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ABSTRACTAn in
reasing interest is dire
ted at the extension of the\proof sear
h as 
omputation" paradigm, already su

ess-fully applied to Linear Logi
, to a logi
 that is not onlyresour
e-aware but also order-sensitive. This paper is a 
on-tribution to proof sear
h in Non-Commutative Logi
.Our key result is to give a simple method for propagatingthe order stru
ture during proof sear
h. Su
h a methodis general, in that it 
an be applied to n-ary 
onne
tives.This enables us to de�ne a 
luster 
al
ulus, whi
h analyses
lusters of syn
hronous and of asyn
hronous 
onne
tives ina single step, with a single n-ary rule.
KeywordsLinear Logi
, Non-Commutative Logi
, Logi
 Programming,Proof Sear
h, Fo
alization.
1. INTRODUCTION\Proof sear
h as 
omputation" is a programming paradigm(
f. [9℄ ) that 
an �t features su
h as 
oordinations of entities,intera
tion, non-determinism, features that are all gainingimportan
e in 
omputer s
ien
e. One 
an think of operatingsystems, 
ight s
hedulers, the Internet... These examplesare all situations where a notion of order or priority arisesin a natural way. For this reason, while the logi
 program-ming interpretation of formulas-as-instru
tions and proofs-as-states has been su

essfully applied to Linear Logi
, inre
ent years an in
reasing amount of interest has been di-re
ted to proof sear
h in a logi
al system that is not onlyresour
e-sensitive but also order-aware (
f. [4, 8, 6, 12℄, andre
ent work by W.O'Hearn and D.Pym).Let us mention some of the di�erent insights motivating re-sear
h in this dire
tion: dealing with situations where 
om-putation is naturally subje
t to ordering 
onstraints (
f. [12℄,whi
h gives program examples dealing with natural language

parsing and sorting), en
oding of 
on
urren
y problems [5℄,managing 
oordination with priority, e.g. in the a

ess toresour
es and information (re
ent work by Andreoli).Most of this resear
h is 
arried out in either of two mainframeworks that in
orporate in a 
onservative way the no-tion of order into Linear Logi
: Non-Commutative Logi
(NL) by Abrus
i and Ruet [1, 13℄, and Ordered Linear Logi
(OLL) by Polakow and Pfenning [11℄. This paper is a 
on-tribution to proof sear
h in Non-Commutative Logi
.NL is 
hara
terized by a notion of sequent enri
hed witha stru
ture of order, namely an order variety [13℄ (
f. Se
-tion 3 for a review). Proof sear
h in this setting has notyet a satisfa
tory status, in parti
ular 
on
erning the e�e
-tive managing of 
ontext splitting, but important progresseshave been made re
ently with the extension of fo
alizationto NL.Fo
alization [2℄ is a 
entral tool for proof sear
h in (
lassi
al)Linear Logi
, for it enables us to redu
e the non-determinismof the 
hoi
es to be performed. Fo
alization relies on a dis-tin
tion between two homogeneous families of 
onne
tives:positive, or syn
hronous (timing is relevant), and negative,or asyn
hronous (timing is irrelevant). The very meaningof fo
alization is that 
onne
tives of the same family 
an begrouped and dealt with as a single 
onne
tive.Dealing with fo
alization in NL raises several new questions.As developed in [8℄ (
f. Se
tion 3.2), all questions play onthe \bottom-up" appli
ation of positive rules and may beredu
ed to: (1.) Under whi
h 
onditions is a partition of the
ontext 
ompatible with the order on the given 
on
lusion(
oheren
e 
onditions)? (2.) On
e given a partition, whi
horder is asso
iated to the premises? (3.) Sin
e there are,in general, several possible solutions to (2), whi
h solutionsare optimal? We address these same questions with a newapproa
h, whi
h allows us to extend the results.Our key result is to give a simple way to propagate theorder stru
ture when de
omposing a non-
ommutative 
on-jun
tion (Next). Su
h a solution is optimal. On the binary
onne
tives, our 
al
ulus is equivalent to the one by Maieliand Ruet. We then develop the results in two ways:{ we de�ne a 
luster 
al
ulus where pa
ks of all syn
hronous(Tensor, Next) 
onne
tives or all asyn
hronous (Par, Se-



quential) 
onne
tives are de
omposed \at on
e", as a singlen-ary rule (Se
tion 6);{ we are (eventually) able to redu
e both the spa
e andthe 
onditions to be tested in order to build an NL proof(Se
tion 8).The ability to deal with 
lusters of homogeneous 
onne
-tives is a ne
essary step towards the extension to NL of
onstraint based te
hniques of proof sear
h (
f. [3℄). Thisis a method that allows us to deal with 
ontexts splittingin Linear Logi
. Implementations will make the obje
t offuture investigation.
LudicsOur results issue from a study dire
ted at the extension ofLudi
s [7℄ to en
ompass Non-Commutative Logi
. On oneside, this 
on�rms the intuition that the dynami
 underlyingLudi
s is an intera
tive proof-sear
h. On the other side,while this work is self-standing, it is an interesting fa
t thatthe 
luster 
al
ulus 
omes with a semanti
 
ounterpart.
NoteThis work is 
arried out in multipli
ative NL, where all dif-�
ulties spe
i�
 to the non-
ommutative setting are 
on
en-trated. The extension of the framework to the additives(�;&) is immediate, and brings no surprise. As for the ex-ponentials { for whi
h the fo
alized approa
h has never beenas satisfa
tory as for the multipli
ative-additive fragment {we prefer to postpone the dis
ussion to future work. This ismotivated by re
ent dis
overies in Ludi
s ([7℄), based on a�ner de
omposition of the exponentials: in 
ontrast with thetraditional approa
h, \Bang" turns out to be (essentially)negative, whereas \Why Not" positive.
2. FOCALIZATIONAt the basis of fo
alization [2℄ is the distin
tion of LinearLogi
 
onne
tives into two families: positives (
;�) andnegatives ( &;&). These two families 
orrespond to a dis-tin
tion of the non-determinism involved by the timing ofthe 
hoi
es during proof 
onstru
tion: the timing may ormay not be relevant.Negative 
onne
tives 
arry asyn
hronous non-determinism:their rules are reversible, and in the proof sear
h they areto be performed as soon as possible.Positive 
onne
tives introdu
e syn
hronous (true) non-deter-minism. Su
h 
onne
tives enjoy the fo
alization property:given a sequent of positive formulas whi
h is the 
on
lusionof a 
ertain proof, there exists a formula, the \fo
us," thatmay be sele
ted as prin
ipal and entirely de
omposed up toits �rst negative subformulas.In a fo
alized sequent 
al
ulus negative rules are appliedimmediately, and positive rules, on
e 
hosen a fo
us, arepersistently applied up to their negative subformulas. Thisis exa
tly the sense of our 
luster 
al
ulus. Rather thankeeping on applying positive rules on the same fo
us in athreat, we 
an do it as a single step.

