Proof Construction and Non-Commutativity:
a Cluster Calculus

Claudia Faggian
Institut de Mathématiques de Luminy - CNRS
163 avenue de Luminy, Case 907
13288 Marseille Cedex 9, France

faggian@iml.univ-mrs.fr

ABSTRACT

An increasing interest is directed at the extension of the
“proof search as computation” paradigm, already success-
fully applied to Linear Logic, to a logic that is not only
resource-aware but also order-sensitive. This paper is a con-
tribution to proof search in Non-Commutative Logic.

Our key result is to give a simple method for propagating
the order structure during proof search. Such a method
is general, in that it can be applied to n-ary connectives.
This enables us to define a cluster calculus, which analyses
clusters of synchronous and of asynchronous connectives in
a single step, with a single n-ary rule.
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1. INTRODUCTION

“Proof search as computation” is a programming paradigm
(cf. [9] ) that can fit features such as coordinations of entities,
interaction, non-determinism, features that are all gaining
importance in computer science. One can think of operating
systems, flight schedulers, the Internet... These examples
are all situations where a notion of order or priority arises
in a natural way. For this reason, while the logic program-
ming interpretation of formulas-as-instructions and proofs-
as-states has been successfully applied to Linear Logic, in
recent years an increasing amount of interest has been di-
rected to proof search in a logical system that is not only
resource-sensitive but also order-aware (cf. [4, 8, 6, 12], and
recent work by W.O’Hearn and D.Pym).

Let us mention some of the different insights motivating re-
search in this direction: dealing with situations where com-
putation is naturally subject to ordering constraints (cf. [12],
which gives program examples dealing with natural language

parsing and sorting), encoding of concurrency problems [5],
managing coordination with priority, e.g. in the access to
resources and information (recent work by Andreoli).

Most of this research is carried out in either of two main
frameworks that incorporate in a conservative way the no-
tion of order into Linear Logic: Non-Commutative Logic
(NL) by Abrusci and Ruet [1, 13], and Ordered Linear Logic
(OLL) by Polakow and Pfenning [11]. This paper is a con-
tribution to proof search in Non-Commutative Logic.

NL is characterized by a notion of sequent enriched with
a structure of order, namely an order variety [13] (cf. Sec-
tion 3 for a review). Proof search in this setting has not
yet a satisfactory status, in particular concerning the effec-
tive managing of context splitting, but important progresses
have been made recently with the extension of focalization
to NL.

Focalization [2] is a central tool for proof search in (classical)
Linear Logic, for it enables us to reduce the non-determinism
of the choices to be performed. Focalization relies on a dis-
tinction between two homogeneous families of connectives:
positive, or synchronous (timing is relevant), and negative,
or asynchronous (timing is irrelevant). The very meaning
of focalization is that connectives of the same family can be
grouped and dealt with as a single connective.

Dealing with focalization in NL raises several new questions.
As developed in [8] (cf. Section 3.2), all questions play on
the “bottom-up” application of positive rules and may be
reduced to: (1.) Under which conditions is a partition of the
context compatible with the order on the given conclusion
(coherence conditions)? (2.) Once given a partition, which
order is associated to the premises? (3.) Since there are,
in general, several possible solutions to (2), which solutions
are optimal? We address these same questions with a new
approach, which allows us to extend the results.

Our key result is to give a simple way to propagate the
order structure when decomposing a non-commutative con-
junction (Next). Such a solution is optimal. On the binary
connectives, our calculus is equivalent to the one by Maieli
and Ruet. We then develop the results in two ways:

— we define a cluster calculus where packs of all synchronous
(Tensor, Next) connectives or all asynchronous (Par, Se-



quential) connectives are decomposed “at once”, as a single
n-ary rule (Section 6);

— we are (eventually) able to reduce both the space and
the conditions to be tested in order to build an NL proof
(Section 8).

The ability to deal with clusters of homogeneous connec-
tives is a necessary step towards the extension to NL of
constraint based techniques of proof search (cf. [3]). This
is a method that allows us to deal with contexts splitting
in Linear Logic. Implementations will make the object of
future investigation.

Ludics

Our results issue from a study directed at the extension of
Ludics [7] to encompass Non-Commutative Logic. On one
side, this confirms the intuition that the dynamic underlying
Ludics is an interactive proof-search. On the other side,
while this work is self-standing, it is an interesting fact that
the cluster calculus comes with a semantic counterpart.

Note

This work is carried out in multiplicative NL, where all dif-
ficulties specific to the non-commutative setting are concen-
trated. The extension of the framework to the additives
(@, &) is immediate, and brings no surprise. As for the ex-
ponentials — for which the focalized approach has never been
as satisfactory as for the multiplicative-additive fragment —
we prefer to postpone the discussion to future work. This is
motivated by recent discoveries in Ludics ([7]), based on a
finer decomposition of the exponentials: in contrast with the
traditional approach, “Bang” turns out to be (essentially)
negative, whereas “Why Not” positive.

2. FOCALIZATION

At the basis of focalization [2] is the distinction of Linear
Logic connectives into two families: positives (®,®) and
negatives (%,&). These two families correspond to a dis-
tinction of the non-determinism involved by the timing of
the choices during proof construction: the timing may or
may not be relevant.

Negative connectives carry asynchronous non-determinism:
their rules are reversible, and in the proof search they are
to be performed as soon as possible.

Positive connectives introduce synchronous (true) non-deter-
minism. Such connectives enjoy the focalization property:
given a sequent of positive formulas which is the conclusion
of a certain proof, there exists a formula, the “focus,” that
may be selected as principal and entirely decomposed up to
its first negative subformulas.

In a focalized sequent calculus negative rules are applied
immediately, and positive rules, once chosen a focus, are
persistently applied up to their negative subformulas. This
is exactly the sense of our cluster calculus. Rather than
keeping on applying positive rules on the same focus in a
threat, we can do it as a single step.

3. NON-COMMUTATIVE LOGIC AND OR-
DER VARIETIES

Non-Commutative Logic is a conservative extension of Li-
near Logic that unifies commutative and cyclic linear logic.
To the formulas of the sequent is associated a structure of
order that is an order variety [13].

