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GLOBULAR SUBDIVISIONS ARE DIHOMOTOPY EQUIVALENCES

PHILIPPE GAUCHER

Abstract. We prove that any globular subdivision of multipointed d-spaces gives rise

to a dihomotopy equivalence between the associated flows. The proof involves a new

Reedy category which is a tweak of the one used to prove the left properness of the

q-model category of flows. As a straightforward application, the flows associated to two

multipointed d-spaces related by a finite zigzag of globular subdivisions have isomorphic

branching and merging homology theories.
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1. Introduction

Presentation. Directed Algebraic Topology (DAT) studies mathematical objects arising

from the geometric study of concurrent systems up to homotopy [6]. There are two main

classes of geometric models: the continuous models like Grandis’ directed spaces (Defi-

nition 4.3) and Krishnan’s streams [24], and the multipointed models like multipointed

d-spaces (Definition 3.1) and flows (Definition 3.4) which have a distinguished set of states.

The main multipointed combinatorial model of concurrency is the category of precubical

sets, a n-cube representing the concurrent execution of n actions [6]. A precubical set

can be realized in any of the geometric models of concurrency above.

There is no known convenient model category structure on continuous DAT models,

as all attempts to date cannot prevent the directed segment from being contracted by

weak equivalences, which implies that the weak equivalences destroy the causal structure.

On the other hand, combinatorial model category structures have been introduced for
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multipointed d-spaces and flows. They are related by a zigzag of Quillen equivalences by

[14, Theorem 10.9] and [18, Theorem 14]. There is also a functor cat :MdTop→ Flow

from multipointed d-spaces to flows which is neither a left adjoint nor a right adjoint

and such that the total left derived functor in the sense of [5] induces an equivalence of

categories between the homotopy categories of the model structures [18, Theorem 15].

Unfortunately, there are two issues: 1) the weak equivalences are extremely rigid, the

weak equivalences inducing bijections between the distinguished sets of states; 2) the

weak equivalences do not preserve the causal structure between the distinguished set of

states. The latter problem is explained in detail in [19, Section 10 and Section 11].

To overcome the first issue, the paper [10] introduces a notion of flow up to dihomotopy:

two flows are dihomotopy equivalent if they can be related by a finite zigzag of weak equiv-

alences and of retracts of transfinite compositions of pushouts of generating subdivisions

in the sense of Definition 8.3. A Whitehead theorem is even proved [10, Theorem 4.6

and 4.7], namely that any dihomotopy equivalence between two q-cofibrant homotopy

continuous flows is invertible up to homotopy, the notion of homotopy continuous object

playing the role of fibrant object in this theory. Unfortunately, it can also be proved that

the categorical localization of flows up to dihomotopy is not the homotopy category of

a model structure on flows [9, Theorem 5.7]. Not much more is known about this cate-

gorical localization. However, it is conjecturally the homotopy category of a cofibration

category. Concerning the second issue, and after [19] proving the globular analogue of

Dubut’s results from [4], the category of cellular multipointed d-spaces (i.e. the cellular

objects of their q-model structure) up to globular subdivisions (Definition 6.1) seems to

be a framework which deserves to be studied more carefully. Indeed, not only it contains

all examples coming from computer science, but also, unlike dihomotopy equivalences of

flows, globular subdivisions preserve the causal structure between the distinguished sets

of states in the following sense. The natural systems in Dubut’s sense of the associated

directed spaces of two cellular multipointed d-spaces related by a finite zigzag of glob-

ular subdivisions are bisimilar up to homotopy, whether the discrete or the continuous

versions of natural system is used [19, Theorem 8.16 and Theorem 9.4].

The purpose of this paper is to link the approaches of [10] and [19] by the theorem

stated now:

Theorem. (Corollary 10.4) Let X and Y be two cellular multipointed d-spaces related

by a finite zigzag sequence of globular subdivisions. Then the associated flows cat(X) and

cat(Y ) are related by a finite zigzag of maps of cell(T cof) (i.e. transfinite compositions of

pushouts of generating subdivisions) and of weak equivalences of flows. Using the language

of [10], the two flows cat(X) and cat(Y ) are dihomotopy equivalent.

The induced functor from the category of multipointed d-spaces up to globular subdivi-

sions to the category of flows up to dihomotopy equivalences cannot be an equivalence of

categories. Indeed, [19, Section 10] provides in [19, Proposition 10.1] an example of a triv-

ial q-fibration between two cellular multipointed d-spaces f : A→ B such that the natural

systems in Dubut’s sense of the associated directed spaces
−→
Sp(A) and

−→
Sp(B) (see Nota-

tion 4.4) cannot be bisimilar up to homotopy. By [19, Theorem 8.16 and Theorem 9.4],

this implies that the cellular multipointed d-spaces A and B cannot be isomorphic in the

categorical localization of the cellular multipointed d-spaces by the globular subdivisions.
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It would be interesting to prove the same results for the cubical subdivisions, since

cubical subdivisions of realizations of precubical sets as directed spaces preserve the

bisimilarity type [4]. This problem is left for a future work.

As a straightforward application of Corollary 10.4 and [11, Corollary 11.3], if f : X → Y

is a globular subdivision, then the associated map of flows cat(f) : cat(X) → cat(Y )

induces an isomorphism on the branching and merging homology theories. These ho-

mology theories detect the non-deterministic branching and merging areas of execution

paths. There are methods to define the branching and merging homology theories of a

multipointed d-space without using the functor cat :MdTop→ Flow and the construc-

tions of [11]. These methods will make the preservation of the branching and merging

homology theories by the globular subdivisions much easier to prove. This will be the

subject of a subsequent paper.

Outline of the paper. Section 2 recalls some basic facts in category theory and in

model category theory.

Section 3 recalls some basic facts about multipointed d-spaces and flows and everything

the reader needs to know about the functor cat : MdTop → Flow from multipointed

d-spaces to flows which is gathered in Theorem 3.6. Note that it is not necessary to recall

the definition of a Moore flow. It is only required to know that there exists some model

category between the model categories of multipointed d-spaces and flows relating the

latter by a zigzag of Quillen equivalences satisfying some very specific properties. The

reader is invited to read the statement of Theorem 3.6 carefully because some properties

are unusual.

Section 4 recalls the link between the formalism of multipointed d-spaces and flows and

the formalism of directed spaces and enriched small categories. This enables us to obtain

simpler statements for Theorem 6.8 and Theorem 9.5 and to use some results from [19]

in this paper.

Section 5 introduces the cellular multipointed d-spaces and expounds some preparatory

lemmas to study globular subdivisions in Section 6. We introduce in Proposition 5.3 a

cellular multipointed d-space Globtop(Dn)F which is the (n + 1)-dimensional topological

globe Globtop(Dn) with a finite set F of additional distinguished states belonging to

the interior of the underlying topological space. The main result is Proposition 5.5 which

states that the the map of multipointed d-spaces Globtop(Sn−1) ⊂ Globtop(Dn)F is cellular.

Section 6 studies the notion of globular subdivision (Definition 6.1) which was intro-

duced in [20, Definition 4.10] for a very specific kind of cellular multipointed d-spaces and

in [19, Definition 9.1] for general cellular multipointed d-spaces. The important notion of

connection map of a globular subdivision is introduced in Definition 6.6. Theorem 6.8 is

the first key fact of the paper: it is a consequence of the definition of the connection maps

and of the specific geometric properties of the topological globes, which are already used

in [19]. Finally, Theorem 6.9 proves that the source and target of any globular subdivision

have compatible cellular decompositions. It is the second key fact of the paper.

Section 7 introduces a new Reedy category PC(S) where C : P → S is a set map from

the underlying set of a nonempty poset (P,6) to a nonempty set. It is a tweak of the one

introduced in [16, Section 3]. We recover the Reedy category of [16] with (P,6) = {0 < 1}.

It is necessary for the proof of Theorem 8.5 which leads to Corollary 8.6.
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Section 8 introduces the notion of generating subdivision (see Definition 8.3). An

arbitrary choice of q-cofibrant replacements is made to introduce an essentially small

class T cof of generating subdivisions. We also prove that the spaces of execution paths

are preserved by a pushout along a generating subdivision in Corollary 8.6. It is the third

key fact of the paper.

Section 9 introduces a specific set T gl of generating subdivisions (see Notation 9.4)

which is specially designed for the calculations of Theorem 9.5. We then prove The-

orem 9.5 which is the analogue for the maps of T gl of Theorem 6.8 for the globular

subdivisions. This is the fourth key fact of the paper.

Section 10 uses all preceding results to prove that the image by the functor cat :

MdTop → Flow of every globular subdivision factors as a map of cell(T cof) followed

by a weak equivalence of flows. Finally, we obtain Corollary 10.4 which is the goal of the

paper. Some comments follow about the notion of underlying homotopy type of a flow.

2. Prerequisites and categorical preliminaries

The knowledge of [10], in particular the exact notion of a dihomotopy of flows, is not

required to understand this paper. On the other hand, the results expounded in this

work rely on [14–16, 18, 19]. Reminders are given throughout the paper.

All facts of this section are well-known or are variants of well-known facts. The argu-

ments are sketched for the ease of the reader (this also enables us to fix the notations).

2.1. Proposition. Let K be a cocomplete category. Consider the commutative diagram

of objects of K

A B C

D E F

G H

C D

E

If C and D are pushout squares, then the composite square C + D is a pushout square.

If C and E are pushout squares, then the composite square C + E is a pushout square.

Proof. The proof is straightforward. �

2.2. Corollary. Let K be a cocomplete category. Consider the commutative diagram of

objects of K

A B C

D E F

G H

C D

E

4



If C and C + D are pushout squares, then the commutative square D is a pushout square.

If C and C + E are pushout squares, then the commutative square E is a pushout square.

Proof. Assume that C and C + D are pushout squares. Replace the commutative square

D by a pushout square D′. Then by Proposition 2.1, C + D′ is a pushout square. Hence

C +D ∼= C +D′, C +D being a pushout square. We deduce that the commutative square

D is a pushout square. The other case is similar. �

Let K be a cocomplete category. A transfinite tower in K consists of a colimit-

preserving functor X : λ→ K from a transfinite ordinal λ viewed as a small category to

K. Let Xλ = lim
−→

X: it is called the transfinite composition of the transfinite tower. The

notation f � g means that f satisfies the left lifting property (LLP) with respect to g, or

equivalently that g satisfies the right lifting property (RLP) with respect to f . For a class

of maps C, let inj(C) = {g ∈ K, ∀f ∈ C, f � g}, cof(C) = {f | ∀g ∈ inj(C), f � g} and

cell(C) denotes the class of transfinite compositions of pushouts of elements of C. In a

locally presentable category, and if C is a set of maps, cof(C) is the class of maps which

are retracts of maps of cell(C) by [23, Corollary 2.1.15].

Let K be a bicomplete category. Let D : I → K be a diagram over a Reedy category

(I, I+, I−). The latching category at i ∈ I is denoted by ∂(I+↓i), the latching object at

i ∈ I by LiD := lim
−→∂(I+↓i)

D, the matching category at i ∈ I by ∂(i↓I−) and the matching

object at i ∈ I by MiD = lim
←−∂(i↓I−)

D. See e.g. [22, Definition 15.2.3 and Definition 15.2.5]

or [23, Definition 5.1.2] for the general definitions of a latching/matching category/object.

A model category is a bicomplete category K equipped with a class of cofibrations C,

a class of fibrations F and a class of weak equivalences W such that: 1) W is closed

under retract and satisfies two-out-of-three property, 2) the pairs (C,W ∩ F) and (C ∩

W,F) are functorial weak factorization systems. We refer to [23, Chapter 1] and to [22,

Chapter 7] for the basic notions about general model categories. A cofibration is denoted

by • •, a fibration by • • and a weak equivalence by • •≃ .

A cellular object X of a cofibrantly generated model category is an object such that

the canonical map ∅→ X belongs to cell(I) where I is the set of generating cofibrations.

