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Abstract

This presentation is the sequel of a paper published in the GETCO'00 proceedings

where a research program to construct an appropriate algebraic setting for the study

of deformations of higher dimensional automata was sketched. This paper focuses

precisely on detailing some of its aspects. The main idea is that the category of

homotopy types can be embedded in a new category of dihomotopy types, the em-

bedding being realized by the globe functor. In this latter category, isomorphism

classes of objects are exactly higher dimensional automata up to deformations leav-

ing invariant their computer scienti�c properties as presence or not of deadlocks (or

everything similar or related). Some hints to study the algebraic structure of diho-

motopy types are given, in particular a rule to decide whether a statement/notion

concerning dihomotopy types is or not the lifting of another statement/notion con-

cerning homotopy types. This rule does not enable to guess what is the lifting of

a given notion/statement, it only enables to make the veri�cation, once the lifting

has been found.
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1 Introduction

This paper is an expository paper which is the sequel of [Gau01b]. We will

come back only very succinctly on the explanations given in this latter. A tech-

nical appendix explains some of the notions used in the core of the paper and

�xes some notations. A reader who would need more information about alge-

braic topology or homological algebra could refer to [May67,Wei94,Rot88,Hat].

A reader who would need more information about the geometric point of view

of concurrency theory could refer to [Gou95,FGR99b].

The purpose is indeed to explain with much more details 1 the speculations

of the last paragraph of [Gau01b]. More precisely, we are going to describe a

research program whose goal is to construct an appropriate algebraic theory

of the deformations of higher dimensional automata (HDA) leaving invariant

their computer-scienti�c properties. Most of the paper is as informal as the

preceding one. The term dihomotopy (contraction of directed homotopy) will

be used as an analogue in our context of the usual notion of homotopy.

There are two known ways of modeling higher dimensional automata for

us to be able to study their deformations. 1) The !-categorical approach,

where strict globular !-categories are supposed to encode the algebraic struc-

ture of the possible compositions of execution paths and homotopies between

them, initiated by [Pra91] and continued in [Gau00] where connections with

homological ideas of [Gou95] were made. 2) The topological approach which

consists, loosely speaking, to locally endow a topological space with a closed

partial ordering which is supposed to represent the time : this is the notion of

local po-space developed for example in [FGR99b]. The description of these

models is sketched in Section 2.

Section 3 is an exposition of the homological constructions which will play

a role in the future algebraic investigations. Once again, the !-categorical

case and the topological case are described in parallel.

1 Even if the limited required number of pages for this paper too entails to make some

shortcuts.
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In Section 4, the notion of deformation of higher dimensional automata is

succinctly recalled. For further details, see [Gau01b].

Afterwards Section 5 exposes the main ideas about the relation between

homotopy types and dihomotopy types. And some hints to explore the al-

gebraic structure of dihomotopy types are explained (this question is widely

open).

Everything is presented in parallel because, as in usual algebraic topology,

the !-categorical approach and the topological approach present a lot of sim-

ilarities. In a �rst version, the paper was organized with respect to the main

result of [KV91], that is the category equivalence between CW-complexes up

to weak homotopy equivalence and weak !-groupoids up to weak homotopy

equivalence. By [Sim98], it seems that this latter result cannot be true, at

least with the functors used in Kapranov-Voevodsky's paper. Therefore in

this new version, the presentation of some ideas is slightly changed. I thank

Sjoerd Crans for letting me know this fact.

2 The formalization

2.1 The !-categorical approach

Several authors have noticed that a higher dimensional automaton can be

encoded in a structure of precubical set (De�nition C.1). This idea is im-

plemented in [Cri96] where a CaML program translating programs written in

Concurrent Pascal into (huge !) text �les is presented.

But such object does not contain any information about the way of com-

posing n-transitions, hence the idea of adding composition laws. In an !-

category (De�nition C.2), the 1-morphisms represent the execution paths, the

2-morphisms the concurrent execution of the 1-source and the 1-target of the

2-morphisms we are considering, etc... The link between this way of modeling

higher dimensional automata and the formalization by precubical sets is the

realization functor K 7! �(K) described in Appendix D.

There exist two equivalent notions of (strict) !-categories, the globular one

and the cubical one [AABS00] : the globular version will be used, although

all notions could be adapted to the cubical version. In fact, for some technical

reasons (Proposition 3.1), even a more restrictive notion will be necessary :

De�nition 2.1 [Gau02] An !-category C is non-contracting if s1x and t1x

are 1-dimensional as soon as x is not 0-dimensional. Let f be an !-functor

from C to D. The morphism f is non-contracting if for any 1-dimensional

x 2 C, the morphism f(x) is a 1-dimensional morphism of D. The category

of non-contracting !-categories with the non-contracting !-functors is denoted

by !Cat1.

The following proposition ensures that this technical restriction is not too

small and that it does contain all precubical sets.
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Proposition 2.2 [Gau02] For any precubical set K, �(K) is a non-contrac-

ting !-category. The functor � from the category of cubical sets Sets�
preop

to

that of !-categories !Cat yields a functor from Sets
�preop

to the category of

non-contracting !-categories !Cat1.

2.2 The topological approach

Another way of modeling higher dimensional automata is to use the notion of

local po-space. A local po-space is a gluing of the following local situation : 1)

a topological space, 2) a partial ordering, 3) as compatibility axiom between

both structures, the graph of the partial ordering is supposed to be closed

[FGR99b] (cf. Appendix A).

However the category of local po-spaces is too wide, and as in usual alge-

braic topology, a more restrictive notion is necessary to avoid too pathological

situations (for instance think of the Cantor set). A new notion which would

play in this context the role played by the CW-complexes in usual algebraic

topology is necessary. This is precisely the subject of [GG01] (joined work

with Eric Goubault).

Let n � 1. Let Dn be the closed n-dimensional disk de�ned by the set

of points (x1; : : : ; xn) of R
n such that x21 + � � � + x

2
n
� 1 endowed with the

topology induced by that of Rn . Let Sn�1 = @D
n be the boundary of Dn for

n � 1, that is the set of (x1; : : : ; xn) 2 D
n such that x21 + � � �+ x

2
n
= 1. Notice

that S0 is the discrete two-point topological space f�1;+1g. Let I = [0; 1].