3. NON-COMMUTATIVE LOGIC AND OR-
DER VARIETIESNon-Commutative Logi
 is a 
onservative extension of Li-near Logi
 that uni�es 
ommutative and 
y
li
 linear logi
.To the formulas of the sequent is asso
iated a stru
ture oforder that is an order variety [13℄.Definition 3.1 (Order variety). Let � be a set. Anorder variety on � is a ternary relation � whi
h is :
y
li
: 8x; y; z 2 �;�(x; y; z)) �(y; z; x);anti-re
exive: 8x; y 2 �;:�(x; x; y);transitive : 8x; y; z; t 2 �;�(x; y; z) and �(y; x; t)) �(x; t; z);spreading: 8x; y; z; t 2 �;�(x; y; z)) 8<: �(t; y; z) or�(x; t; z) or�(x; y; t)The main property of an order variety is that it 
an bepresented as a (stri
t) partial order as soon as we take outa point.One 
an think of a 
ir
le, that be
omes a segmentas soon as one �x a point (a point of view), and in fa
t thenotion of order variety 
orresponds to the notion of partialorder in the same way as the oriented 
ir
le 
orresponds tothe oriented segment. The interest of this operation is thatthere is no privileged point of view. That is, an order varietyis at the same time an order with respe
t to any of its point.This is what makes the order variety a very syntheti
 tool.Next two de�nitions express the one-to-one 
orresponden
ebetween order varieties and orders.Definition 3.2. Let � be an order variety on � and x 2�. De�ne the binary relation �x on � r fxg by : �x(y; z)i� �(x; y; z).Proposition 3.3. If � is an order variety on � and x 2�, then �x is a stri
t partial order on �r fxg. It is 
alledthe order indu
ed by � and x.Conversely, ea
h stri
t partial order de�nes an order varietyon the same domain:Definition 3.4. Let ! = (�; <) be a stri
t partial orderon �. De�ne the ternary relation ! on � by : !(x; y; z) i�for a 
y
li
 permutation (x0; y0; z0) of (x; y; z), we have(x0 < y0 < z0) or (x0 < y0 and z0 is 
omparable with neitherx0 nor y0).Proposition 3.5. If (�;!) is a stri
t partial order, then! is an order variety on �.The two operations 
ommute. To make this more pre
ise,we need to use an other essential feature of order varieties,the \gluing". First re
all the notion of serial and parallel
omposition of orders.



Definition 3.6 (Serial/parallel 
omposition).Let !1;!2 be partial orders on disjoint sets �1;�2. Theirserial and parallel 
omposition !1 < !2 and !1 k !2 re-spe
tively are the two partial orders on �1 [ �2 de�ned by:(!1 < !2)(x; y) i� either !1(x; y) or !2(x; y) or (x 2 �1and y 2 �2);(!1 k !2)(x; y) i� either !1(x; y) or !2(x; y).Given two orders, to build an order variety out of eithertheir serial 
omposition or their parallel 
omposition yieldsto the same result:Proposition 3.7. If ! and � are two partial orders ondisjoint sets, then the following order varieties are equal:! < � = ! k � = � < !This naturally leads to the de�nition of a more general ope-ration, named gluing:Definition 3.8 (Gluing). The order variety of the pre-vious Proposition is indi
ated by ! � � :! � � = ! < � = ! k � = � < !Then we haveProposition 3.9. Let � be an order variety on a set �,x 2 � and ! a (stri
t) partial order on �r fxg. Then :�x � x = � and (! � x)x = !where by x we mean the unique stri
t partial order on fxg.In the next Se
tion we will review the sequent 
al
ulus forNL, whi
h is based on order varieties, and more pre
isely onseries-parallel order varieties.Definition 3.10 (Series-Parallel Order Variety).Series-parallel order varieties are those order vareties that
an be presented by a series-parallel order.We re
all that the 
lass of series-parallel orders is the least
lass of �nite orders 
ontaining empty orders on singletonsand 
losed under serial and parallel 
omposition (
f. [10℄ fora survey on the subje
t). A fa
t that we will use to prove ourmain Theorem is that series-parallel orders admit a negative
hara
terization as those orders on �nite sets whose restri
-tion to any 4-elements subset fa; b; 
; dg is di�erent from theorder P4 = f(a; b); (
; b); (
; d)g.
3.1 NL calculusA Linear Logi
 sequent is a stru
ture ` �, where � is amultiset of formula o

urren
es. In Non-Commutative Logi
a sequent has the form ` � h�i, where � is a series-parallelorder variety on the support � (j�j = �). Sin
e � 
an bepresented as an order w.r.t. any of its points, it is always

possible to �x a point � 2 � and present � as �� � � (
f.Proposition 3.9).All along the paper, when it is not ambiguous we will notexpli
itly mention the support, writing simply ` � (resp.` �� � �) for ` � h�i (resp. ` � h�� � �i).The 
al
ulus for Non-Commutative Logi
 (NL) [13℄ is givenin the Appendix. Given the orders � 1; � 2 on the premises,the Tensor rule 
omposes them in parallel:� = � 1 k � 2;where � is the order on the 
on
lusion. The Next rule in-stead 
omposes the two orders serially:� = � 2 < � 1:The two spe
ial 
ases of empty and total order varietiesrespe
tively 
orrespond to 
ommutative and 
y
li
 linearlogi
. What allows the two levels { 
ommutative and non-
ommutative { to interleave is the notion of entropy.Definition 3.11 (Entropy). E is the relation betweenpartial orders on the same set de�ned by :! E � i� ! � � and ! � �Note that entropy does not 
orrespond to in
lusion of orders,but it does 
orrespond to in
lusion of order varieties:Proposition 3.12. Let �;� be order varieties on �, andx 2 �. Then �x E �x i� � � �Intuitively, entropy 
orresponds to a loss of information onthe order. In the 
ase of series-parallel orders, it is performedby repla
ing some serial (<) with parallel 
ompositions (k).For instan
e: ((a < b) k 
) E ((a < b) < 
)
3.2 Focalized NLIn the original NL 
al
ulus, entropy was given as a stru
-tural rule. Read bottom-up, the entropy rule enables toin
rease the order underlying a sequent, and su
h an oper-ation is highly non-deterministi
. For this reason, entropyrepresents the main diÆ
ulty for the de�nition of a fo
alizedsequent 
al
ulus for NL.In the fo
alized 
al
ulus designed by Maieli and Ruet thisproblem is addressed by making entropy impli
it and push-ing it to the � rule. The Next rule is therefore expressedas ` � 1 � �1 ` � 2 � �2` � � �1 � �2 �where (Entropy equation) � E (� 2 < � 1)



