Travelling on designs

Ludics dynamics

Claudia Faggian

DPMMS — University of Cambridge
United Kingdom
C.Faggian@dpmms.cam.ac.uk

Abstract. Proofs in Ludics are represented by designs. Designs (des-
seins) can be seen as an intermediate syntax between sequent calculus
and proof nets, carrying advantages from both approaches, especially
w.r.t. cut-elimination. To study interaction between designs and develop
a geometrical intuition, we introduce an abstract machine which presents
normalization as a token travelling along a net of designs. This allows a
concrete approach, from which to carry on the study of issues such as:
(i) which part of a design can be recognized interactively; (ii) how to
reconstruct a design from the traces of its interactions in different tests.

Ludics is a new theory recently introduced by Girard in [6]. The program
is to overcome the distinction between syntax and semantics: proofs are inter-
preted via proofs, and all properties are expressed and tested internally. Inter-
nally means interactively: the objects themselves test each other. The fundamen-
tal artifacts of Ludics are designs, which are both (i) an abstraction of formal
proofs and (ii) a concretion of their semantical interpretation.

Designs have remarkable properties also as a syntax. They may be seen as
an intermediate syntax between sequent calculus and proof-nets. Such a syntax
carries advantages from both approaches, in particular w.r.t. cut-elimination.
Designs: (i) Offer a concise syntax. (ii) Integrate a good treatment of the addi-
tives in a syntax that is still light to manipulate (this is a strong point of Ludics
with respect to proof-nets and geometry of interaction). (iii) Are close to imple-
mentation, in that they make explicit the “addresses” and use tools typical of
implementations, such as a dynamical approach to the context.

To have a concrete approach to designs and develop a geometrical intuition,
we introduce an abstract machine, called Loci Abstract Machine (LAM), which
allows us to present normalization by a token travelling along a net of designs.

The LAM is the starting point from which we developed several tools for the
operational study of designs. The path drawn by the token is a sequence of ac-
tions that represents the trace of the interaction between the designs. Conversely,
we provide tools for reconstructing the agents from the traces of their interac-
tions. A key operation we use exactly corresponds to a well-know operation of
Games Semantics, the computation of the view ([7], [8]).

Note 1. By design we always intend the tree structure that in [6] is called dessein.
If we refer to its sequent calculus presentation (i.e. dessin) we make it explicit.

1 Ludics in a nutshell

The program of Ludics is to overcome the distinction between syntaz (the for-
malism) and semantics (its interpretation): proofs are interpreted via proofs.
Syntax and semantics meet in the notion of design. Designs are both an abstrac-
tion of a formal proof, and a concretion of its semantic interpretation. This has
been achieved working from two directions.

1. Making semantics concrete. This leads to enlarging the universe of proofs,
in order to have enough inhabitants to be able to distinguish between them
inside the system. Paraproofs are introduced.

2. Abstracting from syntaz. The syntax of designs captures the geometrical
structure underlying a sequent calculus proof. There are two crucial notions used
to obtain this: focalization and locations. Focalization, which is an essential tool
of proof-search ([1]), allows the definition of synthetic connectives. Locations are
a major novelty of Ludics: proofs do not manipulate formulas, but their ad-
dresses. These are sequences of natural numbers, which can be thought of as the
address in the memory where the formula is stored.

Para-proofs. Ludics provides a setting in which to any proof of A we can oppose
(via cut-elimination) a proof of A+. To this aim, it generalizes the notion of proof
(para-proof).

A proof should be thought of in the sense of “proof search” or “proof construc-
tion”: we start from the conclusion, and guess a last rule, then the rule above.
What if we cannot apply any rule? A new rule is introduced, called daimon:

A T. It allows us to assume any conclusion, without providing a justification.

Slices. To understand designs, it is useful to have in mind the notion of slice.
A &-rule can be seen as the super-imposition of two unary rules: (a&b,a) and
(a&b,b). Given a derivation, if for any &-rule we select one of the premises,
we obtain a derivation where all &-rules are unary. This is called a slice. For
example, the derivation

Face Fhe g {a}), (akb, (5})

Fa&b,c
F (a&b) @ d,c ((a&b) @ d, {a&b})

can be decomposed into two slices:

Fac &b “he &b, {b
P ’({&ab}) d, {a&b ot Lb} ! d, {a&b
F (a&b) ® d,c (adeh) & d, {aleb}) and F (a&b) @ d,c ((aked) & d, {adeb})

The &-rule is a set (the super-imposition) of two unary rules on the same for-

mula. It is important to observe that normalization is always carried out in a
single slice: selecting one of the premises of a &-rule is exactly what happens
during normalization.

