8-181. A morphism of augmented simplicial set is a
map of N-graded sets which commutes with all face and degeneracy maps.
We denote by SetsAop+ the category of augmented simplicial sets.

The "chain complex" functor of an augmented simplicial set X is de-
fined by Cn (X ) = ZXn for n &#x3E; -1 endowed with the simplicial differential
map (denoted by a) in positive dimension and the map 8-1 from C0 (X) to
C-1(X). The "simplicial homology" functor H* from the category of aug-
mented simplicial sets Sets°°P to the category of abelian groups Ab is de-
fined as the usual one for * &#x3E; 1 and by setting Ho(X) = Ker(8_1)/Im(8o-
81) and H-1 (X) = ZX-1/Im(8-1) whenever X is an augmented simplicial
set.

Definition 3.2. A (simplicial) cut is a functor F : wCat1 -&#x3E; Sets°°p to-
gether with a family ev = (evn)n &#x3E;0 of natural transformations eun : Fn -&#x3E;

trnP where Fn is the set of n-simplexes of T. A morphism of cuts from
(F, ev) to (Q, ev) is a natural transformation of functors § from F to!9 which
makes the following diagram commutative for any n &#x3E; 0 :

The terminology of "cuts" is borrowed from [21]. It will be explained
later : cf. the explanations around Figure 3 and also Section 10.

There is no ambiguity to denote all evn by the same notation ev in the
sequel. The map eu of N-graded sets is called the evaluation map and a cut
(F, ev) will be always denoted by 0.

If F is a functor from wCat1 to SetsAop+, let CFn+1(C) := Cn(F(C)) and
let HFn+1 be the corresponding homology theory for n&#x3E;-1.

Let MFn: wCat1 ---&#x3E; Ab be the functor defined as follows : the group

MFn(C) is the subgroup generated by the elements x E Fn-1(C) such that
ev(x) E trn-2PC for n &#x3E; 2 and with the convention Mf(C) = MF1(C) = 0
and the definition of M£ is obvious on non-contracting w-functors. The

elements of MF*(C) are called thin.
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Let CRFn : wCat1 -&#x3E; Comp(Ab) be the functor defined by CRn :=
CFn/(MFn + 8MFn+1) and endowed with the differential map 9. This chain
complex is called the reduced complex associated to the cut F and the corre-
sponding homology is denoted by HRF* and is called the reduced homology
associated to F. A morphism of cuts from F to 9 yields natural morphisms
from H* to Hg* and from HRF* to HRO. There is also a canonical natural
transformation R-"7 from H* to HR*, functorial with respect to F , that is

making the following diagram commutative :

Definition 3.3. A cut F is regular if and only if it satisfies the following
properties :

1. For any w -category C, the set T-1 (C) only depends on trOC = Co : i.e.
for any w -categories C and D, Co = Do implies F_1(C) == F_1(D).

4. for any natural transformation of functors p from Fn-1 to Fn with
n &#x3E; 1, and for any natural map 0 from trn-1P to Fn-l such that
evoD = Idtrn- 1P, there exists one and only one natural transformation
03BC.O from trnp to F n such that the following diagram commutes

where in is the canonical inclusion functor from trn-lp to trnP.
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5. let OF1 := IdF0 and OFn := En-2.... E0.OF1 a natural transformation
from trn-1P to Fn-1 for n &#x3E; 2 ; then the natural transformations
8iOFn for 0  i  n - 1 from trn- 1P to Fn-2 satisfy the following
properties

(b) iffor some w-category C and some u E Cn, eu8iOFn(u) = d’ufor
some p  n and for some a E + 1, then 8iOFn = 8iOFndap.

6. Let $Fn := 0’ o ev be a natural transformation from Fn-1 to itself;
then $Fn induces the identity natural transformation on CRFn.

7. if x, y and z are three elements of Fn (C), and if ev(x) *p ev (y) = ev (z)
for some 1  p  n, then x + y = z in CRFn+1(C) and in a functorial
way.

If F is a regular cut, then the natural transformation $Fn is called the n-
dimensional folding operator of the cut F. By convention, one sets 0’ =
Id,r-, and $F0 = IdF-1. There is no ambiguity to set $F(x) :=$Fn+1 (x) for
x E Fn(C) for some w-category C. So $F defines a natural transformation,
and even a morphism of cuts, from F to itself. However beware of the fact
that there is really an ambiguity in the notation Dy : so this latter will not
be used.

Condition 3 tells us that the Ei operations are really degeneracy maps.
Condition 4 ensures the existence and the uniqueness of the folding operator
associated to the cut.

Condition 5 tells us several things. A priori, a natural transformation
like eu8iOFn from trn-1P to trn-2P is necessarily of the form dag for some
p  n - 1 and for some a E 1-, +1. Indeed consider the free w-category
2n(A) generated by some n-morphism A. Then ev8iOFn(A) E 2n(A) and
therefore eudiOFn(A) = dap(A) for some p and some a. By naturality, this
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implies that ev8zD§ = dap. If 0  i  n - 2, then

for some

by construction of DFn

by rule 3

for some

Therefore a20n is thin. Now if n - 2  i  n - 1, then

for some

by construction of

by construction of I

Therefore {ev8n-2OFn,eu8n-1OFn} C {sn-1,tn-1} always holds. Condi-

tion 5 states more precisely that these latter sets are actually equal. In other
terms, the operator 0: concentrates the "weight" on the faces ån-20: and
8n-1OFn.

Condition 6 explains the link between the thin elements of the cut and
the folding operators. Intuitively, the folding operators move the labeling of
the elements of the cuts in a canonical position without changing the total
sum on the source and target sides. What is exactly this canonical position
is precisely described by Proposition 3.5. Conditions 5 and 7 ensure that by
moving the labeling of an element, we stay in the same equivalence class
modulo thin elements.

Now here are some trivial remarks about regular cuts :

. Let f be a natural set map from tr0PC = C1 to itself. Let 21 be the w-
category generated by one 1-morphism A. Then necessarily f(A) = A
and therefore f = Id. So the above axioms imply that evo = Id.



121

. The map §Fn induces the identity natural transformation on HRFn.

. For any n &#x3E; 1, there exists non-thin elements x in Fn-1(C) as soon
as Gn# 0. Indeed, if u E Cn, eV OFn(u) = u, therefore OFn(u) is a
non-thin element of Fn-1 (C).

We end this section by some general facts about regular cuts.