This is the formulation we will follow from now on.This Next Rule (read bottom-up) brings to the proof sear
hseveral new 
riti
al points, developed in [8℄:(1.) To split the 
ontext in su
h a way that the equation� E (� 2 < � 1) admits a solution.(2.) To 
al
ulate the orders � 1; � 2 asso
iated to the premises.Also, in order to 
ommit ourselves as little as possible in theproof sear
h, the \quantity" of entropy should be minimized.Hen
e:(3.) Optimal solutions �1;�2. For any pair of orders � 1, � 2on �1;�2 respe
tively, su
h that � E (� 2 < � 1), we have�i E � i.The solutions given in [8℄ are of 
ombinatorial nature, andexploit the representation of the orders as spe
ial binarytrees (so, in parti
ular, they do not easily generalize to n-ary 
onne
tives). In the next se
tion we intend to addressthe same questions with a more syntheti
 approa
h.
3.3 ConventionsAll along the paper, when we speak of orders we alwaysmean stri
t partial orders.We will indi
ate by � the fo
us of a rule (the prin
ipal for-mula); we indi
ate by �i its subformulas (the se
ondary for-mulas). If the 
ontext of � is �, then �i is the 
ontext of�i. If a 
ontext formula is annotated with an index i, thenit belongs to �i, e.g. xi 2 �i.We will always indi
ate by � an order variety. We willmake frequent use of the operations de�ned in Se
tion 3. Inparti
ular, note that, by De�nition 3.2, �� is a partial order(the order indu
ed by � �xing �). By De�nition 3.8, if �is an order, � � � is an order variety, the one obtained bygluing.Be
ause of the de�nition of order variety, all the triples aretaken modulo 
y
li
 permutation. We also adopt the fol-lowing notations: (�1;�2;�3) = f(x1; x2; x3) : xi 2 �ig;�I = Si2If�ig; �[�I=�℄ = Si2I �[�i=�℄.
4. BINARY CALCULUS: THE NEXT RULEWe start our investigation from the binary 
al
ulus, and inparti
ular from the study of the Next rule, whi
h gathers alldiÆ
ulties spe
i�
 to the non-
ommutative setting.A simple example is enough to realize that NL imposes 
on-straints on the possible ways of splitting the 
ontext:` a; ? ` b; ?` a? < b? � a
 b 
` a?Ob?; a
 b OIt is not possible to split the 
ontext of a 
 b, be
ause theTensor rule would give a? k b? rather than a? < b?. The
ompatibility of the 
ontext splitting with the order is thequestion addressed by the \
oheren
e 
onditions". To thisquestion is stri
tly asso
iated another one: how to propagatethe order stru
ture from the 
on
lusion to the premises. Ifthis kind of questions are 
lear for Tensor, it is mu
h less sofor Next, be
ause of entropy.

We give a few examples to make 
lear what we want toa
hieve, and what the problems are.
4.1 Motivating examplesLet us 
onsider a generi
 positive rule, where � 
an be either�1 � �2 or �1 
 �2, and where j� j = � and j� ij = �i` � 1 � �1 ` � 2 � �2` � � �The rule for Tensor just asks that\�1;�2 is a bi-partition of � su
h that � = � 1 k � 2."We would like to have something so 
lear and simple forNext too.We 
ould be tempted to ask:\�1;�2 is a bi-partition of � su
h thatx1 2 �1; x2 2 �2 ) x2 < x1 in � ."But su
h a 
ondition is too strong. In fa
t, it does not takeinto a

ount entropy. Let us see this with an example.Example 1. ` b < 
 � �1 ` a; �2` (a < b) k 
 � �1 � �2 �This derivation is sound sin
e (a < b) k 
 
an be obtained asentropy of the serial 
omposition of the orders indi
ated onthe premises, whi
h is (a) < (b < 
) = (a < b) < (
), whereby entropy we weaken the most external < into k.The natural 
ondition to ask for would be:(Coh.1) \x1 2 �1; x2 2 �2 ) x1 6< x2 in � ."But this 
ondition is not suÆ
ient to guarantee that we 
anasso
iate an opportune order variety on the premises 1. Letus examine the following 
ase:Example 2. ` �1; y; y0 ` �2; x; x0` (x < y) k (x0 < y0) � � �(Coh.1) is respe
ted, but studying the various possibilities,one realizes that there is no way of giving an order on thepremises in su
h a way that the order on the 
on
lusionis obtained as entropy of the serial 
omposition. This isexa
tly the situation that in [8℄ is expli
itly prohibited bythe se
ond 
ondition of \Admissibility."One more example will illustrate the importan
e of the pro-pagation of the order.Example 3. ` b k 
 � �1 ` a; �2` (a < b) k 
 � �1 � �2 �1We will dis
uss this issue again in Se
tion 8, on
e we havemore tools.



The order on the 
on
lusion satis�es (Coh.1), but we have(a < b) k 
 6E a < (b k 
).Next se
tion re�nes the 
ondition of \
oherent partition."On
e 
hosen a 
oherent partition, the order asso
iated toea
h premise is well determined, and we give an immediateway to produ
e it.
4.2 The Next ruleOur approa
h is based on the following 
onstru
tion. Wewill prove (Theorem 4.5) that the binary relation so de�nedis a partial order in the 
ases we are interested in.Definition 4.1 (�). Let � be an order variety withsupport j�j = f�; �g. Given �i � �, we de�ne a binaryrelation on �i as:��i(a; b) i� �(a; b; z); for some z 62 �iRemark 4.2. The de�nition of ��i is better understoodas a generalization of De�nition 3.2 (�� 
orresponding to��). In fa
t the de�nition of the order �� 
an be rephrasedas: ��(a; b) i� �(z; a; b); for some z 62 j��j = �We 
an now de�ne our Next rule (to be read bottom-up) asfollows: ` ��1 � �1 ` ��2 � �2` �1 � �2;� h�i �where:{ j��1 j = �i (when the partition is obvious, we will oftenwrite �i for ��i);{ �1;�2 is a bi-partition of � that respe
ts the following
oheren
e 
onditions:Definition 4.3 (Coheren
e). Let �1;�2 be a bi-parti-tion of �. Su
h a partition is 
oherent on � with respe
t to� = �1 � �2 if it satis�es the following 
onditions:(Coh.1) If x1 2 �1; x2 2 �2, then :�(x1; x2; �).(Coh.2) If a; b 2 �i and z; z0 62 �i, then �(a; b; z) ):�(b; a; z0).The above de�nition is better understood when translatedinto the following terms:Remark 4.4. (Coh.1) and (Coh.2) are equivalent to:(Coh.1) x1 6< x2 in ��;(Coh.2) ��i(a; b)) :��i(b; a).