The transfinite sequence of pushouts is called a cellular decomposition of X and each

pushout is called a cell. In a combinatorial model category (i.e. a model category such

that the underlying category is locally presentable [25]), every map X → Y factors as a

composite X → Z → Y such that the left-hand map belongs to cell(I) and the right-hand

map to inj(I) by [2, Proposition 1.3].

2.3. Proposition. Let K be a model category. Let F, G : λ→ K be two transfinite towers

of cofibrant objects such that all maps of the towers are cofibrations. Let µ : F ⇒ G be

an objectwise weak equivalence. Then lim
−→

µ : lim
−→

F → lim
−→

G is a weak equivalence.

Proof. By [23, Theorem 5.1.3], the colimit functor is a left Quillen functor if the category

of towers Kλ is equipped with its Reedy model structure and the two towers are Reedy

cofibrant. Hence lim
−→

µ : lim
−→

F → lim
−→

G is a weak equivalence. �

By replacing in the statement of Proposition 2.4 cocomplete category by model category

and cell(I) by cofibration, the same argument as the one of Proposition 2.3 completes

the proof. Since Proposition 2.4 is slightly more general, we borrow the argument from

[26, Lemma 9.3.4] which is initially written in the setting of cofibration categories.
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2.4. Proposition. (variant of [23, Corollary 5.1.5] and [26, Lemma 9.3.4]) Let K be a

cocomplete category. Let I be a set of maps of K. Let λ be a transfinite ordinal. Consider

two transfinite towers A : λ→ C and B : λ→ C and a natural transformation f : A⇒ B.

Assume that for each ordinal ν < λ, the map Bν ⊔Aν
Aν+1 → Bν+1 belongs to cell(I).

Then the map

B0 ⊔A0
lim
−→

Aλ −→ lim
−→

Bλ

belongs to cell(I) as well.

Proof. Denote A = lim
−→

An and B = lim
−→

Bn. We consider the commutative diagram of K

A0 A1 . . . Aλ

B0 B0 ⊔A0
A1 . . . B0 ⊔A0

Aλ

B1 . . . B1 ⊔A1
Aλ

. . . . . .

Bλ

a0

f0

a1

b0

b1

The map B0 ⊔A0
Aλ → Bλ is the transfinite composition of the maps Bν ⊔Aν

Aλ →

Bν+1 ⊔Aν+1
Aλ with ν < λ, and each map of the transfinite sequence is a pushout of

Bν ⊔Aν
Aν+1 → Bν+1 along the map Bν ⊔Aν

Aν+1 → Bν ⊔Aν
Aλ. The proof is complete,

each map Bν ⊔Aν
Aν+1 → Bν+1 belonging to cell(I) by hypothesis. �

Finally, Proposition 2.5 is used in Proposition 10.1.

2.5. Proposition. Let K be a model category. Consider a commutative diagram of solid

arrows

A B C

A′ B′ C ′

ℓ ≃

ℓ′ ≃

such that the maps B → C and B′ → C ′ are trivial fibrations and such that the map

A→ A′ is a cofibration between cofibrant objects. Then there exist two maps ℓ : A → B

and ℓ′ : A′ → B′ making the diagram commutative.
6



Proof. Consider the Reedy model category K1→2 of functors from the direct Reedy cat-

egory 1 → 2 to K. It coincides with the projective model structures since the Reedy

category 1 → 2 is direct. In this model category of maps, the map A → A′ is a cofibra-

tion, and the commutative square

B C

B′ C ′

≃

≃

is a trivial fibration from the map B → B′ to the map C → C ′. The commutative

diagram

A C

A′ C ′

is a map in K1→2 from the cofibrant object A → A′ to the object C → C ′. Hence the

existence of a lift (ℓ, ℓ′) from A → A′ to B → B′ making the whole diagram in the

statement of the proposition commutative. �

3. Multipointed d-spaces and flows

The category Top denotes either the category of ∆-generated spaces or of ∆-Hausdorff

∆-generated spaces (cf. [16, Section 2 and Appendix B]). It is Cartesian closed by a

result due to Dugger and Vogt recalled in [13, Proposition 2.5] and locally presentable

by [7, Corollary 3.7]. The internal hom is denoted by TOP(−,−). The right adjoint

of the inclusion from ∆-generated spaces to general topological spaces is called the ∆-

kelleyfication. We will make use of the well-known three model structures of Top, namely

the q-model structure, the h-model structure and the m-model structure: see the end of

[16, Appendix B] for an overview and the bibliography of the latter paper for many other

references (e.g. [3]).

Let γ1 and γ2 be two continuous maps from [0, 1] to some topological space such that

γ1(1) = γ2(0). The composite defined by

(γ1 ∗N γ2)(t) =





γ1(2t) if 0 6 t 6 1
2
,

γ2(2t− 1) if 1
2
6 t 6 1

is called the normalized composition.

Let M be the set of non decreasing surjective maps from [0, 1] to [0, 1] equipped

with the ∆-kelleyfication of the relative topology induced by the set inclusion M ⊂

TOP([0, 1], [0, 1]).

3.1. Definition. [18, Definition 3.4] A multipointed d-space X is a triple (|X|, X0,PtopX)

such that

• The pair (|X|, X0) is a multipointed space. The space |X| is called the underlying space

of X and the set X0 the set of states of X.
7



• The set PtopX is a set of continuous maps from [0, 1] to |X| called the execution paths,

satisfying the following axioms:

– For any execution path γ, one has γ(0), γ(1) ∈ X0.

– Let γ be an execution path of X. Then any composite γφ with φ ∈ M is an

execution path of X.

– Let γ1 and γ2 be two composable execution paths of X; then the normalized

composition γ1 ∗N γ2 is an execution path of X.

A map f : X → Y of multipointed d-spaces is a map of multipointed spaces from

(|X|, X0) to (|Y |, Y 0) such that for any execution path γ of X, the map Ptopf : γ 7→

f.γ is an execution path of Y . The category of multipointed d-spaces is denoted by

MdTop. Let P
top
α,βX = {γ ∈ PtopX | γ(0) = α, γ(1) = β}. The set P

top
α,βX is equipped

with the ∆-kelleyfication of the relative topology with respect to the inclusion P
top
α,βX ⊂

TOP([0, 1], |X|). Thus a set map Z → P
top
α,βX where Z is ∆-generated, is continuous if

and only if the associated map Z × [0, 1]→ |X| is continuous.

The category MdTop is locally presentable, and in particular bicomplete, by [18,

Proposition 3.6]. The functor which forgets the execution paths Ω : X 7→ (|X|, X0) from

MdTop to the category mTop of multipointed topological spaces is topological in the

sense of [1, Section 21] by [18, Theorem 3.17]. In particular, it creates limits and colimits

thanks to the initial and final structures respectively.

Every set S can be viewed a multipointed d-spaces (S, S,∅). Let X be a multipointed

d-space. Let S ⊂ X0. Denote by X↾S the triple (|X|, S,PtopX); in particular X↾X0 = X.

The topological globe of a topological space Z, which is denoted by Globtop(Z), is the

multipointed d-space defined as follows

• the underlying topological space is the quotient space

{0, 1} ⊔ (Z × [0, 1])

(z, 0) = (z′, 0) = 0, (z, 1) = (z′, 1) = 1

• the set of states is {0, 1}

• the set of execution paths is the set of continuous maps

{δzφ | φ ∈ M, z ∈ Z}

with δz(t) = (z, t). It is equal to the underlying set of the space Z ×M.

In particular, Globtop(∅) is the multipointed d-space {0, 1} = ({0, 1}, {0, 1},∅).

3.2. Notation. Let n > 1. Denote by Dn = {(x1, . . . , xn) ∈ Rn, x2
1 + · · · + x2

n 6 1} the

n-dimensional disk, and by Sn−1 = {(x1, . . . , xn) ∈ Rn, x2
1 + · · · + x2

n = 1} the (n − 1)-

dimensional sphere. By convention, let D0 = {0} and S−1 = ∅.

3.3. Notation. Denote by
−→
I top = Globtop(D0) the directed segment multipointed with

the extremities.

The q-model structure of multipointed d-spaces [18, Section 4] is the unique combina-

torial model structure such that

Igl,top ∪ {C : ∅→ {0}, R : {0, 1} → {0}}

with Igl,top = {Globtop(Sn−1) ⊂ Globtop(Dn) | n > 0} is the set of generating cofibrations,

the maps between globes being induced by the closed inclusions Sn−1 ⊂ Dn, and such
8



that

Jgl,top = {Globtop(Dn) ⊂ Globtop(Dn+1) | n > 0}

is the set of generating trivial cofibrations, the maps between globes being induced by

the closed inclusions (x1, . . . , xn) 7→ (x1, . . . , xn, 0). The weak equivalences are the maps

of multipointed d-spaces f : X → Y inducing a bijection f 0 : X0 ∼= Y 0 and a weak

homotopy equivalence Ptopf : P
top
α,βX → P

top
f(α),f(β)Y for all (α, β) ∈ X0 × X0 and the

fibrations are the maps of multipointed d-spaces f : X → Y inducing a q-fibration

P
top
α,βf : Ptop

α,βX → P
top
f(α),(β)Y of topological spaces for all (α, β) ∈ X0 ×X0.

3.4. Definition. [8, Definition 4.11] A flow X is a small enriched semicategory. Its set of

objects (preferably called states) is denoted by X0 and the space of morphisms (preferably

called execution paths) from α to β is denoted by Pα,βY (e.g. [14, Definition 10.1]). The

category is denoted by Flow.

The category Flow is locally presentable. Every set can be viewed as a flow with an

empty path space. This give rise to a functor from sets to flows which is limit-preserving

and colimit-preserving. More generally, any poset can be viewed as a flow, with a unique

execution path from u to v if and only if u < v. This gives rise to a functor from posets to

flows which is still limit-preserving but not colimit-preserving: loops are crushed because

of the antisymmetry axiom in the category of posets (which is locally presentable, hence

bicomplete) whereas they are not crushed in the category of flows.

3.5. Notation. For any topological space Z, the flow Glob(Z) is the flow having two

states 0 and 1 and such that the only nonempty space of execution paths, when Z is

nonempty, is P0,1Glob(Z) = Z. It is called the globe of Z.

The q-model structure of flows [17, Theorem 7.6] is the unique combinatorial model

structure such that

Igl ∪ {C : ∅→ {0}, R : {0, 1} → {0}}

with Igl = {Glob(Sn−1) ⊂ Glob(Dn) | n > 0} is the set of generating cofibrations, the

maps between globes being induced by the closed inclusions Sn−1 ⊂ Dn, and such that

Jgl = {Glob(Dn) ⊂ Glob(Dn+1) | n > 0}

is the set of generating trivial cofibrations, the maps between globes being induced by

the closed inclusions (x1, . . . , xn) 7→ (x1, . . . , xn, 0). The weak equivalences are the maps

of flows f : X → Y inducing a bijection f 0 : X0 ∼= Y 0 and a weak homotopy equivalence

Pf : Pα,βX → Pf(α),f(β)Y for all (α, β) ∈ X0 × X0 and the fibrations are the maps of

flows f : X → Y inducing a q-fibration Pα,βf : Pα,βX → Pf(α),(β)Y of topological spaces

for all (α, β) ∈ X0 ×X0.

There is a unique functor

cat :MdTop −→ Flow

from the category of multipointed d-spaces to the category of flows taking a multipointed

d-space X to the unique flow cat(X) such that cat(X)0 = X0 and such that Pα,βcat(X)

is the quotient of the space of execution paths P
top
α,βX by the equivalence relation gener-

ated by the reparametrization by M, the composition of cat(X) being induced by the

normalized composition.
9



We gather now all what the reader needs to know about multipointed d-spaces and

flows for this paper. Theorem 3.6 relies mostly on the results of [14, 15, 18]. Note that it

is not necessary at all to know what a Moore flow is. It is only necessary to know that it

exists.

