CAHIERS DE TOPOLOGIE ET Vol LVI-4 (2015)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

THE GEOMETRY OF CUBICAL AND REGULAR
TRANSITION SYSTEMS

by Philippe GAUCHER

Résumé. Il existe des systémes de transitions cubiques contenant des cubes
ayant un nombre arbitrairement grand de faces. Un systeme de transition
régulier est un systeéme de transitions cubique tel que tout cube a le bon nom-
bre de faces. Les propriétés catégoriques et homotopiques des systemes de
transitions réguliers sont similaires a celles des cubiques. On donne une de-
scription combinatoire complete des objets fibrants dans les cas cubiques et
réguliers. Un des deux appendices contient un lemme indépendant sur la re-
striction d’une adjonction a une sous-catégorie réflective pleine.

Abstract. There exist cubical transition systems containing cubes having an
arbitrarily large number of faces. A regular transition system is a cubical
transition system such that each cube has the good number of faces. The cat-
egorical and homotopical results of regular transition systems are very similar
to the ones of cubical ones. A complete combinatorial description of fibrant
cubical and regular transition systems is given. One of the two appendices
contains a general lemma of independant interest about the restriction of an
adjunction to a full reflective subcategory.
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1. Introduction

Presentation

The purpose of Cattani-Sassone’s notion of higher dimensional transition
system introduced in [4] is to model the concurrent execution of n actions
by a transition between two states labelled by a multiset {u1, . .., u,} of ac-
tions. A multiset is a set with a possible repetition of its elements: e.g. {u}
is not equal to {u,u}. A higher dimensional transition system for Cattani
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Figure 1: a||b: Concurrent execution of a and b

and Sassone consists of a set of states S, a set of actions L, a set of labels
Y together with a labelling map p : L — X, and a set of tuples (a, T, )
of transitions where « and 3 are two states and 7" is a multiset of actions.
All these data have to satisfy several axioms which are detailed in the orig-
inal paper [4]. The higher dimensional transition a||b depicted by Figure 1
consists of the transitions («, {a}, 8), (8, {b},0), (o, {b},7), (7, {a},d) and
(e, {a,b},0). The labelling map is the identity map. Note that with a = b,
we would get the 2-dimensional transition («, {a, a}, §) which is not equal to
the 1-dimensional transition (v, {a}, d). The latter actually does not exist in
Figure 1. Indeed, the only 1-dimensional transitions labelled by the multiset
{a} are (, {a}, B) and (7, {a}, ).

In [7], Cattani-Sassone’s notion is reworded in a more convenient math-
ematical setting by introducing the notion of weak transition system. The
transition (v, {a, b}, ) is then represented by the tuple («, a,b, ). The set
of transitions has therefore to satisfy the Multiset axiom (here: if the tu-
ple (o, a,b,d) is a transition, then the tuple («, b, a, d) has to be a transition
as well) and the Composition axiom which is a topological version (in the
sense of topological functors) of Cattani-Sassone’s interleaving axioms. The
Composition axiom is called the Coherence axiom in [7]. The terminol-
ogy is changed in the next paper [8] because this axiom behaves a little bit
like a partial 5-ary composition in the proofs '. For example, the Compo-
sition axiom is the key axiom for interpreting the higher dimensional tran-
sition system modeling the n-cube as the free object generated by a “pure”

'In the nLab page devoted to higher dimensional transition systems, T. Porter uses the
terminology “patching axiom”, which is quite a good idea too.
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n-dimensional transition (this weak transition system consists of two states
and a n-dimensional transition going from one state to the other one) [7,
Theorem 5.6]. Indeed, the free compositions generated by the Composition
axiom generate all transitions of lower dimension between the intermediate
states (i.e. with a source different from the initial state and a target differ-
ent from the final state) . Weak transition systems assemble into a locally
finitely presentable category WWJS such that the forgetful functor forgetting
the transitions, and keeping the states and the actions, is topological in the
sense of [1, Definition 21.1].

The full coreflective subcategory CTS of cubical transition systems was
then introduced in [8]. They consist of the weak transition systems which are
equal to the union of their subcubes. It was preferred to the full coreflective
category of WJS of colimits of cubes because the latter does not contain the
boundary of a 2-cube. The category CTS is sufficient to describe the path
spaces of all process algebras for any synchronization algebra because their
path spaces are colimits of cubes and because all colimits of cubes are unions
of cubes. Indeed, the weak transition system associated with a process alge-
bra is obtained by starting from a labelled precubical set using the method
described in [5], and by taking the free symmetric labelled precubical set
generated by it [6], and then by applying the colimit-preserving realization
functor from labelled symmetric precubical sets to weak transition systems
constructed in [7].

However, the notion of cubical transition system is still too general. In-
deed, a n-dimensional transition in a cubical transition system may have an
arbitrarily large number of faces in each dimension. Here is a simple ex-
ample of a 2-transition X with 2n 4 2 edges for an arbitrarily large integer
n > 1:

e the set of states is {/, F,a,by,...,b,}

e the set of actions is {u, v} with pu(u) # u(v) (u denotes the labelling
map)

e the transitions are the tuples

{(I,u,v, F),(I,v,u, F),(I,u,a),(a,v, F),
(I,v,b;), (bj,u, F)|i<1<mn.}
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The weak transition system above is cubical because it is the union, for 1 <
i < n, of the 2-cubes Z; having the set of vertices {I, F, a, b;}, the set of
actions {u, v} and the set of six transitions

{(L,u,v, F),(I,v,u, F),(I,u,a), (a,v, F),(I,v,b;), (b;,u, F)}.

To avoid such a behavior, it suffices to replace the Intermediate state ax-
iom by the Unique intermediate state axiom, also called CSA2 (see Defini-
tion 2.2). The latter axiom is already introduced in [7] to formalize Cattani-
Sassone’s notion of higher dimensional transition systems in the setting of
weak transition systems. We obtain a full reflective subcategory RTS of
that of cubical transition systems whose objects are called the regular tran-
sition systems. Roughly speaking, a regular transition system is a Cattani-
Sassone transition system which does not necessarily satisfy CSA1 (see Def-
inition 2.4). There is the chain of functors

Z‘ S Creﬂeclive CTS Ccoreﬂec[ive ) L ; S L)topological Set{s}UE

where w is the topological functor towards a power of the category of sets
forgetting the transitions: s denotes the sort of states and each element x
of the set of labels > denotes the sort of actions labelled by x. With the
notations above, one has

w(allb) = ({e, B,7,6}, {a}, {b})

since the labelling map is the identity map. One has
w(X)={I,Fab,...,0n} {u},{v})

since p(u) # p(v).

Note that none of the categories of colimits of cubes and of regular transi-
tion systems is included in the other one: see the final comment of Section 2.

This paper is devoted to the geometric properties of regular transition
systems and to their relationship with cubical ones. Their study requires the
use of the whole chain of functors above which is the composite of a right
adjoint followed by a left adjoint followed by a topological functor. Despite
the fact that colimits are different in R7S and in CTS, the main results are
very similar to the ones obtained for cubical transition systems in [8]. We
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will therefore follow the plan of [8]. The left determined model structure
with respect to the cofibrations of cubical transition systems between regular
ones is proved to exist. It is proved that the Bousfield localization by the
cubification functor is the model structure having the same class of cofibra-
tions and the fibrant objects are the regular transitions systems such that for
any transition (o, uq, . .., u,, 3), the tuple (a, vq, . .., v,, 3) is a transition if
p(u;) = p(v;) for 1 < ¢ < n. The homotopical structure of this Bousfield
localization will be completely elucidated. Roughly speaking, after identify-
ing each action of a regular transition system with its label and after remov-
ing all non-discernable higher dimensional transitions, two regular transition
systems are weakly equivalent if and only if they are isomorphic.

Outline of the paper

Section 2 introduces all definitions of higher dimensional transition systems
used in this paper: weak, cubical, regular. It starts with the notion of regu-
lar transition system (Definition 2.2), and then by removing some axioms,
the notions of cubical transition system and of weak transition system are
recalled. This section does not contain anything new, except the notion of
regular transition system. Section 3 is a technical section which provides
a sufficient condition for an w-final lift of cubical transition systems to be
cubical (Theorem 3.3). This result is used in the construction of several cu-
bical transition systems. Section 4 deals with the most elementary properties
of regular transition systems. The reflection CSA, : CTS — RTS is stud-
ied. The definition of the cubification functor is recalled and its relationship
with regular transition systems is explained. Section 5 establishes the ex-
istence of the left determined model structure of regular transition systems.
The weak equivalences of this model structure are completely characterized.
The Bousfield localization of the left determined model category of regu-
lar transition systems by the cubification functor is studied and completely
elucidated in Section 6. The comparison with cubical transition systems is
discussed there. The proof of Theorem 6.12 is postponed to Section A to
not overload Section 6. Finally, Section 7 completely characterizes the fi-
brant cubical and regular transition systems in the Bousfield localizations
by the cubification functor. Section B is a categorical lemma of indepen-
dant interest providing a easy way to restrict an adjunction to a full reflective
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subcategory.

Prerequisites and notations

All categories are locally small. The set of maps in a category K from X
to Y is denoted by K(X,Y’). The initial (final resp.) object, if it exists, is
always denoted by @ (1 resp.). The identity of an object X is denoted by
Idx. A subcategory is always isomorphism-closed. We refer to [2] for lo-
cally presentable categories, to [19] for combinatorial model categories, and
to [1] for topological categories, i.e. categories equipped with a topological
functor towards a power of the category of sets. We refer to [12] and to [11]
for model categories. For general facts about weak factorization systems,
see also [13]. The reading of the first part of [16], published in [15], is rec-
ommended for any reference about good, cartesian, and very good cylinders.

2. Regular higher dimensional transition systems

This section does not contain anything new, except the notion of regular
transition system. It collects definitions and facts about the various notions
of transition systems which were expounded in the previous papers of this
series [7] and [8]. To keep this section concise, the definition of a regular
transition system is given first, and then by removing some axioms, the def-
initions of a cubical transition system and of a weak transition system are
recalled. It is necessary to recall all these definitions because most of the
proofs of this paper make use of the whole chain of functors

RT: WT w sUX
S Creﬁeclive WS Ccoreﬂective 8 —>mpnlogical Set{ }

where Set is the category of sets.
Notation 2.1. A nonempty set of labels X is fixed.

Definition 2.2. A regular higher dimensional transition system consists of a
triple
X=(Sp:L-%T=JT)
n>1
where S is a set of states, where L is a set of actions, where i : L — X
is a set map called the labelling map, and finally where T,, C S x L™ x S
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forn > 1is a set of n-transitions or n-dimensional transitions such that one
has:

e (All actions are used) For every u € L, there is a 1-transition («, u, [3).

e (Multiset axiom) For every permutation o of {1,... n} withn > 2, if
the tuple (cv,uy, . .., uy, ) is a transition, then the tuple

(CY, Ug(1)s - - -y Ua(n), ﬂ)
is a transition as well.

e (Composition axiom ?) For every (n + 2)-tuple (c, uy, . . ., Uy, 3) with
n > 3, for every p,q > 1 with p + q < n, if the five tuples

(avula s 7un75)7 (avula <oy Up, V1)7 (yla Up41y -+ Un, 6)7
(aaula ooy Uptgs VQ)a (V2>up+q+1> e Unpy, ﬂ)
are transitions, then the (q+2)-tuple (v1, Up 11, . . ., Upiq, Vo) IS a tran-

sition as well.

e (Unique intermediate state axiom or CSA2) 3. For every n > 2,

every p with 1 < p < n and every transition (a,uy, ..., uy,,3) of
X, there exists a unique state v such that both (a,uy, ..., u,, V) and
(V, Upt1, - - -, Uy, B) are transitions.

A map of regular transition systems
fo(Sop: L= 5, (Ta)az1) = (8,1 L' = 5, (T})nz1)

consists of a set map fy: S — S', a commutative square

2This axiom is called the Coherence axiom in [7] and [8].
3This axiom is also called CSA2 in [7]
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such that if the tuple («, uy, . . ., u,, B) is a transition, then the tuple

(f()(a)v.]?(ul)? e 7f(un>7f0(ﬁ>>

is a transition. The corresponding category is denoted by RTS. The n-
transition («,uq, ..., Uy, 3) is also called a transition from « to . The

maps fo and f will be also denoted by f.