Proposition 3.4. Let f be a morphism of cuts from F to g. Suppose that F
and 9 are regular. Then Gg o f = f o GF as natural transformation from F
to g. In other terms, the following diagram is commutative :

Proof Let n &#x3E; 0 and let P(n) be the property : "for any w-category C and
any x e trnpc, then fO+Fn+1 (x) = Ogn+1 x:’’

One has GF1 := IdF0, Gg1 := IdGo and necessarily 10 = Id by definition
of a morphism of cuts. Therefore P(0) holds. Now suppose P(n) proved for
some n &#x3E; 0. One has eu fOFn+2 = euOFn+2 = Idtrn+1P since f is a morphism
of cuts and

by definition of En.OFn+1
since f morphism of simplicial sets

by induction hypothesis
Therefore the natural transformation fOFn+2 from trn+1P to gn+l can be
identified with En.Ogn+1 which is precisely Ogn+2. Therefore P (n + 1) is

proved.
At last, if x E ’gn(C), then

by definition of folding operators
since f preserves the evaluation map
since P(n) holds

by definition of folding operators
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Proposition 3.5. If u is a (n + I)-morphism of C with n &#x3E; 1. then OFn+1 u is
an homotopy within the simplicial set F(C) between OFnsnu and OFntnu.

Proof. The natural map eu 8iOFn+1 for 0  i  n from trnP to trn-1P
is of the form daimi for mi  n with mi  n - 1 for 0  i  n - 2
and {eu8n-1OFn+1,eu8nOFn+1} = {sn, tn}. Therefore for 0  i  n - 2,

8iOFn+1 = 8iOFn1+sn = 8iOFn+1tn by rule 5b of Definition 3.3. And by
construction of OFn+1, one obtains 8iOFn+1 = En-28iOFnSn = En-28iOFntn.

O

Corollary 3.6. If x e CR +1 (C), then ax = 8On+1x = 0: SnX - OFntnx
in CRFn(C). In other terms, the differential map from CR +1 (C) to CRFn(C)
with n&#x3E; 1 is induced by the map sn - tn.

4 The cuts of branching and merging nerves

We see now that the corner nerves Nn defined in [9] are two examples of
regular cuts with the correspondence Dfl := ONnn, $nn := $Nnn, Hnn := H:!17,
HRnn:= IHRNnn and eu (x) = x (0dim(x)).

Let us first recall the construction of the free w-category In generated by
the faces of the n-cube. The faces of the n-cube are labeled by the words of
length n in the alphabet {-, 0, +}, one word corresponding to the barycenter
of one face. We take the convention that 00 ... 0 (n times) =: On corresponds
to its interior and that -n (resp. +n) corresponds to its initial state - - ...-
(n times) (resp. to its final state + + ... + (n times)). If x is a face of

the n-cube, let R(x) be the set of faces of x. If X is a set of faces, then
let R(X) = UxEX R(x). Notice that R(X U Y) = R(X) U R(Y) and that
R({x}) = R(x). Then In is the free w-category generated by the R(x) with
the rules

1. For x p-dimensional with p &#x3E; 1,

and

where sz and tx are the sets of faces defined below.
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2. If X and Y are two elements of I n such that tp ()) = sp (Y) for some
p, then X U Y belongs to In and X U Y = X *p Y.

The set sx is the set of subfaces of the faces obtained by replacing the
i-th zero of x by (-)i, and the set tx is the set of subfaces of the faces

obtained by replacing the i-th zero of x by (-)i+1. For example, so+oo =
{-+00, 0++0, 0+0-1 and t0+00 = f ++00, 0+-0, 0+0+1. Figure 2(c) represents
the free w-category generated by the 3-cube.

The branching and merging nerves are dual from each other. We set

and

where 77 e {-,+} and where nn+1 is the initial state (resp. final state) of

In+1 if n= - (resp. n = +). For all (i, n) such that 0  i  n, the face

maps a2 from wCat(In+1, C)TJ to wCat(In, C)TJ are the arrows 8ni+1 defined
by 

and the degeneracy maps Ei from wCat(In,C)17 to wCat(In+1, C)n are the
arrows Tni+1 defined by setting

with the order -  0  +.

Proposition and definition 4.1. [9] Let C be an w-category. The N-graded
set Nn(C) together with the convention Nn-1(C) = Co, endowed with the
maps 8i and Ei above defined with moreover 8-1 = so (resp. 8-1 = to) if
n = - (resp. n = +) and with ev(x) = x(0n) for x E wCat(In,C) is a
simplicial cut. It is called the n-corner simplicial nerve Nn of G.

Set Hnn+1(C) := Hn(Nn(C)) for n &#x3E; -1. These homology theories
are called branching and merging homology respectively and are exactly the
same homology theories as that defined in [9] and studied in [8].

And we have
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Theorem 4.2. [8] The simplicial cut Nn is regular The associated folding
operator ONnn coincides with the operator Onn defined in [8]. And therefore
the associated homology theory HRNnn coincide with the reduced corner ho-
mology HRl defined in [8].

It is useful for the sequel to remind some important properties of the
folding operators associated to corner nerves.

Theorem 4.3. [8] Let C be an w-category. Let x be an element of N-n (C).
Then the following two conditions are equivalent :

1. the equality x = $-n (x) holds

2. for 1  i  n, one has eu8+ix = 8+i x(0n) is 0-dimensional and for
1in-2, one has a8-i x E Im(T-n-2...Ti-2).

Another operator coming from [8] which matters for this paper is the
operator 0i.

Definition 4.4. Let x E N-n (C) for some C such that for any 1  j  n + 1,
atx is 0-dimensional. Then x is called a negative element of the branching
nerve.

Theorem 4.5. Let n &#x3E; 2. There exists natural transformations

from N-n to itself satisfying the following properties :

1. If x is a negative element of N-n (C), then for any 1  i fi n - 1, °i x
is a negative element as well.

2. If x is a negative element of N-n (C), then for any 1  i  n - 1, there
exists a thin negative element yi of N-n+1(C) such that 8-yi- x is a
linear combination of thin negative elements.

3. There exists a composite of 0-1, ... , 7 on-, which coincides with the neg-
ative folding operators on negative elements of Nn-.
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Sketch of proof. Consider the ()1’ ... , On- 1 of [8]. One has

where, for the last formula, "1b/ are other operators which is not important
to explicitly define here : the only important thing is that 8+i0-i remains 0-
dimensional if the argument is 0-dimensional. Hence property 1. As for

property 2, it is enough to check it for i = 1. And in this case, y is a thin
4-cube satisfying

Once again, we refer to [8] for the precise definition of the operators involved
in the above formulas. The only thing that matters here is the dimension of
8+iy.