DEFINITION 3.1 (ORDER VARIETY). Let A be a set. An
order variety on A is a ternary relation o which is :

cyclic: Vz,y,z € A, a(z,y, 2) = a(y, z,z);

anti-reflexive: Vx,y € A\, ~a(z,x,y);

transitive : Vz,y,z,t € A, a(z,y, 2) and a(y, z,t) = a(z,t, 2);

a(t,y,z) or
a(z,t,z) or
a(z,y,t)

spreading: Vu,y,z,t € A, a(zr,y,z) =

The main property of an order variety is that it can be
presented as a (strict) partial order as soon as we take out
a point.One can think of a circle, that becomes a segment
as soon as one fix a point (a point of view), and in fact the
notion of order variety corresponds to the notion of partial
order in the same way as the oriented circle corresponds to
the oriented segment. The interest of this operation is that
there is no privileged point of view. That is, an order variety
is at the same time an order with respect to any of its point.
This is what makes the order variety a very synthetic tool.

Next two definitions express the one-to-one correspondence
between order varieties and orders.

DEFINITION 3.2. Let o be an order variety on A and x €
A. Define the binary relation az on A~ {z} by : az(y,2)
iff o, y, 2).

PRrOPOSITION 3.3. If v is an order variety on A and x €
A, then o, is a strict partial order on A \ {z}. It is called
the order induced by o and .

Conversely, each strict partial order defines an order variety
on the same domain:

DEFINITION 3.4. Let w = (A, <) be a strict partial order
on A. Define the ternary relation @ on A by : w(x,y,z) iff
for a cyclic permutation (z',y’,2") of (z,y,z), we have
(' <y <z2')or(x <y and 2 is comparable with neither
x' nory').

ProposITION 3.5. If (A, w) is a strict partial order, then
w is an order variety on A.

The two operations commute. To make this more precise,
we need to use an other essential feature of order varieties,
the “gluing”. First recall the notion of serial and parallel
composition of orders.



DEFINITION 3.6  (SERIAL/PARALLEL COMPOSITION).
Let wi,ws be partial orders on disjoint sets A1, A>. Their
serial and parallel composition w1 < w» and w, || w2 re-
spectively are the two partial orders on A1 U Ay defined by:
(w1 < w2)(z,y) iff either wi(z,y) or wa(z,y) or (v € Ay
and y € A2);

(w1 || w2)(z,y) iff either wi(z,y) or wa(z,y).

Given two orders, to build an order variety out of either
their serial composition or their parallel composition yields
to the same result:

ProposITION 3.7. If w and T are two partial orders on
disjoint sets, then the following order varieties are equal:
w<tT=wl|T=T<w

This naturally leads to the definition of a more general ope-
ration, named gluing:

DEFINITION 3.8 (GLUING). The order variety of the pre-
vious Proposition s indicated by w * T:

wrxT = Ww<T = w|T=7T<w
Then we have

PROPOSITION 3.9. Let v be an order variety on a set A,
x € A and w a (strict) partial order on A\ {x}. Then :

a*x = a and (W) = w
where by x we mean the unique strict partial order on {z}.

In the next Section we will review the sequent calculus for
NL, which is based on order varieties, and more precisely on
series-parallel order varieties.

DEerINITION 3.10
Series-parallel order varieties are those order vareties that
can be presented by a series-parallel order.

We recall that the class of series-parallel orders is the least
class of finite orders containing empty orders on singletons
and closed under serial and parallel composition (cf. [10] for
a survey on the subject). A fact that we will use to prove our
main Theorem is that series-parallel orders admit a negative
characterization as those orders on finite sets whose restric-
tion to any 4-elements subset {a, b, ¢, d} is different from the

order P4 = {(a; b)7 (C: b)7 (C: d)}

3.1 NL calculus

A Linear Logic sequent is a structure - A, where A is a
multiset of formula occurrences. In Non-Commutative Logic
a sequent has the form F A (a), where « is a series-parallel
order variety on the support A (Ja|] = A). Since a can be
presented as an order w.r.t. any of its points, it is always

(SERIES-PARALLEL ORDER VARIETY).

possible to fix a point £ € A and present o as o * £ (cf.
Proposition 3.9).

All along the paper, when it is not ambiguous we will not
explicitly mention the support, writing simply + a (resp.
Faex€) for A (a) (resp. F A (e *&)).

The calculus for Non-Commutative Logic (NL) [13] is given
in the Appendix. Given the orders 71,72 on the premises,
the Tensor rule composes them in parallel:

T=71| 72

where 7 is the order on the conclusion. The Next rule in-
stead composes the two orders serially:

T=T2<T1.

The two special cases of empty and total order varieties
respectively correspond to commutative and cyclic linear
logic. What allows the two levels — commutative and non-
commutative — to interleave is the notion of entropy.

DEFINITION 3.11  (ENTROPY). < is the relation between
partial orders on the same set defined by :

wdo iff wCo and wCo

Note that entropy does not correspond to inclusion of orders,
but it does correspond to inclusion of order varieties:

PRrOPOSITION 3.12. Let i, B be order varieties on A, and
x € A. Then

a: 18, iff aCp

Intuitively, entropy corresponds to a loss of information on
the order. In the case of series-parallel orders, it is performed
by replacing some serial (<) with parallel compositions (]|).
For instance:

((a<b)lle) Q((a<b) <)

3.2 Focalized NL

In the original NL calculus, entropy was given as a struc-
tural rule. Read bottom-up, the entropy rule enables to
increase the order underlying a sequent, and such an oper-
ation is highly non-deterministic. For this reason, entropy
represents the main difficulty for the definition of a focalized
sequent calculus for NL.

In the focalized calculus designed by Maieli and Ruet this
problem is addressed by making entropy implicit and push-
ing it to the ® rule. The Next rule is therefore expressed
as

|_7'1*€1 "7'2*52
"‘T*ﬁl@fg

where

(Entropy equation) 7 < (72< 71)



This is the formulation we will follow from now on.