Notation 2.3. The labelling map from the set of actions to the set of labels
will be very often denoted by p. The set of states of a regular transition
system X is denoted by X°.

The category RTS of regular higher dimensional transition systems is
a full subcategory of the category of cubical transition systems CTS intro-
duced in [8]. By definition, a cubical transition system satisfies all axioms
of higher dimensional transition system but one: the Unique intermediate
state axiom is replaced by the Intermediate state axiom, the state v is not
necessarily unique anymore. The category CTS is a full subcategory of the
category of weak transition systems WIS introduced in [7]. By definition, a
weak transition system satisfies all axioms of regular transition systems but
two: the Unique intermediate state axiom is removed and an action is not
necessarily used. Weak transition system is the “minimal” definition: the
multiset axiom is indeed required to ensure that the concurrent execution of
n actions does not depend on the order of the labelling, and the composition
axiom is required (even if its use is often hidden) e.g. to ensure that labelled
n-cubes are free objects (e.g. see the proof of [7, Theorem 5.6]). One has
the inclusions of full subcategories R7TS C CIS C WTJS. The inclusion
RTS C CJS is strict since the introduction gives an example of cubical tran-
sition system which is not regular. The situation is summarized in Table 1.
Let us recall now the definition of CSA1 for this sequence of definitions to
be complete:

Definition 2.4. [7, Definition 4.1 (2)] and [8, Definition 7.1] A cubical tran-
sition system satisfies the First Cattani-Sassone axiom (CSAI) if for every
transition (o, u, ) and (a, v, ) such that the actions u and v’ have the
same label in ¥, one has v = u'.

The category WTS is locally finitely presentable and the functor
w: WIS — Set!s}V=
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C-S | Regular | Cubical | Weak
Multiset axiom yes yes yes yes
Composition axiom yes yes yes yes
All actions used yes yes yes no
Intermediate state axiom yes yes yes no
Unique Intermediate state axiom | yes yes no no
CSAl yes no no no

Table 1: Summary of all variants of transition systems (C-S meaning
Cattani-Sassone).

taking the weak higher dimensional transition system
(87“ L — 27 (Tn)n21)

to the ({s} U X)-tuple of sets (S, (1 (x))zex) € Set!*" is topological by
[7, Theorem 3.4].

Let us recall that the paradigm of fopological functor is the underlying
set functor from the category of general topological spaces to that of sets.
The notion of topological functor is a generalization of the notions of initial
and final topologies [1]. More precisely, a functor w : C — D is topological
if each cone (f; : X — wA,;);e; where I is a class has a unique w-initial
lift (the initial structure) (f, © A — A)icr, ie: ) wA = X and wf; = f;
for each i € I; 2) given h : wB — X with f;h = why, h; : B — A; for
each i € I, then h = wh for a unique h : B — A. Topological functors
can be characterized as functors such that each cocone (f; : wA; — X)es
where [ is a class has a unique w-final lift (the final structure) f, : A; — A,
ie: ) wA = X and wf; = f;foreachi € I;2) given h : X — wB
with hf; = why, h; + A; — B for each i € I, then h = wh for a unique
h: A — B. A limit (resp. colimit) in C is calculated by taking the limit
(resp. colimit) in D, and by endowing it with the initial (resp. final) structure.
In particular, a topological functor is faithful and it creates all limits and
colimits.

The category CTS is a full coreflective locally finitely presentable sub-
category of WIJS by [8, Corollary 3.15]. The composite functor

CTS C WIS -2 Set!stW>
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is faithful and colimit-preserving.
The inclusion CTS C WIS is strict. Here are two families of examples
of weak transition systems which are not cubical:

1. The weak transition system z = (&, {z} C 3, 9) for x € ¥ is not
cubical because the action z is not used.
2. Letn > 0. Letxq, ..., x, € 2. The pure n-transition

Cplzy, ... 2,

is the weak transition system with the set of states {0,,, 1,, }, with the

set of actions
{(z1,1),...,(zn,n)}

and with the transitions all (n + 2)-tuples

(0n, (o1y, 0(1)), .-, (To@my, 0(n)), 1)

for o running over the set of permutations of the set {1,...,n}. It
is not cubical for n > 1 because it does not contain any 1-transition.
Intuitively, the pure transition is a cube without faces of lower dimen-
sion.

We give now some important examples of regular transition systems. In
each of the following examples, the axioms of regular higher dimensional
transition systems are satisfied for trivial reasons.

Notation 2.5. Forn > 1,1et 0, = (0,...,0) (n-times) and 1,, = (1,...,1)
(n-times). By convention, let 0y = 1o = ().

1. Every set X may be identified with the cubical transition system hav-
ing the set of states X, with no actions and no transitions.

2. For every x € X, let us denote by 127 the cubical transition system
with four states {1,2, 3,4}, one action = and two transitions (1, z, 2)
and (3,z,4). The cubical transition system Tz 1 is called the double
transition (labelled by x) where x € ..

Let us introduce now the cubical transition system corresponding to the
labelled n-cube.
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Proposition 2.6. [7, Proposition 5.2] Let n > 0 and x1,...,x, € 2. Let
Ty C 0,1} x {(z1,1),..., (xn,n)}¢ x {0,1}" (with d > 1) be the subset
of (d + 2)-tuples

(1, s €n), (@iyy01)y ooy (miy, ta), (€1, .. €,))
such that
® i, = i, implies m = n, i.e. there are no repetitions in the list
<$i17i1)7 I (xida Zd)

o foralli, ¢; <€,

o ¢, # ¢ ifandonly ifi € {iy, ... 14}

Let ji - {(x1,1),...,(x,,n)} — X be the set map defined by p(x;,i) = x;.
Then

Cn[xh s ’xn] = ({07 1}n’ e {(Ilv 1)’ s (Invn)} — 2 (Td)dzl)
is a well-defined cubical transition system called the n-cube.

The n-cubes C),[x1,...,x,| forall n > 0 and all zy,...,2, € X are
regular by [7, Proposition 5.2] and [7, Proposition 4.6]. For n = 0, C;|], also
denoted by C), is nothing else but the one-state higher dimensional transition
system ({()},n: @ — X, 9).

By [8, Theorem 3.6], the category CTS is a small-injectivity class of
WITS. More precisely being cubical is equivalent to being injective with
respect to the set of inclusions C,[x1, . .., x,]*"" C Cplz1,...,2,] and 1 C
Ci[zy] for all n > 0 and all 4,...,x, € X. Note that the composition
axiom plays a central role in this result.

Finally, let us notice that there is the isomorphism of weak transition
systems

Tot= lim (Ciz] =z — Ci[z])

for any label = of 3, the colimit being taken in WJS. The double transi-
tion T2 1 is an example of cubical transition system, and even of regular
transition system, which is not a colimit of cubes. Another example of reg-
ular transition system which is not a colimit of cubes is the boundary of a
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labelled 2-cube (see [8]). This was the main motivation for introducing cu-
bical transition systems. Conversely, by [7, Proposition 9.7], there exists a
labelled precubical set K such that its realization T(/K’) as weak transition
system does not satisfy CSA2. Every labelled precubical set is a colimit
of cubes, therefore T(/K) is a colimit of cubes since the realization func-
tor from labelled symmetric precubical sets to weak transition systems is
colimit-preserving. Hence the weak transition system T(/) is an example
of a colimit of cubes which is not regular (but it is cubical as any colimit of
cubes).

3. Intermediate state axiom and w-final lifts

Let S be a set of objects of a locally presentable category K. For each object
X of I, the colimit of the natural forgetful functor S¢X — K, where S is
the full small category of K generated by .5, is denoted by (s € S may be
omitted)
liﬂ s.
s =X
ses

By [17, Proposition 3.1(i)], the full subcategory of colimits of objects of S is
a coreflective subcategory Ks of . The right adjoint to the inclusion functor
Ks C K is precisely given by the functorial mapping

X — hﬂ S.
s — X
seS

By [8, Theorem 3.11], a weak transition system is cubical if and only if
it is canonically a colimit of cubes and double transitions. In other terms, a
weak transition system X is cubical if and only if the canonical map

qx - lim dom(f) = X
fChlxy, ...,z = X
fitar— X

is an isomorphism. The functorial mapping X — dom(qy) is the coreflec-
tion of the inclusion CTS C WJS. The image of = for any = € 3 by the
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coreflection WTS — CTS is therefore the initial cubical transition system
. This implies that the category CTS is not a concretely coreflective sub-
category of WJS over w because the set of actions is not preserved. Hence
there is no reason for an w-final lift of cubical transition systems to be cubi-
cal. This holds anyway in the situation of Theorem 3.3 which will be used
several times in the paper.

Proposition 3.1. Let X = hgl X; be a colimit of weak transition systems. If
all X; satisfy the Intermediate state axiom, then so does X.

Proof. Let T; be the image by the canonical map X; — X of the set of
transitions of X;. Let Gy = |J, 7;. Let us define G, by induction on the
transfinite ordinal o > 0. If « is a limit ordinal, then let G, = U6<a Gp.
If the set of tuples GG, is defined, then let GG, be obtained from G, by
adding the set of all (¢ + 2)-tuples (1, Upt1, ..., Uptq, V2) such that there
exist five tuples (o, wy, ..., up, B), (@, U1, ..., Up, 1), (V1 Upst, - .o Un, (),
(0, Uy, ooy Upig, v2) and (Yo, Upigtt, - - -, Un, B) Of the set G, for some p >
1 and ¢ > 1. For cardinality reason, the transfinite sequence stabilizes and
by [7, Proposition 3.5], there exists an ordinal « such that G, is the set of
transitions of X. Every transition of G satisfies the Intermediate state axiom
since it is satisfies by all X;. Suppose that all transitions of G, satisfies the
Intermediate state axiom. Take a tuple (11, Upt1, - - ., Upiq, V2) Of Gy like
above. Suppose that ¢ > 2 and let ¢ > r > 1. There exists a state v3 of
X such that the tuples (o, uy, ..., Upir, V3) (V3, Upirits - - -, Un, 3) are two
transitions of G, since all transitions of (G, satisfy the Intermediate state
axiom by induction hypothesis. From the five tuples

(aaula s 7un75)7 (OZ7U1, R 7up+7”a V3)7 (V37up+7‘+17 ceey Up, ﬂ)
(a7u17 ooy Uptgs VQ); <V27up+q+1> ey Un, 5)
of G, one deduces that the tuple (15, Up 11, - - -, Uptq, V2) belongs to Go1.

From the five tuples

(CY,Ul, <. 7un7ﬁ)> (O{,Ul, <. 7upal/1)> (Vlaup-i—b s aunaﬁ)7
(aauly e 7up+7"7y3>) (V37up+7‘+17 s 7“71)/8)7

one deduces that the tuple (v, upt1, ..., Uptr, v3) belongs to G,41. Hence
(41 satisfies the Intermediate state axiom. One deduces that X satisfies the
Intermediate state axiom. ]
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Proposition 3.2. Consider the following map, functorial with respect to the
weak transition system X :

rX lim dom(f) — X.
f:Chlxy, ...,z > X
fix— X

The map rx is always bijective on states and actions and one-to-one on
transitions. The map rx is an isomorphism if and only if X satisfies the
Intermediate state axiom.

Proof. Let a be a state of X. Then there exists a map Cy — X sending the
unique state of Cj to . Hence ry is onto on states. Let o and 3 be two states
of dom(rx) sent to the same state v of X. Then the diagram {a} < {7} —
{/} is a subdiagram in the colimit calculating dom(rx). Hence v = /3 in
dom(rx). So rx is bijective on states. Let u be an action of X. Then there
exists a map p(u) — X sending the action u(u) to u. This implies that
rx is onto on actions. Let u and v be two actions of dom(ry) sent to the
same action w of X. Then the diagram {u(u)} < {u(w)} — {p(v)}is a
subdiagram in the colimit calculating dom(rx ). Hence u = v in dom(rx)
and rx is bijective on actions. Hence by [10, Proposition 4.4], rx is always
one-to-one on transitions.