3.6. Theorem. There exists a combinatorial q-model category MFlow (whose objects

are called Moore flows) satisfying the following properties:

(1) There is a Quillen equivalence

M
top
! :MFlow ⇆MdTop : Mtop

between the q-model structures such that the unit and the counit maps induce

isomorphisms on q-cofibrant objects. Moreover, the right Quillen adjoint Mtop :

MdTop → MFlow takes q-cofibrant (cellular resp.) multipointed d-spaces to

q-cofibrant (cellular resp.) Moore flows.

(2) There is a Quillen equivalence

M! :MFlow ⇆ Flow : M

between the q-model structures.

(3) The functor cat :MdTop→ Flow satisfies cat ∼= M!M
top; as a corollary, for any

topological space Z, there is the natural isomorphism of flows cat(Globtop(Z)) ∼=
Glob(Z).

(4) The functor cat : MdTop → Flow is neither a left adjoint nor a right adjoint;

however its left derived functor in the sense of [5] induces an equivalence of cat-

egories between the homotopy categories of the q-model structures; in particular,

the functor cat : MdTop → Flow takes weak equivalences between q-cofibrant

multipointed d-spaces to weak equivalences between q-cofibrant flows.

Proof. (1) is [18, Theorem 14] and [18, Corollary 9]. (2) is [14, Theorem 10.9]. (3) and

(4) are [18, Theorem 15]. �

The following additional facts play an important role in the sequel.

3.7. Proposition. Consider a pushout diagram of multipointed d-spaces of the form

Globtop(Sn−1) A

Globtop(Dn) Bp

with A cellular and n > 0. Then there is a pushout diagram of flows

Glob(Sn−1) cat(A)

Glob(Dn) cat(B).
p

Proof. The proof is sketched in [19, Proposition 7.1]. A proof is given for the conve-

nience of the reader. The pushout diagram of multipointed d-spaces gives rise using [18,
10



Corollary 8] to a pushout diagram of Moore flows

Mtop(Globtop(Sn−1)) Mtop(A)

Mtop(Globtop(Dn)) Mtop(B).
p

From the isomorphism of functors cat ∼= M!M
top, we obtain the pushout diagram of flows

cat(Globtop(Sn−1)) cat(A)

cat(Globtop(Dn)) cat(B).
p

The proof is complete since cat(Globtop(Z)) = Glob(Z) for any topological space Z. �

3.8. Theorem. Consider a pushout diagram of cellular multipointed d-spaces

A C

B D

∈cell(Igl,top) C

p

such that the vertical maps belong to cell(Igl,top). Then there is the pushout diagram of

cellular flows

cat(A) cat(C)

cat(B) cat(D)

∈cell(Igl)

p

and the vertical maps belong to cell(Igl).

Proof. Assume first that there is a pushout diagram of cellular multipointed d-spaces

Globtop(Sn−1) A C

Globtop(Dn) B Dp p

for some n > 0. By Proposition 2.1, there is the pushout square of cellular multipointed

d-spaces

Globtop(Sn−1) C

Globtop(Dn) Dp

11



Using Proposition 3.7, we obtain the pushout squares

Glob(Sn−1) cat(A) Glob(Sn−1) cat(C)

Glob(Dn) cat(B) Glob(Dn) cat(D)
p p

Using Corollary 2.2, we deduce the pushout diagram of cellular flows

cat(A) cat(C)

cat(B) cat(D)
p

We then deduce the theorem when the vertical maps of C are a pushout of a finite

composition of maps of Igl,top. There is the isomorphism of functors cat ∼= M!M
top. Since

M! is a left adjoint, we obtain the pushout diagram of flows

cat(A) cat(C)

cat(B) cat(D)

∈cell(Igl)

p

thanks to [18, Theorem 5] in the non-finite case. All involved flows are cellular by Propo-

sition 3.7 and [18, Theorem 5] again. �

4. Enriched small categories and directed spaces

To have simpler statements for Theorem 6.8 and Theorem 9.5, we introduced the

category of topologically enriched small categories.

4.1. Notation. The category of (topologically) enriched small categories is denoted by

CatTop. The forgetful functor CatTop ⊂ Flow has a left adjoint denoted by I+ : Flow→

CatTop.

The execution path of a flow X from α to β is still denoted by Pα,βX, whereas the

space of morphisms from α to β in I+(X) is denoted by I+(X)(α, β). One has the

homeomorphisms

I+(X)(α, β) =




Pα,βX if α 6= β

{Idα} ⊔ Pα,βX if α = β.

4.2. Notation. Denote by I the set of non-decreasing continuous maps from [0, 1] to

[0, 1]. Note that an element of I can be a constant map.

We also need to introduced Grandis’ notion of directed space to be able to use some

results from [19].

4.3. Definition. [21, Definition 1.1] [6, Definition 4.1] A directed space is a pair X =

(|X|, d(X)) consisting of a topological space |X| and a set d(X) of continuous paths from

[0, 1] to |X| satisfying the following axioms:
12



• d(X) contains all constant paths;

• d(X) is closed under normalized composition;

• d(X) is closed under reparametrization by an element of I.

The space |X| is called the underlying topological space or the state space. The elements

of d(X) are called directed paths. A morphism of directed spaces is a continuous map

between the underlying topological spaces which takes a directed path of the source to

a directed path of the target. The category of directed spaces is denoted by dTop.

Write
−→
P (X)(u, v) for the space of directed paths of X from u to v equipped with the

∆-kelleyfication of the compact-open topology.

The category of traces of a directed space X, denoted by
−→
T (X), has for objects the

points of X and the set of maps
−→
T (X)(a, b) from a ∈ X to b ∈ X is the set of traces

〈γ〉 of directed paths γ going from a to b, i.e. the set of directed paths from a to b up to

reparametrization by a map of M. The composition of traces, denoted by ∗, is induced

by the normalized composition of directed paths, i.e. 〈γ〉 ∗ 〈γ′〉 = 〈γ ∗N γ′〉. It is strictly

associative.

By [19, Proposition 3.7 and Theorem 3.8], the mapping
−→
Ω : Y = (|Y |, d(Y )) 7→

(|Y |, |Y |, d(Y )) induces a full and faithful functor
−→
Ω : dTop→MdTop which is a right

adjoint. Moreover there is the equality
−→
Sp(
−→
Ω(X)) = X for all directed spaces X.

4.4. Notation. Denote by
−→
Sp :MdTop→ dTop the left adjoint.

By [19, Proposition 3.6], the left adjoint
−→
Sp : MdTop → dTop is defined as follows.

The underlying space of
−→
Sp(X) is |X| and the set of directed spaces d(X) consists of all

constant paths and all Moore compositions of the form [(γ1φ1µℓ1
) ∗ · · · ∗ (γnφnµℓn

) such

that ℓ1+· · ·+ℓn = 1 where γ1, . . . , γn are execution paths of X and φi ∈ I for i = 1, . . . , n,

and where µℓ : [0, ℓ]→ [0, 1] is defined by µℓ(t) = t/ℓ with ℓ > 0.

4.5. Notation. For a multipointed d-space X, let
−→
T (X) =

−→
T (
−→
Sp(X)). For all α, β ∈ |X|,

let
−→
P (X)(α, β) =

−→
P (
−→
Sp(X))(α, β).

4.6. Proposition. Let X be a q-cofibrant multipointed d-space X. Let α, β ∈ X0. Then

there are the homeomorphisms

−→
P (X)(α, β) ∼=




{α} ⊔ P

top
α,βX if α = β

P
top
α,βX if α 6= β

where α denotes the constant path α. There is also the homeomorphism
−→
T (X)(α, β) ∼= I+(cat(X))(α, β)

for all α, β ∈ X0. Moreover the spaces
−→
P (X)(α, β) are m-cofibrant and the spaces

−→
T (X)(α, β) are q-cofibrant.

Proof. Every q-cofibrant multipointed d-space is a retract of a cellular one. Thus one

can suppose that X is cellular. The first part is then a consequence of [19, Theorem 4.9].

The second part is the consequence of the definitions of a trace and of the functor cat.

The spaces P
top
α,βX are m-cofibrant by [18, Theorem 16] and the spaces Pα,βcat(X) are q-

cofibrant by [14, Theorem 9.11], cat(X) being a q-cofibrant flow by Theorem 3.6. Hence

the proof is complete. �
13



Consider the example of the non q-cofibrant multipointed d-space X

(0 , 0) (1 , 0)

(0 , 1) (1 , 1)

It is defined as follows. The underlying space |X| is the topological space |X| = {(u, u) |

u ∈ [0, 1]} ∪ {(u, 1 − u) | u ∈ [0, 1]}. Let X0 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let

P
top
(0,0),(1,1)X = {t 7→ (φ(t), φ(t)) | φ ∈ M}, Ptop

(0,1),(1,0)X = {t 7→ (φ(t), 1 − φ(t)) | φ ∈ M}

and P
top
α,βX = ∅ otherwise. Then

−→
P (X)((0, 0), (1, 0)) ∼= M and P

top
(0,0),(1,0)X = ∅. The

multipointed d-space X is not q-cofibrant because a q-cofibrant replacement of X is the

disjoint sum
−→
I top ⊔

−→
I top of two directed segments multipointed with the extremities.

For every precubical set K, consider its realization |K| as a multipointed d-space: the

set of states is K0, the underlying space is the geometric realization of K and the set of

execution path from α to β is the set of all nonconstant directed paths in the geometric

realization of K from α to β ([19, Definition 3.12]). This yields a functor from precubical

sets to multipointed d-spaces. It satisfies trivially the homeomorphisms

−→
P (|K|)(α, β) ∼=




{α} ⊔ P

top
α,β|K| if α = β

P
top
α,β|K| if α 6= β

and
−→
T (|K|)(α, β) ∼= I+(cat(|K|))(α, β)

for all α, β ∈ K0.

This implies that the q-cofibrancy hypothesis is a sufficient but not necessary condition

to obtain the conclusion of Proposition 4.6.

4.7. Theorem. Consider a map of multipointed d-spaces f : X → Y between two q-

cofibrant multipointed d-spaces. The following statements are equivalent:

(1) f is a weak equivalence of the q-model structure.

(2) f induces a bijection between the states and for all (α, β) ∈ X0 × X0 a weak

homotopy equivalence
−→
P (X)(α, β) ≃

−→
P (Y )(f(α), f(β)).

(3) f induces a bijection between the states and for all (α, β) ∈ X0 × X0 a weak

homotopy equivalence
−→
T (X)(α, β) ≃

−→
T (Y )(f(α), f(β)).

(4) f induces a bijection between the states and for all (α, β) ∈ X0 ×X0 a homotopy

equivalence
−→
P (X)(α, β) ≃

−→
P (Y )(f(α), f(β)).

(5) f induces a bijection between the states and for all (α, β) ∈ X0 ×X0 a homotopy

equivalence
−→
T (X)(α, β) ≃

−→
T (Y )(f(α), f(β)).

Proof. The equivalence (1)⇔ (2) is a consequence of the definition of a weak equivalence

and of Proposition 4.6. By Proposition 4.6 and [18, Theorem 16], the quotient maps
−→
P (X)(α, β) →

−→
T (X)(α, β) and

−→
P (Y )(f(α), f(β)) →

−→
T (Y )(f(α), f(β)) are homotopy

14



equivalences. For all α, β ∈ X0, there is the commutative diagram of spaces

−→
P (X)(α, β)

−→
P (Y )(f(α), f(β))

−→
T (X)(α, β)

−→
T (Y )(f(α), f(β))

≃ ≃

The equivalence (2)⇔ (3) is then a consequence of the two-out-of-three property. Since

X and Y are q-cofibrant, the topological spaces
−→
P (X)(α, β) and

−→
P (Y )(f(α), f(β))

are m-cofibrant by Proposition 4.6. Moreover, the topological spaces
−→
T (X)(α, β) and

−→
T (Y )(f(α), f(β)) are q-cofibrant by Proposition 4.6 as well. We obtain the equivalences

(2)⇔ (4) and (3)⇔ (5) thanks to [3, Corollary 3.4]. �

5. Cellular multipointed d-spaces

All cellular multipointed d-spaces for the q-model structure ofMdTop can be reached

from ∅ without using the cofibration R : {0, 1} → {0} and by regrouping the pushouts

of C : ∅ → {0} at the very beginning. Thus, for the sequel, a cellular decomposition

of a cellular multipointed d-space of the q-model categoryMdTop consists of a colimit-

preserving functor X : λ −→ MdTop from a transfinite ordinal λ to the category of

multipointed d-spaces such that

• The multipointed d-space X0 is a set, in other terms X0 = (X0, X0,∅) for some

set X0.