This Next Rule (read bottom-up) brings to the proof search
several new critical points, developed in [8]:

(1.) To split the context in such a way that the equation
7 < (12 < 71) admits a solution.

(2.) To calculate the orders 71, T2 associated to the premises.

Also, in order to commit ourselves as little as possible in the
proof search, the “quantity” of entropy should be minimized.
Hence:

(3.) Optimal solutions p, pbo. For any pair of orders 71, 72
on A1, As respectively, such that 7 < (72 < 71), we have
p; AT

The solutions given in [8] are of combinatorial nature, and
exploit the representation of the orders as special binary
trees (so, in particular, they do not easily generalize to n-
ary connectives). In the next section we intend to address
the same questions with a more synthetic approach.

3.3 Conventions

All along the paper, when we speak of orders we always
mean strict partial orders.

We will indicate by & the focus of a rule (the principal for-
mula); we indicate by &; its subformulas (the secondary for-
mulas). If the context of £ is A, then A; is the context of
&. If a context formula is annotated with an index i, then
it belongs to A;, e.g. x; € A;.

We will always indicate by a an order variety. We will
make frequent use of the operations defined in Section 3. In
particular, note that, by Definition 3.2, o is a partial order
(the order induced by « fixing £). By Definition 3.8, if 7
is an order, T * £ is an order variety, the one obtained by
gluing.

Because of the definition of order variety, all the triples are
taken modulo cyclic permutation. We also adopt the fol-
lowing notations: (A1,A2,As) = {(z1,z2,23) : x; € Ai};

§r= Uief{fi}§ allr/é] = Uie[ aléi /€]
4. BINARY CALCULUS: THE NEXT RULE

We start our investigation from the binary calculus, and in
particular from the study of the Next rule, which gathers all
difficulties specific to the non-commutative setting.

A simple example is enough to realize that NL imposes con-
straints on the possible ways of splitting the context:

Fa, 7 Fb, 7
Falt <blsxa®b
Fatvbt,a®b

It is not possible to split the context of a ® b, because the
Tensor rule would give at || b* rather than a* < b*. The
compatibility of the context splitting with the order is the
question addressed by the “coherence conditions”. To this
question is strictly associated another one: how to propagate
the order structure from the conclusion to the premises. If
this kind of questions are clear for Tensor, it is much less so
for Next, because of entropy.

We give a few examples to make clear what we want to
achieve, and what the problems are.

4.1 Motivating examples
Let us consider a generic positive rule, where £ can be either
&1 © & or & ® &2, and where |7| = A and |74 = Ay
Frix& FT1ox&o
Frxg

The rule for Tensor just asks that

“A1, A2 is a bi-partition of A such that 7 = 71 || T2.”

We would like to have something so clear and simple for
Next too.

We could be tempted to ask:

“N1,A2 is a bi-partition of A such that
r1 €EAN,x2 ENo =2 <x1 InT.”

But such a condition is too strong. In fact, it does not take
into account entropy. Let us see this with an example.
Example 1.

Fb<c*& Fa,é

Fla<b)|cxé& ©&
This derivation is sound since (a < b) || ¢ can be obtained as
entropy of the serial composition of the orders indicated on
the premises, which is (a) < (b < ¢) = (a < b) < (c), where
by entropy we weaken the most external < into ||.

The natural condition to ask for would be:
(Coh.1) “c1 € Ai,z2 € Ao = 1 £ x2in 7.7

But this condition is not sufficient to guarantee that we can
associate an opportune order variety on the premises '. Let
us examine the following case:

Example 2.

|_§17y)yl |_€2,$,$,
Fl<y) |l (@' <y)=¢

(Coh.1) is respected, but studying the various possibilities,
one realizes that there is no way of giving an order on the
premises in such a way that the order on the conclusion
is obtained as entropy of the serial composition. This is
exactly the situation that in [8] is explicitly prohibited by
the second condition of “Admissibility.”

One more example will illustrate the importance of the pro-
pagation of the order.
Example 3.

Fbllexé& Fa,é
I—(a<b) ||C*£1®£2

'We will discuss this issue again in Section 8, once we have
more tools.




The order on the conclusion satisfies (Coh.1), but we have
(a<b)llca<®lo)

Next section refines the condition of “coherent partition.”
Once chosen a coherent partition, the order associated to
each premise is well determined, and we give an immediate
way to produce it.

4.2 The Next rule

Our approach is based on the following construction. We
will prove (Theorem 4.5) that the binary relation so defined
is a partial order in the cases we are interested in.

DEFINITION 4.1 (). Let a be an order wvariety with
support |a] = {A,€}. Given A; C A, we define a binary
relation on \; as:

‘ ky,(a,b) iff ala,b,z),for some z € A;

ReMARK 4.2. The definition of p,, is better understood
as a generalization of Definition 3.2 (n, corresponding to
a¢). In fact the definition of the order ae can be rephrased
as:

ag(a,b) iff a(z, a,b),for some z & |ae] = A

We can now define our Next rule (to be read bottom-up) as
follows:

"MAl * &1 "MAz * &2
F& 06, A (a)

where:

= |ea,| = A; (when the partition is obvious, we will often
write p; for p,.);

— Ay, A> is a bi-partition of A that respects the following
coherence conditions:

DEFINITION 4.3  (COHERENCE). Let Ay, Ao be a bi-parti-
tion of A. Such a partition is coherent on a with respect to
& =& © & if it satisfies the following conditions:

(Coh.1) Ifzi € A1, z2 € A2, then ~a(z1,%2,&).

(Coh.2) If a,b € A; and 2,2 & A;, then a(a,b,z) =
—a(b,a,z').

The above definition is better understood when translated
into the following terms:

REMARK 4.4. (Coh.1) and (Coh.2) are equivalent to:
(Coh.1) x1 £ x> in og;

(Coh.2) uy, (a,5) = ~pay, (b,0).

Section 4.3 will prove that

THEOREM 4.5 (INDUCED ORDERS). Given the above de-
finition of the Next rule, if the partition is coherent then the
binary relations p; induced on the premises are partial or-
ders.

4.2.1 Examples

Let us make this approach work on our previous examples.