Se
tion 4.3 will prove thatTheorem 4.5 (Indu
ed orders). Given the above de-�nition of the Next rule, if the partition is 
oherent then thebinary relations �i indu
ed on the premises are partial or-ders.
4.2.1 ExamplesLet us make this approa
h work on our previous examples.Example 1. ` b; 
; �1 h�1 � �1i ` a; �2` (a < b) k 
 � �1 � �2 �sin
e � = f(a; b; 
); (a; b; �)g, thus �1 = f(b; 
)g. That is theorder variety on the �rst premise is (b < 
) � �1, as it shouldbe.Example 2. Let us now try the 
on�guration` y; y0; �1 ` x; x0; �2` (x < y) k (x0 < y0) � �1 � �2 �The order variety asso
iated to the 
on
lusion isf(�xy); (x0xy); (y0xy); (�x0y0); (xx0y0); (yx0y0)gTo have (x0xy) and (xx0y0) is enough to reje
t the 
andidatepartition �2 = fx; x0g, �1 = fy; y0g. Any other partition is�ne w.r.t. 
oheren
e.
4.2.2 RemarksWe give two other ways to 
hara
terize �i, whi
h may helpintuition:Remark 4.6. Let � = �1 � �2. The de�nition of �i isequivalent to the following two:(i): �i = Sz 62�i �z��i(ii): �1 = (�1)�1 and �2 = (�2)�2where�1 = ��T(�1;�1; � [ �2)�[�1=� [ �2℄;�2 = ��T(�2;�2; � [ �1)�[�2=� [ �1℄;and where [�i=�℄ indi
ates that all z 2 � have been renamedas �i.The interest of (i) is to show that �i is in fa
t a union (oforders), whereas the 
onstru
tion by Maieli and Ruet [8℄, onthe 
ontrary, is based on an interse
tion (the wedge).The meaning of (ii) is that in fa
t we extra
t �1 (resp. �2)from � by identifying �2 (resp. �1) with �. We are per-forming a quotient.We 
on
lude this se
tion with a fa
t that is of interest inview of the implementation: when 
he
king for 
oheren
e,it is enough to 
he
k just one of the i 2 f1; 2g:



Fa
t 4.7. To 
he
k (Coh.2) it is enough to 
he
k it forone of the i 2 f1; 2g: if one of the �i(i 2 f1; 2g) is anti-symmetri
, so is the other one.Proof. Let us �x an i, and assume that �(a; a0; z) and�(a0; a; z0), for a; a0 2 �i and z 6= z0 62 �i. Then it followsby transitivity of � that �(a; z0; z) and �(a0; z; z0).
4.3 Proof of Theorem 4.5We want to prove that if the partition is 
oherent then any�i is a partial order, and thus �i � �i is an order variety. Itis immediate that (Coh.2) implies the anti-symmetry of �i:Proposition 4.8 (Anti-Symmetry). (Coh.2) implies,for any i 2 f1; 2g: �i(a; b)) :�i(b; a)The deli
ate point is to prove transitivity. Note that a priorithere is no reason for �i(a; b) and �i(b; 
) implying �i(a; 
).Typi
ally, �i(a; b) 
ould 
ome from �(a; b; z) and �i(b; 
)from �(b; 
; z0), with z 6= z0 and no (a; 
; z00) be in �. We
an build an example:Example. Let us take � = a; b; 
; z, an order variety � =f(�; a; b); (z; b; 
); (�; a; z)(�; 
; z)g and as partition �1 = fzg,�2 = fa; b; 
g. The result is that �2 is f(a; b); (b; 
)g, whi
his not 
losed under transitivity.But in fa
t the above example is a bad one, sin
e we areonly 
on
erned with series-parellel order varieties, and theabove order variety is not. This 
an be shown to be true ingeneral. It is the obje
t of the next two propositions.Lemma 4.9. Let � be a series-parallel order variety on�; �; if �1;�2 is a 
oherent partition of � w.r.t. �, if z 2 �1and a; b; 
 2 �2, then �(a; b; �) and �(b; 
; z) imply either�(a; 
; �) or �(a; 
; z).Proof. Let us examine the possible spreading (i) of z on�(�; a; b), and (ii) of � on �(b; 
; z). (i): Dis
harging (�; z; b),whi
h 
ontradi
ts 
oheren
e, we have either �(z; a; b) or�(�; a; z), where the �rst one allows us to 
on
lude �(a; 
; z),by transitivity with �(b; 
; z). (ii): We have either �(b; 
; �)or �(�; 
; z), where, again, the �rst one is enough to 
on
lude�(a; 
; �).Let us suppose the worst possibility in both 
ases. Thuswe have f(a; z); (
; z); (a; b)g � ��. Our aim is to showthat either we have transitivity, or we are able to rea
ha 
ontradi
tion, produ
ing a P4. Let us examine the re-stri
tion ���a; b; 
; z. Of the twelve possible 
ombinations,the pairs of type (z;�2) are dis
harged by (Coh.1). By(Coh.2) we 
an also dis
harge (b; a); (
; b) and (
; a), thelast one be
ause �(�; 
; a) with �(
; �; b) gives �(�; b; a).We are left with (a; 
); (b; 
); (b; z); (a; b); (a; z); (
; z). Anyof the �rst three alone yields to the result: the �rst onedire
tly, the se
ond and third ones by transitivity of �. Infa
t �(a; b; �)�(b; 
; �)! �(a; 
; �) and �(b; z; �)�(z; b; 
)!�(b; 
; �). If we suppose that :(a; 
);:(b; 
) and :(b; z), we