Let D0 be the one-point topological space. And let en := D
n
� S

n. Loosely

speaking, globular CW-complexes are gluing of po-spaces Dn+1 := Glob(Dn)

along Sn := Glob(@Dn) = Glob(Sn�1) where Glob is the globe functor (cf.

Appendix A).

Notice that there is a canonical inclusion of po-spaces Sn
� D

n+1 for

n � 1. By convention, let S0 := f�1; 1g with the trivial ordering (0 and 1 are

not comparable). There is a canonical inclusion S0
� D

1 which is a morphism

of po-spaces.

Proposition and De�nition 2.3 [GG01] For any n � 1, Dn
� S

n�1 with

the induced partial ordering is a po-space. It is called the n-dimensional glob-

ular cell. More generally, every local po-space isomorphic to Dn
� S

n�1 for

some n will be called a n-dimensional globular cell.

Now we are going to describe the process of attaching globular cells.

(i) Start with a discrete set of points X0.

(ii) Inductively, form the n-skeleton Xn from X
n�1 by attaching globular n-

cells en
�
via maps �� : S

n�1
�! X

n�1 with ��(�); ��(�) 2 X
0 such that 2

: for every non-decreasing map � from I to Sn�1 such that �(0) = � and

�(1) = �, there exists 0 = t0 < � � � < tk = 1 such that �� Æ �(ti) 2 X
0 for

2 This condition will appear to be necessary in the sequel.
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X

TIME

Fig. 1. Symbolic representation of Glob(X) for some topological space X

any 0 � i � k which must satisfy

(a) for any 0 � i � k � 1, there exists a globular cell of dimension di

with di � n � 1  i : D
di ! X

n�1 such that for any t 2 [ti; ti+1],

�� Æ �(t) 2  i(D
di) ;

(b) for 0 � i � k�1, the restriction of ��Æ� to [ti; ti+1] is non-decreasing ;

(c) the map �� Æ � is non-constant ;

Then Xn is the quotient space of the disjoint union Xn�1
F

�
D

n

�
of Xn�1

with a collection ofDn

�
under the identi�cation x � ��(x) for x 2 S

n�1
�

�

@D
n

�
. Thus as set, Xn = X

n�1
F

�
e
n

�
where each en

�
is a n-dimensional

globular cell.

(iii) One can either stop this inductive process at a �nite stage, setting X =

X
n, or one can continue inde�nitely, setting X =

S
n
X

n. In the latter

case, X is given the weak topology : A set A � X is open (or closed) if

and only if A \ Xn is open (or closed) in Xn for some n (this topology

is nothing else but the direct limit of the topology of the Xn, n 2 N).

Such a X is called a globular CW-complex and X0 and the collection

of en
�
and its attaching maps �� : Sn�1

�! X
n�1 is called the cellular

decomposition of X.

As trivial examples of globular CW-complexes, there are Dn+1 and S
n

themselves where the 0-skeleton is, by convention, f�; �g.

We will consider without further mentioning that the segment I is a glob-

ular CW-complex, with f0; 1g as its 0-skeleton.

Proposition and De�nition 2.4 [GG01] Let X be a globular CW-complex

with characteristic maps (��). Let 
 be a continuous map from I to X. Then


([0; 1]) \ X0 is �nite. Suppose that there exists 0 � t0 < � � � < tn � 1 with

n � 1 such that t0 = 0, tn = 1, such that for any 0 � i � n, 
(ti) 2 X
0,

and at last such that for any 0 � i � n � 1, there exists an �i (necessarily

unique) such that for t 2 [ti; ti+1], 
(t) 2 ��i(D
n�). Then such a 
 is called

an execution path if the restriction 
 �[ti;ti+1] is non-decreasing.

By constant execution paths, one means an execution paths 
 such that


([0; 1]) = f
(0)g. The points (i.e. elements of the 0-skeleton) of a given

globular CW-complexes X are also called states. Some of them are fairly
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special:

De�nition 2.5 Let X be a globular CW-complex. A point � of X0 is initial

(resp. �nal) if for any execution path � such that �(1) = � (resp. �(0) = �),

then � is the constant path �.

Let us now describe the category of globular CW-complexes.

De�nition 2.6 [GG01] The category glCW of globular CW-complexes is the

category having as objects the globular CW-complexes and as morphisms the

continuous maps f : X �! Y satisfying the two following properties :

� f(X0) � Y
0

� for every non-constant execution path � of X, f Æ � must not only be an

execution path (f must preserve partial order), but also f Æ � must be non-

constant as well : we say that f must be non-contracting.

The condition of non-contractibility is very analogous to the notion of

non-contracting !-functors appearing in [Gau00], and is necessary for similar

reasons. In particular, if the constant paths are not removed from P
�
X (see

Section 3.2 for the de�nition), then this latter spaces are homotopy equivalent

to the discrete set X0 (the 0-skeleton of X !). And the removing of the

constant paths from P
�
X entails to remove also the constant paths from PX

in order to keep the existence of both natural transformations P! P
�. Then

the mappings P and P
� can be made functorial only if we work with non-

contracting maps as above [GG01].

One can also notice that by construction, the attaching maps are mor-

phisms of globular CW-complexes. Of course one has

Theorem 2.7 [GG01] Every globular CW-complex is a local po-space and this

mapping induces a functor from the category of globular CW-complexes to the

category of local po-spaces.

3 The homological constructions

The three principal constructions are all based upon the idea of capturing

the algebraic structure of the set of achronal cuts (cf. [Gau01b] for some

explanations of this idea) included in the higher dimensional automaton M

we are considering in three simplicial sets which seem to be the basement of

an algebraic theory which remains to build. For that, one has to construct in

both cases (the categorical and the topological approaches), three spaces :

(i) the space of non-constant execution paths (this idea will become more

precise below) : let us call it the path space PM

(ii) the space of equivalence classes of non-constant execution paths beginning

in the same way : let us call it the negative semi-path space P�M

(iii) the space of equivalence classes of non-constant execution paths ending

in the same way : let us call it the positive semi-path space P+
M .

6



Gaucher

PM

h
�

�����
��

���
�

h
+

����
��

��
��

�

P
�
M P

+
M

Fig. 2. The fundamental diagram

and one will consider the simplicial nerve of each one.