By Proposition 3.1, the weak transition system dom(ry) satisfies the
Intermediate state axiom. Therefore, if 7y is an isomorphism, then X sat-
isfies the Intermediate state axiom. Conversely, let us suppose that X sat-
isfies the Intermediate state axiom. Let (o, us,...,u,,3) be a transition
of X. This transition gives rise to a map of weak transition systems ¢ :
Chnlp(ur), ..., p(u,)]** — X. Since X satisfies the Intermediate state ax-
iom, it is injective with respect to the inclusion C,[u(uy), ..., p(u,)]** C
Chlp(ur), . .., u(uy)] (see the proof of [8, Theorem 3.6]) *. Hence ¢ factors
as a composite Cp [p(u1), ..., p(un)]*" — Cplp(ur), ..., p(u,)] — X. By
definition of dom(rx ), ¢ factors as a composite

Colp(ur), .. p(un)]® — Cplu(wr), . . ., p(un)] — dom(ry) =5 X.

Hence rx is onto on transitions. O

“Note that the composition axiom of weak transition systems is used here. It is worth
noting that its use is often hidden.
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Theorem 3.3. Let (f; : w(A;) = W)ier be a cocone of Sett*'"™ such that
the weak transition systems A; are cubical for all i € 1. Then the w-final
lift W satisfies the Intermediate state axiom. Assume moreover that every
action u of W is the image of an action of A;, for some i,, € 1. Then the

w-final lift W is cubicall.

Proof. Let C be the full subcategory of weak transition systems satisfying
the Intermediate axiom. By Proposition 3.2 and [17, Proposition 3.1(i)], the
category is a full coreflective subcategory of WJS, the right adjoint being
given by the kelleyfication-like functor X — dom(rx ). Unlike the coreflec-
tion from WTS to CTS, the new coreflection preserves the set of actions (and
also the set of states). This means that the category C is concretely coreflec-
tive over w. Hence WV satisfies the Intermediate state axiom by the dual of
[1, Proposition 21.31]. Let u be an action of . Then, by hypothesis, there
exists an action v of some A;, such that the map f;, : A;, — W takes v to u.
Since A;, is cubical by hypothesis, there exists a transition («, v, §) of A;,.
Hence the triple (f;, (), u, fi,(B)) is a transition of TW. This means that all
actions of W are used. In other terms, W is cubical. OJ

Note that we have also proved that the forgetful functor C C WIS —=
Set VT jg topological by [1, Theorem 21.33]. We give the first application
of this result. It states that the image of a cubical transition system is cubical.

Corollary 3.4. Let f : X — Y be a map of weak transition systems. Let
Lx (Ly resp.) be the set of actions of X (Y resp.). Then f factors as a
composite X — f(X) — Y such that the map f(X) — Y is the inclusion
f(X%) C YV on states and the inclusion f(Lx) C Ly on actions. If X is
cubical, then f(X) is cubical.

Proof. Consider the w-final lift f(X) of the map of Set{*}">
w(X) — (F(X°), f(Lx))

induced by f. Then f(X) is a solution. Assume now that X is cubical. By
Theorem 3.3, the weak transition system f(X) is cubical and the proof is
complete. [
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4. Most elementary properties of regular transition systems

A weak transition system satisfies the Unique intermediate state axiom or
CSAZ2 if and only if it is orthogonal to the set of inclusions

Cplz1, ..., 2, C Cplay, ..., )]

foralln > 0 and all z4,...,2, € X by [7, Theorem 5.6]. By [2, Theo-
rem 1.39], there exists a functor

CSAy : WIS = WITS

such that for any weak transition system Y satisfying CSA2 and any weak
transition system X, the weak transition system CSA,(X) satisfies CSA2
and there is a natural bijection WTS(X,Y) = WIS(CSA,(X),Y). Write

nx : X — CSAQ(X)

for the unit of this adjunction. The following proposition provides an easy
way to check that a cubical transition system is regular.

Proposition 4.1. Let X be a cubical transition system. Let Y be a weak tran-
sition system satisfying CSA2. Let f : X — Y be a map of weak transition
systems which is one-to-one on states. Then X is regular.

Note that the hypothesis that X is cubical cannot be removed. Indeed,
the inclusion
Colry, .. 2, C Oy, .., 2y

for x1,...,x, € X is one-to-one on states because it is the inclusion
{0,,1,} € {0,1}".
The target C,,[z1, .. ., x,] satisfies CSA2. But the pure n-transition

Chlry, ... 2,
does not satisfy CSA2 for n > 2 because it does not even satisfy the Inter-
mediate state axiom.
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Proof. Let (o, uq,...,u,, ) be a transition of X with n > 2. Let 1 <
p < n — 1. Since X is cubical, there exist two states v; and v, such that
(o, Uy, ..y up, v;) and (v, Upya, - - -, Uy, ) are transitions of X fori = 1, 2.
Then the five tuples

(f<&)7 f(ul)a R f(un)vf(ﬁ))>
(f(a)a f(ul); ceey f(up)v f(Vl))v (f(yl); f(up+1)7 ety f(un)7f(6))
(f(a>7f<u1)7 s 7f<up)7 f(V2))7 (f(V2)7 f(up—i-l): ce 7f(un)7 f(ﬁ))

are transitions of Y. Since Y satisfies CSA2 by hypothesis, one has f(v1) =
f(v2). Since f is one-to-one on states by hypothesis, one obtains vy = vs.
Therefore X satisfies CSA2. 0

Proposition 4.2. Let X be a cubical transition system. There exists a push-
out diagram of cubical transition systems

X0 S X
(nx)° nx
CSAL(X)? ——1 CSA,(X)

where the horizontal maps are the inclusion of the set of states into the corre-
sponding cubical transition system. For all cubical transition systems X, the
unit map nx : X — CSA(X) is onto on states and the identity on actions.

Once again, the hypothesis that X is cubical cannot be removed. Indeed,
let us consider again the case of a pure n-transition X = C,[xy, ..., z,]**"
with zq,...,2, € X. Then CSAy(X) = C,[x1,...,2,] by [7, Theo-
rem 5.6]: in plain English, the n-cube is the free regular transition system
generated the pure transition consisting of its n! n-dimensional transitions.
The commutative square

{0, 1, —=——— Cyy[zq, ..., 2,
(ch [@],ees 2y ]€Tt )O ey, [z1,..., zp]eTt
{0,1}V" — =L C[x1, ..., 2

-258 -



GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

is not a pushout diagram. The unit map 7¢,, [, ...z, 1S DOt ONto on states.
However, it is still bijective on actions.

We could actually prove that the map 7y : X — CSA,(X) is always
bijective on actions for any weak transition system X. We leave the proof of
this fact to the interested reader because it will not be used in this paper.

Proof. The natural transformation from the state set functor (—)° : CTS —
Set C CTS to the identity functor of CTS gives rise to a commutative dia-
gram of cubical transition systems:

X0 < X
(nx)° nx

Consider the pushout diagram of cubical transition systems

X0 S X
(nx)° nx
CSA,(X)° ,_Z )

By the universal property of the pushout, the unit map nx : X — CSA(X)
factors uniquely as a composite

X — Z — CSAy(X).

Since the forgetful functor w : WIS — Set s forgetting the transitions
is topological, and since the inclusion CTS C WIJS is colimit-preserving,
the state set functor X — X" from CTS to Set is colimit-preserving. Hence
the set map Z° — CSA,(X)Y is bijective. Therefore, by Proposition 4.1, the
cubical transition system Z satisfies CSA2. Hence we obtain Z = CSA,(X)
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by the universal property of the adjunction. The functor taking a cubical
transition system to its set of actions is the composite functor

I

w L T La
CTS C WIS -2 Sett*}V> 3 Set™ T een e, Set

which is colimit-preserving as well. Therefore, one obtains the pushout dia-
gram of sets

%)} set of actions of X

@ —— = set of actions of CSA,(X).

This means that X — CSA,(X) is the identity on actions. By Corol-
lary 3.4, there exists a cubical transition system 7x (X') such that nx : X —
CSA,(X) factors as a composite X — 7x(X) — CSA2(X) such that the
map 7x(X) — CSAy(X) is the inclusion nx(X°%) C CSA»(X)° on states
and an inclusion on actions. By Proposition 4.1, nx(X) satisfies CSA2.
Therefore nx (X) = CSAy(X) by the universal property of the adjunction.
Hence the map nx : X — CSA,(X) is onto on states. O

Proposition 4.3. If X is cubical, then CSA(X) is regular. In particular, if
X is regular, then CSAo(X) is regular.

Proof. By definition, CSA,(X) satisfies the Unique Intermediate State ax-
iom. By Proposition 4.2, the unit X — CSA,(X) is the identity on actions.
Therefore all actions of CSA,(X) are used since they are used in X which
is cubical. [l

Proposition 4.4. The category RTS is a full reflective subcategory of CTS
and the reflection is the functor CSAy : CTS — RTS which is the restriction
of CSAy : WIS — WIS to cubical transition systems.

Proof. Let X be a cubical transition system and Y a regular transition sys-
tem. By Proposition 4.3, one has the bijection of sets

CTS(X,Y) 2 RTS(CSA,(X),Y).
It is therefore the left adjoint of the inclusion RTS C CTS. O
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Proposition 4.5. The category RTS is locally finitely presentable.

Proof. We already know that the cubes together with the double transitions
are a dense generator of C/S by [8, Theorem 3.11 and Corollary 3.12]. But
they are regular. So RTS has a dense and hence strong generator because
colimits in RTS are calculated, first, by taking the colimits in CTS and, then,
the image by the reflection CSA, : CTS — RITS. The category RTS is
also cocomplete for the same reason. The proof is complete with [2, Theo-
rem 1.20]. O

We can now introduce the cubification functor.

Definition 4.6. [7] [8, Definition 3.13] Let X € WTJS. The cubification
functor is the functor Cub : WIS — WIJS defined by

@(X): hﬂ Cn[xlavxn]a

the colimit being taken in WJS.

For any X € WIS, the weak transition system Cub(.X) is cubical and
the colimit can be taken in CTS since the latter is coreflective in WTS.

Proposition 4.7. Let X be a weak transition system. Then the canonical
map
mx : Cub(X) — X

is bijective on states.

Proof. The argument is given in the proof of [8, Theorem 3.11]. U

Proposition 4.8. Let X be a regular transition system. Then the cubical
transition system Cub(X) is regular and the colimit

lim Culzy, ...z

is the same in RTS, in CTS and in WTS.
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Proof. The weak transition system Cub(.X) is cubical because it is a colimit
of cubes. The canonical map mx : Cub(X) — X is bijective on states
by Proposition 4.7. Therefore Cub(X) is regular by Proposition 4.1. We
already know that the colimit is the same in C7S and in WTS since C7S is a
full coreflective subcategory of WTS. The functor CSA, : CTS — RTS is a
left adjoint to the inclusion RTS C CTS by Proposition 4.4. So it is colimit-
preserving and one obtains, because the cubes are regular, the isomorphism:

CSAz (i Cplar, ..., a,]) 2 ™ Cplan, . ).

The left-hand term is CSA5(Cub(.X)) which is isomorphic to Cub(.X) since
Cub(X) is regular. O

5. The left determined model category of regular transition
systems

Let us start this section with a few remarks about the terminology.

Notation 5.1. For every map f : X — Y and every natural transformation
a : ' — F’ between two endofunctors of /C, the map f x « is defined by the
diagram:

FxX—1 . py

ax
ay
rx— L3
fra
Ff
F'Y.

For a set of morphisms A, let Axa = {f x«, f € A}.

Let (C,W,F) be a model structure on a locally presentable category
IC where C is the class of cofibrations, VV the class of weak equivalences
and F the class of fibrations. A cylinder for (C, W, F) is a triple (Cyl :
K— KA"®+!: Ideld = Cyl,o : Cyl = Id) consisting of a functor
Cyl : K — K and two natural transformations v° @ ~* : Id @ Id = Cyl and
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o : Cyl = Id such that the composite o o (7" @ +!) is the codiagonal functor
Id @ 1d = Id and such that the functorial map ox : Cyl(X) — X belongs
to W for every object X. We will often use the notation v = 7° @ v!. The
cylinder is good if the functorial map vx : X UX — Cyl(X) is a cofibration
for every object X. It is very good if, moreover, the map ox : Cyl(X) — X
is a trivial fibration for every object X. A good cylinder is cartesian if

e The functor Cyl : £ — K has a right adjoint Path : K — K called
the path functor.

e There are the inclusions C x v C Cfore =0,1and C xy C C.