By [8], we know that (D- = 0 0 BII when 0 is a composite of Oi and such
that for x negative, wx = x. Hence property 3. D

The graded set (wCat(In, C))n&#x3E;0 endowed with the operations at- above
defined and by the maps Ei(x)(k1 ... kn+1) - x(k1... ki...kn+1) for x E
wCact(In, C) and 1 C i  n + 1 is a cubical set and is usually known as
the cubical singular nerve of C [4]. The use of the same notation Ei for the
degeneracy maps of the cubical singular nerve and the degeneracy maps of
the three simplicial nerves appearing in this paper is very confusing. Fortu-
nately, we will not need the degeneracy maps of the cubical singular nerve
in this work except for Theorem 4.5 right above.
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5 The globular cut

The most direct way of constructing a cut of cv-categories consists of using
the composite of both functors P: C H PC and N where N is the simplicial
nerve functor defined by Street1.

Let us start this section by recalling the construction of the free w-catego-
ry An generated by the faces of the n-simplex. The faces of the n-simplex
are labeled by the strictly increasing sequences of elements of {0,1, ... , n}.
The length of a sequence is equal to the dimension of the corresponding
face plus one. If x is a face of the n-simplex, its subfaces are all increasing
sequences of {0,1, ... , n} included in x. If x is a face of the n-simplex,
let R(x) be the set of faces of x. If X is a set of faces, then let R(X) =
UXEX R(x). Notice that R(X U Y) = R(X) U R(Y) and that R(Ixl) =
R(x). Then An is the free cv-category generated by the R(x) with the rules

1. For x p-dimensional with p &#x3E; 1,

and

where sx and tx are the sets of faces defined below.

2. If X and Y are two elements of An such that tp (X) = sp (Y) for some
p, then X U Y belongs to An and X U Y = X *p Y.

where Sx (resp. tx) is the set of subfaces of x obtained by removing one
element in odd position (resp. in even position). For instance, s(04589) 
{(4589), (0489), (0458)} and t(04589) = {(0589), (0459)}.

Sometimes we will write (for instance) (0  4  5  8  9) instead of
simply (04589). Figure 2(b) gives the example of the 2-simplex.

Let x E wCat(Dn, C). Then consider the labeling of the faces of respec-
tively Dn+1 and Dn-1 defined by :

if and

lOf course, the functor iV can be viewed as a functor from wC atl to SetsAop+, but a
"good" cut should not be extendable to a functor from wCat to Sets+ .
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if

and,

and

and

where ok , ... , os &#x3E; i and ok-1  i.

It can be checked that Ei (x) (resp. ai (x)) are w-functors from A’+’ (resp.
A’-’) to C [23]. By construction, the map [n] -&#x3E; An induces then a functor

from the well-known category A whose associated presheaves are the sim-
plicial sets to wCrxt. Therefore N(C) = (wCat(0*, C), ai, Ei) is a simplicial
set which is called the simplicial nerve of C.

Definition 5.1. The globular cut N9l (or the globular nerve) is the functor
fromwCat1 to SetsAop+ defined by Ngl(C) = wCat(An, PC) for n &#x3E; 0 and
with Ngl-1(C) = Co x Co, and endowed with the augmentation map 8-1 from
Ngl0 (C) = C1 to Ngl-1 (C) = Co x Co defined by a-lx = (sox, tox). The

evaluation map ev is defined by ev(x) = x((0 ... n)) for x E wcat (An, PC).
The homology theory Hng’ := HNgln is called the globular homology and
HR¥tl := HRNngl the reduced globular homology.

Geometrically, the elements of Ngl(C) are full (n + 1)-globes. Figure 3
depicts a 2-simplex in the globular nerve. The simplexes seen by the globular
cut are intuitively transverse to the execution paths, as well as those of comer
nerves. Hence the terminology of cuts.

Here is now the new definition of the globular homology of a globular
w-category C :

Definition 5.2. Let C be a non-contracting w-category. We set

for n ? -1 and this homology theory is called the globular homology of C.
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Figure 3: Globular 2-simplex

6 Associating to any globe its corners

The purpose of the rest of the paper is to justify that Definition 5.2 is the right
definition. This is not a mathematical statement of course ! We follow the

order of the remarks at the very end of Section 1 which explain what kind of
conditions the globular homology must fulfill. So we have first to construct
h- and h+ and we must verify that geometrically, in homology, h- and h+
do what we expect to find. In fact, we refer to [10] for intuitive explanations
of h- and h+. We only recall here Figure 4 as an illustration and care only
about the construction of h-.

Theorem 6.1. Let a E {-, +}. There exists one and only one morphism of
cuts ha from Ngl to N°. Moreover, for any non-contracting w-category C,
both morphisms h’ from JV9’(C) to N° (C) are injective.

The rest of the section is devoted to the proof of Theorem 6.1. The

following sequence of propositions establishes the existence of h-. The term
cubn denotes the set of faces of the n-cube, as described in Section 4.

We briefly recall how filling shells in the cubical singular nerve. This

technical tool already appears in [4] for w-groupoids and in [1] for cv-cate-
gories. A particular case can be found in [9].

Definition 6.2. A n-shell in the cubical singular nerve is a family of 2 (n + 1)
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(a) A 2-globular
simplex X

(b) The 2-simplex h- (X)

Figure 4: Illustration of h-



130

elements xi ofwCat(In,C)- such that 8aixBj = 90 x- for 1  i  j
n + 1 and a, B E {-, +}.

If xt is a n-shell, then it induces a labeling x on the set of faces of dimen-
sion at most n of the (n + 1)-cube in the following manner : let k1 ... kn+l
be a face of dimension at most n ; then there exists i such that ki =1= 0 ; then
let x(k1 ... kn+ 1) : := xi(k1 ... ki ... kn+ 1). The axiom satisfied by an n-shell
ensures the coherence of the definition.

Proposition and definition 6.3. Let xi be an (n - 1)-shell with n&#x3E; 1.

. The labeling of the faces of dimension at most (n - 1) of In defined by
xt always induces an w-functor and only one from InBIR(0n)} to C.
Denote it by x.

. The n-shell (xt) is said fillable if there exists a morphism u of G such
that Sn-lU = X (sn-lR(On)) and tn-1u = X (tn-1 R(0n)). In this case,
there exists a unique w -functor x from In to C such that d+ix = xt for
1  i  n and x(0n) = u.

Proof Using the freeness of In, the construction in the proof of [9] Proposi-
tion 5.1 yields the w-functor x from InBIR (0n)} to C. The hypotheses stated
in [9] were too strong indeed. If moreover the shell is fillable in the above

sense, one concludes still as in the proof of [9] Proposition 5.1. 

Now we can construct h-.