Example 1.

l_b:c7§1 (“1*§1> |_a7§2
I—(a<b) ||C*§1 @é_g
since a = {(a,b,¢), (a,b,&)}, thus p, = {(b,c)}. That is the

order variety on the first premise is (b < ¢) * €1, as it should
be.

Example 2. Let us now try the configuration

|_y7yl)§1 |_$,$,,€2
Fl<y @ <y)*& o0&

©

The order variety associated to the conclusion is

{€zy), (@'zy), (Y zy), (Ex'y), (z2'y'), (yz'y')}

To have (z'zy) and (zz'y’) is enough to reject the candidate
partition A» = {z,2'}, A1 = {y,y'}. Any other partition is
fine w.r.t. coherence.

422 Remarks

We give two other ways to characterize p;, which may help
intuition:

REMARK 4.6. Let § = &1 © &. The definition of p; is
equivalent to the following two:

(i): p; = UzeZAl— oA

(i4): = (a1)e, and  p, = (a2)e,

where
o = (Ot ﬂ(Al,Al,gqu))[gl/g UA2],
o = (Ot n(AQ,A2,§U Al))[§2/€ @] Al],

and where [€;/A] indicates that all z € A have been renamed
as &;.

The interest of (i) is to show that p; is in fact a union (of
orders), whereas the construction by Maieli and Ruet [8], on
the contrary, is based on an intersection (the wedge).

The meaning of (ii) is that in fact we extract g, (resp. p,)
from « by identifying A (resp. A1) with £. We are per-
forming a quotient.

We conclude this section with a fact that is of interest in
view of the implementation: when checking for coherence,
it is enough to check just one of the i € {1,2}:



FAact 4.7. To check (Coh.2) it is enough to check it for
one of the i € {1,2}: if one of the p;(i € {1,2}) is anti-
symmetric, so is the other one.

PROOF. Let us fix an ¢, and assume that a(a,a’,2) and
a(a',a,?'), for a,a’ € A; and z # 2’ € A;. Then it follows
by transitivity of @ that a(a,2’,2) and a(a’,z,2'). O

4.3 Proof of Theorem 4.5

We want to prove that if the partition is coherent then any
p; is a partial order, and thus p; * §; is an order variety. It
is immediate that (Coh.2) implies the anti-symmetry of p,:

PROPOSITION 4.8
for any i € {1,2}:

(ANTI-SYMMETRY). (Coh.2) implies,

pi(a,b) = —p;(b,a)

The delicate point is to prove transitivity. Note that a priori
there is no reason for p,(a,b) and p,(b, ¢) implying p,(a,c).
Typically, p,(a,b) could come from af(a,b,z) and p,(b,c)
from a(b,c,z'), with z # 2’ and no (a,c,2"”) be in . We
can build an example:

Example. Let us take A = a,b, ¢, z, an order variety a =
{(&,a,b),(z,b,¢), (&, a,2)(&,c, 2)} and as partition A = {z},
Ay = {a,b,c}. The result is that p, is {(a,b), (b,c)}, which
is not closed under transitivity.

But in fact the above example is a bad one, since we are
only concerned with series-parellel order varieties, and the
above order variety is not. This can be shown to be true in
general. It is the object of the next two propositions.

LEMMA 4.9. Let o be a series-parallel order variety on
A &5 if A1, Ao is a coherent partition of A w.r.t. £, if z € Ay
and a,b,c € Aa, then a(a,b,&) and a(b,c,z) imply either
ala,c, ) or ala,c, z).

PROOF. Let us examine the possible spreading (i) of z on
a(€,a,b), and (ii) of £ on a(b, ¢, z). (i): Discharging (&, z,b),
which contradicts coherence, we have either a(z,a,b) or
a(,a, z), where the first one allows us to conclude a(a,c, z),
by transitivity with a(b,c, z). (ii): We have either a(b, c, )
or a(¢, ¢, z), where, again, the first one is enough to conclude
afa,c,§).

Let us suppose the worst possibility in both cases. Thus
we have {(a,z),(c,2),(a,b)} C a¢. Our aim is to show
that either we have transitivity, or we are able to reach
a contradiction, producing a P4. Let us examine the re-
striction a¢la,b,c,z. Of the twelve possible combinations,
the pairs of type (z,A2) are discharged by (Coh.l). By
(Coh.2) we can also discharge (b,a),(c,b) and (c,a), the
last one because a(é,c,a) with a(c,&,b) gives a(&,b,a).
We are left with (a,c), (b,c), (b, 2), (a,b), (a, 2), (¢, z). Any
of the first three alone yields to the result: the first one
directly, the second and third ones by transitivity of a. In
fact a(a,b,&)a(b, c, &) — ala,c, &) and a(b, z,&)a(z,b,c) —
a(b,c,&). If we suppose that —(a,c), —(b,c) and (b, z), we

conclude a¢la, b, ¢,z C {(a, 2), (¢, 2),(a,b)}. This gives us a
contradiction: since a is series-parallel, the restriction of cve
to a,b, ¢, z cannot be {(c, z), (a, ), (a,b)}, whichisa P4. [

This Lemma, with its obvious symmetric forms, allows us
to prove

PRrROPOSITION 4.10  (TRANSITIVITY). Given a coherent
partition of A, py (i € {1,2}) is transitive.

PRrROOF. Let i # j € {1,2}, a,b,c € A;, z € Aj. Let us
suppose to have p;(a,b) and p,(b,c). This means that we
have a(a,b,z') and a(b,c,z"), where z’, 2" € A;. We want
to show that p,(a,c).

If 2’ = 2" the result is trivial, by transitivity of a. Other-
wise, let us check the possible spreading of ¢ on a(a,b,2").
Since (c,b,2') is incoherent, we have either (a,c,z'), hence
the result, or (a,b,c). In the same way, the possible spread-
ing of a on a(b,c,z'") give us (a,c,z"), hence the result, or
(b,c,a). If we have (a,b,c), we can reduce the problem to
the case treated in the previous Lemma. In fact, the spread-
ing of £ on a(a,b,c) assures us either a(&,b,c) or a(a,b,§),
the third case being excluded by coherence. [

4.4 Computation of the order varieties
One could expect that

_ A(a,b,&) : afa,b, z),for some z & A;}U
it 8= f(a,b,0) : aa,b, o))

Note that this is not true, as the following counterexample
shows:
Counterexample.