[Gau01b] Figure 11 will become Figure 2 in both topological and !-cate-

gorical situations. The construction of h� and h+ is straightforward in both

situations.

3.1 The !-categorical approach

Proposition 3.1 [Gau02] Let C be an !-category. Consider the set PC =S
n�1 Cn. Then the operators sn, tn and �n for n � 1 are internal to PC if and

only if C is non-contracting. In that case, PC can be endowed with a structure

of !-category whose n-source (resp. n-target, n-dimensional composition law)

is the (n+1)-source (resp. (n+1)-target, (n+1)-dimensional composition law)

of C. The !-category PC is called the path !-category of C, and the mapping

C induces a well-de�ned functor from !Cat1 to !Cat.

De�nition 3.2 Let C be a non-contracting !-category. Denote by R� (resp.

R
+) the re
exive symmetric and transitive closure of f(x; x �0 y); x; y; x �0 y 2

PCg (resp. f(y; x �0 y); x; y; x �0 y 2 PCg) in PC � PC.

Proposition 3.3 [Gau01c] Let � 2 f�;+g and let C be a non-contracting

!-category. Then the universal problem

\There exists a pair (D; �) such that D is an !-category and � an !-

functor from PC to D such that for any x; y 2 PC, xR�
y implies �(x) =

�(y)."

has a solution (P�C; (�)�). Moreover P�C is generated by the elements of

the form (x)� for x running over PC. The mappings P� and P+ induce two

well-de�ned functors from !Cat1 to !Cat.

De�nition 3.4 The !-category P�C (resp. P+
C) is called the negative (resp.

positive) semi-path !-category of C.

In the sequel, PC will be supposed to be a strict globular !-groupoid in

the sense of Brown-Higgins, which implies that P�C and P+
C satisfy also the

same property : this means concretely that if there exists an homotopy from a

given execution path 
 to another one 
0, then there exists also an homotopy

in the opposite direction [Gau01c].

De�nition 3.5 [Gau02] The globular simplicial nerve N gl is the functor from

!Cat1 to Sets�
op

+ de�ned by

N
gl

n
(C) := !Cat(�n

;PC)
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(02)

(012)

(01)

(12)
U

V

W

Fig. 3. Globular 2-simplex

TIME

branching area
merging area

Fig. 4. Negative and positive semi-globular 2-simplexes

for n � 0 and with N gl

�1(C) := C0 � C0, and endowed with the augmentation

map @�1 from N
gl

0 (C) = C1 to N gl

�1(C) = C0�C0 de�ned by @�1x := (s0x; t0x).

Geometrically, a simplex of this simplicial nerve looks as in Figure 3.

De�nition 3.6 Let C be a non-contracting !-category. Then set

N
gl
�

n
(C) := !Cat(�n

;P
�
C)

and N
gl
�

�1 (C) := C0 with @�1(x) := s0x. Then N gl
�

induces a functor from

!Cat1 to Sets
�op

+ which is called the negative semi-globular nerve or ( branch-

ing semi-globular homology) of C .

The positive semi-globular nerve is de�ned in a similar way by replacing

� by + everywhere in the above de�nition and by setting @�1(x) = t0x.

Intuitively, the simplexes in the semi-globular nerves look as in Figure 4 :

they correspond to the left or right half part of Figure 3.

3.2 The topological approach

Let X be a globular CW-complex. Let �; � 2 X
0. Denote by (X;�; �)?

the topological space of non-decreasing non-constant continuous maps 
 from

[0; 1] endowed with the usual order to X such that 
(0) = � and 
(1) = �

and endowed with the compact-open topology. Then

De�nition 3.7 Let X be a globular CW-complex. Then the path space of X

8
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is the disjoint union

PX =
G

(�;�)2X0
�X0

(X;�; �)?

endowed with the disjoint union topology.

Now denote by (X;�)?
�

(resp. (X; �)?
+

) the topological space of non-

decreasing non-constant continuous maps from [0; 1] with the usual order to

X such that 
(0) = � (resp. 
(1) = �), endowed with the compact-open

topology. Then

De�nition 3.8 Let X be a globular CW-complex. Then the negative semi-

path space P�X (resp. positive semi-path space P+
X) of X are de�ned by

P
�
X =

G
�2X0

(X;�)?
�

P
+
X =

G
�2X0

(X; �)?
+

endowed with the disjoint union topology.

The reader can notice that in the topological context, we do not need

anymore to consider something like the equivalence relations R� and R
+.

The reason is that, ideologically (\moralement" in french !), a 1-morphism is

of length 1. On the contrary, a non-constant execution path is homotopic to

any shorter execution path 3

De�nition 3.9 [Gau02] The globular simplicial nerve N gl is the functor from

glCW to Sets�
op

+ de�ned by

N
gl

n
(X) := Sn(PX)

for n � 0 where S� is the singular simplicial nerve (cf. Appendix B) with

N
gl

�1(X) := X
0
� X

0, and endowed with the augmentation map @�1 from

N
gl

0 (X) = PX to N gl

�1(X) = X
0
�X

0 de�ned by @�1
 := (
(0); 
(1)).

De�nition 3.10 Let X be a globular CW-complex. Then set

N
gl
�

n
(X) := Sn(P

�
X)

for n � 0 and N gl
�

�1 (X) := X
0 with @�1(
) := 
(0). Then N gl

�

induces a

functor from glCW to Sets
�op

+ which is called the branching semi-globular

nerve of X .

The merging semi-globular nerve is de�ned in a similar way by replacing

� by + everywhere in the above de�nition and by setting @�1(
) := 
(1).

3 in a \natural way" by considering H(
(t); u) = 
(tu). It is the reason why P
�X and

P
+X are homotopy equivalent to X0 if one does not remove the constant paths from their

de�nition.
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�
u �� �

v

��

w

��


(a) C

�1
u1 ���2

u2 �� �

v

��

w

��


(b) Subdivision of u in C

Fig. 5. Example of T -deformation

4 Deforming higher dimensional automata

As already seen in [Gau01b] in the !-categorical context, there are two types

of deformation leaving invariant the computer scienti�c properties of higher

dimensional automata : the temporal deformations (or T-deformations) and

the spatial deformations (S-deformations). The �rst type (temporal) is closely

related to the notion of homeomorphism because a non-trivial execution path

cannot be contracted in the same dihomotopy class 4 , and the second one

(spatial) to the classical notion of homotopy equivalence.