Theorem 6.4. Let x be an n-simplex of the globular simplicial nerve of C.
Then the map hn (x) from cub n-+1 to C defined by

1. + E {k1 ... kn+1} implies hn- (x)(k1 ... kn+1) = tox((O)) (notice that
(0) is the final state of An)

and

with implies

(notice that (n) is the initial state of An)
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yields an w-functor from In+1 to C. Moreover, h- induces a morphism of
simplicial Sets from the globular nerve of G to its negative comer nerve. And
the map from Ngl-1 (C) to N- -1 (C) defined by (x, y) H x extends the previous
morphism to the corresponding augmented simplicial nerves. Moreover for
n &#x3E; 0, hn is a one-to-one map and the image of h-n contains exactly all
cubes x of the negative comer nerve such that as soon as d+ix exists, then it
is 0-dimensional.

There is no ambiguity to set h-(x) = h-n (x) if x is an n-simplex of the
globular cut.

In the sequel, in order to make easier the reading of the calculations, we
suppose that an expression like (uo  o-j  k  aj+l  ...  ar) is the
same thing as (uo  aj  uj+l  ...  ar) in 0* but with an additional
information given within the calculation itself : here that aj fi k  uj+l
holds.

Proof. One proves by induction on n the following property P(n) : "For
any n-simplex x of the globular simplicial nerve of any w-category C, the
map h- (x) from cubn+1 to C induces an w-functor and moreover an element
of wCat(In+1, C)-".

Let x be a 0-simplex of the globular nerve of C. Then x is an w-functor
from 0° to PG, and therefore it can be identified with the 1-morphism x((0))
of C. Therefore

by rule 2

by rule 1

by rule 3

Therefore P(0) is proved.
Now suppose that P(n) is proved for n &#x3E; 0. Let x be a (n+1)-simplex of

the globular simplicial nerve of some cv-category G. If + E {k1, ... kn+1},
then

by definition of 8v for 1  i  n + 2

by rule 1

again by rule 1
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If . set

with o-0  ...  are For a given i such that 1  i  n + 2, set

as word. Then let

with To  ...  Tr . The relation between the sequence of aj and the se-

quence of Tj is as follows :

And we have

by definition of 8v
by rule 2

= (di-1x) ((o-0 ... Qr)) by definition of di-1
= h- (di-1x) (k1 ... kn+1) by rule 2

Therefore di-(h-(x)) = h- (di-1x). And by rule 1, d+i (h-(x)) is the con-
stant w-functor from cub’+ 1 to C which sends any face of In+1 on t0x((0)).
Therefore (d+i(h-(x)))1in+1 is a (n + I)-shell in the cubical nerve of C
which is fillable. By Proposition 6.3, the labeling h-(x) of cubn+2 induces
an w-functor from ¡n+2 to C and P(n + 1) is proved.

By construction, the equality d-i(h-(x)) = h-(di-1x) holds for any n-
simplex x of the globular nerve and for 1  i  n + 1. It remains to check

that for such a simplex x, T-i (h-(x)) = h-(Ei-1x) for i  1  n + I.
Consider a face k1 ... kn+2 of the (n + 2)-cube. If + E {k1, ... , kn+2}, then

by definition of ri
by rule 1

again by rule 1
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If -

with For a given i such that i

and set as word. Then let

with To  ...  Ts. One has to calculate

by definition of ri
by definition of h-

for some 1  i  n + 2.
The situation can be decomposed in three mutually exclusive cases:

1. ki = ki+l = 0. In this case, there exists a unique jo such that o-j0 +1 =
i,s=r-1 and

Then o-j0+2 &#x3E; i + 1 and

= (Ei-1x) (o-0... o-j0 o- j0+1 o- j0+2... o-s+1) by definition of Ei
and since o-j0+1 = i

= (h-(Ei-1x))(k1 ... kn+2) by definition of h-
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In this case, s = r and

Then for some k,

by definition of Ei
by definition of h-

3. ki # ki+,. Now s = r and since {ki, ki+1} c {2013, 0}, then there exists
a unique jo such that o-j0 +1 E {i, i + 1} and we have

There are two subcases : aj. + 1 = i and o-j0 + 1 = i + 1. In the first

situation,

by definition of Ei
by definition of h-

In the second situation,

by definition of Ei
by definition of h-
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Notice that h- induces a natural transformation from CRgl* to CR- which
is not injective. Consider for example the w-category consisting of two com-
posable 1-morphisms u and v with tou = sov. The 0-simplexes u and u *0 v
of Ngl have indeed the same image by h- in CRi . To see that, consider
the thin square c from I’ to C defined by c(-0) = u *° v, c(0+) = tov,
c(0-) = u, c(+0) = v and c(00) = u *o v.

Now we arrive at :

Theorem 6.5. There exists one and only one morphism of cuts from JV9’ to
N-.

The proof of this theorem uses Theorem 8.3 assertion 1 as shortcut.
There is no vicious circle because the uniqueness of h- and h+ is used

nowhere in this paper. The only fact which is used is that Theorem 6.4
provides a natural transformation from jV-91 to N- which is injective on the
underlying sets.

Proof. Let h and h’ be two morphisms of cuts from N9l to N-. One proves
by induction on n that hn and h’n from Ngln to N-n coincide. For n = 0,
Ngl0 == Nn- = tr0P. The only natural transformation from tr0P to itself is
I dtr0P, therefore ho = ho.

Suppose P(n) proved for some n &#x3E; 0. Then for any x E Ngl n+1(C), and
for any 0  i  n + 1,

since h morphism of simplicial sets

by induction hypothesis
since h’ morphism of simplicial sets
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Now with 1  j  n + 2,

since hn+1 (x) cv-functor

since h morphism of simplicial sets

So the 0-morphism d+j hn+1 (x)) (-n+i) is the value of the constant map to ox 
of Theorem 8.3 (denoted by T(x) in Section 10).

Let D be the unique w-category such that PD = A n+1 and with Do =
{a, B}, so(JPÐ) == {a}, to (PD) = {B} and a # 0. And consider IdAn+1 E
Ngl n+1 (D)

Suppose that + E {k1, ... , kn+2} C {-, +} and suppose that at least
two ki are equal to +. Then there exists a 1-morphism u of In+2 such
that sou = l1 ... Rn+2 with exactly one ti equal to + and such that t0u =
k1 ... kn+2. Then

by the previous calculation. Since (3 is the unique morphism of D with 0-
source (3, then hn+1(IdAn+1)(u) = (3 and therefore

Suppose now that + E {k1,..., kn+2} with perhaps some 0 in the set.
Then

and therefore I

The w-functor x from An+1 to PC induces a non-contracting w-functor x
from D to C with x(a) = S(x) (S(x) being the value of the constant map
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so o x by Theorem 8.3) and x(B) = T(x) which sends IdAn+1 E Ngl n+1(D)
on x E Ngln+1(C). So by naturality,

Therefore for any 1  j  n + 2, d+j hn+1 (x) = dj+h’n+1(x). By hypothesis,
ev(hn+1(x)) = ev(x) = ev(h’n+1(x)). So hn+l(x) and h’n+1(x) induce the
same labeling of the faces of In+2 and P(n + 1) is proved. 