The notions above can be adapted to a cofibrantly generated weak factoriza-
tion system (£, R) by considering the combinatorial model structure

(L, Mor(K),R).

They can be also extended to any set of maps / by considering the associated
cofibrantly generated weak factorization system in the sense of [3, Proposi-
tion 1.3].

Definition 5.2. Letn > 1 and xq,...,x, € X. Let 9C,[x1, ..., x,] be the
regular transition system defined by removing from the n-cube C, [y, ...,
x| all its n-transitions. It is called the boundary of Cy,[x1, . .., T,).

Notation 5.3. Denote by Z the set of maps of cubical transition systems:

I={C:2—{0},R:{0,1} — {0}}
U{0C,[z1, ..., 2] = Chlz1,...,x,] | n>1and 24,... 2, € X}
U {Ci[z] =1zt| = € ¥}

By [8, Corollary 6.8] and [10, Theorem 4.6], there exists a (necessarily
unique) left determined model category structure on C7S (denoted by CTS as
well) with the set of generating cofibrations Z. A map of cubical transition
systems is a cofibration of this model structure if and only if it is one-to-
one on actions. By [8, Proposition 5.5], this model category has a cartesian
and very good cylinder Cyl : CTS — CJS defined on objects as follows:
for a cubical transition system X = (S,u : L — X,T), Cyl(X) has the
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same set of states S, the set of actions L x {0, 1} with the labelling map
L x{0,1} - L — Y and atuple (c, (uy,€1), ..., (un, €,), 3) is a transition
of Cyl(X) if and only if (o, uy,...,uy,, 3) is a transition of X. The map
7%+ X — Cyl(X) for e = 0,1 is induced by the identity on states and by
the mapping u — (u, €) on actions. The map ox : Cyl(X) — X is induced
by the identity on states and by the projection (u, €) — u on actions.

Proposition 5.4. One has the natural isomorphism of cubical transition sys-

tems
CSAL(Cyl(X)) = Cyl(CSAL(X))

for every cubical transition system X.

Proof. We have just recalled that the canonical map oy : Cyl(X) — X
is bijective on states. Therefore, by Proposition 4.1, one has Cyl(RTS) C
RTS. By Proposition 4.2, for every cubical transition system X, one has
the pushout diagram of weak transition systems (and of cubical transition
systems since colimits are the same):

X0 X

Since Cyl : CTS — CTS is a left adjoint, one obtains the pushout diagram
of cubical transition systems:

Cyl(X°) Cyl(X)

Cyl(CSAL(X)?) — 5 Cyl(CSAL(X)).

For any set £ viewed as a cubical transition system, one has Cyl(F) = FE.
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Therefore one obtains the pushout diagram of cubical transition systems:

X0 Cyl(X)

CSAL(X)? ——15 Cyl(CSAL(X)).

Since CSA,(X) is regular, the cubical transition system Cyl(CSA2(X)) is
regular. Therefore, by Proposition 4.2, the cubical transition systems

Cyl(CSAL(X))

and
CSA2(Cyl(X))

satisfy the same universal property. Hence we obtain the natural isomor-
phism
CSAL(Cyl(X)) = Cyl(CSA2(X)).

]

Theorem 5.5. There exists a (necessarily unique) left determined model cat-
egory structure on RIS (denoted by RTS) such that the set of generating
cofibrations is CSAy(Z) = Z and such that the fibrant objects are the fi-
brant cubical transition systems which are regular. The cartesian cylinder is
the restriction to RTS of the cylinder of CTS defined above. The restricted
cylinder is very good. The reflection CSA, : CTS — RTS is a left Quillen
homotopically surjective functor. The inclusion RTS C CTS reflects weak
equivalences.

Proof. Thanks to Proposition B.1 applied with Proposition 5.4, we see that
Cyl : CTS — CTS and its right adjoint Path : CTS — CTS restrict to
endofunctors of RTS. We then apply [15, Lemma 5.2] which is reexplained
also in [10, Theorem 9.3]. The only thing which remains to be proved is that
the restriction Cyl : RTS — RTS is a very good cylinder. Consider the
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following commutative square of solid arrows of RTS:

CSA(A) —— Cyl(X)
P
CSAa(f) koo o

7

Ve
7

CSAS(B) — X

where f € 7 and X € RTJS. Because of the adjunction, the existence of
a lift £ is equivalent to the existence of a lift in the following commutative
square of solid arrows of C7S:

A Cyl(X)

B——X.
So the restriction of Cyl to RTS is very good as well. O]

The end of the section is devoted to a characterization of the weak equiv-
alences of the left-determined model structure RTS.

Proposition 5.6. (Compare with [8, Proposition 7.8]) Every regular tran-
sition system satisfying CSAI is fibrant in RTS. The category of regular
transition systems satisfying CSAI is a small-orthogonality class of RTS.

Proof. Every regular transition system satistying CSA1 is fibrant in CTS
by [8, Proposition 7.8], and therefore fibrant in RTS by Corollary 5.5. A
regular transition system is CSA1 if and only if it is orthogonal to the maps
ooy : Cyl(Ch[z]) — Cifz] forall z € X. O

The full subcategory of regular transition systems satisfying CSA1 is
therefore a full reflective subcategory by [2, Theorem 1.39]. Write CSA™®
RIS — RIS for the reflection. The full subcategory of cubical tran-
sition systems satisfying CSA1 is also a small-orthogonality class and a
full reflective subcategory of CTS by [8, Proposition 7.2]. Write CSAS® :
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CTS — CTS for the reflection. The functor CSAT® . RTS — RTS
(CSASS : CTS — CTS resp.) can be defined as follows. Let X, = X. We
construct by transfinite induction a sequence of regular (cubical resp.) tran-
sition systems as follows: if for & > 0, there exist two transitions (a, u, [3)
and (o, v/, ) with u # ' and p(u) = p(u'), consider the pushout diagram
in RTS (in CTS resp.)

(n(u),1,0) — u
(1(u), 1,1) = '

Cyl(Ch[p(u)]) Xa

90 [u(w)]

Crlp(w)] ————— Xap1,

otherwise let X1 = X,. If a is a limit ordinal, then let X, = hﬂﬁm Xz,

the colimit being calculated R7S (in CTS resp.). By a cardinality argument
(all maps X, — X, are onto on actions), the sequence stabilizes. The
colimit is CSATTS (X)) (CSAYS(X) resp.).

Let X be a regular transition system. The canonical map

X — CSA{TS(X)

is then a transfinite composition of pushouts in CTS of maps of {o¢,4 |
x € ¥}. Since a colimit is calculated in RTS by taking the colimit in CTS
and by taking the image by the functor CSA,, the map CSA,(X) = X —
CSA,(CSAY’S (X)) is a transfinite composition of pushouts in RTS of maps
of {ocy(s | € £}. Thus, CSAT®(X) is orthogonal to CSA,(X) = X —
CSA5(CSAYS(X)). Hence the canonical map X — CSA™®(X) factors
uniquely as a composite

X — CSA,(CSAYS (X)) — CSATS(X).

Proposition 5.7. There exists a regular transition system X such that the
“comparison map”

CSA,(CSAYS (X)) — CSATTS(X)

is not an isomorphism.
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Proof. A cubical transition system is completely defined by giving the list of
all transitions and the actions identified by the labelling map. We consider
the regular transition system X having the transitions

(a, ur, us, B), (v, uz, ur, B), (o, ur, x), (X, u2, B), (@, u2, v), (v, us, B),
(v, ui, uy, B), (v, u, uy, B), (e, uy, X, (X, B), (v, ug, o), (V' ud, B),
(v, v, %), (0,0, X), (Ur, u, Vi), (U, uy, Vi), (Usy ug, Va), (Us, t, Va)
such that all actions are labelled by some = € Y. By applying the functor

CSASTS . CTS — CTS to X, the actions u; and «/ are identified because of
the presence of the transitions

(U17 Uy, ‘/1)7 (U17 ulla ‘/1)7 (U27 Ua, ‘/2)7 <U27 u,27 ‘/2)

The functor CSA’® : CTS — CTS does not make the identification v = v/
because these two actions are used in the transitions (v, v, x) and (v, v, x’)
and because it is assumed that x # x’. The cubical transition system

c7S
CSAY?(X)
therefore consists of the transitions >

(a, ur, ug, B), (v, uz,u, B), (@, ur, x), (X uz, B), (a, uz,v), (v,u1, B),
(e, uy, ug, B), (o, ug, ur, B), (o, ur, X', (X, uz, B), (a,ug, V), (V' uy, B),
(v 0,20, (1,0, X), (U, ua, V1), (Us, ua, Va).
The latter cubical transition system is not regular. Indeed, in the regular tran-

sition system CSA,(CSASS(X)), the identifications of states Y = x’ and
v = 1/ are made. We obtain for CSA,(CSA{"S (X)) the list of transitions

(a7u17u2a/6>7 (Oéyu%ulaﬁ)a (a)uhX)a (X)u%ﬁ)a (Oé,U/Q, V)? (Vv ulaﬁ)?
(% v, X>7 (771)/7 X)7 (Ulu U, ‘/1)7 (U27 U2, ‘/2)

The map CSA,(CSAYS(X)) — CSARS(X) therefore identifies the ac-
tions v and v’. Hence it is not an isomorphism. [

The states are preserved by CSA?—5 since the canonical map X — CSA?TS(X )is a
transfinite composition of pushouts of maps of the form Cyl(Cy[z]) — Ci[z] for z € 3,
because these maps are all of them state-preserving and because the state set functor from
CTS to Set is colimit-preserving. Beware of the fact that the functor CSA?TS is not state-
preserving.
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Proposition 5.8. (Compare with [8, Proposition 7.4]) Let Y be a regular
transition system satisfying CSAl. Let X be a regular transition system.
Then two homotopy equivalent maps f,qg : X — Y are equal. In other
terms, each of the two canonical maps X — Cyl(X) induces a bijection
RIS(Cyl(X),Y) = RIS(X,Y).

Proof. By [8, Proposition 7.4], one has the bijection of sets
CTS(CYI(X),Y) = CTS(X,Y),

the binary product being calculated in CTS. The category RTS is a full
reflective subcategory of CTS by Proposition 4.4. Thus, there is the bijection
RIS(Cyl(X),Y) = RTIS(X,Y) where the binary product is calculated in
RIS. O

The following model-categorical lemma is implicitly used several times
in [8] and [10] and it will be used again several times in this paper. Let us
state it clearly:

Lemma 5.9. Let M be a left proper combinatorial model category such
that the generating cofibrations are maps between finitely presentable ob-
jects. Let C be a class of weak equivalences of M satisfying the following
condition: in every pushout diagram of M of the form

A— % ¢

geC f

B |_D

either ¢ is a cofibration or f is an isomorphism. Then every map of cell ,((C)
is a weak equivalence of M, where cell ,((C) is the class of transfinite com-
position of pushouts of maps of C.

Proof. Since M is left proper, f is always a weak equivalence of M. By
[18, Proposition 4.1], the class of weak equivalences of M is closed under
transfinite composition. Hence the proof is complete. [
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Lemma 5.10. For all x € %, the map o¢,[y) : Cyl(C[x]) — Ci[x] satisfies
the conditions of Lemma 5.9 for M = RJTS.

Proof. Consider a pushout diagram of RTS

Cyl(Cy[z]) — 22— C

TC [a] f

The map f : C' — D factors as a composite f : C — E — CSAy(E) =
D where E is the colimit in CTS. If ¢ is not a cofibration, then ¢ is constant
on actions. In this case, C' = FE by the proof of [8, Theorem 7.10], there-
fore E is regular. One obtains D = CSAy(E) = E = C. Hence f is an
isomorphism. [

Theorem 5.11. (Compare with [8, Theorem 7.10]) A map [ : X — Y
of regular transition systems is a weak equivalence for the left determined
model structure of RTS if and only if the map CSATS (f) : CSATS(X) —
CSATTS(Y) is an isomorphism.