Synthetic connectives. The calculus underlying ludics is 2nd order multiplicative-
additive Linear Logic (MALL?). Multiplicative and additive connectives of LL
separate into two families: positives (®,®,1,0) and negatives (%,&,L,T). A
cluster of operations of the same polarity can be decomposed in a single step,
and can be written as a single connective, which is called a synthetic connective.
A formula is positive (negative) if its outer-most connective is positive (negative).

In the formula f = ((p1®p2) @ q*) ®r* we have a positive ternary connective
(—®—)®—. The immediate subformulas of f are p; ®ps, ¢+, r* (negative). To in-
troduce this ternary connective there are two possible rules, obtained combining
a Tensor-rule with one of the two possible Plus-rules:

Fpt,I' Frt A L Fgt, ' Fri A
Fpreog)ert T A (£ Ap7rh or Fptog)ors T A
Observe that each rule is labelled by a pair: (i) the focus and (ii) the subformulas
which appear in the premises.

The dual formula (p&q)®r has a negative connective whose rule combines
the Par-rule with the With-rule:

Fprd FqnrA
st (a0t)

(fAa", ™))

The rule is labelled by a set of pair: a pair (focus, set of subformulas) for each
premise. This makes sense if we understand that each negative premise corre-
sponds to an additive slice. Actually, we rather use the label (f+,{{p,7},{q,7}})
which is short for the one above.

To each positive rule corresponds a premise of the negative rule. During cut-
elimination, the positive rule will select a negative premise. That is to say, the
positive rule will select one slice. For example, the redex:

Fpt,I' FriA L Fp,r,A FqnrA L N
- (pJ_ P qJ_) ® ’I"J_,F,A (f! {p 5T }) W {(f 7{p7 T}): (f 7{q: T})}
F A A

reduces to:
l—pJ‘,I’ |-’I'J',A Fp,r A
FILA A

Note 2. We write (p1Bp2) @ ¢t) @rt for (I (;1B 1 p2)@ | ¢H)® | rt.
A positive rule can only be applied on positive formulas. Therefore we cannot
directly form ((p;%®ps) @ ¢) @ r*; we need to use an operator which changes
the polarity, the Shift: |. If N is negative, | N is positive. However, we are going
to deal with | implicitly.

Locations. Each formula to be decomposed receives an address. Let f of the
previous example have address £, and p, g, be respectively located in £1,£2, £3.
The positive rules in the previous example can be rewritten as

Positive rules

LT 2+ A ©2FT &FA
T FETA (€,{1,3}) TTETA (€,{2,3})

Sequents of addresses are expressions of the form = F A where: =, A are finite
sets of addresses, pairwise disjoint, and = contains at most one address. Notice
that negative formulas are written on the left-hand side. There is at most one
negative formula.

Designs: getting an intuition. Designs capture the geometrical structure of
sequent calculus derivations. To start from the sequent calculus is the simplest
way to introduce designs. Consider the following derivation, where at,b",c,d
denote formulas which respectively decompose as ag, bg, co~, do=.

F ao,CoJ‘ n F bo,doJ‘
P (C, {CO }) F bo,d

T

Fedat®bt
Fc®d,at ® bt

(d7 {dUJ_})
{(*, {bo})}
(at @bt {at,bt})
{(c®d, {c,d})}

Let us forget everything in the sequent derivation, but the labels. The derivation
above becomes the following tree of labels, which is in fact a (typed) design:

T {co™} 11 {do"}
a* {ao} + {bo}
at j bt {at, bt}

Bd {c,d}

This formalism is more concise than the original sequent proof, but still carries
all relevant information. To retrieve the sequent calculus counterpart is imme-
diate. Rules and active formulae are explicitly given. Moreover we can retrieve
the context dynamically. For example, when we apply the Tensor rule, we know
that the context of a* ® b is ¢,d, because they are used above. After the de-
composition of a* ® bt, we know that c is in the context of a* because it is used
after a, and that d is in the context of b', because it appears after it.

Since the sequent calculus is focalized, the proof construction follows the
pattern: “ (i) Decompose any negative formula; (ii)choose a positive focus,
decompose it in its negative components, decompose the negatives; repeat (ii).”
This is mirrored in the tree. In particular, polarities alternate, and a positive
focus is always followed by its immediate sub-addresses.

Observe that the tree only branches on positive nodes. As a mnemonic aid, we
represent the positive nodes as vertices and the negative nodes as edges.