Without explanation, here is the construction of h+ :

Proposition 6.6. Let x be an n-simplex of the globular simplicial nerve of
C. Then the map h+n (x) from cubn+1 to C defined by

1. - E {k1 ... kn+1} implies h+n(x)(k1 ... kn+1) = s0x((n)) (notice that
(n) is the initial state of An)

2. {k1, ..., k,,+ll C {+, 01 and

with ao  ...  ar implies h+n (x)(k1 ... kn+1) = x((o-0... ar))

3. h+n (x)(+n+1) = to x ((0)) (notice that (0) is the final state of A’)

yields an w-functor from In+1 to C. Moreover, h+ induces a morphism of
simplicial sets from the globular nerve of C to its positive corner nerve. And
the map from Ngl-1 (C) to N+-1 (C) defined by (x, y) H y extends the previous
morphism to the corresponding augmented simplicial nerves. Moreover for
n &#x3E; 0, h+n is a one-to-one map and the image of h+ contains exactly all
cubes x of the positive corner nerve such that as soon as åi x exists, then it
is 0-dimensional.

Question 6.7. Is it possible to find an appropriate setting where the globular
cut would be an initial object ? Is it possible to characterize the diagram of
cuts of Figure 1 ?

As immediate corollary of the construction of h- and its injectivity, let
us introduce the analogue of Proposition 6.3 in the globular nerve.



138

Definition 6.8. In a simplicial set A, a n-shell is a family (xi)i=0,...,n+1 of
(n + 2) n-simplexes of A such that for any 0  i  j  n + 1, dixj = dj-1xi.

Proposition 6.9. Let C be a non-contracting w-category. Consider a n-shell

(xi)i=0,...,n+1, of the globular simplicial nerve of G. Then

1. The labeling defined by (xi)i=0,...,n+1 yields an w-functor x (and nec-
essarily exactly one) from An+1B{(01 ... n + I)l to PC.

2. Let u be a morphism of C such that

and

Then there exists one and only one w-functor still denoted by x from
An+1 to PC such that for any 0  i  n + 1, dix = xi and

7 Regularity of the globular cut

This section is devoted to the proof of the following theorem.

Theorem 7.1. The globular cut is regular.

The principle of this proof is to use the injectivity of the natural transfor-
mation h- from Ngl to N- and to use the regularity of N-.

The folding operator I&#x3E;gln := I&#x3E;Ngln is called the n-dimensional globular
folding operator and we set Dgl n : = DNgl n . It is clear that rule 1 and rule 2 of

Definition 3.3 are satisfied. We have to check the rest of it.

Theorem 7.2. For any natural transformation of functors 03BC from Ngl n-1 to 
Ngl n with n &#x3E; 1, and for any natural map 0 from trn-lp to Ngl n-1 such
that ev o D = Idtrn-1P, there exists one and only one natural transformation
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denoted by 1-i.Ofrom trnP to Al.91 such that the following diagram commutes

where in is the canonical inclusion functor from trn-1P to trnp.

Proof. The natural transformation h-0 from trn-1P to N-n-1 can be lifted
to a natural transformation (h-(03BC)). (h-D) from tr’P to N-n since the cut
N- is regular. Since h-(03BC.D) = (h-(03BC)).(h-D) and since h- is one-to-one
in positive degree, there is at most one solution for this lifting problem.

Let x E Cn+1. For 0  i  n, the natural transformation

is of the form d’i. for some ai E {-,+} and some mi  n. Therefore

by Definition 3.3 rule 5b

by hypothesis

since h- morphism of simplicial sets
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So a2 (h- (03BC) . (h-D)) (x) e h-(Ngl n-1(C)) for any 0  i # n and by Propo-
sition 6.9, (h-(03BC).(h-D)) (x) e h-(Ngl n(C)). Let D’(x) be the unique ele-
ment of Ngl n (C) such that

Then 0’ is a solution. D

Corollary 7.3. The equalities h-I&#x3E;gl = I&#x3E;-h- and h+I&#x3E;gl = I&#x3E;+h+ hold.

Proof. It is a consequence of the naturality of h- and h+ and of Proposi-
tion 3.4. D

Now here is a characterization of globular folding operators :

Proposition 7.4. Let x be a n-simplex of the globular nerve of C. Then

x = I&#x3E;gl(x) if and only if for 0  i  n- 2, dix E I m(En-2... Ei). 
Proof. The equality x = I&#x3E;gl(x) implies h- (x) = I&#x3E;-(h-(x)), implies by
Theorem 4.3 that for 1  i  n - 1,

therefore di-1x E Im (En-2 ... Ei-1 ) . Conversely, if for 0 :( i  n - 2,
åix E Im(En-2 ... Ei), then h-(x) = I&#x3E;-h- (x) = h-cpgl (x) and therefore
x = I&#x3E;gl(x). 
Theorem 7.5. The globular folding operator I&#x3E;gl induces the identity map
on the globular reduced chain complex CRgl*.
Proof. Consider the ()i operators of Theorem 4.5. If x e Ngln, then h-x is
negative. So 8-i h- x is also negative by Theorem 4.5(1) and determines a
unique element 8gli x E NJl such that h-8gli x = 8-i h-x. It is clear that these
operators 8gl i induces the identity map on the reduced globular complex by
Theorem 4.5(2). Since cp- h - x is also negative, then by Theorem 4.5(3),

for some sequence il , ... , is . Therefore by the injectivity of h-,
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Theorem 7.6. In the reduced globular complex, one has

for any morphisms x and y of C of dimension n and for 1  p  n - 1.