on
lude ���a; b; 
; z � f(a; z); (
; z); (a; b)g. This gives us a
ontradi
tion: sin
e � is series-parallel, the restri
tion of ��to a; b; 
; z 
annot be f(
; z); (a; z); (a; b)g, whi
h is a P4.This Lemma, with its obvious symmetri
 forms, allows usto proveProposition 4.10 (Transitivity). Given a 
oherentpartition of �, ��i(i 2 f1; 2g) is transitive.Proof. Let i 6= j 2 f1; 2g, a; b; 
 2 �i, z 2 �j . Let ussuppose to have �i(a; b) and �i(b; 
). This means that wehave �(a; b; z0) and �(b; 
; z00), where z0; z00 62 �i. We wantto show that �i(a; 
).If z0 = z00 the result is trivial, by transitivity of �. Other-wise, let us 
he
k the possible spreading of 
 on �(a; b; z0).Sin
e (
; b; z0) is in
oherent, we have either (a; 
; z0), hen
ethe result, or (a; b; 
). In the same way, the possible spread-ing of a on �(b; 
; z00) give us (a; 
; z00), hen
e the result, or(b; 
; a). If we have (a; b; 
), we 
an redu
e the problem tothe 
ase treated in the previous Lemma. In fa
t, the spread-ing of � on �(a; b; 
) assures us either �(�; b; 
) or �(a; b; �),the third 
ase being ex
luded by 
oheren
e.
4.4 Computation of the order varietiesOne 
ould expe
t that�i � �i = f(a; b; �i) : �(a; b; z); for some z 62 �ig[f(a; b; 
) : �(a; b; 
)gNote that this is not true, as the following 
ounterexampleshows:Counterexample. ` �1 � y ` �2 � �a;b;
` �; y; a; b; 
 h(�; b; 
); (�; y; 
); (�; a; 
); (y; a; 
); (�; y; a); (y; a; b)i �where we have that �a;b;
 = f(a; b); (b; 
); (a; 
)g and thus�a;b;
 � �2 = f(�; a; b); (�; b; 
); (�; a; 
); (a; b; 
)g.Nonetheless, when we 
al
ulate �i from � we forget someinformation, whi
h we then 
ompute again when gluing with�i. Indeed, it is possible to retrieve �i � �i dire
tely from �,through the following 
hara
terization:Proposition 4.11 (Chara
terization of �i � �i).We have �i � �i = AiSBiS Ci, where:Ai = f(a; b; �i) : �(a; b; z); for some z 62 �ig;Bi = f(a; b; 
) : �(a; b; 
); a; b; 
 2 �ig;Ci = f(a; b; 
) : �(a; b; z) and �(b; 
; z0); a; b; 
 2 �i; z 6= z0 62�ig.Su
h a 
hara
terization relies on the followingProposition 4.12. Let a; b; 
 2 �i. Then:



(i) (a; b; �i) 2 �i � �i i� �(a; b; z); z 62 �i;(ii) (a; b; 
) 2 �i � �i i�{ either �(a; b; 
),{ or �(z; a0; b0) and �(u; b0; 
0), where (a0; b0; 
0) is a 
y
li
permutation of (a; b; 
), z 6= u and z; u 62 �i.Proof. (i) By de�nition of �i.(ii) If: We 
he
k that (a; b; 
) 2 � implies (a; b; 
) 2 �i � �i.The other 
ase is immediate sin
e, by 
onstru
tion, �i(a; b)and �i(b; 
) ) �i � �i(a; b; 
). Given �(a; b; 
), let us 
on-sider the spreading of � on it. Let, say, it is �(�; a; b), thus�i(a; b). We now need to study the relation of 
 with a; bin �i. If �i(
; a) or �i(b; 
), it is (a; b; 
) 2 �i � �i. All theother 
ases where 
 is 
omparable with either a or b redu
eto these two. If 
 is �i-in
omparable with a; b, again wehave (a; b; 
) 2 �i � �i.(ii) Only if: By 
onstru
tion, for an opportune 
y
li
 permu-tation (a0; b0; 
0) of (a; b; 
), it is either �i(a0; b0) and �i(b0; 
0),or �i(a0; b0) and 
0 in
omparable with a0; b0 in �i. If weare in the last 
ase, it means in parti
ular that there is az 62 �i su
h that �(a0; b0; z) holds and none of the followingis true: �(z; a0; 
0), �(z; 
0; a0),�(z; b0; 
0), �(z; 
0; b0). Thismeans that �z(a0; b0) and 
0 is in
omparable with a0; b0 in�z. Thus (a0; b0; 
0) 2 � = �z � z.In Se
tion 8 we will show that in fa
t the information 
arriedby Ci is \redundant" w.r.t. proof sear
h. Thus, in pra
ti
e,one 
an work without it.
4.5 Optimality and AdequacyWe have shown that the �i are partial orders, and thusthat the �i � �i are order varieties. What we need now toprove is that we are in fa
t giving solutions to the Entropyequation of Se
tion 3, and that our solutions are optimal(i.e. minimal).This will also prove adequa
y with respe
t to Non-Commuta-tive Logi
, sin
e as a 
onsequen
e of Theorem 4.13, our bi-nary 
al
ulus turns out to be equivalent to the one by Maieliand Ruet.Theorem 4.13. With the notation de�ned above, we have:(i) �� E �2 < �1;(ii) Optimality. If �1;�2 are two orders respe
tively on�1 and �2, su
h that �� E (�2 < �1), then �i E �i.Proof of (i). We want to show that � � (�2 < �1) � �.Let t be a triple in �. (1.) If t 2 (�;�i;�i) or t 2 (�;�2;�1),then t 2 (�2 < �1) � �, by de�nition of serial 
ompositionof the orders �2;�1.(2.) t 2 (�j ;�i;�i). Let us �x a; b; 
 2 �i and z 2�j . �(z; a; b) implies �i(a; b) and thus (a; b) is in the se-rial 
omposition of the two orders; the de�nition of serial


omposition of orders also implies (b; z) 2 �i < �j and(z; a) 2 �j < �i, thus in both 
ases (either i < j or j < i),(a; b; z) 2 (�2 < �1) � �, by 
onstru
tion.(3.) t 2 (�i;�i;�i). As in Chara
terization 4.11 (ii,\If").To be pre
ise, we have to remark that if we have �i(a; b) and
 is in
omparable with a; b in �i, then 
 is also in
omparablewith respe
t to the serial 
omposition of the two orders.Thus we have (a; b; 
) 2 (�2 < �1) � �.Before proving (ii) of the Theorem, we note thatLemma 4.14. �(a; b; z), where z 2 �j and a; b 2 �i, im-plies (a; b) 2 �i.Proof. (�2 < �1) � � 
ontains �, by the hypothesis ofentropy, and (�;�2;�1), by de�nition of serial 
ompositionof orders. Let say j = 1; i = 2. Sin
e (a; b; z) and (a; z; �)are in (�2 < �1) � �, then (by transitivity) so is (a; b; �).This entails �2(a; b).Proof of (ii). To prove that �i ��i � �i ��i, let us exa-mine the triples t in �i ��i, following Chara
terization 4.11.(Ai). If t = (a; b; �i), then we have �(a; b; z); z 2 f�;�jg.The previous Lemma allows us to 
on
lude �i(a; b).(Bi). t = (a; b; 
) and �(a; b; 
), thus (a; b; 
) 2 (�2 < �1)��,hen
e the result.(Ci). t = (a; b; 
) and, for (a0; b0; 
0) a 
y
li
 permutation of(a; b; 
), we have �(a0; b0; z) and �(b0; 
0; u), z; u 2 f�j ; �g.This implies (Lemma 4.14) �i(a0; b0) and �i(b0; 
0), hen
e(a0; b0; 
0) 2 �i � �i.
5. THE BINARY CALCULUS
5.1 Binary positive rulesFigure 1 sums up the positive binary rules.Looking at the table, we see that the treatment of Tensorand Next may be uni�ed, for both 
oheren
e and propaga-tion of the order. To this end we asso
iate to ea
h formula� an order ! = !(�) on its dire
t subformulas:!(�1 � �2) = (�2 < �1) and !(�1 
 �2) = (�1 k �2)Then any binary positive rule may be expressed as:` ��1 � �1 ` ��2 � �2` �;� h�i �;!where ��i(a; b) i� �(a; b; z); for some z 62 �iand �1;�2 is a bi-partition of � that satis�es the 
oheren
e
onditions:Definition 5.1 (Coheren
e). A partition �1;�2 is 
o-herent if:



Commutative Non-Commutative` �1 � (����1) ` �2 � (����2)` �1 
 �2;� h�i 
 ` �1 � ��1 ` �2 � ��2` �1 � �2;� h�i �where: where:�1;�2 is a bi-partition of � su
h that �1;�2 is a 
oherent bi-partition of �x1 2 �1; x2 2 �2 ) x1 k x2 in ��Figure 1: Binary positive rules.(Coh.1) For any xi 2 �i, xj 2 �j, where i 6= j 2 f1; 2g:�(�; xi; xj)) !(�i; �j);(Coh.2) For any a; b 2 �i and z; z0 62 �i: �(a; b; z) ):�(b; a; z0).Proposition 5.2. If � = �1 
 �2 we have that{ ��i(a; b) = ����i,{ (Coh.2) is always veri�ed.Proof. (Coh.1) and spreading of � imply that�(a; b; z))�(a; b; �), for a; b 2 �i; z 62 �i. Then, in parti
ular, (Coh.2)is ensured by the anti-re
exivity of �.Remark 5.3. (Coh.1) instantiates for Next and Tensorrespe
tively to:�: :�(�; x1; x2), i.e. x1 6< x2;
: :�(�; x1; x2)&:�(�; x2; x1), i.e. x1 k x2.Remember that x1 k x2 i� (x1 6< x2 & x2 6< x1).
5.2 Binary negative rulesThe negative rules also 
an be uni�ed into a single one. Wede�ne again:!(�1O�2) = (�1 < �2) and !(�1 &�2) = (�1 k �2)Then: ` �� � !` �;� h�i �;!The order variety �� � ! admits an expli
it 
hara
teriza-tion (
f. Proposition 6.6), that for Sequential (that for Par,respe
tively) instantiates toO : �� � (�1 < �2) = �[f�1; �2g=�℄ [ (�; �1; �2);&: �� � (�1 k �2) = �[f�1; �2g=�℄.

5.3 Derivations in the binary calculusFigure 2 gives an example of a derivation using the binary
al
ulus. All lower-
ase letters denote atoms. For 
onve-nien
e, the fo
us is typeset in bold fa
e.To perform the �rst positive rule (Next, with fo
us F) withthe given partition, we have to 
he
k (Coh.1) on the triplesin (1). There is only one test: (b; a; F ). Sin
e b 2 �b?

?and a 2 �a? , we have to 
he
k that we have (b?
 
?) < a?in !(F ), whi
h is the 
ase. The derivation fails on the se
ondpositive rule (Tensor, with fo
us b? 
 
?), be
ause of thetest (b? 
 
?; 
; b) in (2).
6. THE CLUSTER CALCULUSWe 
an now generalize our results to 
lusters of all positiveor all negative 
onne
tives. A 
luster of all positive (resp. allnegative) 
onne
tives 
an be performed at on
e, as a single
onne
tive. We stress two points:{ To propagate the order, it is the same 
onstru
tion ��ithat we already de�ned to apply.{ For the a
tual use of the 
al
ulus, the 
hara
terizations areimportant results, as, in pra
ti
e, are the 
hara
terizationsthat one manipulates.To de�ne the 
luster 
al
ulus, we exploit again the notionof order asso
iated to the subformulas of a fo
us.Definition 6.1. Given a 
luster � of positive 
onne
tives,let us �x its subformulas �i(i 2 I) as either the �rst negativesubformulas of � or atoms. We indu
tively de�ne an order! = !(�) on the subformulas �i :!(�0 � �00) = !(�00) < !(�0),!(�0 
 �00) = !(�0) k !(�00),!(�i) = �i.The 
orresponding de�nition of order asso
iated with a neg-ative 
luster is the obvious one.To allow for 
ompa
t de�nitions, it is 
onvenient to extend Iwith an arbitrary indexF, su
h that �F = �. Let I� = I[F.In su
h a way, we 
an speak of the order variety ! � � onf�i; i 2 I�g. As we indi
ate by �i the 
ontext of �i, it is also
onvenient to de�ne �F as � itself.



Let F = a? � (b? 
 
?). As binary formula, its subformulas are a? and b? 
 
?.` a?; a ` b?; b ` 
?; 
` b? 
 
?; 
; b h(b? 
 
?; 
; b)i2 b? 
 
?; (b? k 
?)` b; a; 
;F h(b; a; 
); (b; a; F )i1 F; ((b? 
 
?) < a?)` bOa; 
; F h;i bOa; (b < a)Figure 2: Binary Derivation.Next two se
tions dis
uss the positive and negative 
lusterrules, whi
h are then resumed in Figure 3.
6.1 Positive rulesThe positive 
luster rule is::: ` �i;�i h��i � �ii :::` �;� h�i �;!where:Definition 6.2 (Indu
ed Orders).��i(a; b) i� �(a; b; z); for some z 62 �iand �1; :::�n is a 
oherent partition of �:Definition 6.3 (Coheren
e). For i; j; k 2 I�:(Coh.1) �(xi; xj ; xk)) (�i; �j ; �k) in ! � �.(Coh.2) For a; b 2 �i; z; z0 62 �i, �(a; b; z)) :�(b; a; z0).Note thatRemark 6.4. Let �I be a 
oherent partition of �, anda; b 2 �i. The two following sets are equal:f�(a; b; z) : z = � or z 2 �j ; for j su
h that �j > �i or�j < �ig,f�(a; b; z) : z 2 �j ; for j 6= ig.We 
on
lude withProposition 6.5 (Chara
terization). ��i � �i ad-mits the same 
hara
terization as in the binary 
ase.
6.2 Negative rulesThe negative 
luster rule is` �I ;� h�� � !i` �;� h�i �;!In pra
ti
e, it is easy to use the following 
hara
terization,whi
h is immediate:Proposition 6.6 (Chara
terization).�� � ! = �[�I=�℄ [ ! � � [ f(�; �i; �j) : (�i; �j) 2 !g