• For all ν < λ, there is a pushout diagram of multipointed d-spaces

Globtop(Snν−1) Xν

Globtop(Dnν ) Xν+1

gν

ĝν p

with nν > 0.

The underlying topological space |Xλ| is Hausdorff by [18, Proposition 4.4]. For all ν 6 λ,

there is the equality X0
ν = X0. Denote by

cν = |Globtop(Dnν )|\|Globtop(Snν−1)|

the ν-th cell of Xλ. It is called a globular cell. Like in the usual setting of CW-complexes,

ĝν induces a homeomorphism from cν to ĝν(cν) equipped with the relative topology. The

map ĝν : Globtop(Dnν )→ Xλ is called the attaching map of the globular cell cν . The state

ĝν(0) ∈ X0 (ĝν(1) ∈ X0 resp.) is called the initial (final resp.) state of cν and is denoted

by c−
µ (c+

µ resp.). The integer nν + 1 is called the dimension of the globular cell cν . It

is denoted by dim cν . The states of X0 are also called the globular cells of dimension

0. By convention, a state of X0 viewed as a globular cell of dimension 0 is equal to its

initial state and to its final state. Thus, for α ∈ X0, one has α = α+ = α−. The set of

globular cells of Xλ is denoted by C(Xλ). The set of globular cells of dimension n > 0 of
15



Xλ is denoted by Cn(Xλ). In particular, C0(Xλ) = X0. The closure ĝν(cν) of cν in |Xλ| is

denoted by ĉν .

5.1. Notation. Denote by cellf the class of finite compositions of pushouts of the inclu-

sions {Sn−1 ⊂ Dn | n > 0}. Let

Sn−1
0 = {(x1, . . . , xn, 0) |

∑

i

x2
i = 1},

Dn
0 = {(x1, . . . , xn, 0) |

∑

i

x2
i 6 1.

There are the homeomorphisms Sn−1
0
∼= Sn−1 and Dn

0
∼= Dn for all n > 0.

5.2. Proposition. Let n > 1. Let F be a finite subset of the interior of Dn. Then the

inclusion Sn−1 ∪ F ⊂ Dn belongs to cellf .

Proof. For n = 1, write F = {u1 < · · · < up} with p > 1. One has

D1 = [−1, 1] =
⋃

16k6p+1

[uk−1, uk]

with u0 = −1 and up+1 = 1. This implies that S0 ∪ F ⊂ D1 belongs to cellf . We prove

now by induction on n > 1

E(n) : ∀u ∈ Dn\Sn−1, Sn−1 ∪ {u} ⊂ Dn ∈ cellf .

The case E(1) is treated above. Assume E(n) for n > 1. We want to prove E(n + 1).

Using a homeomorphism, we can suppose that u is the center of Dn+1. Consider the

commutative diagram of topological spaces

Sn−1
0 ∪ {u} Sn ∪ {u}

Dn
0 Dn

0 ∪ Sn

Dn+1

⊂

⊂ ⊂

⊂ p

⊂

Since the square is a pushout, E(n) implies that the inclusion Sn∪{u} ⊂ Dn
0 ∪Sn belongs

to cellf . The inclusion Dn
0 ∪ Sn ⊂ Dn+1 belongs to cellf as well since Dn+1 is obtained

from Dn
0 ∪ Sn by using two pushouts along the inclusion Sn ⊂ Dn+1. We have proved

E(n + 1). We proceed now by induction on p > 0 to prove

E ′(p) : ∀q 6 p, ∀n > 2, Sn−1 ∪ {u1, . . . , uq} ⊂ Dn ∈ cellf .

There is nothing to prove for E ′(0) and E ′(1) is already proved above. Assume E ′(p) for

p > 1. We want to prove E ′(p + 1). Using a homeomorphism, one can suppose that

up+1 is the center of Dn and that Dn−1
0 ∩ {u1, . . . , up} = ∅. Consider the commutative
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diagram of topological spaces

Sn−2
0 ∪ {u} Sn−1 ∪ {u1, . . . , up+1}

Dn−1
0 Dn−1

0 ∪ Sn−1 ∪ {u1, . . . , up}

Dn

⊂

⊂ ⊂

⊂ p

⊂

Since the square is a pushout, E(n−1) implies that the inclusion Sn−1∪{u1, . . . , up+1} ⊂

Dn−1
0 ∪Sn−1∪{u1, . . . , up} belongs to cellf . The inclusion Dn−1

0 ∪Sn−1∪{u1, . . . , up} ⊂ Dn

belongs to cellf as well since Dn is obtained from Dn−1
0 ∪ Sn−1 ∪ {u1, . . . , up} by using

two pushouts along two inclusions of the form Sn−1 ∪F ⊂ Dn with F ⊂ Dn\Sn−1 and F

of cardinal lower than p. We have proved E ′(p + 1). �

5.3. Proposition. Let n > 1. Consider a finite set

F ⊂ |Globtop(Dn)|\|Globtop(Sn−1)|.

Then the following data assemble into a multipointed d-space denote by Globtop(Dn)F :

• The set of states is {0, 1} ∪ F .

• The underlying space is |Globtop(Dn)|;

• For all α 6= β ∈ {0, 1} ∪ F , Ptop
α,βGlobtop(Dn)F =

−→
P (
−→
Sp(Globtop(Dn)))(α, β).

• For all α ∈ {0, 1} ∪ F , Ptop
α,αGlobtop(Dn)F = ∅.

In particular, there is the isomorphism of multipointed d-spaces

Globtop(Dn) ∼= Globtop(Dn)∅.

Proof. The composition of two execution paths is an execution path and the set of exe-

cution paths is closed under reparametrization by M. �

5.4. Notation. Let ℓ < ℓ′ be two real numbers. The multipointed d-space
−−→
[ℓ, ℓ′] is defined

as follows: the underlying space is the segment [ℓ, ℓ′], the set of states is {ℓ, ℓ′} and the set

of execution paths is the set of nondecreasing surjective maps from [0, 1] to [ℓ, ℓ′]. For all

topological spaces Z, the unique map Z → {0} induces a map of multipointed d-spaces

π : Globtop(Z)→ Globtop({0}) ∼=
−−→
[0, 1].

5.5. Proposition. Let n > 0. Consider a finite set

F ⊂ |Globtop(Dn)|\|Globtop(Sn−1)|.

Then the map of multipointed d-spaces Globtop(Sn−1) ⊂ Globtop(Dn)F is a finite com-

position of pushouts of the maps C : ∅ → {0} and Globtop(Sk−1) ⊂ Globtop(Dk) for

k > 0.
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Proof. The case n = 0 is trivial. Assume that n > 1. We consider the pushout diagram

of multipointed d-spaces (the poset structure is defined in Proposition 9.1)

{0, 1} ⊔
∐

(u,v)∈({0,1}∪F )2

u<v,]u,v[=∅,(u,v)6=(0,1)

{u, v} {0, 1} ∪ F

Globtop(Sn−1) ⊔
∐

(u,v)∈({0,1}∪F )2

u<v,]u,v[=∅,(u,v)6=(0,1)

−−−−−−−→
[π(u), π(v)] XF

⊂

u 7→u
v 7→v

p

Since the functor X 7→ X0 from multipointed d-spaces to sets is colimit-preserving, we

have X0
F = {0, 1}∪F . Note that the two sums in the pushout diagram above are taken on

all pairs (u, v) such that u < v, ]u, v[= ∅ and (u, v) 6= (0, 1). The latter condition implies

that the sums are empty in the case F = ∅. This implies that X∅ = Globtop(Sn−1).

Consider the equivalence relation on F induced by u ∼ v if and only if u < v. Since

u < v implies that there is a directed path from u to v, every element of the quotient set

F/∼ corresponds to a unique element of the interior of Dn. Thus, there is a canonical

inclusion F/ ∼⊂ Dn\Sn−1. By induction on the cardinal of F , we can verify that the

multipointed d-space XF↾{0,1} is isomorphic to Globtop(Sn−1 ⊔ F/∼). There is a pushout

diagram of multipointed d-spaces

XF↾{0,1} XF

Globtop(Dn) Globtop(Dn)F

⊂

p

We can now conclude the proof. The inclusion Globtop(Sn−1) ⊂ Globtop(Dn)F is the

composite of the three inclusions

Globtop(Sn−1) ⊂ Globtop(Sn−1) ⊔
∐

(u,v)∈({0,1}∪F )2

u<v,]u,v[=∅,(u,v)6=(0,1)

−−−−−−−→
[π(u), π(v)]

Globtop(Sn−1) ⊔
∐

(u,v)∈({0,1}∪F )2

u<v,]u,v[=∅,(u,v)6=(0,1)

−−−−−−−→
[π(u), π(v)] ⊂ XF

XF ⊂ Globtop(Dn)F

Thanks to Proposition 5.2, we deduce that the inclusion Globtop(Sn−1) ⊂ Globtop(Dn)F

is a finite composition of pushouts of the maps R : {0, 1} → {0}, C : ∅ → {0}

and Globtop(Sk−1) ⊂ Globtop(Dk) for k > 0. Since the inclusion Globtop(Sn−1) ⊂

Globtop(Dn)F is one-to-one on states, the map R : {0, 1} → {0} can be removed. And

the proof is complete. �

5.6. Corollary. Let n > 0. Consider a finite set

F ⊂ |Globtop(Dn)|\|Globtop(Sn−1)|.
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The multipointed d-space Globtop(Dn)F is cellular.

5.7. Notation. Let Glob(Dn)F = cat(Globtop(Dn)F ). We have Glob(Dn)∅ = Glob(Dn)

since Glob(Dn) = cat(Globtop(Dn)).

5.8. Corollary. Let n > 0. Consider a finite set

F ⊂ |Globtop(Dn)|\|Globtop(Sn−1)|.

The map of flows Glob(Sn−1) ⊂ Glob(Dn)F is a finite composition of pushouts of the

generating cofibrations of the q-model structure of flows. In particular, it is a q-cofibration.

Proof. It is a consequence of Proposition 3.7. �

6. Globular subdivision

6.1. Definition. [20, Definition 4.10] A map of multipointed d-spaces f : X → Y is

a globular subdivision if both X and Y are cellular and if f induces a homeomorphism

between the underlying topological spaces of X and Y . We say that Y is a globular

subdivision of X when there exists such a map. This situation is denoted by

f : X Y.sbd

6.2. Proposition. The categorical localization of the full subcategory of cellular multi-

pointed d-spaces by the globular subdivisions is locally small.

Proof. It is an adaptation of the proof of [20, Theorem 4.12]. �

6.3. Proposition. Let f : X Ysbd be a globular subdivision. For all α, β ∈ X0, there

is the homeomorphisms P
top
α,βX ∼= P

top
f(α),f(β)Y and

−→
T (X)(α, β) ∼=

−→
T (Y )(f(α), f(β)).