The !-categorical case will be only brie
y recalled. A temporal deforma-

tion corresponds informally to the re
exive symmetric and transitive closure

of subdividing in an !-category a 1-morphism in two parts as in Figure 5.

A spatial deformation consists of deforming in the considered !-category p-

morphisms with p � 2, which is equivalent to deforming faces in one the three

nerves in the usual sense of homotopy equivalence.

The topological approach is completely similar. A temporal deformation

of a globular CW-complex X consists of dividing in two parts a globular 1-

dimensional cell of the cellular decomposition of X, as in Figure 5. A spatial

deformation consists of crushing globular cells of higher dimension.

Now what can we do with the previous homological constructions ? First

of all consider the corresponding simplicial homology theories of all these aug-

mented simplicial sets, with the following convention on indices : for n � �1

and u 2 fgl; gl
�
; gl

+
g, set Hu

n+1(M) = Hn (N
u(M)) for M either an !-

category or a globular CW-complex. We obtain this way three homology

theories called as the corresponding nerve. One knows that the globular ho-

mology sees the globes included in the HDA [Gau00,Gau02] and that the

branching (resp. merging) semi-globular homology sees the branching areas

(resp. merging areas) in the HDA [Gau00,Gau01a,Gau01c]. Since the three

nerves are Kan 5 , one can also consider the homotopy groups of these nerves,

with the same convention for indices : for n � 1 and u 2 fgl; gl
�
; gl

+
g,

set �u
n+1(X) = �n (N

u(X); �) for X either an !-category or a globular CW-

4 In fact, the T-dihomotopy equivalences in [GG01] are precisely the morphisms of globular

CW-complexes inducing an homeomorphim between both underlying topological spaces.
5 The !-categorical versions are Kan as soon as PC is an !-groupoid [Gau01c] and the

singular simplicial nerve is known to be Kan [May67].
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complex. In this latter case, the base-point � is in fact a 0-morphism of PC,

that is a 1-morphism of C if u = gl, and an equivalence class of 1-morphism

of C with respect to R� (resp. R+) if u = gl
� (resp. u = gl

+). Intuitively,

elements of �
gl

n+1 are (n+ 1)-dimensional cylinders with achronal basis.

The four �rst lines of Table 6 are explained in [Gau01b]. The branching and

merging (semi-cubical) nerves N� de�ned in [Gau00,Gau01a] are almost never

Kan : in fact as soon as there exists in the !-category C we are considering

two 1-morphisms x and y such that x �0 y exists (see Proposition 5.7), both

semi-cubical nerves are not Kan.

If the branching and merging (semi-cubical) nerves are replaced by the

branching and merging semi-globular nerve, then the \almost" (in fact a \no")

becomes a \yes" here because we are not disturbed anymore by the non-

simplicial part of the elements of the branching and merging nerves (which is

removed by construction).

The lines concerning the (globular, negative and positive semi-globular)

homotopy groups need to be explained. The S-invariance of a given nerve

implies of course the S-invariance of the corresponding homotopy groups. As

for the T-invariance, it is due to the fact that in these homotopy groups,

the \base-point" is an execution path (or eventually an equivalence class of).

So these homotopy groups contain information only related to achronal cuts

crossing the \base-point". Dividing this base-point or any other 1-morphism

or 1-dimensional globular cell changes nothing.

The last lines are concerned with the bisimplicial set what we call biglob-

ular nerve (for the contraction of bisimplicial globular nerve) described in

[Gau01b,Gau02] (cf. Appendix F) and constructed by considering the struc-

ture of augmented simplicial object of the category of small categories of the

globular nerve. The biglobular nerve inherits the S-invariance of the globular

nerve. And its T-invariance is due to the T-invariance of the simplicial nerve

functor of small categories. The answer \yes ?" means that it is expected to

�nd \yes" in some sense... It is worth noticing that in a true higher dimen-

sional automaton, 1-morphisms are never invertible because the time is not

reversible. So one cannot expect to �nd a Kan bisimplicial set in the usual

sense of the notion.

The last column is not directly concerned with the di�erent types of defor-

mations of HDA, but rather by the question of knowing if the functors contain

information from t = �1 to t =1. The answer is yes everywhere except for

the three homotopy groups functors : the latter contain indeed information

only related to achronal cuts crossing the \base-point". One can by the way

notice that, in the !-categorical case :

Proposition 4.1 Let � and  be two 1-morphisms of a non-contracting !-

category C. Suppose that � �0  exists. Then

(i) If � �0  is 1-dimensional, then the mapping (x; y) 7! x �0 y partially

de�ned on Cn�Cn induces a morphism of groups �gl
n+1(C; �)��

gl

n+1(C;  )!

11
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Functors S-invariant T-invariant Kan �1! +1

N
gl yes no yes yes

N
� almost no almost never yes

H
gl yes no no meaning yes

H
� yes yes no meaning yes

N
gl
�

yes no yes yes

H
gl
�

yes yes no meaning yes

�
gl yes yes no meaning no

�
gl
�

yes yes no meaning no

N
bigl yes yes yes ? yes

H
bigl yes yes no meaning yes

(�bigl) (yes) (yes) (no meaning) (yes)

Fig. 6. Behavior w.r.t the two types of deformations

�
gl

n+1(C; � �0  ).

(ii) If � �0  is 0-dimensional, then the mapping (x; y) 7! x �0 y partially

de�ned on Cn � Cn induces the constant map � �0  .

Proof. It is due to the fact that �
gl

n+1(C; �) is the quotient of fx 2 Cn+1; s1x =

s2x = � � � = snx = t1x = t2x = � � � = tnx = �g by the equivalence relation

generated by the identi�cations X = Y where X and Y are (n+1)-morphisms

and such that there exists a (n+2)-morphism Z with sn+1Z = X and tn+1Z =

Y . 2

The above proposition is a hint to correct the drawbacks of the globular

and semi-globular homotopy groups.

The last line �bigl is explained with Philosophy 5.9.