Proof. By Lemma 5.10, a map of regular transition systems f : X — Y
is a weak equivalence if and only if the map CSATS(f) : CSAF®(X) —
CSATTS(Y) is a weak equivalence. Since CSA™® (X)) and CSATS(Y) are
fibrant by Proposition 5.6, a map of regular transition systems f : X — Y
is a weak equivalence if and only if the map CSAT'®(f) : CSATFS(X) —
CSA™TS(Y') is a homotopy equivalence. The proof is complete with Propo-
sition 5.8. 0

6. Bousfield localization of the regular t.s. by the cubifica-
tion functor

We now deal with the Bousfield localization of R7S by the cubification func-
tor Cub and we compare this Bousfield localization with the one of CTS by
the same cubification functor.
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1 €2
[ ] o o [ J
N NS
Figure 2: The cubical transition system Z'**2 contains four states and three

actions 1, xe, x with p(z1) = p(xe) = x.

Let x € ¥. Consider the unique map p, : C[z] U Cy[z] —Tx1 bijective
on states and sending the actions of the source C'[x] L C[z] to their label.
Let us factor p, as a composite (all maps are bijective on states)

Tr1 — T
x] — T T2 > T2
Cylz] U Cy m&) Zw1e2 *—;’*> et

pso!

with Z71*2 is depicted in Figure 2, and where x; and x, are the two actions
of Cy[z]UCy[z] with p(z1) = p(xe) = x. The left-hand map is a cofibration
because it is one-to-one on actions. One has the isomorphisms

CSA[TS(Z;2) = CSAYT® (1) = CSATT™ (Z%2)
= CSAT™ (1o1) =tat,

so the right-hand map is a weak equivalence of CTS by [8, Theorem 7.10]
and of RTS by Theorem 5.11. Therefore p°/ is a cofibrant replacement of
p. both in CTS and in RTS.

Notation 6.1. Let S = {p, | z € X} and 8/ = {p=°/ | z € X}.
Proposition 6.2. For a cubical transition system X, the following statements
are equivalent:

1. The labelling map i is one-to-one.

2. X is S-injective.

3. X is S-orthogonal.
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If any one of these statements is true, then X satisfies CSAI and is S/ -
orthogonal.

Proof. The equivalence (1) <= (2) <= (3) and the fact that these three
conditions imply CSA1 is [10, Proposition 8.2]. Let X be a cubical transition
system satisfying (1). Consider the diagram of cubical transition systems:

Cil] U Cyfa] — 22— X

cof

Pz s

Ve

s
T1,T2
712

where x; and x5 are the two actions of C[x] U C[z]|. Define ¢ on states by
l(a) = ¢(«) for all states «, and on actions by ¢(x;) = ¢(z;) for i = 1,2
and ¢(x) = ¢(z1). Since X satisfies (1), one has ¢(x1) = ¢(x2). We deduce
that ¢ is a well-defined map of cubical transition systems. The map ¢ is the
only solution because p<°/ is bijective on states and the image by ¢ of the
actions of Z71*2 is necessarily the unique action of X labelled by x. Hence
X is 8/ -orthogonal. O

Proposition 6.3. (Compare with [8, Proposition 8.4]) For every regular
transition system X, the canonical map mx : Cub(X) — X belongs to

cellzs(S)

Proof. The difficulty is, once again, that colimits are not calculated in the
same way in RTS and in CTS. Let (u',ub);c; be the family of pairs of
actions of X such that 7wy (u}) = 7y (u}), which implies pu(ul) = u(ub).
Since X is cubical, for all i € I, there exist 1-transitions (o, u}, 57) of X
for j = 1,2. Let ¢' : Cy[p(u})] U Cy[u(ub)] — X be the map of cubical
transition systems sending the two 1-transitions of the source to (o}, u}, 5?)
for j = 1,2. Since 7y : Cub(X) — X is the identity on states by Proposi-
tion 4.7, one obtains the following commutative diagram of regular transition
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systems:

I Calpa(ud)] U i ()] ——— Cub(X)

el
iléllp“(“li) ﬂxl

[T ou(ui )yt X.

el

Consider the pushout diagram of regular transition systems:

1T Capa(ud)] U Ch ()] ———— Cub(X)

i€l

p,.
jer mi)

o

TT o )t

el

The colimit 7 is calculated in RTS by taking the colimit 7" in C7S and by
taking the image by the reflection CSA,. Hence the map 7mx : Cub(X) — X
factors as a composite

Cub(X) — T — CSAH(T) = Z - X.

The map Cub(X) — T is a pushout in CTS of the map [[;c; pui)- The
latter is bijective on states, therefore the map Cub(X) — T is bijective
on states as well. The map 7' — Z is onto on states by Proposition 4.2.
Hence the map ¢g : Cub(X) — Z is onto on states. Let a and 5 be two
states of Cub(X') mapped to the same state v of Z. Then 7 is mapped to
mx(a) = mx(B) by Z — X. Hence o = (3 by Proposition 4.7. Therefore
g : Cub(X) — Z is bijective on states, and so is the map of cubical transi-
tion systems h : Z — X. By construction, the latter map is one-to-one on
actions. Therefore h : Z — X is one-to-one on transitions by [10, Propo-
sition 4.4]. Any action u is used by a 1-transition («,u, 3) of X. Hence
mx : Cub(X) — X is onto on actions. Thus, there exists an action v of
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Cub(X) such that 7y(v) = u. This means that h(g(v)) = u. Hence h
is onto on actions as well. To conclude that / is an isomorphism, consider
a transition (o, uq, ..., u,, $) of X. It gives rise to a map of weak transi-
tion systems C),[u(uy), ..., p(u,)]** — X which factors as a composite
Culp(u), .oy p(un)]e — Cplp(u), . .., u(u,)] — X since X is cubical.
One obtains the composite map of weak transition systems

Cn[ﬂ(“l)a s 7#(“”)]69& — Cn[ﬂ(ul)a s 7#(“”)]
— Cub(X) — 7 — X.

Hence h is onto on transitions. O]

Lemma 6.4. For all © € %, the map p, : Cy[zx| U Cy[x] —1a?t satisfies the
conditions of Lemma 5.9 for M = L¢,;, RTS.

Proof. Consider a pushout diagram of RTS

Ci[x] U Cy[x] _? Lc

Pz !

Tt l_D.

The map f : C' — D factors as a composite f : C — E — CSAy(E) = D
where F is the colimit in CTS. If ¢ is not a cofibration, then ¢ is constant
on actions. In this case, C' = E by the proof of [8, Proposition 8.5], there-
fore E is regular. One obtains D = CSAy(E) = E = (. Hence f is an
isomorphism. O

Theorem 6.5. (Compare with [8, Theorem 8.6]) Let Wcuy, be the Grothen-
dieck localizer generated by the class of maps [ : X — Y of regular transi-
tion systems such that Cub(f) : Cub(X) — Cub(Y') is a weak equivalence
of RTS (the left determined model structure). Let W(S) be the Grothendieck
localizer generated by the set of maps S. Then one has Wgy, = W(S).

Proof. The proof is mutatis mutandis the proof of [8, Theorem 8.6]. Let us
sketch it. By Proposition 6.3, the counit 7x : Cub(X) — X belongs to
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cellrrs(S) for all regular transition systems. By Lemma 6.4, one deduces
that cellzrs(S) € W(S). Hence, for all regular transition systems X, the
counit mx : Cub(X) — X belongs to W(S). Let f : X — Y be a map of
Wecub. Consider the commutative diagrams:

Cub(f)

Cub(X) Cub(Y')

X Y.

We have just proved that the vertical maps belong to W(S). Since Cub(f)
is a weak equivalence of RTS, i.e. it belongs to the smallest Grothendieck
localizer W (&) C W(S), one deduces by the two-out-of-three property that
the bottom map f belongs to WW(S) as well. Hence we obtain the inclusion
Weu, € W(S). Since Cub(p,) is an automorphism of C[z] U C}[z], one
has S C Waup, and therefore W(S) C Weup- O

Corollary 6.6. (Compare with [8, Corollary 8.7]) The Bousfield localization
of the left determined model structure of RTS with respect to the functor Cub
exists.

Proof. The combinatorial model category RTS is left proper since all ob-
jects are cofibrant. We want to Bousfield localize with respect to a set of
maps S. Hence the proof is complete. [

Notation 6.7. Let us write L, CTS (L, RTS resp.) for the Bousfield
localization of CTS (RTS resp.) by the functor Cub.

Proposition 6.8. A regular transition system is fibrant in L, RTS if and
only if it is fibrant in L, CTS.

Proof. The proof is similar to the proof of Theorem 5.5. [

Proposition 6.9. (Compare with [8, Theorem 8.11 (1)(2)(3)]) The category

injrrs(S)
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of S-injective regular transition systems is a small-orthogonality class and
a full reflective subcategory of RTS. Write LY'® : RTS — RTS for the
reflection. The unit map X — LES(X) belongs to cellgrs(S) for any
regular transition system X.

Proof. By Proposition 6.2, being S-injective is equivalent to being S-orthog-
onal. By [2, Theorem 1.39], the subcategory injz;5(S) is then a reflective
subcategory of RTS. For any regular transition system X, the map X — 1
factors as a composite X — F(X) — 1 where the left-hand map belongs
to cellgys(S) and the right-hand map belongs to injz;5(S) by using the
small object argument in the locally presentable category RTS. Then F'(X)
is S-orthogonal by Proposition 6.2. We deduce that the map X — F(X)
factors uniquely as a composite X — L%°(X) — F(X) by the property of
the adjunction. But the map X — LSRTS(X ) factors uniquely as a composite
X — F(X) — LE¥5(X) since the map X — F(X) belongs to cellrrs(S)
and since LE"®(X) is S-orthogonal. Hence the functor F' and L5"° are
isomorphic. 0

The next proposition compares the functor LY'® : RTS — RTS with
the functor LE® : CTS — CTS defined in an analogous way in [8]:

Proposition 6.10. Let X be a regular transition system. Then one has the
natural isomorphism

CSA, (L5 (X)) 2 L™ (X).

Proof. The map LY®(X) — CSA,(LY®(X)) is bijective on actions by
Proposition 4.2. Hence the labelling map of CSA, (LY (X)) is one-to-one
since the labelling map of LE® (X) is one-to-one by Proposition 6.2. Since
the map X — 1 factors as a composite

X — LI (X) — CSALTE(X)) — 1,

and since CSA,(LY°(X)) is S-injective and regular, the latter satisfies the
same universal property as LgrS(X ). Hence the proof is complete. 0

Theorem 6.11. (Compare with [8, Theorem 8.10]) A map of regular tran-
sition systems [ : X — Y is a weak equivalence of the Bousfield lo-
calization L, RTS of RIS by the set of maps S if and only if the map

LY5(f) - LSW(X) — L¥S(Y) is an isomorphism.
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Proof. We already saw in the proof of Theorem 6.5 that every map of
Cellmg (8 )

is a weak equivalence of L, R7S. This implies that for all morphisms of
regular transition systems f : X — Y, if LE'S(f) is an isomorphism, then
f belongs to W(S). Conversely, let us suppose that f : X — Y is a weak
equivalence of L, RTS. Then LY °(f) : LE(X) — LE®(Y) is a map
of regular transition systems between two S-injective regular transition sys-
tems. By Proposition 6.2, both L¥"® (X)) and LE"®(Y') satisfy CSA1 and are
S/ -orthogonal. By [8, Proposition 7.7], both LE®(X) and L¥®(Y) are
fibrant in L, CTS, and therefore fibrant in L, RTS by Proposition 6.8.
In other terms, LYS(f) : L¥°(X) — LEF°(Y) is a weak equivalence
between two cofibrant-fibrant objects of the Bousfield localization. Hence,
L%5(f) is a weak equivalence of the left determined model structure RTS.
By Proposition 6.2, both L¥S(X) and L¥®(Y') satisfy CSA1. By Proposi-
tion 5.8, one deduces that LE"®(f) is an isomorphism. O

Proposition 6.12 and Theorem 6.13 help to understand the difference
between the weak equivalences of L, CTS and of L, RTS.

Proposition 6.12. For all cubical transition systems X, the map X —
LE5(X) is bijective on states and onto on actions. There exists a cubical
transition system X such that the map X, — LE°(X,) is not onto on tran-
sitions. For all regular transition systems Y, the map Y — LSRTS(Y) is onto
on states, on actions and on transitions. There exists a regular transition
system Yy such that the map Yy — LE®(Y;) is not bijective on states.