6.3 Decomposition of a cluster in binary stepsAs one expe
ts, we have:Theorem 6.7. To apply a 
luster rule or to de
omposeit in binary steps give the same result with respe
t to both
oheren
e and orders indu
ed on the terminal premises.We only need to 
on
entrate on the positive 
ase, the nega-tive one being quite immediate. The proof is by indu
tion,with the binary 
ase as evident basis.Let us �x the setting we need for the indu
tive step. Let � =�0 Æ �00, where Æ is either � or 
. Let !(�) = ! = !J Æ !K ,where Æ is either < or k, j!j = �I , I = J [ K, j!J j = �J ,and j!K j = �K .Let us 
onsider the following appli
ation of positive 
lusterrule: ::: ` �i � �i :::` �;� h�i �;!where i 2 I. We now �rst perform only a Æ-step, and then(�0;!J ) and (�00;!K) as 
lusters (the indu
tive hypothesisapplies):::: ` �j � �j :::` �0;�J h�0i �0;!J ::: ` �k � �k :::` �00;�K h�00i �00;!K` �;� h�i Æwhere j 2 J; k 2 K. We need to prove that (i) the 
lusterstep is 
oherent i� all the steps in the binary derivation are
oherent and that (ii) �i = �i, for all i 2 I.Let us indi
ate the 
oheren
e hypotheses as:(a.): The partition f�i; i 2 Ig is 
oherent on � w.r.t. (�;!);(b.): The bi-partition �J ;�K is 
oherent on � w.r.t. the�rst binary step (�; �0 Æ �00);(
.): The partition �J is 
oherent on �0 w.r.t. (�0;!J); thepartition �K is 
oherent on �00 w.r.t. (�00;!K).Lemma 6.8. Assuming either of the hypotheses (a.) or(b.)+(
.), if j1 6= j2 2 J, z 62 �J , then �(xj1 ; xj2 ; z) entails!J(�j1 ; �j2).Proof. Let z 2 �h; h 2 K�. Assuming (a.) as hypothe-sis, �(xj1 ; xj2 ; z) implies !��(�j1 ; �j2 ; �h). Sin
e �h is in thesame relation (k, <, or >) with both �ji , the only possibility(
f. De�nition 3.4) for the order is !(�j1 ; �j2). Assuming (b.)and (
.) as hypotheses, �(xj1 ; xj2 ; z) implies �0(xj1 ; xj2 ; �0),hen
e !J ��0(�j1 ; �j2 ; �0). This entails !J (�j1 ; �j2 ), and thus!(�j1 ; �j2).



Positive Rule (� positive) Negative Rule (� negative)::: ` �i;�i h��i � �ii :::` �;� h�i �;! ` �I ;� h�� � !i` �;� h�i �;!where i 2 I,�1; :::�n 
oherent partition of �.j!j = f�1; :::�ng, I = f1; :::ngFigure 3: Cluster Rules.Proposition 6.9 (Coheren
e). (a.) i� (b.) + (
.).Proof. (a:)) (b:). (Coh.1) is immediate. As for (Coh.2),let assume �(xj1 ; xj2 ; z), where j1; j2 2 J and z 62 �J . Ifj1 = j2 the result is immediate by (a.). Otherwise Lemma 6.8implies !(�j1 ; �j2). If we had �(xj2 ; xj1 ; z0), z0 62 �J , wewould also have !(�j2 ; �j1).(a:)) (
:). (Coh.1). Assume �0(xl; xm; xn), and use Char-a
terization 4.11. If we have l;m; n 2 J and �(xl; xm; xn),then we have ! � �(�l; �m; �n) and hen
e !J � �0(�l; �m; �n).If we have (modulo a 
y
li
 permutation) �(xl; xm; z) and�(z0; xm; xn), z; z0 62 �J , it follows !(�l; �m) and !(�m; �n),hen
e !J(�l; �m), !J(�m; �n) and thus !J � �0(�l; �m; �n). Ifxn = �0, then we have �(xl; xm; z); z 62 �J , hen
e !(�l; �m),thus !J (�l; �m) and the result. (Coh.2) is immediate.(b:) + (
:) ) (a:). (Coh.1). Assume �(xl; xm; xn). Ifl; m; n 2 J , then �0(xl; xm; xn), hen
e !J ��0(�l; �m; �n) andthus ! � �(�l; �m; �n). If l;m 2 J , and n 2 K�, Lemma 6.8entails !(�l; �m), hen
e !��(�l; �m; �n). Finally, if l 2 J;m 2K; xn = �, the result follows by the hypothesis (b.).(Coh. 2). Let assume that for a; b 2 �i(i 2 J), we have�(a; b; z) and �(b; a; z0). To have both z; z0 62 �J is against(b). Assume z 2 �j ; j 2 J . Thus we have �0(a; b; z). If j 6=i, the hypothesis (
.) for
es z0 2 �i. In fa
t, z0 62 �J entails�0(b; a; �0), 
ontradi
ting (
.); z0 2 �J entails �0(b; a; z0),whi
h 
ontradi
ts (
.) unless z0 2 �i.Proposition 6.10 (Orders). �i = �i.Proof. Let a; b 2 j�ij = j�ij = �i.�i � �i. (a; b) 2 �i i� �(a; b; z), where z 2 �h; h 6= i. Ifh 2 J then �0(a; b; z), hen
e the result. If h 2 K� then�0(a; b; �0), hen
e the result.�i � �i. A 
ases analysis shows that �0(a; b; x), wherex 62 �i, means that we have �(a; b; xh), where h 6= i; h 2 I�,hen
e (a; b) 2 �i.
7. SAMPLE DERIVATIONSIn Figure 4 we give two examples to familiarize ourselveswith the 
luster 
al
ulus. All lower-
ase letters denote atoms.

For 
onvenien
e, the fo
us is typeset in bold fa
e, and therules are annotated with the asso
iated order variety ! � �rather than with (�;!).To 
he
k 
oheren
e we have to 
he
k the mat
hing of thetriples in the sequent order variety h�i with those in theorder variety !(�) � � indu
ed by the fo
us.Example 1: We 
he
k the triples in the order variety (1)against those in the order variety (b? k 
?) < a? � F �f(b?; a?; F ); (
?; a?; F )g. While (b; a; F ) is mat
hed with(b?; a?; F ), to (b; a; 
) does not 
orrespond the triple(b?; a?; 
?). Thus the derivation fails.Example 2: For the �rst positive rule: (a; y; F ) is mat
hedwith (a?; x; F ); (a; y; 
) is mat
hed with (a?; x; 
?), and(a; y; b) is mat
hed with (a?; x; b?). Note that we then haveas order variety h(x; y; Z)i be
ause of (a; y; Z) in (1): y; Z 2�x, and a 62 �x. For the se
ond positive rule, (x; y;Z) ismat
hed with (x?; y?; Z).Note that in these examples there is no non-determinism inthe 
ontexts splitting, be
ause the 
hoi
e is dire
ted by theatoms.
8. FURTHER RESULTS AND IMPLEMEN-