Sketch of proof One has

with ti a thin (n + 1)-cube and t2 a thin (n + 2)-cube. The proof made in [8]
shows that ti and t2 are in the image of h-. Indeed, the existence of t1 and
t2 comes from the vanishing of some globular nerve. Therefore t1 = h- (T1)
and t2 = h-(T2) where T, is a thin n-simplex and T2 a thin (n+1)-simplex.
This completes the proof. 0

In fact one can explicitly verify that if x and y are two n-morphisms of
C, then Dgl n(x *n-1 y) - Dgl n (x) - Dgl n (y) is a boundary in the normalized
globular complex. It suffices to consider the thin (n + I)-cube Bnn-1(x, y)
of [8] which turns to be in the image of h- because it is negative. Therefore
with b(x, y) E w Cat (An, C) defined by 8ib(x, y) = En-2 ... EiDgli+1d(-)i+1i+1x
for 0  i  n - 3 (observe that d(-)i+1 i+1 x = d(-)i+1 i+1 y), ’9n-2b(x, Y) = On y,
dn-1 b(x, y) = Dgl n (x *n-1 y), anbO y) = Dglx, one has

db(x, y) = + (Dgnl n (x *n-1 y) - Dgln (x) - Dgl n (y)) + degenerate elements.

8 Example of calculations of globular homology
The main goal of this section is to prove the vanishing of the globular ho-
mology of the n-cube in positive dimension for all n &#x3E; 0. However we also
study the case of the cv-category 2n generated by one n-morphism and pose
some questions about the globular homology of the w-category generated by
a composable pasting scheme in the sense of [12].

Theorem 8.1. For any p &#x3E; 0 and any n &#x3E; 0, Hglp(2n) = 0.
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Proof. For p = 1, it is obvious. For p &#x3E; 1, one has

where H* (D) means the simplicial homology of the simplicial nerve of the
w-category D. D

Definition 8.2. [9] Let C be an w-category and let a and /3 be two 0-
morphisms of C. Then the bilocalization of C with respect to a and /3 is

the w-subcategory of C obtained by keeping in dimension 0 only a and B
and by keeping in positive dimension all morphisms x such that sox = a
and tox = 0. It is denoted by C[a, B].

Theorem 8.3. Let C be a non-contracting w-category.

1. Let x be an w-functor from An to PC for some n &#x3E; 0. Then the set

maps

and

from the underlying set of faces of An to Co are constant. The unique
value of so o x is denoted by S(x) and the unique value of to o x is
denoted by T(x).

2. For any pair (a, B) of 0-morphisms of G, for any n &#x3E; 1, and for any
0  i  n, then ai (Ngl n(C[a, B])) c Ngl n-1(C[a,B]).

3. For any pair (a, B) of 0-morphisms of C, for any n &#x3E; 0, and for any
0  i  n, then Ei (Ngl n(C[a,B])) C Ngl n+1(C[a, B]).

4. By setting, Ga,B Ngl n(C) := Ngl(C[a, B]) for n &#x3E;, 0 and Ga, BNgl-1(C)
: = {(a, (3), ((3, a)}, one obtains a (Co xCo)-graduation on the globular
nerve ; in particular, one has the direct sum of augmented simplicial
sets

and 
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Proof. The only non-trivial part is the first assertion. Let P(n) be the prop-
erty : "for any non-contracting w-category C and any w-functor x from An
to PC, the set map (ao... ar) H sQx((ao... ar)) from the set of faces of An
to Co is constant."

There is nothing to check for P(0). For P(1), if x is an w-functor from
A’ to PC, then slx((O1)) = x((1)) and tlx((O1)) = x((O)) in C. Therefore

and

Therefore P ( 1 ) is true.
Suppose P (n) proved for some n &#x3E; 1 and let us prove P (n + 1). For any

1  i  n, the w-functor x : An+1 -&#x3E; PC induces an w-funetor on the w-

category An+1 i generated by the face (0 ... i ... n + 1) and its subfaces. One
has an isomorphism of w-categories An = An+1 i. Therefore the restriction
of so o x to the faces of An+1 i is constant by induction hypothesis. Now it is
clear that An+1 i n An+1 i+1 = An-1 # 0 since n &#x3E; 1. Therefore the set map
so o x restricted to An+1 i U An+1 i+1 is constant. Therefore the restriction of the
set map so o x to the faces of dimension at most n of An+1 is constant. We
know that

where Xo, X1, ... , X, are faces of An+1 of dimension at most n. So

since x w-functor

where T is a function using only the compositions of An+1. Then

where T’ is obtained from Y by replacing by *i+l since x is an w-functor
from An+1 to PC. So

with the axioms of W-categories. Therefore P(n + 1) is proved. 0
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Definition 8.4. Let C be a non-contracting w-category with exactly one ini-
tial state a and one final state (3. Then the bilocalization C[a, B] is also

non-contracting and one can set S2G = P(C [a, B]).
Theorem 8.5. [18, 2,16] Let n &#x3E; 1. Then QAn = In-1 and QIn-1 = pn-l
where pn-l is the free w-category generated by the composable pasting
scheme of the faces of the (n - 1)-dimensional permutohedron.

Theorem 8.6. For any n &#x3E; 0, and any p &#x3E; 0, Hgl (In) = 0.

Proof. One has Hgl p (In) = XCO Hgl p (In[a B]) by Theorem 8.3. So
it suffices to prove the vanishing of Hpl p(In[a, B]) as soon as In [a, B] con-
tains morphisms in strictly positive dimension to prove the theorem.

Let a and (3 be two 0-morphisms of In such that In [a, B] contains other
morphisms than a and 0. Then in particular it contains some 1-morphisms
from a to B which is a composite of 1-dimensional faces of In. Suppose that
a = k1 ... kn. Then B is obtained from a by replacing some ki equal to -
by +. Let kUl’ ... , kur be these ki. Then

as w-category. Therefore it suffices to prove that Hgl p (In [-n, +n]) vanishes.
The vanishing of Hgl l(In[-n, +n]) is obvious. One has

for p &#x3E; 2 by Theorem 8.5 and Hp-1(Pn) = 0 because the simplicial nerve
of a composable pasting scheme is contractible [12]. D

Theorem 8.7. For any n &#x3E; 0, and any p &#x3E; 0, Hgl p (An) = 0.

Proof. By proceeding as in Theorem 8.6, we see that it suffices to prove that

for any pair ((r), (s)) of 0-morphisms of An and for n &#x3E; 2. However,

An [(r), (s)] is non-empty if and only if r &#x3E; s with our conventions and in

this case,

Therefore . by Theorem 8.5. D
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More generally, as in [8], one sees that if C is a non-contracting w-
category such that PC is the free cv-category generated by a composable
pasting scheme in the sense of [12], then Hpl p (C) = 0 for p &#x3E; 1. This is

related to the problem of the existence of the derived pasting scheme of a
given composable pasting scheme [14].

Conjecture 8.8. Let C be an w-category which is the free w-category gener-
ated by a composable pasting scheme (therefore C is non-contracting). Then
for any p &#x3E; 0, Hgl (C) = 0.