Fé&ixy Féxp,,, -
l_ §7 y) a7 b) c <(€’ b) C)7 (57 y’ C), (57 a’) C)7 (y’ a7 C), (57 y’ a)’ (y7 a’ b))

where we have that p,, . = {(a,b),(b,¢),(a,c)} and thus
I‘l’a,b,c * §2 = {(57 a, b)7 (5) b7 C), (57 a, C)7 (a) b7 C) .

Nonetheless, when we calculate p; from o we forget some
information, which we then compute again when gluing with
&:. Indeed, it is possible to retrieve p; * &; directely from c,
through the following characterization:

PROPOSITION 4.11  (CHARACTERIZATION OF p; % &;).
We have p; * & = Ai UBi UCs, where:

Ai = {(a,b,&) : a(a,b, z), for some z & A;};

B; = {(a:b7 C) : a(a:b7 C):a7b:c € A1}7

Ci = {(a,b,c) : a(a,b, z) and a(b,c,2'),a,b,c € N;j,z #2' &
A}

Such a characterization relies on the following

PROPOSITION 4.12. Let a,b,c € A;. Then:



(1) (a)b7€i) € p; *51 iﬁ‘a(aﬁb: Z))Z g Ai;
(ii) (a7b: C) € p; * 51 'Lﬂ‘

- either a(a,b,c),
- or a(z,a’,b) and a(u,b’,c'), where (a',V',c") is a cyclic
permutation of (a,b,c), z #u and z,u & A;.

PROOF. (i) By definition of p,.

(it) If: We check that (a,b,c) € o implies (a,b,c) € p; * ;.
The other case is immediate since, by construction, pu,(a,b)
and p,;(b,c) = p; * &(a,b,c). Given a(a,b,c), let us con-
sider the spreading of £ on it. Let, say, it is (¢, a,b), thus
p;(a,b). We now need to study the relation of ¢ with a,b
in p,. If p,(c,a) or p;(b,c), it is (a,b,c) € pu,; * &. All the
other cases where c is comparable with either a or b reduce
to these two. If ¢ is p;-incomparable with a,b, again we
have (a,b,c) € p; * &;.

(ii) Only if: By construction, for an opportune cyclic permu-
tation (a',b’,c') of (a,b, c), it is either p,;(a’,b’") and p, (b', "),
or p;(a’,b") and ¢ incomparable with a',b" in p,;. If we
are in the last case, it means in particular that there is a
z & A; such that a(a’,b’, 2) holds and none of the following
is true: a(z,d’,c), a(z,cd,d),a(z,b,d), a(z,c,b'). This
means that a.(a’,b’) and ¢’ is incomparable with a’,b" in
a.. Thus (a/,b,d)€ea=a,xz. [

In Section 8 we will show that in fact the information carried
by C; is “redundant” w.r.t. proof search. Thus, in practice,
one can work without it.

4.5 Optimality and Adequacy

We have shown that the p; are partial orders, and thus
that the p; * £ are order varieties. What we need now to
prove is that we are in fact giving solutions to the Entropy
equation of Section 3, and that our solutions are optimal
(i.e. minimal).

This will also prove adequacy with respect to Non-Commuta-
tive Logic, since as a consequence of Theorem 4.13, our bi-
nary calculus turns out to be equivalent to the one by Maieli
and Ruet.

THEOREM 4.13. With the notation defined above, we have:

(1) ae 4 py < py;

(ii) Optimality. If 01,02 are two orders respectively on
A1 and Az, such that ae 1 (o2 < 01), then p; < o;.

PROOF OF (i). We want to show that o C (p, < pq) *&.
Let t beatriplein a. (1.) Ift € (§, Ay, As)ort € (§,A2, A1),
then t € (py, < py) * £, by definition of serial composition
of the orders w,, 1.

(2.) t € (Aj,A;,A;). Let us fix a,b,c € A; and z €
Aj. a(z,a,b) implies p;(a,b) and thus (a,b) is in the se-
rial composition of the two orders; the definition of serial

composition of orders also implies (b,z) € pu;, < p; and
(2,a) € p; < p;, thus in both cases (either i < j or j < i),
(a,b,2) € (y < py) * £, by construction.

(3.) t € (A4, Ai, A;). As in Characterization 4.11 (ii, “If”).
To be precise, we have to remark that if we have p,(a,b) and
¢ is incomparable with a, b in p,, then c is also incomparable
with respect to the serial composition of the two orders.
Thus we have (a,b,¢) € (u, < p;) *&. O

Before proving (ii) of the Theorem, we note that

LeEmMA 4.14. afa,b,z), where z € A;j and a,b € A;, im-
plies (a,b) € ;.

PROOF. (o2 < 01) * £ contains «, by the hypothesis of
entropy, and (&, A2, A1), by definition of serial composition
of orders. Let say j = 1,4 = 2. Since (a,b,z) and (a, z,§)
are in (o2 < o1) * £, then (by transitivity) so is (a,b,£).
This entails o2(a,b). O

ProOF OF (i7). To prove that p, *& C o; *&;, let us exa-
mine the triples t in p; %&;, following Characterization 4.11.

(A;). If t = (a,b,&), then we have a(a,b,z),z € {£,A;}.
The previous Lemma allows us to conclude o;(a,b).

(B;). t = (a,b,c) and a(a,b,c), thus (a,b,c) € (o2 < o1)*E,
hence the result.