TATION ISSUESThis se
tion dis
usses, rather informally, some developmentsthat are oriented towards implementation. The analysis ofthe 
oheren
e 
onditions and of the way of propagating theorders 
arried out in this paper brings a better understand-ing of what is really essential to NL proof sear
h. This nowenables us, in parti
ular, (I) to get rid of (Coh.2) and (II)to redu
e the spa
e of the triples we need to test.(I) To use only (Coh.1) as 
oheren
e 
ondition is enough toguarantee the 
orre
tness of a NL derivation.Proposition 8.1. If the sear
h of a (multipli
ative) NLproof is su

essful 
he
king only (Coh.1), then all appli
a-tions of positive rules also satisfy (Coh.2).We give a hint of the proof. Let us 
onsider the 
ase wherewe have �i(a; b) and �i(b; a). Thus the order variety on thepremise 
ontains (a; b; �i) and (b; a; �i). Whatever rule isapplied afterwards, there will always be at least one pair of



Example 1: Let F = a? � (b? 
 
?). As ternary formula, its subformulas are a?, b?, and 
?.` a?; a ` b?; b ` 
?; 
` b; a; 
;F h(b; a; 
); (b; a; F )i1 (b? k 
?) < a? � F` bOa; 
; F h;i (b < a) � bOaExample 2: Let N = 
 &((aOy) &(b &Z)), Z = (y? � x?), and F = (x� a?)� (b? 
 
?).` y?; y ` x?; x` x; y;Z h(x; y; Z)i2 (x? < y?) � Z ` a?; a ` b?; b ` 
?; 
` 
; a; y; b; Z;F h(a; y; F ); (a; y; 
); (a; y; b); (a; y; Z)i1 ((b? k 
?) < (a? < x)) � F` F;N h;i 
 k ((a < y) k (b k Z) �NFigure 4: Sample Derivations.triples f(x; y; z); (y; x; z)g. For a multipli
ative NL proof tobe 
orre
t, ea
h bran
h must terminate either with the unitaxiom ` 1, or with an identity axiom ` p; p?. Before rea
h-ing this, the three points x; y; z must have been separatedby a positive rule su
h as:` x1; y ` x2; z` x; y; z h�iSin
e we have both (x; y; z) and (y; x; z), the above rule 
anbe neither a Tensor nor a Next, whi
h 
auses the pro
edureto fail.Thus in parti
ular, the derivation of Example 2 in Se
tion 4is not dete
ted as wrong by (Coh.1) just be
ause we stoppedtoo early.As a 
onsequen
e we 
an state:Proposition 8.2 (Coheren
e). The following two def-initions of 
oheren
e are equivalent w.r.t. the sear
h of NLproofs:(i) A 
ontext partition is 
oherent if it satis�es (Coh.1) and(Coh.2);(ii) A 
ontext partition is 
oherent if it satis�es (Coh.1).A 
al
ulus based on (i) is more sensitive than a 
al
ulusbased on (ii): where (i) fails, the se
ond 
al
ulus will go on,but it will still fail before rea
hing the axioms. On the otherhand, to adopt (ii) rather than (i) as de�nition of 
oheren
epresents a 
lear advantage in terms of the 
ost of testing 
o-heren
e. Thus more investigation is ne
essary to say whi
hmethod o�ers more advantages for implementations.(II) The 
al
ulus we presented builds a proof propagatingorder varieties. A way to look at su
h order varieties is as aset of tests, or a sort of \
onstraint" that a 
andidate parti-tion must satisfy. With this perspe
tive, not all the triplesin the order variety are ne
essary to build NL derivations:

Proposition 8.3. Given a ternary relation � on the 
on-
lusion of a positive rule, to propagate the two followingternary relations is equivalent w.r.t. soundness and 
om-pleteness of the proof sear
h:(i) �i � � as de�ned in Se
tion 4, i.e. Ai [ Bi [ Ci, with thenotation of Chara
terization 4.11;(ii) Ai [ Bi, with the notation of Chara
terization 4.11.Note that the ternary relation de�ned in (ii) is not an ordervariety (
f. Chara
terization 4.11), but if we wish, we 
an
omplete it into an order variety at the end, if the proofsear
h su

eeds.
8.1 Future work: towards implementationWe expe
t to use our 
al
ulus in 
onjun
tion with 
onstraintbased te
hniques [3℄. To extend su
h te
hniques to proof
onstru
tion in NL, the ability of dealing with 
lusters of
onne
tives, rather than only binary ones, is essential. Thisis true be
ause the basi
 obje
ts of the 
onstraint te
hnique,namely the bipoles, are positive 
lusters built from (posi-tive) atoms and monopoles, where in turn the monopolesare negative 
lusters of (negative) atoms. The key fa
t isthat bipoles, being two-layered 
lusters of formulas, 
an bede
omposed in a single step. This makes it possible for theatoms to guide the splitting of the 
ontexts, leading to theprogressive instantiation of the partitions.The advantage of the 
onstraint based approa
h to proof
onstru
tion is to unfold all bran
hes of a derivation in par-allel, a strategy that suits well the methods of our 
al
ulus.We would also be interested in investigating the possibilityof using te
hniques of lazy 
ontext splitting.
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APPENDIX
A. NL SEQUENT CALCULUSWe only give the multipli
ative fragment, the one we areworking with along the paper.Definition A.1 (Formulas). The formulas are builtfrom atoms p; q; ::, p?; q?; :::and the following 
onne
tives:
ommutative: 
 (Tensor), &(Par);non-
ommutative: � (Next), O (Sequential).Definition A.2 (Negation). Negation is de�ned by DeMorgan rules:(p)? = p? (p?)? = p(a� b)? = b?Oa? (aOb)? = b? � a?(a
 b)? = b? &a? (a &b)? = b? 
 a?SEQUENT CALCULUS ([13℄)Identity` a � a?Positive` �1 � � 1 ` �2 � � 2` �1 
 �2 � � 1 k � 2 
 ` �1 � � 1 ` �2 � � 2` �2 � �1 � � 2 < � 1 �Negative` (�1 k �2) � �` �1 &�2 � � & ` (�1 < �2) � �` �1O�2 � � OEntropy` � � �` � 0 � � where � 0 E � (�)(�) \� 0 obtained from � by repla
ing some < with k"Remark A.3. It is easy to have an intuition of why forNext it is � 2 < � 1, rather than � 1 < � 2, if one remembersthat (a� b)? = b?Oa?. A derivation of ` (a � b)?; (a� b)is: ` a � a? ` b � b?` b? < a? � a� b �` b?Oa?; (a� b) O