Proof. This is a corollary of Proposition A.2 and Proposition A.6 of Ap-
pendix A. 0

Theorem 6.13. There exists a strict inclusion of sets

{weak equivalences of L, CTS between regular t.s.}
C {weak equivalences of L, RTS } )
Inother terms, if [ : X — Y is a weak equivalence of L, CTS between two

regular transition systems, then f is a weak equivalence?fL% RTS. There
exists a weak equivalence of L, RTS which is not a weak equivalence of

Lo, CTS.
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Proof. Let f : X — Y be a weak equivalence of L, CTS between two
regular transition systems. Then by [8, Theorem 8.10], the map LgTS( f)is
an isomorphism. The map CSA,(LE®(f)) is therefore an isomorphism. So,
by Proposition 6.10, LSRTS( f) is an isomorphism. Hence by Theorem 6.11,
f is a weak equivalence of L, RTS.

Now we want to find a weak equivalence g of L, RTS which is not a
weak equivalence of L, CTS. One has o

w<02[x7 Z‘D = ({07 1}27 {(ZE, 1)’ (l‘a 2)})

by Proposition 2.6 with x € X. Consider the set {0,1}* x {—,+} and
let us make the identifications (0,0, —) = (0,0,+) = [ and (1,1,—) =
(1,1,+) = F. Write S for the quotient. Let W = (S, {u,v~,v"}). For
o € {—,+}, consider the map ¢ : w(Cy[x, z]) — W of Set!*"™ induced
by the mappings (1, €2) = (€1, €2, ) for (e1,€62) € {0,1}2, (z,1) — wu
and (z,2) — v®. Consider the w-final lift W of the cone of maps ¢~, ¢+ :
w(Cyz,x]) = W. By Theorem 3.3, the weak transition system W is cu-
bical. The only higher dimensional transitions of W are the four transitions
(I,u,v*, F)and (I,v*, u, F). Hence the unique state v such that the tuples
(I,u,v) and (v, v*, F) are transitions of W is v = (1,0, £). It turns out that
the unique state v/ such that the tuples (I,v*, ') and (v, u, F) are transi-
tions of W is v/ = (0,1,4). One deduces that W is regular. There exists
a map of cubical transition systems g : W — Cy[z, 2] defined as follows:
it takes the state (€, €2, &) to (€1, €2) for (1, €2) €, {0, 1}, the action u to
(x,1) and the actions v~ and v™ to (z,2). It is easy to see that one has the
isomorphisms

LSRTS(W) = CQ[ZL’,ZL‘] = L§TS<CQ[x7x])7

hence g is a weak equivalence of L, R7TS by Theorem 6.11. Since g is

not bijective on states, the map LE®(f) is not bijective on states by Proposi-
tion 6.12. Therefore the map LY ( f) is not an isomorphism. Hence g is not
a weak equivalence of L, CTS by [8, Theorem 8.10]. [

We can now completely elucidate this model structure thanks to the fol-
lowing result:
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Theorem 6.14. (Compare with [8, Theorem 8.11 (4)(5)]) The left adjoint
L¥® . Loy, RTS — injgr(S) induces a left Quillen equivalence between
Ly, RTS and injpr5(S) equipped with the discrete model structure (all
maps are cofibrations and fibrations and the weak equivalences are the iso-
morphisms).

Proof. For any fibrant object X of injgs(S), the map LY °(X) — X is an
isomorphism and X is cofibrant in L, R7S. For any cofibrant object Y of
L¢,, RTS, Y is fibrant in injs,5(S) and the map Y — LE'S(Y) is a weak
equivalence of L, RTS by Proposition 6.9 and by Lemma 6.4. This is the
definition of a Quillen equivalence. O

Theorem 6.11 does not mean that two regular transition systems are
weakly equivalent if and only if they are isomorphic. Indeed, for any reg-
ular transition system X, the unit map X — LSRTS(X ), by identifying the
actions of X with their labelling, modifies the geometric structure of X by
forcing identifications of states (see Proposition 6.12). Roughly speaking,
this map removes all non-discernable transitions. This behaviour is slightly
different from the one of the unit map X — LgTS (X). Once again by Propo-
sition 6.12, the unit map X — LgTS(X ) also identifies the actions of a cu-
bical transition system X by their labelling, but the latter map is constant
on states, and not necessarily onto on transitions. It may create new transi-
tions which are actually not observable and which are killed by applying the
functor CSA, : CTS — RTS.

7. Fibrant regular and cubical transition systems

The purpose of this last section is to describe completely the fibrant regular
and cubical transition systems. We already know by Proposition 6.8 that the
fibrant regular transition systems are exactly the fibrant cubical ones which
are regular. Thus, we just have to give a combinatorial characterization of
the fibrant objects of L, CTS. Corollary 7.16 encompasses the results of
[8] and [9]. -

Definition 7.1. A cubical transition system X is combinatorially fibrant if
for any n > 1, any state o and (3 and any actions uy, vy, . . . , Uy, U, such that
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p(u;) = w(v) for 1 < i < n, if the tuple («, uy, . . ., uy, 3) is a transition of
X, then the tuple (v, vy, . .., vy, () is a transition of X as well.

Proposition 7.2. Let X = (S, : L — X, T) be a combinatorially fibrant
cubical transition system. Write Path : CTS — CJS for the right adjoint
of the cartesian cylinder Cyl : CTS — CJS. Then the cubical transition
system Path(X) has S as its set of states and L X, L as its set of actions,
the labelling map is the composite map | : L Xss L — L — Y and a

tuple (o, (u®,ui), ..., (ud,ul),B) of S x (L xx L)* x S is a transition of
Path(X) if and only if there exist ey, ... €, € {0,1} such that the tuple
(o, uit,...,usr, ) is a transition of X.

Proof. Let us recall that the cartesian cylinder Cyl : CTS — CTJS is the
restriction of an endofunctor of WJS defined in the same way. The functor
Cyl : WIS — WIS has a right adjoint Path™’® : WIS — WTS defined
on objects as follows [8, Proposition 5.8]: for a weak transition system X =
(S, : L — X,T), the weak transition system Path”’®(X) has the same
set of states S, the set of actions is L. Xy, L and a tuple

(e, (uy,uy), - (uy, uy ), B)
with n > 1 is a transition of Path”’®(X) if and only if the 2" tuples
(v, uli, ...,ut, B) are transitions of X. The right adjoint of the functor

Cyl: CTS — CTS is equal to the composite functor

Path : CTS ¢ WIS -2 yyre  .c78,

where the right-hand functor from WWJS to CTS is the coreflection.

Let (u,v) € L Xx L. Since u is used in X, there exists a transition
(v, u, B) of X. Since pu(u) = p(v) and since X is combinatorially fibrant,
the triple («, v, ) is a transition of X. This means that the couple (u,v) €
L x5 L is used by the transition («, (u,v), 3) of Path™®(X). We deduce
that all actions of Path”"7® (X) are used. Consider a transition

(o, (uy, ), (g, uy ), B)
of Path"7$(X) withn > 2. Let 1 < p < n—1. Since X is cubical, there ex-
ists a state y such that the tuples (o, uy , ..., u,,7y) and (v, 1,1, ..., u,, 3)
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are two transitions of X. But X is combinatorially fibrant. This implies that
all tuples (o, ui, ... ,usr,y) and (7, u;,tﬂ, ...,ut, ) are transitions of X.
Therefore the two tuples

(Oé, (u1_7uii_)> MR (u;,u;;),'y), (/77 (u;-i-l’u;—f—l)v ) (U;,U:),B)

are transitions of Path”7®(X). This means that the weak transition system
Path"®(X) satisfies the Intermediate state axiom. We have just proved that
if X is combinatorially fibrant, then the weak transition system Path”® (X))
is cubical: in other terms, one has Path(X) = Path”7(X) in this case. Fi-
nally and because X is combinatorially fibrant, all tuples («, ufc, CouE B)
are transitions of X if and only if there exist ey, . .., €, € {0, 1} such that the
tuple (o, ui', ..., us, B) is a transition of X. This completes the proof. []

) n

Proposition 7.3. If the cubical transition system X is combinatorially fi-
brant, then so is the cubical transition system Path(X).

Proof. Let X = (S, : L — X,T) be a combinatorially fibrant cubical
transition system. Let

(Of7 (u1_7u1~_)7’(u;7u:)7/8)7(a{7 (’U;,UT),,(U;,U:’L_),/B)
be two tuples of Sx (LxxL)"xS withn > 1and pu(u; ,u;) = u(v; , v;") for
1 < i < n. Let us suppose that (o, (uy,ui), ..., (u,,ul), ) is a transition

of Path(X). Then the tuple (o, uy,...,u,, ) is a transition of X. But for
all 1 <7 < n, one has

plug) = plu”) = plug,ui) = plo;, o) = plv;) = plor).
So, all tuples (v, v, ..., v, 3) are transitions of X because X is combi-
natorially fibrant. This implies that the tuple (c, (v, v]),. .., (v, ,v]), )
is a transition of Path(X). This is the definition of combinatorial fibrancy
applied to Path(X). O

Proposition 7.4. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to any map of the form f x ¢ for
e = 0, 1 for any cofibration of cubical transition systems f.
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Proof. Let f : A — B be a map of cubical transition systems. Let L be the
set of actions of X. By adjunction, the cubical transition system X is injec-
tive with respect to f x~¢ if and only if the map 7¢ : Path(X) — X satisfies
the RLP with respect to f. Let us recall that the map 7€ : Path(X) — X
is the identity on states and the projection on the (e + 1)-th component
L X, L — L on actions by Proposition 7.2. Consider a diagram of solid
arrows of cubical transition systems:

A—2 L Path(X)

B —* X
Since the right vertical map is onto on actions and the left vertical map is
one-to-one on actions, there exists a set map ¢ : Ly — L Xy L from the
set of actions of B to the set of actions of Path(X') such that the following
diagram of sets is commutative, L 4 being the set of actions of A (note that
7€ is the projection on the (e + 1)-th component):

Li— s LxsL
/?!
_ a
f K// e
7
Ve
Ve
7 P

Lp— L.

Let ¢ : B — Path(X) defined on states by ¢(a) = 1(«) and on actions by
¢(u) = £(u). The diagram

A—2  Path(X)

-282 -



GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

1s commutative since its right vertical map is the identity on states. It just
remains to prove that ¢ : B — Path(X) is a well-defined map of cubical
transition systems. Let (o, uq, ..., u,, 3) be a transition of B. It suffices to
prove that the tuple

(v, O(uy), ..., 0(uy), P)

is a transition of Path(X') to complete the proof. Without lack of generality,

we can suppose that ¢ = 0, which means that ¢(u) = (¢(u), x(u)). One
obtains

(o, l(ur), - L(un), B) = (a, (Y (wr), x(wr)), - -5 ($(un), X (un)), B)-

Since ¢ maps the transitions of B to transitions of X, the tuple

(av¢(ul)> cee ,w(un),ﬁ)

is a transition of X. Since (¢ (u)) = u(u) = u(x(u)) for all actions u of
B, and since X is combinatorially fibrant, the tuple

(@, (Y (w), x(ur)), -, (¥ (un), x(un)), B)
is then a transition of Path(X') by Proposition 7.2. [l

Proposition 7.5. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to the maps of S/

Proof. Let x € X. Consider a diagram of solid arrows of cubical transition
systems

Cilz] U Ch o] — 22— X

pso! -

Ve

s
1,2
712

where x; and x5 are the two actions of C [x] L C}[z] and where ZZ*2 is the
cubical transition system depicted in Figure 2. Define ¢ on states by ¢(«) =
¢(a), and on actions by ¢(x;) = ¢(x;) fori = 1,2 and {(z) = ¢(z1). Let
(cvi, @(x;), B;) fori = 1,2 be the images by ¢ of the two transitions of C} [x]U
C'[z]. Since X is combinatorially fibrant, the two triples («;, ¢(x3—;), 3;) for
¢t = 1,2 are two transitions of X. The map / is therefore a well-defined map
of cubical transition systems. 0
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Proposition 7.6. Let X = (S, : L — X, T)and X' = (S",p/ : L' —
¥, T") be two cubical transition systems. The binary product X x X' has
S x S as its set of states, L xs, L' = {(z,2') € L x L', u(x) = p/(2)} as
its set of actions and the labelling map p xx, i/ : L x5 L' — X. A tuple
(o, ), (ug,uy),s ..oy (up,ul), (B, B)) is a transition of X x X' if and only
if w(w;) = p'(u}) for 1 <i < mwithn > 1, the tuple (o, uy, ..., u,, ) is a

transition of X and (o', u}, ..., ul, ') a transition of X'.