5 The category of dihomotopy types

5.1 Towards a construction

Here both approaches slightly diverge because of a lack of knowledge about

the !-categorical ways of constructing homotopy types. However one can

certainly de�ne in both contexts a notion of weak dihomotopy equivalence :

see [GG01] for the topological context. Then let

� !Grp be the category of strict globular !-groupoids with the !-functors as

morphisms, and Ho(!Grp) its localization by the weak homotopy equiva-

12
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lences

� !Cat
Kan

1 be the category of non-contracting !-categories C such that PC

is an !-groupoid with the non-contracting !-functors as morphisms, and

Ho(!CatKan

1 ) its localization by the weak dihomotopy equivalences

� CW the category of CW-complexes with the continuous maps as mor-

phisms, and Ho(CW) its localization by the weak homotopy equivalences

� glCW the category of globular CW-complexes with the morphisms of glob-

ular CW-complexes as morphisms, and Ho(glCW) its localization by the

weak dihomotopy equivalences.

Philosophy 5.1 Both localizations Ho(!CatKan

1 ) and Ho(glCW) contain

the precubical sets modulo spatial and temporal deformations. However, due

to the fact that strict globular !-groupoids do not represent all homotopy types

[BH81a], but only those having a trivial Whitehead product, Ho(!CatKan

1 )

could be not big enough to construct an appropriate algebraic setting.

After [Sim98], it is clear that the !-categorical realization functor described

in Section D loses some homotopical information and that keeping the com-

plete information requires to work with !-categories where the associativity of

�n is weakened for any n � 1. However, this lost homotopical information is

only related to the geometric situation in achronal cuts. In particular, this re-

alization functor does not contract 1-morphisms. Therefore the Ho(!CatKan

1 )

framework could be suÆcient to study questions concerning deadlocks or other

similar 1-dimensional phenomena.

De�nition 5.2 The category Ho(glCW) is called the category of dihomotopy

types.

To describe the relation between the usual situation and the directed sit-

uation, we need two last propositions and de�nitions :

Proposition 5.3 [GG01] Let X be a CW-complex. Let Glob(X)0 = f�; �g

where � (resp. �) is the equivalence class of (x; 0) (resp. (x; 1)). Then the

cellular decomposition of X yields a cellular decomposition of Glob(X) and

this way, Glob(�) induces a functor from CW to glCW.

Proposition 5.4 Let G be an object of !Grp. Then there exists a unique

object Glob(G) of !CatKan

1 such that PGlob(G) = G, Glob(G)0 = f�; �g is

a two-element set, and such that s0(Glob(G)nf�g) = f�g and t0(Glob(G)n

f�g) = f�g. Moreover the mapping Glob induces a functor from !Grp to

!Cat
Kan

1 .

Both Glob functors (called globe functors) yield two functors

Ho(CW)! Ho(glCW)

and

Ho(!Grp)! Ho(!CatKan

1 )

13
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In the topological context, one has :

Proposition 5.5 [GG01] Let X and Y be two CW-complexes. Then X and

Y are homotopy equivalent if and only if Glob(X) and Glob(Y ) are dihomotopy

equivalent. Therefore the functor Ho(CW)! Ho(glCW) is an embedding.

Question 5.6 Is it possible to �nd an !-categorical construction ofHo(glCW

) ?

5.2 Investigating the algebraic structure of the category of dihomotopy types

One can check that in both topological and !-categorical situations, the fol-

lowing fact holds

Proposition 5.7 (partially in [Gau01a]) Let � 2 f�;+g. The morphism h
�

induces an isomorphism of simplicial sets (not of augmented simplicial sets

for trivial reason !) N
gl(Glob(M)) ' N

gl
�

(Glob(M)). Moreover in the !-

categorical case, N gl(Glob(M)) ' N
�(Glob(M)) where N � are the branching

or the merging nerves (depending on the value of �) of an !-category as de-

�ned and studied in [Gau00,Gau01a]. Moreover, this common simplicial set

is homotopy equivalent to the simplicial nerve of M .

This important proposition together with Proposition 5.5 suggests us a

way of investigating the algebraic structure of the category of dihomotopy

types.

Philosophy 5.8 Let Th be a theorem (or a notion) in usual algebraic topol-

ogy, i.e. concerning the category of homotopy types. Let Thdi be its lifting

(i.e. its analogue) on the category of dihomotopy types. Then the statement

Thdi must specialize into Th on the image of the globe functor.

Following Baues's philosophy [Bau99], a �rst goal would be then to lift

from the usual situation to the directed situation the Whitehead theorem and

the Hurewicz theorems. Concerning the last one, it would be �rst necessary to

understand what is the analogue 6 of the Hurewicz morphism for the category

of dihomotopy types.

Philosophy 5.9 The target of the Hurewicz morphism in the directed situa-

tion is likely to be the biglobular homology Hbigl. This new Hurewicz morphism

must contain is some way all usual Hurewicz morphisms of all achronal cuts.

6 The solution given in [Gau00] is naturally wrong : the morphisms h� and h+ are not the

analogues of the Hurewicz morphism. When [Gau00] was being written, It was not known

that the correct de�nition of the globular homology would come from the simplicial homol-

ogy of a simplicial nerve. Moreover the role of achronal cuts was also not yet understood.

The globular homology was introduced as an answer of Goubault's suggestion of �nding the

analogue of the Hurewicz morphism in \directed homotopy" theory. Then starting from the

principle that the branching and merging homology theories could be an analogue of the

singular homology, I wondered whether it was possible to construct a morphism abutting

to both corner homologies. The globular homology was then designed to be the source of

this morphism.

14
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At last, the source (let us denote it by �bigl) of the Hurewicz morphism must

be S-invariant, T-invariant and must contain information concerning the ge-

ometry of the HDA from t = �1 to t = +1.

Suppose n � 2. After Proposition 4.1, a possible idea in the !-categorical

case would be then to build a chain complex of abelian groups by considering

elements

(x1; : : : ; xp) 2 �
gl

n+1(C; �1)� : : :� �
gl

n+1(C; �p)

for all p and all p-uples (�1; : : : ; �p) such that �1 �0 � � � �0 �p exists and by

considering the simplicial di�erential map induced by �0. Let us call the cor-

responding homology theory the toroidal homology H
tor

�
(C). Of course this

construction makes sense only for n � 2 because the �
gl

2 are not necessarily

abelian. Then the classical Hurewicz morphism induces a natural transforma-

tion from H
tor

�
to the E2

�;n+1-term of one of the canonical spectral sequences

converging to Hbigl.