(Ci). t = (a,b,c) and, for (a’,b’,c’) a cyclic permutation of
(a,b,c), we have a(a’,b',2) and a(b',d,u), z,u € {A;, £}
This implies (Lemma 4.14) o;(a’,b’) and o;(¥’,c'), hence
(@', V,d)eo;x&. O

5. THE BINARY CALCULUS

5.1 Binary positive rules
Figure 1 sums up the positive binary rules.

Looking at the table, we see that the treatment of Tensor
and Next may be unified, for both coherence and propaga-
tion of the order. To this end we associate to each formula
€ an order w = w(¢) on its direct subformulas:

w(é10&) = ({2 <&1) and w(é1 ®&2) = (&1 || €2)

Then any binary positive rule may be expressed as:

'_NAl * &1 "NAZ * &2
F&A (a)

, W

where
iy, (a,b) iff a(a,b,2),for some z & A;

and A1, A is a bi-partition of A that satisfies the coherence
conditions:

DEFINITION 5.1
herent if:

(COHERENCE). A partition Ay, Az is co-



Commutative

F & (aefhr) F &2 x (aefA2) -
Fé&®&, A (a)

where:
A1, A2 is a bi-partition of A such that

xr1 EA1,$2 €N =1 || T2 in (e 73

Non-Commutative
Féikpy, Fé&xpy,
& o6&, A (a)

where:
A1, A2 is a coherent bi-partition of A

Figure 1: Binary positive rules.

(Coh.1) For any x; € Ni, x; € Aj, where i # j € {1,2}:
a(g)xi)x]') = w(giygj);
(Coh.2) For any a,b € A; and 2,2 ¢ Ai: a(a,b,z) =

—a(b,a,z').

PROPOSITION 5.2. If& = &1 ® &2 we have that
= pa, (a,0) = aelAs,

— (Coh.2) is always verified.

PRrROOF. (Coh.1) and spreading of a imply that a(a, b, z) =

afa,b,§), for a,b € Aj,z ¢ A;. Then, in particular, (Coh.2)
is ensured by the anti-reflexivity of a. [

REMARK 5.3. (Coh.1) instantiates for Newt and Tensor
respectively to:
O: ~a(é,x1,T2), i.e. T1 £ T2;
®: —a(é, 1, 12) & (€, T2, 1), Q€. T1 || T2.

Remember that z1 || w2 iff (xv1 £ ©2 & w2 £ x1).

5.2 Binary negative rules
The negative rules also can be unified into a single one. We
define again:

w(€1VE2) = (61 < &2) and w(€19E2) = (&1 || €2)

Then:
Foesw
FEA ()

, W

The order variety a¢ * w admits an explicit characteriza-
tion (cf. Proposition 6.6), that for Sequential (that for Par,
respectively) instantiates to

Vi oag* (& <€)= al{é, §21/6 U (A6, 6e);
B oagx (& &) = af{&,&}/¢E]

5.3 Derivations in the binary calculus

Figure 2 gives an example of a derivation using the binary
calculus. All lower-case letters denote atoms. For conve-
nience, the focus is typeset in bold face.

To perform the first positive rule (Next, with focus F) with
the given partition, we have to check (Coh.1) on the triples
in (1). There is only one test: (b,a,F). Since b € Ay g, 1
and a € A, 1, we have to check that we have (b* ®ct) < a™*
in w(F'), which is the case. The derivation fails on the second
positive rule (Tensor, with focus b* ® c¢*), because of the
test (bT ®ct, ¢, b) in (2).

6. THE CLUSTER CALCULUS

We can now generalize our results to clusters of all positive
or all negative connectives. A cluster of all positive (resp. all
negative) connectives can be performed at once, as a single
connective. We stress two points:

— To propagate the order, it is the same construction p,,
that we already defined to apply.

— For the actual use of the calculus, the characterizations are
important results, as, in practice, are the characterizations
that one manipulates.

To define the cluster calculus, we exploit again the notion
of order associated to the subformulas of a focus.

DEFINITION 6.1. Given a cluster & of positive connectives,
let us fiz its subformulas &;(i € I) as either the first negative
subformulas of & or atoms. We inductively define an order
w = w(&) on the subformulas &; :

w(E 0" =w(E") <w(),

w(E ®&") =w(E) | w(E"),

w(&i) =&

The corresponding definition of order associated with a neg-
ative cluster is the obvious one.

To allow for compact definitions, it is convenient to extend I
with an arbitrary index v, such that éx = £. Let I" = TU.
In such a way, we can speak of the order variety w * £ on

{&,i € I"}. As we indicate by A; the context of &;, it is also
convenient to define Ay as £ itself.



Let F =a* ® (b ®ct). As binary formula, its subformulas are a* and b+ ® c*.

Fbot,b Fcte

Falt,a Fbl®ct,cb ((bt®ch, e b))

Lok L) L
; b ®ce, (b7 [|c¢)

l_ b7 a7 c7 F ((b7 a7 C)7 (b’ a7 F)>1

F,((b"®c") <at)

Fbva,c, F (D)

bva, (b < a)

Figure 2: Binary Derivation.

Next two sections discuss the positive and negative cluster
rules, which are then resumed in Figure 3.

6.1 Positive rules
The positive cluster rule is
E & Ai (g, * &)
FEA ()

- fw

where:

DEFINITION 6.2

ky,(a,b) iff ala,b,z),for some z € A;

(INDUCED ORDERS).

and Aq,...A,, is a coherent partition of A:

DEFINITION 6.3 (COHERENCE). Fori,j,k € I":

(Coh.1) a(xi,xj,xk) = (&i,&5,&k) in w=E.
(Coh.2) Fora,b € \;,z,2' € Ai, ala,b,z) = ~a(b,a,z).

Note that

REMARK 6.4. Let Ar be a coherent partition of A, and
a,b € A;. The two following sets are equal:

{a(a,b,z): z2=& or z €Ay, forj such that & > & or
& <&

{a(a,b,z) : z € Aj, for j#i}.
We conclude with

PROPOSITION 6.5 (CHARACTERIZATION). iy, * & ad-
mits the same characterization as in the binary case.

6.2 Negative rules
The negative cluster rule is

F §I,A (Ot,g *w)
FEA (a)

, W

In practice, it is easy to use the following characterization,
which is immediate:

PROPOSITION 6.6

agxw=al/f] U w+f U {(A§,E): (6,¢) € w}

(CHARACTERIZATION).