Y n’

Proof. The binary product is the same in C/S and in WJS because CTS is
a small-injectivity class of WJS. The theorem is then a consequence of [8,
Proposition 5.5]. [

Proposition 7.7. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to any map of the form f x ~y for
any map of cubical transition systems [ which is onto on states.

Proof. Let f : A — B be a map of cubical transition systems. By adjunc-
tion, the cubical transition system X is injective with respect to f x ~ if and
only if the map 7 : Path(X) — X x X satisfies the RLP with respect to f.
Consider a diagram of solid arrows of cubical transition systems:

A Path(X)
A
f Z/ 7 - i
- b=(o.)

B—— X x X.

Since the set map f : A° — B is onto by hypothesis, for any state o of
B, there exists s(a) € AY such that f(s(a)) = a. Let £ : B — Path(X)
defined on states by ¢(«) = ¢(s(«)) and on actions by ¢(u) = 1(u) (since
X is combinatorially fibrant, the map 7 : Path(X) — X x X is the identity
on actions by Proposition 7.2). We are going to prove that ¢ is a well-defined
map of cubical transition systems and that it is a lift of the diagram above.

¢ is a lift for the sets of actions. One has the following diagram of solid
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arrows between the sets of actions:

LA—>¢ Lx x5, Lx
P
I v

LB —)LX X% Lx.

It is evident that the two triangles commute since the square of solid arrows
commutes.

¢ is a lift for the sets of states. One has the diagram of solid arrows be-
tween the sets of states:

A X0
7 2

Ve
7 p=(2bo,¥1)
7

B X0 x X0,

where A : s+ (s, s) is the codiagonal map. For any state 3 of BY, one has

»(B)

=(f(s(p))) since s is a section of f
— (8(s(8))) since Yo f =706
= (¢(s(B)), d(s(B))) by Proposition 7.6.

Hence we obtain vy = 11 = ¢ o s on states, and therefore A o ¢ o s = 1) on
states. We deduce that the bottom triangle commutes on states. For any state
a of A°, one has

Ap(s(f())))

= ([ (s(f(@)))) since Ao ¢ =1po f
=¢(f(a)) since s is a section of f
= A(¢p(a)) because the square above is commutative.

-285 -



GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

Hence we obtain ¢ o s o f = ¢ on states. We obtain that the top triangle
commutes.
¢ maps a transition of B to a transition of Path(X). Let

(a7u17"'7una6>

be a transition of B. Then one has

((a), €(ur), ..., Lun), £(B)) = (¢(s(@)), ¥ (ur), - .., (un), d(s(B)))
= (Yo(a), ¥(u1), -, ¥(un), Po(B)).

The tuple (¢o(), Yo(ur), ..., Yo(uy,), ¥o(F)) is a transition of X since it is
the image by the composite map of cubical transition systems ¥y : B —
X x X — X of the transition (o, uy, ..., u,, 3) of B. Therefore by Propo-
sition 7.2 applied with ¢; = - -- = ¢, = 0, the tuple

(5(04% g(ul)> s 7€(un)7 f(ﬁ))

is a transition of Path(X) since X is combinatorially fibrant. This means
that
¢: B — Path(X)

is a well-defined map of cubical transition systems. [

Proposition 7.8. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to any map of the form (f xv)*~y
for any map of cubical transition systems f.

Proof. Let f : A — B be a map of cubical transition systems. The map fx~y
goes from (B L B) U4 Cyl(A) to Cyl(B). Since the forgetful functor from
CTS to Set taking a cubical transition system to its underlying set of states
is colimit-preserving, the set of states of the source of f x v is B L 0 BY.
Hence the map f*~ is onto on states. Then by Proposition 7.7, X is injective
with respect to (f * ) x 7. O]

Notation 7.9. Let I and .S be two sets of maps of a locally presentable cate-
gory K. Let Cyl : £ — K be a cylinder. Denote by Ax(Cyl, S, I) the set of
maps defined as follows:

o AYV(Cyl,S,I)=SU I *~")U(Ix~")
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o AETH(Cyl, S, T) = AL (Cyl, S, T) v
i A}C(CYI, S’ ]) = UnZO A%(Cylv Sv ])

Theorem 7.10. Let X be a cubical transition system. If X is combinatorially
fibrant, then it is fibrant.

Proof. Let X be a combinatorially fibrant cubical transition system. By
Proposition 7.4 and Proposition 7.5, it is A°(Cyl, 8%/, I)-injective. Let
f : A — B be amap of cubical transition systems. Let ¢ € {0,1}. The
map f * ¢ goes from B U, Cyl(A) to Cyl(B). Since the forgetful func-
tor from CTS to Set taking a cubical transition system to its underlying set
of states is colimit-preserving, the set of states of the source of f x ¢ is B°.
Hence fx~¢ is bijective on states. Therefore all maps of A°(Cyl, $/, 7) are
bijective on states. Then, by Proposition 7.7, X is A}(Cyl, S/ T)-injective.
The cubical transition system X is A"(Cyl, 8/, T)-injective for all n > 2
by Proposition 7.8. Hence X is fibrant in the Bousfield localization of CTS
by the cofibrations of Seof by [8, Corollary 6.8] and [10, Theorem 4.6]. But
Bousfield localizing by S¢°/ is the same as Bousfield localizing by S, which
is the same as Bousfield localizing by the cubification functor. Hence the
proof is complete. [

Notation 7.11. Let € 3. The two maps from C}[z] to Tz are denoted by
¢ fore =0,1. One has p, = ¥ Ui ¢! forall z € X..

Proposition 7.12. Let x € ¥. Consider the pushout diagram of CTS

0
Cz

Cilz] 1)

Y la]

Cyl(Ci[z]) ———— Cyl(Ch[z])Uo Tt .
The composite

1 1
V04 (oY

0, : Cilz] U Ch[z] Cyl(Cy[z])U T2t —— Cyl(Ch[x]) o0 T2t

is a trivial cofibration of L, CTS.
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Ch[z] U Cy[x] [ Cyl(Cilz ])'—'0 o T
a8, | a=— =0
—
o 2 5 5 o9 5

\

Figure 3: Cofibration 6, with u(x1) = p(xs) =«

Proof. The map 6, is depicted in Figure 3. It is bijective on actions, therefore
it is a cofibration. One has LY® (Cy [z] U Cy[z]) = LY®(Cyl(C, [x])Ugo T2t
) =11, Hence it is a weak equivalence of L, CTS by [8, Theorem 8.10].

O

Proposition 7.13. In the following, the notation L o, — o, means the identi-
1, =1,

fication of the initial states (the final states resp.) of the two summands. Let
n>2andx,...,x, €. Then the map

Neyon  OCH [T, .o 2y U 0. =0, Culz1, ... 2,
— Cn[QZl, C.. ,xn] U o, =o, Cn[l’l, R ,In]
Ly =1n
induced by the inclusion OC,[x1, ..., x,] C Cylz1,...,x,] is a trivial cofi-
bration of L, CTS.

Proof. The map 1,,.. ., 1s bijective on actions: the set of actions is

{(z1,1),...,(zn,n)} x {0,1},

with for example O for the left-hand term and 1 for the right-hand term.
Hence it is a cofibration. The map 7, . ., is also bijective on states: the set
of states is a set denoted by {0, 1}" LU 0 = 0n {0, 1}", which means the quo-

.....

tient of the coproduct {0, 1}" LI {0, 1}" by the identifications of 0,, (1,, resp.)
of the left-hand term with 0,, (1,, resp.) of the right-hand term. Since the
map X — LgTS(X ) is bijective on states for all cubical transition systems
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X, the map of cubical transition systems

LgTS(n$17..,7xn) : LgTS <8Cn[$1, .. ,I’n] Lo, =o, On[l’l, . ,:En]) —_—

1p =1n

1, =1p

LgTS (Cn[xl,...,xn] U o, =o, C’n[xl,...,xn]>

is bijective on states as well. The set of actions of the source and tar-
get of Lgrs(nmwmn) is {x1,...,2z,}. Since LgTS(nzl,m,xn) is one-to-one
on action by [8, Remark 8.8], it is bijective on actions. By [10, Proposi-
tion 4.4], the map Lgrs(nml,___wn) is one-to-one on transitions by. To see
that the map Lgrs(nxh__@n) is also onto on transitions, it suffice to see that
the n! n-transitions of the left-hand n-cube of the target are the n! tuples
(0, Ta(1)s - > To(n)s 1,,) which are actually transitions of the source because
of the identifications of the two initial states and the two final states. So
LCTS (May ..., ) 1s an isomorphism. Therefore by [8, Theorem 8.10], the map

Ner,...xn 19 @ weak equivalence of Ly, CTS. [

Proposition 7.14. A cubical transition system is combinatorially fibrant if
and only if it is injective with respect to 0, and 1, ., forallx,z, ..., x, €

.

Proof. Let X a combinatorially fibrant cubical transition system. Then X is
fibrant by Theorem 7.10. Since the maps ¢, and 7n,, .. forall

T,X1,...,Tn €2

are trivial cofibrations by Proposition 7.12 and Proposition 7.13, X is injec-
tive with respect to these maps. Conversely, let X be a cubical transition sys-
tem which is injective with respect to 0, and 1, ., forall x,z,..., 2, €
Y. Let (o, z1, 3) be a transition of X and let x5 an action of X such that
p(x1) = p(xz). The injectivity of X with respect to 6,,,) proves that the
triple (o, x, ) is a transition of X. Let (o, x1, ..., x,, 5) be a transition of
X withn > 2. Let yy,...,y, be n actions of X with u(z;) = u(y;) for
1 < ¢ < n. The injectivity of X with respect to 7,(,,),... u(z,) Proves that
the triple (o, 41, ..., Yn, ) is a transition of X. So, X is combinatorially
fibrant. 0
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Corollary 7.15. Let X be a cubical transition system. If X is fibrant, then it
is combinatorially fibrant.

Proof. Let X be a fibrant cubical transition system. Then it is injective with
respect to any trivial cofibration of L, CTS. By Proposition 7.12, Proposi-
tion 7.13 and Proposition 7.14, it is then combinatorially fibrant. 0

Corollary 7.16. A cubical transition system X is fibrant in L, CTS if and
only it is combinatorially fibrant.

Corollary 7.17. Every S-injective cubical transition system is fibrant in

Loy CTS.

Proof. Let (o, uq,...,uy, 3) and (o, vy,...,v,, ) as in the statement of
Theorem 7.16. Since X is S-injective, the labelling map u is one-to-one by
Proposition 6.2. Therefore u; = v; for 1 < < n. O]

In particular, all cubical transition systems of the form LgTS (X) and all
regular transition systems of the form LSWS(X ) are fibrant because they are
S-injective.

A. Proof of Proposition 6.12

Proposition A.1. Let x € X. Every pushout of p, : Cy[x] U Cy[z] —1z1 in
CTS is bijective on states, and onto on actions. There exists a pushout of p,
which is not onto on transitions.

Proof. The category C7S is a full coreflective category of WJTS, which
means that the colimits in CTS are calculated in WJTS. Therefore the for-
getful functors taking a cubical transition system to their sets of states and
actions are colimit-preserving. Since p, is bijective on states (onto on ac-
tions resp.), any pushout of p, in CTS is therefore bijective on states (onto
on actions resp.).

Let z € X. One has w(Cs[z, z, z]) = ({0,1}3,{(z, 1), (z,2), (z,3)}) by
Proposition 2.6. Consider the quotient set

S =1{0,1}* x {—,+}/((0,0,0,—) = (0,0,0,+) = I
and (1,1,1,—) = (1,1,1,+) = F).
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Let
W = (S, {u,u’,ut, us}) € Set!*IU=

with p(uy) = p(u®) = p(u') = p(uz) = x. For a € {—, +}, consider the
map
¢ w(Cslx,x,z]) - W

of Set*}"" induced by the mappings (ey, €2, €3) > (€1, €2, €3, @) for
(€1,€2,€3) € {0,1}°, (2,1) = uy, (z,2) = u®, (z,3) — us.
Consider the w-final lift TV of the cone of maps
¢, ¢ w(Cslw, z,x]) = W.