Proof. By [19, Theorem 9.3], there is the isomorphism of directed spaces
−→
Sp(f) :

−→
Sp(X) ∼=

−→
Sp(Y ). We obtain the homeomorphisms

−→
T (X)(α, β) ∼=

−→
T (Y )(f(α), f(β)) for all α, β ∈

X0. The homeomorphisms P
top
α,βX ∼= P

top
f(α),f(β)Y for all α, β ∈ X0 are a consequence of

Proposition 4.6. �

6.4. Definition. Let f : X Ysbd be a globular subdivision. Choose a cellular decom-

position of X. Every point α ∈ Y 0 is in a unique globular cell cα of X. Let α− = c−
α and

α+ = c+
α . Note that when α ∈ X0, then α− = α+ = α. We obtain two set maps α 7→ α−

and α 7→ α+ from Y 0 to X0.

Proposition 6.5 proves that the set maps α 7→ α− and α 7→ α+ of Definition 6.4 from

Y 0 to X0 do not depend of the choice of the cellular decomposition of X.

6.5. Proposition. Let f : X Ysbd be a globular subdivision. Consider two cellular

decompositions C0(X) and C1(X) of X and the four associated set maps α 7→ α−
0 , α 7→ α−

1 ,

α 7→ α+
0 and α 7→ α+

1 from Y 0 to X0. Then for all α ∈ Y 0, one has α−
0 = α−

1 and

α+
0 = α+

1 .

Proof. We just have to consider the case α ∈ Y 0\X0. The point α ∈ |X| = |Y | belongs

to a unique globular cell ci of Ci(X) for i = 0, 1 with dim(c0) > 1 and dim(c1) > 1. There

exists a unique execution path γi of X up to reparametrization from c−
i to c+

i for i = 0, 1

with γi(]0, 1[) ∩X0 = ∅. Thus α−
0 = c−

0 = c−
1 = α−

1 and α+
0 = c+

0 = c+
1 = α+

1 . �
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6.6. Definition. Let f : X Ysbd be a globular subdivision. Then the maps α 7→ α−

and α 7→ α+ from Y 0 to X0, which depend only on f by Proposition 6.5, are called the

connection maps of the globular subdivision f .

Consider the identity IdX of a cellular multipointed d-space X. It is a globular subdi-

vision. The connection maps of IdX are the identity of X0. The notations (−)−, (−)+ :

X0 → X0 are therefore consistent with the other meaning of the notations (−)− and

(−)+ given in Section 5.

6.7. Proposition. Let f : X Ysbd be a globular subdivision. Let α, β ∈ Y 0\X0. The

following statements are equivalent:

(1) There exists a directed path γ of Y from α to β such that γ([0, 1]) ⊂ |X|\X0.

(2) For every cellular decomposition of X, α and β are in the same globular cell

and there exists a unique directed path from α to β up to reparametrization (the

corresponding trace of
−→
T (X)(α, β) =

−→
T (Y )(α, β) is denoted by τα,β).

Proof. By [19, Theorem 9.3], and the map f : X → Y being a globular subdivision,

there is the isomorphism of directed spaces
−→
Sp(f) :

−→
Sp(X) ∼=

−→
Sp(Y ), which implies

−→
T (X)(α, β) =

−→
T (Y )(α, β). The implication (2) ⇒ (1) is obvious. If (1) holds, then α

and β belongs by to the same globular cell of X; if ĝ is the attaching map, the existence

of γ implies that ĝ(z, t) = α and ĝ(z, u) = β for some t 6 u. Hence we obtain (2). �

6.8. Theorem. Let f : X Ysbd be a globular subdivision. Let α, β ∈ Y 0. Then either

there exists a directed path γ of Y from α to β such that γ([0, 1]) ⊂ |X|\X0 and there is

the homeomorphism
−→
T (Y )(α, β) ∼= {τα,β} ∪

−→
T (X)(α+, β−),

or there is no such directed path and there is the homeomorphism
−→
T (Y )(α, β) ∼=

−→
T (X)(α+, β−).

Proof. Choose a cellular decomposition of X. Assume that there is a directed path

γ of
−→
Sp(Y ) such that γ([0, 1]) ⊂ |X|\X0. Then α = γ(0) and β = γ(1) belongs

to the same globular cell of X of dimension greater than 1. The homeomorphism
−→
T (Y )(α, β) ∼= {τα,β} ∪

−→
T (Y )(α+, β−) is a consequence of [19, Proposition 8.12] (τα,β

is defined in Proposition 6.7). Now assume that there is not such a directed path. There

are five mutually exclusive possibilities.

(1) α, β ∈ X0: α = α+ and β = β− implies the equality
−→
T (Y )(α, β) =

−→
T (Y )(α+, β−).

(2) α ∈ X0 and β ∈ |X|\X0: α = α+ and [19, Proposition 8.8] implies the homeo-

morphism
−→
T (Y )(α, β) ∼=

−→
T (Y )(α+, β−).

(3) α ∈ |X|\X0 and β ∈ X0: β = β− and [19, Proposition 8.7] implies the homeo-

morphism
−→
T (Y )(α, β) ∼=

−→
T (Y )(α+, β−).

(4) α, β ∈ |X|\X0 and belonging to the same globular cell c of X: it is a variant

of [19, Proposition 8.12] whose proof is left to the reader; intuitively, every trace

from α to β has to go out from c by the unique trace going from α to c+ and to

return to c by c− followed by the unique trace from c− to β.
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(5) α, β ∈ |X|\X0 and belonging to two different globular cells of X: [19, Proposi-

tion 8.9] implies the homeomorphism
−→
T (Y )(α, β) ∼=

−→
T (Y )(α+, β−). The proof is

complete thanks to Proposition 6.3.

�

A globular subdivision f : X Ysbd is not necessarily well-behaved with respect to

the chosen cellular decompositions of X and Y . More precisely, the image f(ĉ) of the

closure ĉ of a globular cell c of X is not necessarily a cell subcomplex of Y . To see that, let

us start from the homeomorphism [0, 1/3] ⊔1/3 [1/3, 1] ∼= [0, 2/3] ⊔2/3 [2/3, 1]. This gives

rise to two cellular decompositions of Globtop([0, 1]) which can be depicted as follows (the

red lines must be identified to a point):

The identity of Globtop([0, 1]) is a globular subdivision which is such a pathological exam-

ple. Theorem 6.9 proves that it is always possible to choose another cellular decomposition

of Y to avoid this kind of issue.

6.9. Theorem. Let f : X Ysbd be a globular subdivision. Let X̃ : λ → MdTop be

a cellular decomposition of X. There exists a transfinite tower of cellular multipointed

d-spaces Ỹ : λ→MdTop and a map of transfinite towers X̃ → Ỹ such that the colimit

is the globular subdivision X → Y and such that for all ν < λ, there is the commutative

diagrams of multipointed d-spaces of the form

Globtop(Snν−1) X̃ν Ỹν

Globtop(Dnν ) X̃ν+1

Globtop(Dnν )F (cν) Ỹν+1

gν sbd

sbd

ĝν p

sbd

p

Moreover, the connection maps of the globular subdivision f : Xν Yν
sbd are the restric-

tions to Y 0
ν of the connection maps of the globular subdivision f : Xν+1 Yν+1

sbd for all

ν < λ.

The hypothesis that Y is cellular is used to guarantee that Y 0 is discrete and at the

very end of the proof for using [19, Theorem 9.3(2)]. Without this hypothesis, and even

by assuming Y 0 discrete, there is no guarantee for the map Ỹλ → Y , which induces

a homeomorphism between the set of states and between the underlying spaces, to be
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an isomorphism: the multipointed d-space Y could have more execution paths than Ỹλ

indeed.

Proof. There is a bijection of sets

|X| =
⊔

c∈C(X)

c

where C(X) is the set of globular cells of X̃. We obtain a bijection of sets

|Y | =
⊔

c∈C(X)

f(c).

Each cell cν of X for ν < λ corresponds to a pushout diagram of the form

Globtop(Snν−1) X̃ν

Globtop(Dnν ) X̃ν+1

gν

ĝν p

for some nν > 0. Consider a globular cell c of X with dim(c) > 1. The closure f̂(c) of each

f(c) is a compact in the Hausdorf space |X| = |Y |. Therefore, the set f(c)∩Y 0 ⊂ f̂(c)∩Y 0

is finite, Y 0 being discrete because Y is cellular by hypothesis. Let F (c) = f(c) ∩ Y 0

for c running over the set C(X) of globular cells of X of dimension greater than 1. We

are going to construct by transfinite induction a transfinite tower Ỹ : λ→MdTop and

a map of transfinite towers X̃ → Ỹ such that for all ν 6 λ, there is a homeomorphism

X̃ν
∼= Ỹν as follows. Let Ỹ0 = X0. Assume that the map of transfinite towers X̃ → Ỹ is

constructed until some ordinal ν < λ. Consider the commutative diagram of solid arrows

of multipointed d-spaces

Globtop(Snν−1) X̃ν

Globtop(Snν−1) Ỹν

Globtop(Dnν ) X̃ν+1

Globtop(Dnν )F (cν) Ỹν+1

gν

ĝν

sbd

p

p

The universal property of the pushout yields a (unique) map X̃ν+1 → Ỹν+1. Since the

functor X 7→ (|X|, X0) from MdTop to mTop is topological, it is colimit-preserving.

Therefore, we obtain from the homeomorphism |X̃ν | ∼= |Ỹν | the homeomorphism |X̃ν+1| ∼=
|Ỹν+1|. For a limit ordinal ν 6 λ, let us define the map of multipointed d-space X̃ν → Ỹν as

a colimit. Since the functor X 7→ |X| is colimit-preserving, we obtain the homeomorphism
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|X̃ν | ∼= |Ỹν | also for the limit ordinals ν 6 λ. By Proposition 5.5, each multipointed d-

space Ỹν for ν 6 λ is cellular. We deduce that the maps X̃ν → Ỹν are globular subdivisions

for all ν 6 λ. By reorganizing the cube above, we obtain the planar commutative diagram

of multipointed d-spaces of the statement of the theorem for all ν < λ. The map of

multipointed d-spaces X̃0 → Y factors uniquely as a composite X̃0
∼= Ỹ0 → Y . Assume

that for an ordinal ν < λ, the map of multipointed d-spaces X̃ν → Y factors uniquely as

a composite X̃ν
∼= Ỹν → Y . From the commutative square of multipointed d-spaces

Globtop(Snν−1) X̃ν Y

Globtop(Dnν )F (cν) Y

gν

we deduce that the map of multipointed d-spaces X̃ν+1 → Y factors uniquely as a compos-

ite X̃ν+1
∼= Ỹν+1 → Y . We obtain by transfinite induction that the globular subdivision

X → Y factors uniquely as a composite of globular subdivisions X → Ỹλ → Y . It

remains to prove that every execution path of Y is an execution path of Ỹλ to complete

the proof. Consider an execution path γ of Y . It is a directed path of the directed space
−→
Sp(Y ) by definition of the functor

−→
Sp :MdTop→ dTop. By [19, Theorem 9.3(2)], one

has
−→
Sp(X) =

−→
Sp(Y ). Thus, γ is a directed path of the directed space

−→
Sp(X). By [19,

Theorem 4.9], X being cellular, there exists an execution path γ′ of X and φ ∈ I such

that γ = γ′φ. In plain English, every execution path of Y is a piece of an execution path

of X between two points of Y 0. Therefore it is an execution path of Ỹλ, which means that

Ỹλ = Y . Finally, the location of the q-cofibrations is a consequence of Proposition 5.5. �

7. The Reedy category PC(S)

Let S be a nonempty set. Let C : P → S be a set map from the underlying set P of

a nonempty poset (P,6) to the set S. We introduce a small category PC(S) defined by

generators and relations as follows:

• The objects are the tuples of the form

m = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un))

with n > 1, u0, . . . , un ∈ S, ǫ1, . . . , ǫn ∈ {0} ⊔ {(u, v) ∈ P × P | u < v} and

∀i such that 1 6 i 6 n, ǫi 6= 0⇒ (C, C)(ǫi) = (ui−1, ui).