6.3 Decomposition of a cluster in binary steps
As one expects, we have:

THEOREM 6.7. To apply a cluster rule or to decompose
it in binary steps give the same result with respect to both
coherence and orders induced on the terminal premises.

We only need to concentrate on the positive case, the nega-
tive one being quite immediate. The proof is by induction,
with the binary case as evident basis.

Let us fix the setting we need for the inductive step. Let £ =
& o ¢, where o is either ® or ®. Let w(f) = w = wyowk,
where o is either < or ||, |w| =&;, I = JUK, |ws| = &7,
and |wK| = f}(.

Let us consider the following application of positive cluster
rule:

“6A () Y
where ¢ € I. We now first perform only a o-step, and then
(¢',wy) and (¢",wK) as clusters (the inductive hypothesis
applies):

Fuvjx¢;
= 5’, AJ (a')

Fug * &g
F&" Ak ()
F&A (@) )
where j € J,k € K. We need to prove that (i) the cluster

step is coherent iff all the steps in the binary derivation are
coherent and that (ii) p; = vy, for all ¢ € 1.

§I,UJJ é-uwa

Let us indicate the coherence hypotheses as:

(a.): The partition {A;, % € I}is coherent on a w.r.t. (§,w);
(b.): The bi-partition Ay, Ak is coherent on a w.r.t. the
first binary step (£,£ o¢");

(c.): The partition Ay is coherent on @’ w.r.t. (¢,wy); the
partition A is coherent on a” w.r.t. (£”,wk).

LEMMA 6.8. Assuming either of the hypotheses (a.) or
(b.)+(c.), if j1 # j2 € J, z & Ay, then a(zj,,xj,,2) entails
wJ(€j1a€j2)'

PrOOF. Let z € Ay, h € K*. Assuming (a.) as hypothe-
sis, a(zj,, xj,,2) implies w*E&(&5,, &y, En). Since & is in the
same relation (||, <, or >) with both &;;, the only possibility
(cf. Definition 3.4) for the order is w(&j, , €, ). Assuming (b.)
and (c.) as hypotheses, a(zj,,z;,, z) implies &' (z;,, j,,&'),
hence wy *&'(€5,,&j,,&'). This entails wy(&j,,&j,), and thus
w(ﬁjl:ﬁjz)' U



Positive Rule (¢ positive)

E & Ai (g, * &)
& A (o)

- fw

where ¢ € I,
A1, ...A,, coherent partition of A.

|w| = {51) "'5“})

Negative Rule (£ negative)

Fér A (o * w)
FEA (a)

, W

I={1,..n}

Figure 3: Cluster Rules.

ProPOSITION 6.9 (COHERENCE). (a.) iff (b.) + (c.).

PROOF. (a.) = (b.). (Coh.1) is immediate. As for (Coh.2),
let assume a(zj,,zj,,z), where j1,j2 € J and z & Ay. If
Jj1 = jo the result is immediate by (a.). Otherwise Lemma 6.8
implies w(j,,&;,). If we had a(xj,,zj,,2"), 2 € As, we
would also have w(¢;,,&;,).

(a.) = (c.). (Coh.1). Assume ' (x;, Tm,Tn), and use Char-
acterization 4.11. If we have I,m,n € J and a(z, Tm, Tn),
then we have w * £(&;,€m,&n) and hence wy * €' (&1, Em, &n)-
If we have (modulo a cyclic permutation) a(z;, m, z) and
a(z, Tm, ), 2,2 € Ay, it follows w(&;, &m) and w(ém, &n),
hence w, (€, &), w1 (€m, €n) and thus w) €' (€1, &, €n). IF
x, = &', then we have a(z;, Tm, 2),2 € A, hence w(&, Em),
thus wy (&, &n) and the result. (Coh.2) is immediate.

(b.) + (¢.) = (a.). (Coh.l). Assume a(x;,Tm,Tn). If
I,m,n € J, then @' (z;, Tm, ), hence wy*& (&, &m,&n) and
thus w * £(&1,Em,&n). Ifl,m € J, and n € K*, Lemma 6.8
entails w(&;, &m ), hence w*€(&, Em, €n). Finally, ifl € J,m €
K, z, = ¢, the result follows by the hypothesis (b.).

(Coh. 2). Let assume that for a,b € A;(i € J), we have
a(a,b,2) and a(b,a,z’). To have both 2,2 ¢ A; is against
(b). Assume z € Aj,j € J. Thus we have a'(a,b, z). If j #
i, the hypothesis (c.) forces 2’ € A;. In fact, 2’ € A entails
a'(b,a, &), contradicting (c.); 2z’ € Ay entails a'(b,a,z'),
which contradicts (c.) unless 2z’ € A;. O

PROPOSITION 6.10  (ORDERS). W,

i = Vi.

PrOOF. Let a,b € |u,;| = |vi| = As.
p; Cvi. (a,b) € p; iff a(a,b,z), where z € Ay, h # 4. If
h € J then a'(a,b,z), hence the result. If h € K* then
a’(a,b, &), hence the result.

vi C p,;. A cases analysis shows that a'(a,b,z), where
x & A;, means that we have a(a, b, zp), where h #i,h € I,
hence (a,b) € p;. O

7. SAMPLE DERIVATIONS

In Figure 4 we give two examples to familiarize ourselves
with the cluster calculus. All lower-case letters denote atoms.

For convenience, the focus is typeset in bold face, and the
rules are annotated with the associated order variety w * £
rather than with (§,w).

To check coherence we have to check the matching of the
triples in the sequent order variety () with those in the
order variety w(¢) * £ induced by the focus.

Example 1: We check the triples in the order variety (1)
against those in the order variety (b* || ¢) < at + F =
{(b*,a*,F),(c*,a*,F)}. While (b,a,F) is matched with
(b*,a™, F), to (b,a,c) does not correspond the triple
(b*,a*,ct). Thus the derivation fails.

Example 2: For the first positive rule: (a,y, F’) is matched
with (at,z,F); (a,y,c) is matched with (at,z,ct), and
(a,y,b) is matched with (a™,z,b"). Note that we then have
as order variety ((z,y, Z)) because of (a,y,Z) in (1): y,Z €
Az, and a € A,. For the second positive rule, (z,y,Z) is
matched with (z*,y*, Z).