As explained in the introduction, the goal would be to reach an homological

understanding of the geometry of 
ows modulo deformations. In particular,

we would like to �nd exact sequences. It is then reasonable to think that

Philosophy 5.10 An exact sequence F1(M) ! F2(M) ! F3(M) telling us

something about 
ows M of execution paths modulo spatial and temporal de-

formations must use functors F1, F2 and F3 invariant by spatial and temporal

deformations.

The weakness of the internal structure of the globular nerve (it is a disjoint

union of simplicial sets), its non-invariance with respect to temporal deforma-

tions, and its natural correction by considering the biglobular nerve suggests

that the biglobular homology (the total homology of this bisimplicial set) has

more interesting homological properties than the globular homology.

Concerning the biglobular nerve, it is worth noticing that this object con-

tains the whole information about the position of achronal simplexes and

about the temporal structure of the underlying higher dimensional automa-

ton. So in some sense, the biglobular nerve contains everything related to the

geometry of HDA. Since the biglobular nerve is expected to be S-invariant and

T-invariant, then it is natural to ask the following question :

Question 5.11 Is it possible to recover all other S-invariant and T-invariant

functors from the biglobular nerve ? For example, is it possible to recover the

semi-globular homology theories ?

Another natural question would be to relate a given dihomotopy type to

the underlying homotopy type (when the 
ow of execution paths is removed).

If the biglobular nerve really contains the complete information, then it should

be possible to recover from it the underlying homotopy type.

As last remark, let us have a look at PV diagrams as in Figure 7. They

are always constructed by considering a n-cube and by digging cubical holes

inside. Such examples produce examples of !-categories or globular CW-

15
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Fig. 7. PV diagram

complexes whose all types of globular homologies do not have any torsion. To

classify this kind of examples, the study of rational dihomotopy types could

be suÆcient.

6 Conclusion

We have described in this paper a way of constructing the category of dihomo-

topy types and we have given some hints to investigate its internal algebraic

structure. Intuitively, the isomorphism classes of objects in this category

represent exactly the higher dimensional automata modulo the deformations

which leave invariant their computer-scienti�c properties. So a good knowl-

edge of the algebraic structure of this category will enable us to classify higher

dimensional automata up to dihomotopy and therefore, hopefully, to write new

algorithms manipulating directly the equivalence classes of HDA.
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Technical Appendix

A Local po-space : de�nition and examples

If X is a topological space, a binary relation R on X is closed if the graph of

R is a closed subset of the cartesian product X �X. If R is a closed partial

order �, then (X;�) is called a po-space (see for instance [Nac65], [Joh82]

and [FGR99a]). Notice that a po-space is necessarily Hausdor�. We say that

(U;�) is a sub-po-space of (X;R) if and only if it is a po-space such that U

is a sub topological space of X and such that � is the restriction of R to U .

A collection U(X) of po-spaces (U;�U) covering X is called a local partial

order if for every x 2 X, there exists a po-space (W (x);�W (x)) such that:

� W (x) is an open neighborhood containing x,

� the restrictions of �U and �W (x) to W (x) \ U coincide for all U 2 U(X)

such that x 2 U . This can be stated as: y �U z i� y �W (x) z for all

U 2 U(X) such that x 2 U and for all y; z 2 W (x) \ U . Sometimes, W (x)

will be denoted by WX(x) to avoid ambiguities. Such a WX(x) is called a

po-neighborhood.

Two local partial orders are equivalent if their union is a local partial order.

This de�nes an equivalence relation on the set of local partial orders of X. A

topological space together with an equivalence class of local partial order is

called a local po-space.

A morphism f of local po-spaces (or dimap) from (X;U) to (Y;V) is a

continuous map from X to Y such that for every x 2 X,

� there is a po-neighborhood W (f(x)) of f(x) in Y ,

� there exists a po-neighborhoodW (x) of x in X with W (x) � f
�1(W (f(x)),

� for y; z 2 W (x), y � z implies f(y) � f(z).

In particular, a dimap f from a po-space X to a po-space Y is a continuous

map from X to Y such that for any y; z 2 X, y � z implies f(y) � f(z).

A morphism f of local po-spaces from [0; 1] endowed with the usual ordering

(denoted by I) to a local po-space X is called dipath or sometime execution

path.

The category of Hausdor� topological spaces with the continuous maps as

morphisms will be denoted by Haus. The category of local po-spaces with the

dimaps as morphisms will be denoted by LPoHaus. The category of general

topological spaces without further assumption will be denoted by Top and

the category of general topological spaces endowed with a partial ordering not

necessary closed will be denoted by PoTop.

We end this section by an example of po-spaces which matters for this

paper. Let us construct the Globe Glob(X) associated to a topological space

X. It is de�ned as follows. As topological space, Glob(X) is the quotient of
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the product space X � I by the relations (x; 0) = (x0; 0) and (x; 1) = (x0; 1)

for any x; x0 2 X. It is equipped with the closed partial order (x; t) � (x0; t0)

if and only if x = x
0 and t � t

0. The equivalence class of (x; 0) (resp. (x; 1))

in Glob(X) is denoted by � (resp. �).

B Simplicial set

For further details, cf. [May67,Wei94].

De�nition B.1 A simplicial set A� is a family (An)n�0 together with face

maps @i : An ! An�1 and �i : An ! An+1 for i = 0; : : : ; n which satisfy the

following identities :

@i@j = @j�1@i if i < j

�i�j = �j+1�i if i � j

@i�j =

8>>><
>>>:

�j�1@i

Identity

�j@i�1

if i < j

if i = j or i = j + 1

if i > j + 1

A morphism of simplicial sets from A� to B� consists of a set map from An

to Bn for each n � 0 commuting with all operators de�ned on both sides. The

category of simplicial sets is denoted by Sets�
op

.