To complete the process, let us now abstract from the type annotation (the
formulas), writing only the addresses. In the example above, we locate a* ® b+
at the address &; for its subformulas a and b we choose the sub-addresses £1 and
£2. Finally we locate ag in £10 and by in £20. In the same way, we locate ¢%d at
the address o and so on for its subformulas. Our design becomes:

@1) {0} (@2){0}
Qa {0} sz}
(1,2}
U‘ {1,2}

gk &

The pair (£,1) is called an action. As we have seen, £ is an address (the
address of a formula) and I a set of natural numbers, the relative addresses of
the immediate subformulas we are using. £ is called focus of the action. The
daimon 7 is also an action.

Where are the additives. The key to understand the &-rule in terms of design
is to remember that the &-rule is a set (the super-imposition) of two actions on
the (same address). Let us revisit our example of slices. Let us locate ¢ in the
address 7, (a&b) @ d in the address £, (a&b) in £1, a in €11, and b in £12. The
derivation of our previous example corresponds to the following design

? ?

g {1y £1{2} £1{1} €1 {2}

\C@/{l} whose two slices are @ {1} and @ {1}

The actions (£1{1}) and (£1{2}) should be be thought of as unary &; the usual
binary rule is recovered as the set of actions on the address £1.

Design: syntax. A design is given by a base and a tree of actions with some
properties which we recall below.

A branch in the tree is called a chronicle. We think of the tree as oriented
from the root upwards. If the action k, is before ko, we write k1 < Ko. We write
K1 <1 kg if ko immediately follows k;.

The base. A base is a sequent of addresses, which corresponds to the “initial”
sequent of the derivation, the conclusion of the proof, the specification of the
process. The base: (i) gives the addresses of the formulas we are going to de-
compose; (ii) induces a polarization of all the addresses (all the actions) in the
design. According to its position, each address in the base has a polarity: positive
(right hand side) or negative (L.h.s.). As in a synthetic connective the polarity
of subformulas alternates at each layer, if £ belongs to the base and is positive,
&i is negative, &ij is positive, and so on.

The tree of actions. A design ® of base &' F A is: (i) a non empty tree of actions
if the base is positive (there is only one first action), (ii) a (possibly empty)

forest of actions on the same initial focus if the base is negative (we can have a
set of first actions on the same address).

Such a tree of actions satisfies the following conditions:
Root. The root (possibly roots in case of a negative base) focuses on an address
of the base. If there is a negative address, that will be decomposed first.
Polarity. Polarities alternate.
Branching. The tree only branches on positive actions.
Focalization. The addresses used as focuses after a positive action (£,I) are
immediate sub-addresses of £. Observe that t can only appear as a leaf, because
it has no sub-addresses.
Sub-addresses. An address is either chosen in the base or has been created before
(always & < &i). This simply corresponds to the subformula property.
Leaves. All maximal actions are positives.
Propagation (linearity). In all slices of ® each focus only appears once, where
given a tree of action, a slice is a subtree such that the addresses &i,i € I after
a positive action (&, I) are all distinct. This condition means that an addresses
can be duplicated (reused) only in the context of a &.

Normalization. In Ludics there is no cut rule; a cutis a coincidence of addresses
of opposite polarity in the base of two designs. A cut-net is a finite set B =
{D1,...9,} of designs of respective bases =; - A; The graph whose vertices are
the =; - A; and whose edges are the cuts is connected and acyclic. If we orient
the edges from positive to negative, the design corresponding to the starting
vertex is the main design of the cut-net. The uncut loci form a base, the base of
the cut-net. A cut-net whose base is the empty sequent is said to be closed.

We call an address closed if it is a sub-address of a cut, open otherwise. The
definition extends to actions.

The normal form of a cut net R is indicated by [%R]. The normalization
procedure on sequents of addresses mimics normalization in sequent calculus. In
the next section, we will define normalization directly on the trees of actions.

2 Slices as proof-nets

As a design, a slice is simply a tree of actions, where each address only appears
once. Fach action is uniquely determined by its focus. For this reason, when
working with slices we often identify an action k = (o, I) with its focus o.

In a slice we are given two orders, corresponding to two kinds of information
on the actions:

— the succession in time, recorded by the chronicles (the chronicles tree);
— the succession in space, corresponding to the relation of being sub-address
(the prefix tree, which is analogous to a “sub-formula tree”).