Note that in these examples there is no non-determinism in
the contexts splitting, because the choice is directed by the
atoms.

8. FURTHER RESULTS AND IMPLEMEN-
TATION ISSUES

This section discusses, rather informally, some developments
that are oriented towards implementation. The analysis of
the coherence conditions and of the way of propagating the
orders carried out in this paper brings a better understand-
ing of what is really essential to NL proof search. This now
enables us, in particular, (I) to get rid of (Coh.2) and (II)
to reduce the space of the triples we need to test.

(I) To use only (Coh.1) as coherence condition is enough to
guarantee the correctness of a NL derivation.

PROPOSITION 8.1. If the search of a (multiplicative) NL
proof is successful checking only (Coh.1), then all applica-
tions of positive rules also satisfy (Coh.2).

We give a hint of the proof. Let us consider the case where
we have p,;(a,b) and p,;(b,a). Thus the order variety on the
premise contains (a,b,¢;) and (b,a,&;). Whatever rule is
applied afterwards, there will always be at least one pair of



Example 1: Let F =a* ©® (bJ‘ ® cJ‘). As ternary formula, its subformulas are a*, b+, and ¢*.

Fat,a FbYb Fete

'_ b’ a7 C) F ((b7 a7 C), (b7 a’) F)>1

bt et) <atxF

Fbva,c, F (0)

(b < a)*bva

Example 2: Let N = ¢®((aVy)B(bR2)), Z = (y- 0 zt),and F = (z ©at) © (b @ ).

= yL,y = :EL,:E
'_ w7y7Z ((w7y7 Z))2

(zt <y)*Z

1
Fa ,a

Fbot,b Fcte

ke a,y,b, Z,F ((a,y, F), (a,y,c), (a,y,b), (a,y, Z))"

(" I c") < (a* <)) *F

F F,N (D)

cll((a<y) ([ (0] 2)*N

Figure 4: Sample Derivations.

triples {(z, vy, 2), (y,z,2)}. For a multiplicative NL proof to
be correct, each branch must terminate either with the unit
axiom F 1, or with an identity axiom F p,p*. Before reach-
ing this, the three points x,y, z must have been separated
by a positive rule such as:

Foi,y Fx2,2
F2,y,z (a)

Since we have both (z,y, z) and (y,z, z), the above rule can
be neither a Tensor nor a Next, which causes the procedure
to fail.

Thus in particular, the derivation of Example 2 in Section 4
is not detected as wrong by (Coh.1) just because we stopped
too early.

As a consequence we can state:

PROPOSITION 8.2  (COHERENCE). The following two def-
initions of coherence are equivalent w.r.t. the search of NL

proofs:

(i) A context partition is coherent if it satisfies (Coh.1) and
(Coh.2);

(i) A contest partition is coherent if it satisfies (Coh.1).

A calculus based on (i) is more sensitive than a calculus
based on (ii): where (i) fails, the second calculus will go on,
but it will still fail before reaching the axioms. On the other
hand, to adopt (ii) rather than (i) as definition of coherence
presents a clear advantage in terms of the cost of testing co-
herence. Thus more investigation is necessary to say which
method offers more advantages for implementations.

(II) The calculus we presented builds a proof propagating
order varieties. A way to look at such order varieties is as a
set of tests, or a sort of “constraint” that a candidate parti-
tion must satisfy. With this perspective, not all the triples
in the order variety are necessary to build NL derivations:

PROPOSITION 8.3. Given a ternary relation o on the con-
clusion of a positive rule, to propagate the two following
ternary relations is equivalent w.r.t. soundness and com-
pleteness of the proof search:

(i) p; * & as defined in Section 4, i.e. A; UB; UC;, with the
notation of Characterization 4.11;

(i3) Ai U B;, with the notation of Characterization 4.11.

Note that the ternary relation defined in (ii) is not an order
variety (cf. Characterization 4.11), but if we wish, we can
complete it into an order variety at the end, if the proof
search succeeds.

8.1 Future work: towards implementation
We expect to use our calculus in conjunction with constraint
based techniques [3]. To extend such techniques to proof
construction in NL, the ability of dealing with clusters of
connectives, rather than only binary ones, is essential. This
is true because the basic objects of the constraint technique,
namely the bipoles, are positive clusters built from (posi-
tive) atoms and monopoles, where in turn the monopoles
are negative clusters of (negative) atoms. The key fact is
that bipoles, being two-layered clusters of formulas, can be
decomposed in a single step. This makes it possible for the
atoms to guide the splitting of the contexts, leading to the
progressive instantiation of the partitions.

The advantage of the constraint based approach to proof
construction is to unfold all branches of a derivation in par-
allel, a strategy that suits well the methods of our calculus.
We would also be interested in investigating the possibility
of using techniques of lazy context splitting.
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APPENDIX
A. NL SEQUENT CALCULUS

We only give the multiplicative fragment, the one we are
working with along the paper.

DEerFINITION A.1  (FormuLAS). The formulas are built
from atoms p,q, .., p=,q*, ...
and the following connectives:

commutative: ® (Tensor), ¥ (Par);

non-commutative: © (Neat), V (Sequential).

DEFINITION A.2
Morgan rules:

(NEGATION). Negation is defined by De

SEQUENT CALCULUS ([13])

Identity

Faxat

Positive

FéixT1 Féax1o
Fé&®&xT1 || 72

Fé&ixT1i Féx1o
FéobixTe<T1

Negative
Fllé)xT F <&)x1
"517852*1' |_§1V§2*T
Entropy
Frxé
Frlxg where 7/ I 7 (%)

(¥) “r’ obtained from 7 by replacing some < with ||”

REMARK A.3. It is easy to have an intuition of why for
Next it is T2 < 71, rather than 71 < T2, if one remembers

that (a ® b)* =b+vat. A derivation of F (a ®b)*, (a ®b)
18:
Faxa® Fbxb"
Fbt <a'xa®b
I, L v
Fb-vVa—,(a®b)