9 Relation between the new globular homology
and the old one

First of all, recall the definition of both formal comer homology theories
from [8].

Definition 9.1. Let C be a non-contracting w-category. Set

with the differential map sn-1 - tn-l from CF-n (C) to CF-n-1(C) for n &#x3E; 2
and so from CF1- (C) to CF6- (C). This chain complex is called the formal
negative corner complex. The associated homology is denoted by HF-(C)
and is called the formal negative corner homology of C. The map CF*- (resp.
HF-*) induces a functor from wCat1 to Comp(Ab) (resp. Ab).

and symmetrically

Definition 9.2. Let C be a non-contracting w-category. Set
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. CF+n(C) = ZCn/{x*0 y = y, x *1 y = x + y, ... , x *n-1 y = x +
y mod Ztrn-1 C } for n &#x3E; 2

with the differential map sn-i - tn-l from CF+n(C) to CF+n-1(C) for n &#x3E; 2
and to from CFt(C) to CF:(C). This chain complex is called the formal
positive corner complex. The associated homology is denoted by HF+ (C)
and is called the formal positive comer homology of C. The map CF+* (resp.
HF+*) induces a functor from wCat1 to Corrtp(Ab) (resp. Ab).

The maps 0’ from Cn to C+n(C) induce a natural transformation from
CF! to CR’ and a natural transformation from HF+* to HR+* .

Definition 9.3. Let C be a non-contracting w-category. Set

for n &#x3E;, 2

with the differential map sn-1 - tn-1 from CFgln(C) to CFgln-1(C) for n &#x3E; 2
and so0tofrom CFgl l (C) to CFog’(C). This chain complex is called the formal
globular complex. The associated homology is denoted by HF9l (C) and is
called the formal globular homology of G.

By Theorem 7.6 and Corollary 3.6, we see that the globular folding op-
erators induce a natural morphism of chain complex from CF;l to CR9’, and
therefore a natural transformation from HFgl* to HRgl*.

Question 9.4. When is the natural morphism of chain complexes Rgl from
CFgl* (C) to CR91 (C) a quasi-isomorphism ?

Conjecture 9.5. (About the thin elements of the globular complex) Let C be
a globular w-category which is either the free globular w -category generated
by a semi-cubical set or the free globular w-category generated by a globular
set. Let xi be elements of Cgl n (C) and let Ài be natural numbers, where i runs
over some set I. Suppose that for any i, ev (xi) is of dimension strictly lower
than n (one calls it a thin element). Then Ei kixi is a boundary if and only
if it is a cycle.
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Figure 5: A false 1-globular cycle in the old globular homology

The above conjecture is clear for C2l because all thin elements are de-
generate. In higher dimension, there is enough room to have thin elements
which are composition of degenerate elements, but which are not degenerate
themselves.

The above conjecture is equivalent to claiming that the globular homol-
ogy and the reduced one are equivalent for free globular o-categories gener-
ated by either a semi-cubical set or a globular set.

Now we are in position to give the exact statement relating the old glob-
ular homology of [9] and the new one.

Definition 9.6. [91 Let (Cold-gl * (C),dold-gl) be the chain complex defined
as follows : Cold-gl 0 (C) = ZCo (D ZC0, and for n &#x3E; 1, Cold-gl n(C) = ZCn,
dold-gl (x) = (sox, tox) if x E ZC1 and for n &#x3E; 1, x E ZCn+1 implies
dold-gl (x) = Snx - tnx. This complex is called the old globular complex of
C and its corresponding homology the old globular homology.

Instead of Cold-gl 0 (C) = ZCo (D ZC0, we set Cold-gl 0 (C) = Z (Co Q9 Co)
with the differential dold-gl(x) = s0x @ tox for x E Cl. This makes Hiid-gl
slightly change. It does not matter because there is no influence on any

potential applications. The difference appears in a situation like that of Fig-
ure 5. With Cold-gl 0 (C) = ZCo ED ZC0, u + x - w - v is a old globular cycle.
With Cold-gl 0 (C) = Z(Co 0 Co), this fake 1-globular cycle is killed.

Theorem 9.7. We have the following commutative diagram of natural trans-
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formations for

where

. the map HZld-gl -&#x3E; Hgl* is the canonical map induced by xF-+ Dgl n (x)
from Cn to Ngl n-1 (C)

. the map Hold-gl* - HFgl* is the canonical map making all identifica-
tions like A *n B = A + B for any n &#x3E; 1 and any p-morphisms A and
B with p &#x3E; n + 1

. the map HF*gl -4 HF+* is the canonical map making the supplemental
identification x = x *o y or y = x *0 y depending on the sign ±

. the map HF+* -&#x3E; HR± is the canonical map induced by the folding
operators 0± of [8] (which is likely to be an isomorphism for any strict
globular w-category), and the map HFgl* -&#x3E; HRgl* is the canonical

map induced by the folding operators 091 (which is also likely to be
an isomorphism for any strict globular w-category)

. the maps Rg’,± are the canonical maps from the globular or corner
homology to the corresponding reduced homology (which are conjec-
turally an isomorphism for any free w-category generated by a semi-
cubical set or a globular set).

Proof. This is due to the fact that for n &#x3E; 1, the natural map (h+&#x3E;)old is

induced by the set map On from Cn to wcat (I’, C) - ([9] Proposition 7.4).
0
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The difference between Hold-gl0 and Hog’ is also not important. The group
Hyd-gl 0 was indeed only introduced to define the morphisms h- and h+ in
dimension 0. But Hold-gl 0 does not have any computer-scientific meaning
and is not involved in any potential applications.

10 Globular homology and deformation of HDA

The following table summarizes how the globular nerve may be understood
and compared with the two comer nerves of C.

Intuitively, the globular nerve of C contains all achronal cuts in the mid-
dle of all globes, whereas the negative and positive comer simplicial nerves
contain all achronal cuts close to respectively the negative and the posi-
tive comers of the automaton. The expression "achronal" is borrowed from
[6] and [7]. In these papers, HDA are modeled by local pospaces, and an
achronal subspace Y of a local pospace is a topological subspace such that
x  y and x, y E Y imply x = y. The remarkable point is that the set of all
achronal cuts of a given type can be enclosed into a simplicial set.

This could mean that the whole geometry of the free w-category C gener-
ated by a semi-cubical set (i.e. a HDA) would be contained in the following
diagram of augmented simplicial sets
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Figure 6: Subdivision of time

and in its temporal graph trlc. This latter contains the information about the
temporal structure of the HDA.