The integer n is the length of the tuple. The integer
∑

i h(ǫi) with h(0) = 0 and

h(u, v) = 1 for all u < v ∈ P is the height of the tuple m.

• There is an arrow

cn+1 : (m, (x, 0, y), (y, 0, z), n)→ (m, (x, 0, z), n)

for every tuple m = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) with n > 1 and every

tuple n = ((u′
0, ǫ′

1, u′
1), (u′

1, ǫ′
2, u′

2), . . . , (u′
n′−1, ǫ′

n′ , u′
n′)) with n′ > 1. It is called a compo-

sition map.

• There is an arrow

Iǫ
n+1 : (m, (u, 0, v), n)→ (m, (u, ǫ, v), n)
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with ǫ 6= 0 for every tuple m = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) with n > 1

and every tuple n = ((u′
0, ǫ′

1, u′
1), (u′

1, ǫ′
2, u′

2), . . . , (u′
n′−1, ǫ′

n′ , u′
n′)) with n′ > 1. It is

called an inclusion map.

• There are the relations (group A) ci.cj = cj−1.ci if i < j (which means since ci and cj

may correspond to several maps that if ci and cj are composable, then there exist cj−1

and ci composable satisfying the equality).

• There are the relations (group B) Iǫ
i .Iǫ′

j = Iǫ′

j .Iǫ
i if i 6= j. By definition of these maps,

Iǫ
i is never composable with Iǫ′

i .

• There are the relations (group C)

ci.I
ǫ
j =





Iǫ
j−1.ci if j > i + 2

Iǫ
j .ci if j 6 i− 1.

By definition of these maps, ci and Iǫ
i are never composable as well as ci and Iǫ

i+1.

Assume that C consists of a set map from {0, 1} to S with the ordering 0 < 1. The

map C is determined by the choice of a pair (C(0), C(1)) = (u, v) ∈ S × S. The only

element of {(u, v) ∈ P × P | u < v} is in this case the pair (0, 1). In a tuple m =

((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)), if ǫi 6= 0 for some i ∈ {1, . . . , n}, then ǫi = (0, 1)

necessarily and (C, C)(0, 1) = (u, v). This implies that ui−1 = u and ui = v. We therefore

recover the definition of the small category Pu,v(S) of [16, Section 3].

7.1. Definition. Denote by PC(S)+ the subcategory of PC(S) generated by all objects

of PC(S) and by the inclusion maps. Denote by PC(S)− the subcategory of PC(S)

generated by all objects of PC(S) and by the composition maps.

There is the obvious proposition

7.2. Proposition. With the notations above. The mapping

Φ : ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) 7→

((u0, h(ǫ1), u1), (u1, h(ǫ2), u2), . . . , (un−1, h(ǫn), un))

induces a functor

Φ : PC(S)→ Pu,v(S).

Moreover, for all objects m, n of PC(S), the functor Φ induces a bijection of sets

Φ : PC(S)(m, n) ∼= Pu,v(S)(Φ(m), Φ(n))

which takes a map of PC(S)+ to a map of Pu,v(S)+ and which takes a map PC(S)− to a

map of Pu,v(S)−. Finally the functor Φ preserves the height and the length.

7.3. Proposition. The small categories PC(S)−, PC(S)+ and PC(S) are posets.

Proof. A small category is a poset if and only if the set of maps between any pair of

objects is almost one. By [16, Proposition 3.2], the category Pu,v(S)− is a poset. By [16,

Proposition 3.5], the category Pu,v(S)+ is a poset. Finally, by [16, Corollary 3.8], the

category Pu,v(S) is a poset. The proof is complete thanks to Proposition 7.2. �

7.4. Definition. An object n of the small category PC(S) is simplifiable if the matching

category ∂(n↓PC(S)−) is nonempty.
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7.5. Proposition. Let n be an object of PC(S). Then either n is not simplifiable (in this

case, let S(n) := n) or the matching category ∂(n↓PC(S)−) has a terminal object denoted

by S(n) and the latter is not simplifiable.

Proof. By [16, Proposition 3.4], the proposition holds for Pu,v(S). The proof is complete

thanks to Proposition 7.2. �

7.6. Proposition. The pair (PC(S)+,PC(S)−) endows the small category PC(S) with a

structure of Reedy category with the N-valued degree map defined by

d((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) = n +
∑

i

h(ǫi).

Moreover, in the canonical decomposition f = f+.f− with f+ ∈ Mor(PC(S)+) and f− ∈

Mor(PC(S)−), the source of f+, which is the target of f−, is uniquely determined by the

source and the target of f .

The minimal value of the degree map is 1 and it is reached for the objects ((u0, 0, u1))

for (u0, u1) running over S × S.

Proof. The composition maps decrease the degree by one, the inclusion maps increase the

degree by one. So every map of PC(S)+ increases the degree and every map of PC(S)−

decreases the degree. Let

f : ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un))

→ ((u′
0, ǫ′

1, u′
1), (u′

1, ǫ′
2, u′

2), . . . , (u′
n−1, ǫ′

n′, u′
n′))

be a map of PC(S). By definition of the small category PC(S), f is a composite of

composition maps and of inclusion maps. Using the relations of group C, we obtain a

factorization f = f+.f− with f+ ∈ Mor(PC(S)+) and f− ∈ Mor(PC(S)−). By definition

of the inclusion maps, the source of f+, which is the target of f−, is of the form

((u′
0, ǫ′′

1, u′
1), (u′

1, ǫ′′
2, u′

2), . . . , (u′
n−1, ǫ′′

n′ , u′
n′))

with h(ǫ′′
j ) 6 h(ǫ′

j) for 1 6 j 6 n′. And by definition of the composition maps, there is

the equality (u′
0, u′

1, . . . , u′
n′) = (ui0

, ui1
, . . . , uin′

) where 0 = i0 < i1 < · · · < in′ = n and

with

ǫ′′
j =





0 if ij − ij−1 > 1

ǫij
if ij − ij−1 = 1.

In other terms, there is only one possibility for the source of f+ which is the target of f−.

The proof is complete thanks to Proposition 7.3. �

7.7. Theorem. Let K be a model category. Let CAT(PC(S),K) be the category of func-

tors and natural transformations from PC(S) to K. Then there exists a unique model

structure on CAT(PC(S),K) such that the weak equivalences are the pointwise weak

equivalences and such that a map of diagrams f : D → E is a cofibration (called a Reedy

cofibration) if for all objects n of PC(S), the canonical map LnE ⊔LnD D(n)→ E(n) is a

cofibration of K. Moreover the colimit functor

lim
−→

: CAT(PC(S),K) −→ K

is a left Quillen adjoint.
25



Proof. A model structure is characterized by its class of weak equivalences and its class

of cofibrations. Hence the uniqueness. The existence is explained e.g. in [22, Theo-

rem 15.3.4]. The matching category of an object is either empty or connected by Propo-

sition 7.5. The last assertion is then the consequence of [22, Proposition 15.10.2] and [22,

Theorem 15.10.8]. �

The following additional facts are worth being mentioned. However, they are not used

in the paper.

7.8. Proposition. Let n be an object of PC(S). Then either ∂(PC(S)+↓n) is empty (in

this case, let I(n) := n) or it has an initial object denoted by I(n).

Proof. Let n = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)). Then we have necessarily

I(n) = ((u0, 0, u1), (u1, 0, u2), . . . , (un−1, 0, un)).

The proposition is then a consequence of Proposition 7.3. �

We deduce that the limit functor lim
←−

: CAT(PC(S),K) → K is also a right Quillen

adjoint by Proposition 7.8, [22, Proposition 15.10.2] and [22, Theorem 15.10.8].

8. Pushout along a generating subdivision

8.1. Definition. A poset (P,6) is bounded if there exist 0̂ ∈ P and 1̂ ∈ P such that

P = [0̂, 1̂] and such that 0̂ 6= 1̂. Let 0̂ = min P (the bottom element) and 1̂ = max P (the

top element).

8.2. Notation. [11, Definition 4.4] Let T be the class of inclusions of finite bounded

posets P1 ⊂ P2 preserving the bottom element and the top element. The class T is

essentially small.

8.3. Definition. A generating subdivision is a q-cofibration of flows f cof : P cof
1 → P cof

2

between q-cofibrant flows such that there exists a commutative square of flows

P cof
1 P1

P cof
2 P2

fcof

≃

f

≃

with f : P1 ⊂ P2 ∈ T and such that the horizontal maps are weak equivalences of the

q-model structure of flows.

In [10–12], such a map is called a generating T-homotopy equivalence. For the same

reason as in [19, Definition 9.1] where the T-homotopy equivalence terminology is aban-

doned to the more appropriate globular subdivision terminology, we want to forget the

old terminology which was a bit naive.

8.4. Notation. Let T cof be an arbitrary choice of generating subdivisions f cof for f

running over the class of maps T . The class T cof is essentially small.
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8.5. Theorem. Consider a pushout diagram of flows of the form

P cof
1 A

P cof
2 X

g

f

ĝ p

where the left vertical map is a generating subdivision. Then for all (α, β) ∈ A0×A0, the

map f induces a trivial h-cofibration of spaces Pα,βA→ Pf(α),f(β)X.

Proof. For each pair (u, v) of P1 with u < v, consider the topological space Tu,v defined

by the pushout diagram of spaces

Pu,vP cof
1 Pg(u),g(v)A

Pu,vP cof
2 Tu,v

p

Since the map P cof
1 → P cof

2 is a q-cofibration between q-cofibrant flows by hypothesis,

the left vertical map Pu,vP cof
1 → Pu,vP cof

2 is a q-cofibration of spaces between q-cofibrant

spaces by [16, Theorem 5.7]. Since both Pu,vP cof
1 and Pu,vP cof

2 are contractible (since P1

and P2 are posets and u < v), the map Pu,vP cof
1 → Pu,vP cof

2 is therefore a weak homotopy

equivalence between q-cofibrant spaces, which means that it is a homotopy equivalence.

This implies that the left vertical map Pu,vP cof
1 → Pu,vP cof

2 is a trivial h-cofibration,

i.e. a trivial cofibration for the h-model structure of Top. This implies that all maps

Pg(u),g(v)A→ Tu,v are trivial h-cofibrations of spaces as well for all pairs (u, v) of P1 × P1

such that u < v, being pushouts of trivial h-cofibrations.

Consider the set map C : P1 ⊂ A0. Let Df : PC(A0)→ Top be the diagram of spaces

defined by:

• Df((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)) = Zu0,u1
×Zu1,u2

× . . .×Zun−1,un
with

Zui−1,ui
=




Pui−1,ui

A if ǫi = 0

Tǫi
if ǫi 6= 0 (in this case, (C, C)(ǫi) = (ui−1, ui)).

• The composition maps c′
is are induced by the compositions of paths of A.

• The inclusion maps Iǫ
i are induced by the q-cofibrations f : Pu,vA → Tǫ with

(C, C)(ǫ) = (u, v).

Let n ∈ Obj(PC(A0)) with n = ((u0, ǫ1, u1), (u1, ǫ2, u2), . . . , (un−1, ǫn, un)). Then the

continuous map LnD
f −→ Df(n) is the pushout product of the maps ∅ → Pui−1,ui

A

for i running over {i ∈ [1, n]|ǫi = 0} and of the maps Pui,vi
A → Tǫi

for i running over

{i ∈ [1, n]|ǫi 6= 0}. Moreover, if for all i ∈ [1, n], we have ǫi = 0, then LnD
f = ∅.

The argument is explained in [16, Proposition 5.2]. We deduce as in the proof of [16,

Theorem 5.4] that the map of diagrams DIdA −→ Df is a trivial Reedy h-cofibration.