Consider the topological n-simplex �n de�ned by

�n = f(t0; : : : ; tn); t0 � 0; : : : ; tn � 0 and t0 + : : : tn = 1g

Here is now the most classical example of simplicial sets :

De�nition B.2 Let Y be a topological space. The singular simplicial nerve

of Y is the simplicial set S�(XY ) de�ned as follows : Sn(Y ) := Top(�n
; Y )

with @i(f)(t0; : : : ; tn�1) = f(t0; : : : ; ti�1; : : : ; tn�1) and �i(f)(t0; : : : ; tn+1) =

f(t0; : : : ; ti�1; ti + ti+1; ti+2; : : : ; tn+1).

De�nition B.3 [Dus75] An augmented simplicial set is a simplicial set

((Xn)n�0; (@i : Xn+1 �! Xn)0�i�n+1; (�i : Xn �! Xn+1)0�i�n)

together with an additional set X�1 and an additional map @�1 from X0 to

X�1 such that @�1@0 = @�1@1. A morphism of augmented simplicial set is a

map of N-graded sets which commutes with all face and degeneracy maps. We

denote by Sets�
op

+ the category of augmented simplicial sets.

IfX� is an augmented simplicial set, one obtains a chain complex of abelian

groups (ZS being the free abelian group generated by the set S)

: : : ��ZX2
@0�@1+@2 ��ZX1

@0�@1 ��ZX0
@
�1 ��ZX�1

�� 0
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We will denote Hn+1(X) for n � �1 the n-th simplicial homology group of X�.

This means for example that H1(X) will be the quotient of @�1 : N
gl

0 (C) !

N
gl

�1(C) by the image of @0 � @1 : N
gl

1 (C)!N
gl

0 (C).

C Precubical set, globular !-category and globular set

De�nition C.1 [BH81b] [KP97] A precubical set consists of a family of sets

(Kn)n>0 and of a family of face maps Kn

@
�

i ��Kn�1 for � 2 f�;+g which

satis�es the following axiom (called sometime the cube axiom) :

@
�

i
@
�

j
= @

�

j�1@
�

i
for all i < j 6 n and �; � 2 f�;+g.

If K is a precubical set, the elements of Kn are called the n-cubes. An

element of Kn is of dimension n. The elements of K0 (resp. K1) can be called

the vertices (resp. the arrows) of K.

De�nition C.2 [BH81a,Str87,Ste91] An !-category is a set A endowed with

two families of maps (sn = d
�

n
)n>0 and (tn = d

+
n
)n>0 from A to A and with a

family of partially de�ned 2-ary operations (�n)n>0 where for any n > 0, �n
is a map from f(a; b) 2 A � A; tn(a) = sn(b)g to A ((a; b) being carried over

a �n b) which satis�es the following axioms for all � and � in f�;+g :

(i) d�
m
d
�

n
x =

(
d
�

m
x if m < n

d
�

n
x if m > n

(ii) snx �n x = x �n tnx = x

(iii) if x �n y is well-de�ned, then sn(x �n y) = snx, tn(x �n y) = tny and for

m 6= n, d�
m
(x �n y) = d

�

m
x �n d

�

m
y

(iv) as soon as the two members of the following equality exist, then (x�ny)�n
z = x �n (y �n z)

(v) if m 6= n and if the two members of the equality make sense, then (x �n
y) �m (z �n w) = (x �m z) �n (y �m w)

(vi) for any x in A, there exists a natural number n such that snx = tnx = x

(the smallest of these numbers is called the dimension of x and is denoted

by dim(x)).

A n-dimensional element of C is called a n-morphism. A 0-morphism is

also called a state of C, and a 1-morphism an arrow. If x is a morphism of an

!-category C, we call sn(x) the n-source of x and tn(x) the n-target of x. The

category of all !-categories (with the obvious morphisms) is denoted by !Cat.

The corresponding morphisms are called !-functors. The set of n-dimensional

morphisms of C is denoted by Cn.

As fundamental examples of !-categories, there is the !-category �n freely

generated by the faces of the n-simplex [Str87]. To characterize this !-

category, the �rst step consists of labeling all faces of the n-simplex. Its

faces are indeed in bijection with strictly increasing sequences of elements of
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(c) The !-category I3

Fig. C.1. Some !-categories (a k-fold arrow symbolizes a k-morphism)

f0; 1; : : : ; ng. A sequence of length p+1 will be of dimension p. If x is a face,

let R(x) be the set of faces of x seen as a sub-simplex. If X is a set of faces,

then let R(X) =
S

x2X
R(x). Notice that R(X [ Y ) = R(X)[R(Y ) and that

R(fxg) = R(x). Then �n is the free !-categories generated by the R(x) with

the rules

(i) For x p-dimensional with p � 1, sp�1(R(x)) = R(sx) and tp�1(R(x)) =

R(tx) where sx and tx are the sets of faces de�ned below.

(ii) If X and Y are two elements of �n such that tp(X) = sp(Y ) for some p,

then X [ Y belongs to �n and X [ Y = X �p Y .

Let us give the de�nition of sx and tx on some example :

s(04589) = f(4589); (0489); (0458)g

The elements in odd position are removed ;

t(04589) = f(0589); (0459)g

The elements in even position are removed.

Let � be the unique small category such that a pre-sheaf over � is exactly

a simplicial set [May67,Wei94]. The category � has for objects the �nite

ordered sets [n] = f0 < 1 < � � � < ng for integers n � 0 and has for morphisms

the non-decreasing monotone functions. One is used to distinguishing in this

22



Gaucher

category the morphisms �i : [n � 1] ! [n] and �i : [n + 1] ! [n] de�ned as

follows for each n and i = 0; : : : ; n :

�i(j) =

8<
: j if j < i

j + 1 if j � i

9=
; ; �i(j) =

8<
: j if j � i

j � 1 if j > i

9=
;

The mapping n 7! �n yields a functor from � to !Cat by setting �i 7! ��i

and �i 7! ��i where

� for any face (�0 < � � � < �s) of �
n�1, ��i(�0 < � � � < �s) is the only face of

�n having �if�0; : : : ; �sg as set of vertices ;

� for any face (�0 < � � � < �r) of �
n+1, ��i(�0 < � � � < �r) is the only face of

�n having �if�0; : : : ; �rg as set of vertices.

Therefore

De�nition C.3 Let C be an !-category. Then the graded set !Cat(��
; C) is

naturally endowed with a structure of simplicial sets. It is called the simplicial

nerve of C.