A problem, already mentioned in [10], is the question of the invariance
of the globular homology of an cv-category up to a choice of a cubifica-
tion 2 of the corresponding HDA. There are two types of deformations : the
spatial deformations or S-deformations and the temporal deformations or
T-deformations.

The globular cut is invariant by S-deformation, that is by deformations
of p-morphisms with p &#x3E; 2. This is simply due to the fact that such a de-
formation corresponds in the globular cut to a deformation of any simplex
containing it as label. Therefore such a deformation corresponds to a defor-
mation up to homotopy, in the usual sense, of the globular cut.

Unlike the comer homologies, the globular homology turns indeed to
depend on the subdivision of time. The reason is contained in Figure 6. The
obvious 1-functor from the left to the right such that u H Ul *o U2 should
leave the globular homology invariant. This is not the case because the first
globular homology is for the left member the free Z-module generated by
v - w and u *0 v - u *o w, and for the right member the free Z-module
generated by v - w and U2 *0 V - U2 *0 w and UI *0 U2 *0 V - Ul *0 U2 *0 w.
However in Figure 6, one can subdivide as many times as one wants for
example v, and the globular homology will not change.

One way to overcome this problem is exposed in the last sections of
[10], devoted to the description of a generic way to produce T-invariants

2Some authors [11 [21] use the term cubicalation : this means decomposing a HDA in
cubes.
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starting from the globular nerve. Let us prove [10] Claim 5.1 which enables
to introduce the bisimplicial set mentioned in that paper.

Let C be a non-contracting w-category. Using Theorem 8.3, recall that
for some w-functor x from On to PC, one calls S(x) the unique element of
the image of so o x and T(x) the unique element of the image of to o x. If

(a, /3) is a pair of Ngl -1 (C), set S(a, 0) = a and T (a, B) = /3.

Proposition 10.1. Let C be a non-contracting w-category. Let x and y be
two w-functors from An to PC with n &#x3E; 0. Suppose that T (x) = S(y). Let
x * y be the map from the faces of An to C defined by

Then the following conditions are equivalent :

1. The image of x * y is a subset of PC.

2. The set map x * y yields an w-functor from An to PC and o9i (x * y) =
di (x) * di (y) for any 0  i  n.

On contrary, iffor some (ao ... ar) E An, (x * y) ((o-0 ... QT)) is 0-dimensio-
nal, then x * y is the constant map S(x) = T (y).

Proof We have to prove that Condition 1 implies Condition 2. Let us con-
sider P(n) : "for any non-contracting w-category C and any w-functor x
and y from A’ to PC such that T(x) = S(y) and such that the image of
x * y is a subset of PC, then x * y yields an w-functor from An to PC and
di(x * y) = 9i (x) * di(y) for any 0  i fi n."

Property P(O) is obvious. Suppose P(n - 1) proved for n &#x3E; 1. For

any 0  i  n, 9i (x) * di(y) is a set map from An-, to PC satisfying the
hypothesis of the proposition, so by induction hypothesis, di (x) * a2 (y) yields
an ci-functor from An-1 to PC. Let zi : = di(x) * a2(y). For 0  j  i fi n,

by induction hypothesis

by induction hypothesis
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Therefore (zi)0in is an (n - 1)-shell. So it provides a unique w-functor

by Proposition 6.9. It remains to check that

and

to complete the proof. Let us check the first equality. One has

where uses only composition laws and where X1, ... , X s are faces of An
of dimension at most n - 1. Denote by Y’ the same function as T with *i
replaced by *i+,. Then

since z W-functor

by definition of z

by interchange law
since x and y cv-functors

since x and y cv-functors

by interchange law

Now let us suppose that (x * y) ((o-0 ... o-r)) is 0-dimensional in C for
some (ao ... ar). Then
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is 0-dimensional. Either so(ao ... ar) = (n) (the initial state of An) or there
exists a 1-morphism U of An such that soU = (n) and toU = s0(o-0 ... Q,.).
In the first case, x((n)) *o y((n)) is 0-dimensional. In the second case,

is 0-dimensional. Then x(U) *o y(U) is 0-dimensional as well as

For any face (70 ... 7r) of An{(n)}, there exists a 1-morphism V from ((n))
to s0(T0 ... 7r) or t0(T0 ... 7r) : let us say s0(T0 ... 7r ). Since

is 0-dimensional, then (x * y)(V) is 0-dimensional, as well as

Therefore (x * y) ( (/0 ...Tr)) is 0-dimensional. D

In the sequel, we set (a, B) * (B, y) = (a, -y), S(a, B) = a and T (a, B) =
B. If x is an w-functor from An to PC, and if y is the constant map T(x)
(resp. S(x)) from An to Co, then set x * y := x (resp. y * x := x).

Theorem 10.2. Suppose that C is an object of wCat1. Then for n &#x3E; 0,
the operations S, T and * allow to define a small category Nff’ (C) whose
morphisms are the elements of Ngl n (C) U fconstant maps An -+ C0} and
whose objects are the 0-morphisms of C. If Ngl -1(C) is the small category
whose morphisms are the elements of Co x C0 and whose objects are the
elements ofco with the operations S, T and * above defined, then one obtains
(by defining the face maps a2 and degeneracy maps ei in an obvious way
on {constant maps An -&#x3E; Co 1) an augmented simplicial object Nfl in the
category of small categories. 

Proof. Equalities S(x) = aiS(x), S(x) = ciS(x), T(x) = diT(x), T(x)=
EiT(x) are consequences of Proposition 8.3. Equality di(x * y) = aix * aiy is
proved right above. The verification of Ei(x*y) = Eix*E2y is straightforward.

0
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By composing by the classifying space functor of small categories (cf.
for example [20] for further details), one obtains a bisimplicial set which
seems to be well-behaved with respect to subdivision of time. Indeed the
first total homology groups associated to both w-categories of Figure 6 are
equal to Z. Further explanations will be given in future papers.

To conclude, let us point out that in reasonable cases, i.e. when the p-
morphisms (with p &#x3E; 2) of a non-contracting w-category C are invertible
with respect to the composition laws *i of C for i &#x3E; 1, then PC becomes a

globular w-groupoid in the sense of Brown-Higgins. And therefore in such a
case, it is well-known that the globular nerve of C satisfies the Kan property
(see [23] or a generalization in [24]). However, this is not true in general for
both comer nerves. To understand this fact, consider the 2-source of R(OOO)
in Figure 2(c) and remove R(0 + 0). Consider both inclusion W-functors
from 12 to respectively R(-00) and R(00-). Then the Kan condition fails
because one cannot make the sum of R(-00) and R(00-) since R(0 + 0) is
removed.
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