By Theorem 3.3, the weak transition system 1V is cubical. Finally, consider
the pushout diagram of cubical transition systems:

Chlx] U C ] —>T
fat FW

where the top horizontal arrow sends the 1-transition (0, (z,1),1) of the
left-hand copy of Cy[z] to ((1,0,0,—),u~,(1,1,0,—)) and the 1-transition
(0, (x,1), 1) of the right-hand copy of C [x] to ((1,0,0,+),u™, (1,1,0,+)).
We claim that the map of cubical transition systems

W—W
is not surjective on transitions. Indeed TV contains the transitions
(1, uy,u” us, F)
for @ € {—,+}, and the four transitions
(I,uq,(1,0,0,—)), ((1,0,0, =), u",us, F),
(I,uy,u™, (1,1,0,4)), ((1,1,0,4),us3, F).
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The cubical transition system 1V does not contain any transition from

(]-7 07 07 _>
to

(1,1,0,4).
In the pushout W, the identification u~ = u" is made. Therefore from
the five preceding transitions, one obtains by using the composition axiom a
transition ((1,0,0,—),u~, (1,1,0,+)). O

Proposition A.2. Every map of cellers(S) is bijective on states and onto on
actions. There exists a map of cellers(S) which is not onto on transitions.

Proof. A map of cubical transition systems is onto on actions if and only
if it satisfies the RLP with respect to the maps & — z for any x € .
As a consequence, the class of maps of cubical transition systems which
are onto on actions is accessible and accessibly embedded in the category
of maps of cubical transition systems by [19, Proposition 3.3]. Hence any
map of cellers(S) is onto on actions. All maps of S are bijective on states.
Since the state set functor from CTS to Set is colimit-preserving, all maps
of cellers(S) are bijective on states. The last assertion is a corollary of
Proposition A.1. ]

Proposition A.3. Let x € . Every pushout of p, : Cy[x] U Cy[z] =1z1 in
RIS is onto on states, on actions and on transitions.

Proof. Consider a pushout diagram in R7S:

Cilz] U Chz] ———— X

Pz f

~

The category RTS is a full reflective subcategory of C7S. Therefore a col-

imit in RTS is calculated by taking the image by the reflection CSA, :
CTS — RIS of the colimit in CTS. The canonical map Z — CSAy(Z)
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is onto on states and bijective on actions for all cubical transition systems
Z by Proposition 4.2. Therefore by Proposition A.1, the map f is onto
both on states and on actions. Let X = (S,p : L — X,7) and X' =
(S' p : L' — £,7"). Write f(T) for the set of transitions of X’ of the

form (f(Oé), f(llq), R f(un)7 f(ﬁ)) such that the tup]e (a7u17 s 7un7ﬁ)
belongs to 7. One has f(7') C T". Let f(u) be an action of X'. Then there

exists a transition (o, u, 3) of X since X is cubical. Therefore the tuple
(f(a), f(u), f(B)) belongs to f(T"). This means that all actions of X’ are
used by a transition of f(7'). Let (f(«), f(u1),..., f(u,), f(B)) be a tran-
sition of f(7"). Then (o, tug(1), - - -, Us(n), B) is a transition of X for all per-

mutations o of {1,...,n}. So the tuple (f(), f(to)),-- -, f(tow)), f(B))
is a transition of f(7). Letn > 3 and p,q > 1 with p + g < n. Let

(CY,Ul, s .. 7“%75)7 (CY,Ul, cee 7up7,u)a (,uauerb e 7un75>7

(aaula SR 7up+qa]/)a (V>Up+q+17 s 7un76)

be five transitions of f(7"). Let

(Oz,ul, cee aumﬁ) = (f(/y)7 f(vl)a toe ,f(’Un), f(5))

There exist two states € and 7 of X such that the five tuples

(Y, 01, oy Upy €)5 (V5 V14« o Upigs M) (€, Upas « -+, U,y ),

(77’ Uptg+1s - -+ Uny 6)7 (67 Up+1s -+ -5 Uptgs 77)

are transitions of X since X is cubical and by using the composition axiom
in X. Therefore, the five tuples

(f(/y) f(vl) - ( ) (6))7(f(7)7 (U1>""7f(vp+lI)7f(n))7
(f(e), f(vp+1) (), £(0)), (f(n), f(Uptqur), - fvn), F(5)),
( (6)’f(vp+1)7""f(

are transitions of f(7"). So the five tuples

(avulv sy Up, f(e))v (a7u17 s 7Up+q7f(7]>),
(f(6)>up+1a s >un>ﬁ)> (f(n)aup+q+l> cee 7una6)7
(f(€>7up+17 ooy Uptgs f(77))
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are transitions of f (7). The point is that X’ is regular. One deduces f(€) =
and f(n) = v. One obtains

(14, Up+1y - - 7up+q7V> = (f(e), f(Uerl)» cee f(Uerq)a f(n) € f(T).

Letn > 2and 1 < p < n. Let (f(a), f(ur),..., f(u,), f(5)) be a
transition of f(77). Since X is cubical, there exists a state p such that
(o, Uy, ..y up, ) and (o, Upy1, - - -, Uy, ) are two transitions of X . Since X'
is cubical, there exists a state v of X’ such that (f(«), f(u1), ..., f(up,),v)
and (v, f(up+1), ..., f(un), f(B)) are transitions of X’. Since X’ is regular,
one has f(u) = v. Therefore

(f(Oé),f(Ul), . '7f(up)7y)

and
(V7f<up+1)7 SRR f(un)7 f(ﬁ))

belong to f(7T"). We have proved that the tuple Y = (S, L' — X, f(T))
is a regular transition system. The map X — X’ factors uniquely as a
composite X — Y — X’. The map T x T— X’ factors uniquely as a
composite Tz1— Y — X’. By the universal property of the pushout, one
obtains X' =Y and 7" = f(7T). O

Proposition A.4. A map of regular transition systems is onto on states if and
only if it satisfies the RLP with respect to the map @ — {0}. The class of
maps of regular transition systems which are onto on states is accessible and
accessibly embedded in the category of maps of regular transition systems.

Proof. The first assertion is obvious. The second assertion is then a conse-
quence of [19, Proposition 3.3]. [l

Proposition A.5. A map of regular transition systems is onto on transitions if
and only if it satisfies the RLP with respect to the maps & — Cy[x1, ..., T,)
forn > 1and x,...,x, € X. The class of maps of regular transition
systems which are onto on transitions is accessible and accessibly embedded
in the category of maps of regular transition systems.

Proof. Let f : X — Y be a map of regular transition systems which is onto
on transitions. Consider a commutative diagram of weak transition systems

-294 -



GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

with X and Y regular:

e ]
Coln, o 2] ——S s Culan, . . ] — 2 Y

The lift ¢ exists since the map f : X — Y is onto on transitions by hypoth-

esis. Since X is cubical, the map ¢ : C),[xy,...,z,|*" — X factors as a
composite
ext ki ko
C:Cylry, .. 2, — Chlay, ..., 1] — XL

The point is that Y is regular. Thus, Y is orthogonal to the inclusion
Colz1, ... 2, C Oy, ..., 2]

by [7, Theorem 5.6]. Therefore k; is the inclusion C,[x1,...,x,]*" C
Culz1,...,2,] and ¢ = f o ky. We deduce that f satisfies the RLP with
respect to the maps @ — Cy[z1,...,x,] forn > 1and z4,..., 2, € X.

Conversely, let us suppose that f : X — Y is a map of regular transition
systems which satisfies the RLP with respect to the maps

& — Cylzy, ..., 2,

forn > 1land zy,...,x, € ¥. Let (a, uy,...,u,, 5) be a transition of Y.
It yields a map C,,[p(u1), ..., p(u,)]*** — Y. Since Y is cubical, this map
factors as a composite Cy, [p(u1), .. ., pu(un)]* C Cplp(uy), ..., pluy)] —
Y. By hypothesis, the right-hand map factors as a composite

Colpt(wr), - .., plun)] = X 5 Y

ext

Thus, the map C,, [p(uy), . . ., p(u,)]** — Y factors as a composite
Colu(ur), ..o p(un)]™ — X = Y.

Hence f is onto on transitions.
The last assertion is then a consequence of [19, Proposition 3.3]. [

-295 -



GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

Proposition A.6. Every map of cellprs(S) is onto on states, on actions and
on transitions.

Proof. A map of cellzzs(S) is a transfinite composition of maps which are
onto on states and on transitions by Proposition A.3. By Proposition A.4
and Proposition A.5, every map of cellzss(S) is then onto on states and
on transitions. Let f : X — Y be a map of cellgrs(S). Let u be an
action of Y. Then there exists a transition («,u,3) of Y. Consider the
map Cy[u(u)] — Y taking the 1-transition of C[u(u)] to («, u, 5). Then it
factors as a composite C[p(u)] — X — Y. The image of the 1-transition
of Cy[p(u)] by the left-hand map yields a 1-transition (v, v,0) of X such
that (f(v), f(v), f(0)) = (e, u, ). Therefore f(v) = w and f is onto on
actions. ]

B. Restricting an adjunction to a full reflective subcategory

The following proposition provides a tool to easily restrict the cylinder and
the path functors of cubical transition systems to the reflective subcategory
of regular ones. It is stated in a more general setting than the one of locally
presentable categories.

Proposition B.1. Let A C K be two categories with A full and reflective.
Let R : K — A be the reflection. Consider an adjunction F 4 G : K — K.
Then the following conditions are equivalent:

(i) F(A) C Aand G(A) C A.

(ii) There is a natural isomorphism R(F (X)) = F(R(X)) for every X €
K.

If one of the two preceding conditions is satisfied, the restriction of I' to A
is left adjoint to the restriction of G to A.

Proof. The last assertion easily follows from the sequence of isomorphisms
A(F(A), B) = K(F(A), B) = K(A,G(B)) = A(A, G(B))

for any A, B € A and from the fact that A is a full subcategory of K.
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Let us prove now the implication (i) = (i¢). For any object X of X and
any object A of A, one has:

= K(F(X),A) because R is the left adjoint of A C K
>~ K(X,G(A)) because G is the right adjoint of F’
~ A(R(X),G(A)) by adjunction and since G(A) € A
~ K(R(X),G(A)) because A is a full subcategory of
~K(F(R(X)),A) because G is the right adjoint of F’
~ A(F(R(X)),A) because A is full in X and F'(A) C A.

>~

By Yoneda applied in .4, one obtains the natural isomorphism R(F (X))
F(R(X)).

Let us prove now the implication (i) = (7). Let A be an object of A.
Then the unit map 14 : A — R(A), which is an isomorphism since A € A,
gives rise to the isomorphism F'(A) = F(R(A)). By (ii), one then obtains
the isomorphism F(A) = R(F(A)). Hence F(A) € A. We want to prove
now that G(A) € A. One has the sequence of bijections

= KC(F(G(A)),A) because G is the right adjoint of F’
>~ A(R(F(G(A)), A) because R is the left adjoint of A C K
=2 K(R(F(G(A)),A) because A is a full subcategory of X
= K(F(R(G(A)),A) because of (i)
= C(R(G(A)),G(A)) because G is the right adjoint of F.

This means that the identity of G(A) factors as a composite
G(A) 7 R(G(A) = G(A),

1.e r o nga) = Idga). Hence ng(a) has a left inverse. We follow now the
argument of [14]. By using the naturality of the unit 7 : Id — R, one obtains
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the commutative diagram

R(G(A) ———————G(4)
NR(G(A)) NG (A)

R(R(G(A)) ——— R(G(A)).
Since r o 14y = Idg(a), one has

Rro R(WG(A)) = R(T O nG(A)) = R(Idg(A)) = IdR(G(A)) .

For all objects Z of I, the map R(nz) : R(Z) — R(R(Z)) is an isomor-
phism by the universal property of the reflection R. With Z = G(A), one
obtains that R(7¢(4)) is an isomorphism. Therefore Rr = R(1g(4)) " is an
isomorphism. The map 7g(g(4)) is an isomorphism as well since ngr(Ga)) =
R(n¢(ay). Therefore

naa) © (1o (Rronreeay) ™) = 1dra) -
Hence 7);(4) has a right inverse. Thus, ng) : G(A) — R(G(A)) is an
isomorphism. Hence G(A) € A. O
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