D !-categorical realization of a precubical set

Intuitively the !-categorical realization �(K) of a precubical setK (also called

the free !-category generated by K) as de�ned below contains as n-morphisms

all composites (or all concatenations) of cubes of K which are n-dimensional

(this means that somewhere in the composite, a n-dimensional cube appears).

In particular the 1-morphisms of �(K) will be exactly all arrows of K and all

possible compositions of these arrows.

The free !-category �(K) is constructed as follows. The main ingredient

is the free !-category In generated by the faces of the n-cube. Its character-

ization is very similar to that of the !-category �n generated by the faces of

the n-simplex. The faces of the n-cube are labeled by the word of length n

in the alphabet f�; 0;+g, the number of zero corresponding to the dimension

of the face. Everything is similar, except the de�nition of sx and tx. The set

sx is the set of sub-faces of the faces obtained by replacing the i-th zero of x

by (�)i, and the set tx is the set of sub-faces of the faces obtained by replac-

ing the i-th zero of x by (�)i+1. For example, s0+00 = f-+00; 0++0; 0+0-g

and t0+00 = f++00; 0+-0; 0+0+g. Figure 1(c) represents the free !-category

generated by the 3-cube (cf. [Gau00] for some examples of calculations). The

�rst construction of In is due to Aitchison in [Ait86].

Then to each x 2 Kn, we associate a copy of In denoted by fxg � I
n

whose corresponding faces will be denoted by (x; k1 : : : kn). We then take the

quotient of the direct sum of these fxg � I
dim(x) in !Cat (which corresponds

for the underlying sets to the disjoint union) by the relations

(@�
i
(x); k1 : : : kn�1) � (x; k1 : : : ki�1[�]iki : : : kn�1)
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for any n � 1 and any x 2 Kn where the notation [�]i means that � is put in

i-th position. This expression means that in the copy of In�1 corresponding to

@
�

i
(x), the face k1 : : : kn�1 must be identi�ed to the face k1 : : : ki�1[�]iki : : : kn�1

in the copy of In corresponding to x. And one has

Proposition D.1 One obtains a well-de�ned !-category �(K) and � in-

duces a well-de�ned functor from the category of precubical sets to that of

!-categories.

The proof uses the coend construction (cf. [Mac71]).

E Localization of a category with respect to a collection

of morphisms

De�nition E.1 Let C be a category (not necessarily small). Let S be a col-

lection of morphisms of C. Consider the following universal problem :

\There exists a pair (D; �) such that � is a functor from C to D and such

that for any s 2 S, �(s) is an invertible morphism of D."

Then the solution (C[S�1]; Q), if there exists, is called the localization of C

with respect to S.

F The biglobular nerve

Theorem F.1 [Gau02] Let C be a non-contracting !-category.

(i) Let x be an !-functor from �n to PC for some n � 0. Then the set

maps (�0 : : : �r) 7! s0x((�0 : : : �r)) and (�0 : : : �r) 7! t0x((�0 : : : �r)) from

the underlying set of faces of �n to C0 are constant. The unique value

of s0 Æ x is denoted by S(x) and the unique value of t0 Æ x is denoted by

T (x).

(ii) For any pair (�; �) of 0-morphisms of C, for any n � 1, and for any

0 � i � n, then @i
�
N

gl

n
(C[�; �])

�
� N

gl

n�1(C[�; �]).

(iii) For any pair (�; �) of 0-morphisms of C, for any n � 0, and for any

0 � i � n, then �i
�
N

gl

n
(C[�; �])

�
� N

gl

n+1(C[�; �]).

(iv) By setting, G�;�
N

gl

n
(C) := N

gl

n
(C[�; �]) for n � 0 and G

�;�
N

gl

�1(C) :=

f(�; �); (�; �)g, one obtains a (C0 � C0)-graduation on the globular nerve

; in particular, one has the direct sum of augmented simplicial sets

N
gl

�
(C) =

G
(�;�)2C0�C0

G
�;�
N

gl

�
(C)

and G�;�
N

gl

�
(C) = N

gl

�
(C[�; �]).

Let C be a non-contracting !-category. Using Theorem F.1, recall that for

some !-functor x from �n to PC, one calls S(x) the unique element of the
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image of s0 Æ x and T (x) the unique element of the image of t0 Æ x. If (�; �)

is a pair of N
gl

�1(C), set S(�; �) = � and T (�; �) = �.

Proposition F.2 [Gau02] Let C be a non-contracting !-category. Let x and

y be two !-functors from �n to PC with n � 0. Suppose that T (x) = S(y).

Let x � y be the map from the faces of �n to C de�ned by

(x � y)((�0 : : : �r)) := x((�0 : : : �r)) �0 y((�0 : : : �r)):

Then the following conditions are equivalent :

(i) The image of x � y is a subset of PC.

(ii) The set map x � y yields an !-functor from �n to PC and @i(x � y) =

@i(x) � @i(y) for any 0 � i � n.

On the contrary, if for some (�0 : : : �r) 2 �n, (x � y)((�0 : : : �r)) is 0-dimen-

sional, then x � y is the constant map S(x) = T (y).

In the sequel, we set (�; �) � (�; 
) = (�; 
), S(�; �) = � and T (�; �) = �.

If x is an !-functor from �n to PC, and if y is the constant map T (x) (resp.

S(x)) from �n to C0, then set x � y := x (resp. y � x := x).

Theorem F.3 Suppose that C is an object of !Cat1. Then for n � 0, the op-

erations S, T and � allow to de�ne a small category N gl

n
(C) whose morphisms

are the elements of N gl

n
(C)[fconstant maps �n

! C0g and whose objects are

the 0-morphisms of C. If N gl

�1(C) is the small category whose morphisms are

the elements of C0�C0 and whose objects are the elements of C0 with the opera-

tions S, T and � above de�ned, then one obtains (by de�ning the face maps @i
and degeneracy maps �i in an obvious way on fconstant maps �n

! C0g) this

way an augmented simplicial object N gl

�
in the category of small categories.

By composing by the classifying space functor of small categories (cf. for

example [Qui73] for further details), one obtains a bisimplicial set which is

called the biglobular nerve.
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