Therefore by passing to the colimit which is a left Quillen adjoint by Theorem 7.7, we

deduce that the map lim
−→
DIdA −→ lim

−→
Df is a trivial h-cofibration of Top. It turns out
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that PA ∼= lim
−→
DIdA and that PX ∼= lim

−→
Df by an analogue of [16, Theorem 4.8]. Thus, for

all (α, β) ∈ A0 ×A0, the map f induces a trivial h-cofibration Pα,βA→ Pf(α),f(β)X. �

8.6. Corollary. Let f : A→ X be a map of cof(T cof). Then the continuous maps

I+(A)(α, β) −→ I+(X)(f(α), f(β))

are trivial h-cofibrations for all (α, β) ∈ A0 × A0, and in particular a homotopy equiva-

lences.

Proof. If α 6= β, then the map

I+(A)(α, β) ∼= Pα,βA→ Pf(α),f(β)X ∼= I+(X)(f(α), f(β))

is a trivial h-cofibration, being a retract of a transfinite composition of trivial h-cofibra-

tions. If α = β, then the map

I+(A)(α, β) ∼= {Idα} ⊔ Pα,βA→ {Idf(α)} ⊔ Pf(α),f(β)X ∼= I+(X)(f(α), f(β))

is also a trivial h-cofibration, being also a retract of a transfinite composition of trivial

h-cofibrations. �

In Theorem 8.5 as well as in Corollary 8.6, the q-cofibrancy of the flows A and X is

not required. If A and X are q-cofibrant, then the maps ∅ → Pui−1,ui
A for i running

over {i ∈ [1, n]|ǫi = 0} are also q-cofibrations, the topological spaces Pui−1,ui
A being q-

cofibrant by [16, Theorem 5.7]. This implies that the map of diagrams DIdA −→ Df is a

trivial Reedy q-cofibration and that, for all (α, β) ∈ A0×A0, the map f therefore induces

a trivial q-cofibration Pα,βA → Pf(α),f(β)X. Thus, if f : A → X is a map of cof(T cof)

between q-cofibrant flows, then the continuous maps I+(A)(α, β) −→ I+(X)(f(α), f(β))

are trivial q-cofibrations and homotopy equivalences for all (α, β) ∈ A0 ×A0.

9. The set of maps T gl

We want to introduce in this section a very specific family T gl of generating subdivisions

which makes the computations easy for Theorem 9.5. We will prove in Proposition 10.1

that this arbitrary choice has no consequence for the sequel.

9.1. Proposition. Let n > 0. Consider a finite set

F ⊂ |Globtop(Dn)|\|Globtop(Sn−1)|.

The finite set {0, 1} ∪ F can be equipped with a poset structure as follows: u < v if and

only if Ptop
u,vGlobtop(Dn)F is nonempty (which implies contractible in this particular case).

Moreover, the identity of Globtop(Dn)0
F = {0, 1} ∪ F induces a trivial q-fibration of flows

Glob(Dn)F ({0, 1} ∪ F,6).≃

Proof. The map of flows Glob(Dn)F → ({0, 1} ∪ F,6) is a q-fibration since all spaces of

execution paths of the poset ({0, 1} ∪ F,6) are discrete. It is a weak equivalence since

Ptop
u,vGlobtop(Dn)F is either for u > v empty or homeomorphic to M for u < v which is

contractible. �

The poset ({0, 1} ∪ F,6) of Proposition 9.1 looks as follows: a smallest element 0,

a biggest element 1 and a finite number of finite strictly increasing chains of the form

0 < a1 < · · · < ap < 1 with p > 1. One of these posets is depicted in Figure 1.
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0 1
b1

a1

d1

c1 c2

Figure 1. The poset ({0, 1} ∪ {a1, b1, c1, c2, d1},6) with 0 < a1 < 1, 0 <
b1 < 1, 0 < c1 < c2 < 1 and 0 < d1 < 1

9.2. Proposition. Let n > 0. Consider a finite set F ⊂ |Globtop(Dn)|\|Globtop(Sn−1)|.

There exists a (unique) multipointed d-space W n
F and a factorization

Globtop(Dn) W n
F Globtop(Dn)F

in
F ≃

of the globular subdivision Globtop(Dn)→ Globtop(Dn)F such that

in
F ∈ cell(Igl,top ∪ {C})

and such that there are the homeomorphisms

P
top
α,βW n

F
∼=





Dn+1 if (α, β) = (0, 1),

P
top
α,βGlobtop(Dn)F if (α, β) 6= (0, 1).

In particular, the map W n
F → Globtop(Dn)F is a weak equivalence between cellular multi-

pointed d-spaces. Finally, the map cat(W n
F )→ Glob(Dn)F is a weak equivalence between

cellular flows.

Proof. The multipointed d-space W n
F is obtained in two steps. The first step is the pushout

diagram of multipointed d-spaces

Globtop(Sn−1) Globtop(Dn)

Globtop(Dn)F V n
F

⊂

⊂

p

The multipointed d-space V n
F is cellular by Proposition 5.5. It satisfies

P
top
α,βV n

F
∼=





Dn ⊔Sn−1 Dn if (α, β) = (0, 1)

P
top
α,βGlobtop(Dn)F if (α, β) 6= (0, 1)

After choosing a homeomorphism Dn ⊔Sn−1 Dn ∼= Sn, the second step is the pushout

diagram of multipointed d-spaces

Globtop(Sn) V n
F

Globtop(Dn+1) W n
F

p
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By Theorem 3.8, the map cat(in
F ) : Glob(Dn)→ cat(W n

F ) belongs to cell(Igl ∪ {C}), i.e.

it is a q-cofibration of flows. Since both W n
F and Globtop(Dn)F are q-cofibrant, using

Theorem 3.6, the image by the functor cat : MdTop → Flow of the weak equivalence

W n
F → Globtop(Dn)F is a weak equivalence of the q-model structure of flows between two

q-cofibrant flows, and even between cellular flows by Theorem 3.8. �

9.3. Proposition. With the notations of Proposition 9.1. The q-cofibration

cat(in
F ) : Glob(Dn) −→ cat(W n

F )

is a generating subdivision; more precisely, there exists a commutative diagram of flows

Glob(Dn) {0 < 1}

cat(W n
F ) ({0, 1} ∪ F,6)

cat(in
F

)

≃

⊂

≃

such that the horizontal maps are weak equivalences of the q-model structure of flows and

where the map of posets {0 < 1} ⊂ ({0, 1} ∪ F,6) is defined in Proposition 9.1.

Proof. It is a consequence of Proposition 9.1 and Proposition 9.2. The two horizontal

maps are q-fibrations since the space of execution paths of the flows {0 < 1} and ({0, 1}∪

F,6) are discrete. �

9.4. Notation. Consider the set of generating subdivisions

T gl = {cat(in
F ) : Glob(Dn)→ cat(W n

F )}

with n > 0 and F running over all finite subsets of |Globtop(Dn)|\|Globtop(Sn−1)|.

Theorem 9.5 is the analogue for the maps of T gl of Theorem 6.8 for the globular

subdivisions.

9.5. Theorem. Consider a pushout diagram of multipointed d-spaces of the form

Globtop(Dn) A

W n
F X

in
F

g

f

ĝ p

where A is a cellular multipointed d-spaces. Consider the set maps (−)+, (−)− : X0 → A0

defined by α+ = α− = α if α ∈ A0 and α+ = g(1) = ĝ(1) and α− = g(0) = ĝ(0) if

α ∈ X0\A0. Let α, β ∈ X0. There are two mutually exclusive cases:

(1) α, β in X0\A0 and I+(cat(W n
F ))(α, β) 6= ∅; in this case, there is the homotopy

equivalence

I+(cat(X))(α, β) ≃ {τα,β} ⊔ I+(cat(A))(α+, β−).

(2) There is the homotopy equivalence

I+(cat(X))(α, β) ≃ I+(cat(A))(α+, β−)

otherwise.
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Proof. By Proposition 5.5 and Theorem 3.8, there is the pushout diagram of cellular flows

Glob(Dn) cat(A)

cat(W n
F ) cat(X)

cat(in
F

)

cat(g)

f

cat(ĝ) p

Thanks to Proposition 9.3, Corollary 8.6 can be used, the inclusion of posets {0 < 1} ⊂

({0, 1}∪F,6) belonging to T (see Notation 8.2). The functor I+ : Flow→ CatTop being

a left adjoint, there is the pushout diagram of enriched small categories

I+(Glob(Dn)) I+(cat(A))

I+(cat(W n
F )) I+(cat(X))

I+(in
F

)

I+(g)

I+(f)

I+(ĝ) p

Assume first that α, β ∈ X0\A0 and that P
top
α,βW n

F 6= ∅ or α = β, i.e. I+(cat(W n
F ))(α, β)

is not empty. By Proposition 9.2 (i.e. by construction of the multipointed d-space W n
F ),

there is the homeomorphism

I+(cat(X))(α, β) ∼= I+(cat(W n
F ))(α, β)⊔

I+(cat(W n
F ))(α, g(1))× I+(X)(g(1), g(0))× I+(cat(W n

F ))(g(0), β).

Since the map cat(W n
F )→ Glob(Dn)F is a weak equivalence of the q-model structure of

flows between q-cofibrant flows by Proposition 9.2, there are the homotopy equivalences

I+(cat(W n
F ))(α, β) ≃ I+(Glob(Dn

F ))(α, β)

I+(cat(W n
F ))(α, g(1)) ≃ I+(Glob(Dn

F )))(α, g(1))

I+(cat(W n
F ))(g(0), β) ≃ I+(Glob(Dn

F ))(g(0), β)

by Theorem 4.7. Thus the topological spaces I+(cat(W n
F ))(α, β), I+(cat(W n

F ))(α, g(1))

and I+(cat(W n
F ))(g(0), β) are contractible. Using Corollary 8.6, we obtain the homotopy

equivalence

I+(cat(X))(α, β) ≃ {τα,β} ⊔ I+(cat(A))(g(1), g(0)) ∼= {τα,β} ⊔ I+(cat(A))(α+, β−).

The case α, β ∈ X0\A0 and I+(cat(W n
F ))(α, β) = ∅ leads to the homotopy equivalence

I+(cat(X))(α, β) ≃ I+(cat(A))(g(1), g(0)) ∼= I+(cat(A))(α+, β−)

for similar reasons. The other cases are similar to the one treated in the proof of Theo-

rem 6.8. It remains three mutually exclusive cases.

(1) α, β ∈ A0: Corollary 8.6 implies the homotopy equivalence

I+(cat(X))(α, β) ≃ I+(cat(A))(α, β).

(2) α ∈ A0 and β ∈ X0\A0: by Proposition 9.2, we obtain the homeomorphism

I+(cat(X))(α, β) ∼= I+(cat(X))(α, g(0)))× I+(cat(W n
F ))(g(0), β),
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and by Corollary 8.6 the homotopy equivalence

I+(cat(X))(α, β) ≃ I+(cat(A))(α, g(0)),

the space I+(cat(W n
F ))(g(0), β) being contractible by Proposition 9.2.

(3) α ∈ X0\A0 and β ∈ A0: by Proposition 9.2, we obtain the homeomorphism

I+(cat(X))(α, β) ∼= I+(cat(W n
F ))(α, g(1)))× I+(cat(X))(g(1), β),

and by Corollary 8.6 the homotopy equivalence

I+(cat(X))(α, β) ≃ I+(cat(A))(g(1), β),

the space I+(cat(W n
F ))(α, g(1))) being contractible by Proposition 9.2.

�

10. Globular subdivision and maps of T cof

Proposition 10.1 is required before proving Theorem 10.2.

10.1. Proposition. Let n > 0. Let F be a finite subset of |Globtop(Dn)|\|Globtop(Sn−1)|.

Consider a pushout diagram of flows

Glob(Dn) A

cat(W n
F ) X

cat(in
F

) f

p

with A and X q-cofibrant. Then the q-cofibration f : A→ X factors as a composite

f : A X ′ X
∈cell(T cof ) ≃

of a map of cell(T cof) followed by a weak equivalence of flows.

Proof. By Proposition 9.3, there is a commutative diagram of solid arrows of q-cofibrant

flows

{0 < 1}cof Glob(Dn) {0 < 1}

({0, 1} ∪ F,6)cof cat(W n
F ) ({0, 1} ∪ F,6)

∈T cof

h1

≃

cat(in
F

)

≃

h2

≃

≃

Using Proposition 2.5, we deduce the existence of h1 and h2 making the diagram above

commutative. By the two-out-of-three property, the maps h1 and h2 are weak equivalences

of flows. Consider the commutative diagram of solid arrows (the existence of the flow X ′
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and of the map s : X ′ → X comes from the universal property of the pushout)

{0 < 1}cof A

Glob(Dn) A

({0, 1} ∪ F,6)cof X ′

cat(W n
F ) X

h1

h2

p

s

cat(in
F

)

p

By the cube lemma [23, Lemma 5.2.6], the map s is a weak equivalence of flows. �

10.2. Theorem. Let n > 0. Let F a finite subset of |Globtop(Dn)|\|Globtop(Sn−1)|. Con-

sider a commutative diagram of cellular multipointed d-spaces

Globtop(Sn−1) X Y

Globtop(Dn) X

Globtop(Dn)F Y

g sbd

sbd

ĝ p

sbd

p

such that f : X → Y and f : X → Y are globular subdivisions. Assume that cat(f)

factors as a composite cat(f) = w.i where i : cat(X) → Z belongs to cell(T cof) and

where w : Z → cat(Y ) is a weak equivalence of the q-model structure of flows for some

flow Z. Then there exists a commutative diagram of flows

cat(X) Z cat(Y )

cat(X) Z cat(Y )

cat(f)

i w

cat(f)

ı w

such that ı : cat(X)→ Z belongs to cell(T cof) and w : Z → cat(Y ) is a weak equivalence

of the q-model structure of flows, and finally such that the canonical map

U = cat(X) ⊔cat(X) Z → Z
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Glob(Sn−1) cat(X) Z cat(Y )

Glob(Dn) cat(X) U cat(Ŷ )

Z

cat(W n
F ) V cat(T )

Glob(Dn)F cat(Y )

cat(g)

cat(f)

∈cell(T cof ) ≃

k

cat(in
F

)

cat(ĝ)

p ∈cell(T cof )p ≃

∈cell(T cof )

p

cat(S)≃

≃

p ≃ p

≃

cat(f)

Figure 2. Adding and subdividing the globular cell Glob(Dn) to cat(X)

induced by the universal property of the pushout belongs to cell(T cof).

Proof. Let us introduce the multipointed d-space Ŷ characterized by the following com-

mutative diagram

Globtop(Sn−1) X Y

Globtop(Dn) X Ŷp p

We obtain the commutative diagram of multipointed d-spaces

Globtop(Sn−1) X Y

Globtop(Dn) X Ŷ

Globtop(Dn)F Y

g sbd

sbd

ĝ p sbd

sbd

p

S

p

By Corollary 2.2, all squares of the diagram above are pushout squares. This implies that

the maps X → Ŷ and S : Ŷ → Y are globular subdivisions. Thanks to the universal
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property of the pushout, we obtain the commutative diagram of multipointed d-spaces

Globtop(Sn−1) X Y

Globtop(Dn) X Ŷ

W n
F T

Globtop(Dn)F Y

g sbd

ĝ p sbd p

S

≃

p

p

By Corollary 2.2, all squares of the diagram above are pushout squares as well. Using

Proposition 5.5 and Theorem 3.8, we obtain the commutative diagram of flows

Glob(Sn−1) cat(X) cat(Y )

Glob(Dn) cat(X) cat(Ŷ )

cat(W n
F ) cat(T )

Glob(Dn)F cat(Y )

cat(g)

cat(ĝ) p p

cat(S)

≃

p

p

Thanks to the universal property of the pushout, with V = cat(W n
F ) ⊔Glob(Dn) U , we

obtain the commutative diagram of q-cofibrant flows (in fact, they are even all cellular)

depicted in Figure 2. The maps U → cat(Ŷ ) and V → cat(T ) of the diagram of Figure 2

are weak equivalences of the q-model structure of flows since all flows of the diagram

above are q-cofibrant and since they are pushouts of the weak equivalence Z → cat(Y )

along q-cofibrations (we could also invoke the left properness of the q-model structure of

flows [16, Theorem 5.6]). By Proposition 10.1, the map U V factors as a composite

U Z V
∈cell(T cof ) ≃

of a map of cell(T cof) followed by a weak equivalence of flows. Thus the composite map

map

ı : cat(X) −→ U −→ Z

belongs to cell(T cof). It remains to prove that the composite map

w : Z
≃
−→ V

≃
−→ cat(T ) −→ cat(Y )
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is a weak equivalence of flows. It therefore remains to prove that the map of flows

cat(T )→ cat(Y ) is a weak equivalence of flows. The commutative square of flows

cat(W n
F ) cat(T )

Glob(Dn)F cat(Y )

is a pushout square by Corollary 2.2. Thus the map cat(T )→ cat(Y ) of the diagram above

induces a bijection on the states, the functor X 7→ X0 from flows to sets being colimit-

preserving and since cat(W n
F )0 = Glob(Dn)0

F = {0, 1} ∪ F . We obtain the bijections

cat(T )0 ∼= cat(Y )0 ∼= cat(Ŷ )0 ⊔ F.

Consider the set maps (−)−, (−)+ : cat(T )0 ∼= cat(Y )0 → cat(Ŷ )0 defined by

α− =





α if α ∈ cat(Ŷ )0

k(0) if α ∈ F

α+ =





α if α ∈ cat(Ŷ )0

k(1) if α ∈ F

with k : Glob(Dn) → cat(X) → U → cat(Ŷ ) (note that it is possible that k(0) = k(1)).

To complete the proof, it suffices to prove that for all α, β ∈ T 0, the induced continuous

map Pα,βcat(T ) → Pα,βcat(Y ) is a weak homotopy equivalence. Note that it is not

possible to invoke the left properness of the q-model category of flows since the map

cat(W n
F ) → V → cat(T ) has no reason to be a q-cofibration. It then suffices to prove

that, for all α, β ∈ T 0, the induced continuous map

I+(cat(T ))(α, β)→ I+(cat(Y ))(α, β)

is a weak homotopy equivalence to complete the proof. Assume that α, β ∈ F and that

I+(cat(W n
F ))(α, β) 6= ∅. Then one has

I+(cat(T ))(α, β) ≃ {τα,β} ⊔ I+(cat(Ŷ ))(α+, β−)

∼= {τα,β} ⊔
−→
T (Ŷ )(α+, β−)

∼= {τα,β} ⊔
−→
T (Y )(α+, β−)

∼=
−→
T (Y )(α, β)

∼= I+(cat(Y ))(α, β),

the homotopy equivalence by Theorem 9.5, the first and fourth homeomorphisms by

definition of the space of traces, the second homeomorphism by Theorem 6.8, the map

S : Ŷ −→ Y being a globular subdivision, and finally the third homeomorphism by [19,

Proposition 8.12]. In all other cases, using Theorem 9.5 and Theorem 6.8 in a similar

way, we have

I+(cat(T ))(α, β) ≃ I+(cat(Ŷ ))(α+, β−)

∼=
−→
T (Ŷ )(α+, β−)
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∼=
−→
T (Y )(α+, β−)

∼=
−→
T (Y )(α, β)

∼= I+(cat(Y ))(α, β),

the third homeomorphism by [19, Proposition 8.7, Proposition 8.8 and Proposition 8.9].

�

10.3. Theorem. Let f : X Ysbd be a globular subdivision of multipointed d-spaces.

Then cat(f) factors as a composite

cat(f) = w.i

where i belongs to cell(T cof) and where w is a weak equivalence of the q-model structure

of flows.

Using the language of [10], the map of flows cat(f) is a dihomotopy equivalence.

Proof. We consider a cellular decomposition of X. Using Theorem 6.9, there exists a

transfinite tower of cellular multipointed d-spaces Ỹ : λ→MdTop and a map of trans-

finite towers X̃ → Ỹ such that the colimit is the globular subdivision X → Y and such

that for all ν < λ, there is the commutative diagrams of multipointed d-spaces of the

form

Globtop(Snν−1) X̃ν Ỹν

Globtop(Dnν ) X̃ν+1

Globtop(Dnν )F (cν) Ỹν+1

gν sbd

sbd

ĝν p

sbd

p

Moreover, the connection maps of the globular subdivision f : Xν Yν
sbd are the

restrictions to Y 0
ν of the connection maps of the globular subdivision f : Xν+1 Yν+1

sbd

for all ν < λ.

We then have to prove by a transfinite induction that, for all ν 6 λ, the globular

subdivision Xν Yν
sbd factors as a composite Xν → Zν → Yν where the left-hand map

belongs to cell(T cof) and where the right-hand map is a weak equivalence of the q-model

structure of flows. The case ν = 0 is trivial: X0 = Y0 = X0 indeed. The passage from

ν < λ to ν + 1 is a consequence of Theorem 10.2. It remains the case where ν 6 λ

is a limit ordinal. The fact that Xν → Zν belongs to cell(T cof) is a consequence of

Theorem 10.2 and Proposition 2.4. The fact that Zν → Yν is a weak equivalence of the

q-model structure of flows is a consequence of Proposition 2.3. �
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10.4. Corollary. Let X and Y be two cellular multipointed d-spaces related by a finite

zigzag sequence of globular subdivisions. Then the associated flows cat(X) and cat(Y ) are

related by a finite zigzag of maps of cell(T cof) and of weak equivalences of flows.

Using the language of [10], the two flows cat(X) and cat(Y ) are dihomotopy equivalent.

Proof. It is a consequence of Theorem 10.3. �

Corollary 10.4 implies that the map of flows cat(f) : cat(X)→ cat(Y ) yields an isomor-

phism between the underlying homotopy types of cat(X) and cat(Y ) [12, Theorem 9.1].

The latter point is also a consequence of the fact that f induces a homeomorphism be-

tween the underlying spaces of X and Y and that, for any cellular multipointed d-space

Z, the underlying homotopy type of the flow cat(Z) is the homotopy type of |Z|. This

obvious fact is not proved in [12, 15, 18]: this is clearly an omission. We prove it now

using the material of [18] recalled in Theorem 3.6.

10.5. Proposition. Let Z be q-cofibrant multipointed d-space. Then the underlying ho-

motopy type of the flow cat(Z) is the homotopy type of |Z|.

Proof. After [15, Proposition 8.16], the underlying homotopy type of the flow cat(Z) is

the homotopy type of the topological space |Mtop
! (M(cat(Z))cof)| where (−)cof is some

q-cofibrant replacement of the q-model structure of Moore flows. Since M! ⊣ M is a

Quillen equivalence by Theorem 3.6, from the isomorphism of flows cat(Z) ∼= cat(Z)

and from the isomorphism of functors cat ∼= M!M, we obtain the weak equivalence of

Moore flows Mtop(Z) → M(cat(Z)). Factor the map ∅ → M(cat(Z)) as a composite

∅ (M(cat(Z)))cof
M(cat(Z))≃ . The Moore flow Mtop(Z) being q-cofibrant by The-

orem 3.6, Z being q-cofibrant, the weak equivalence Mtop(Z) → M(cat(Z)) factors as a

composite of weak equivalences

M
top(Z)

≃
−→ (M(cat(Z)))cof ≃

−→M(cat(Z)).

The functor M
top
! being a left Quillen functor, we obtain a weak equivalence of multi-

pointed d-spaces M
top
! Mtop(Z) ≃ M

top
! (M(cat(Z))cof). Since Z is q-cofibrant by hypothe-

sis, there is the isomorphism of multipointed d-spaces Z ∼= M
top
! Mtop(Z) by Theorem 3.6.

Thus there is a weak equivalence of multipointed d-spaces Z ≃ M
top
! (M(cat(Z))cof).

Hence the proof is complete. �
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