Let us again have a look at our previous example of design. We make explicit
the relation of being a sub-address with a dashed arrow connecting o to o1 and
02, and £ to its sub-addresses, as follows:

Consider a multiplicative proof-net, where the axioms are possibly “generalized
axioms,” that is hypothesis of the form + I'. Such a proof-net is a sub-formula
tree with some extre information on the axiom links. If we emphasize the formula-
tree rather than the chronicles-tree, we recognize something similar to a proof-
net, added of some information on sequentialization. In particular this extre
information allows us to establish the axioms links (generalized axioms, of the
form £ I') between the last-focused addresses, which are the leaves in the prefix
tree. As we see below, in our example £1 is connected to ol and £2 to 02.

v v 611
AV
/@

This suggests dealing with normalization as in proof-nets rather than as in se-
quent calculus. Essentially we mimic proof-nets normalization, as in the following
example, where the cut-net

® ©

&1 £2 TYZ

once written as

/ y

®)

reduces as follows

96

®<
-
/1
\\1

cut

g

and then to

9 -

®<
e
\\1

ag

In Ludics the situation is in general slightly more complex than in the above
example, because the setting is not typed. Thus for example £ could corre-
spond on one side to the action (£, {1,2,3}) and on the other side to the action
(£,{1,2}), or just not appear at all. Observe however that what we actually do
on proof-nets is to connect (or to identify) two nodes with the same label. This
can be done on designs. This idea underlies both the normalization as “quotient
of orders” described in [6] and the abstract machine we define in the next section.

3 Loci Abstract Machine

Normalization of a cut-net R can be presented by a token traveling along the net.
This is implemented by a machine which we call Loci Abstract Machine (LAM).
We first present a minimal version, which we indicate by LAMjg, working on
slices. Since in a slice there is no “additive duplication,” normalization of slices is
simpler than normalization of general designs. However, one could always work
“by slices:” normalize slice by slice, and then put them together. In Section 5
we will generalize it.

The figure below presents the machine graphically. The key point is that
when the same address o appears in distinct designs, we can move from one
design to the other, passing from o7 to o~. Observe that the token is always
going upwards. While the token moves around, it draws a path on the cut-net.
Each path will represent a chronicle of the normal form [9R], as soon as we hide
the closed actions (internal communication).

Initialization: The token enters the net on the root of the main design (Main).

Transitions: When the token is on an open action, it follows the chronicles
order, moving upwards to the actions which immediately follow x in the slice.
When the token enters a (positive) closed action, it exits at the corresponding
negative action (then changing of design).

Transitions: 7 open Transitions: o closed

Below we give a formal definition of the machine. At the end of this section
we will give an example of execution.

A token is given by a pair (s, k). The action & represents the current position
of the token, while s is a list of actions, which records the path followed by
the token. Each time the token enters an open action, that action is attached
to the list. The transitions only depend on the position; the sequence of actions
is only recorded to produce the normal form. We denote the empty sequence by e.

Let T be the set of all positions reached by the tokens.
Ingtialization. If Main # 0 then T := {(e, k)}, where & is the root of the main
design (Main).
Transitions.
(i) Let n be an open action (recall that open means not cut).
If (s,m) € T then T :=T U (sn, &) for all & >1 7.
(ii) Let o be a closed action (the focus is sub-address of a cut).
If (s,0) € Tand o~ € Rthen T :=T U (s,k) for k >; 0.
Result. [R] = {c: c C s and (s, k) € T}, where st is a sequence whose last
action is positive.

Comments. When we enter a closed action o, it is necessarily positive. We pro-
ceed to the corresponding negative action (then changing of design). If o~ exists
we move to the (unique) action which follows o~ . If not, there is no way to ex-
tend s, and we are finished with that token. Notice that in this case s terminates
on a negative action. Each maximal positive path describes a maximal chronicle
of the normal form.

Example of execution. Consider the following cut-net, where the bases are
respectively a F 8, and 8 F o,7. We decorate it with the path followed by the
tokens: ¢ indicate the ¢-ary step.

ONOMONG

51 B27 ol? g2°

al ﬁ3
alk B,y pro,T

On ¢ the computation splits in two flows. There are two normalization paths,
which are: a, #,0,01, 32,7 and «, 8, 0,02, 7. As the token travels along, we only
record the open actions and the normal form grows as follows:

99
AR

From here it is immediate to recover the sequent calculus presentation:

Fol0,v Fo020,7
olkFy o2F71
Fa0,0,v,7
atoy,T

Designs vs. sequent calculus normalization We could have presented the same
cut-net with the syntax of sequent calculus.

F 310,00 “° F320,7 | 01052 7% Fo20.r "
B1F a0 B ﬂzmﬁm{l 2 olrFp2 7 s2Fr ¢
l_a(]:/@)’y ’ ’ I_ﬂ]"ﬂz’a.’T
aFpy © “Fror C

The reader is free to normalize on the sequent calculus, to check that the
resulting normal form is actually the one associated to the result on designs.

4 Disputes and chronicles extraction

In the previous section we presented normalization by a token traveling around
the cut-net. The token draws a path, which is a chronicle of the normal form,
as soon as we ignore the closed actions. To calculate the normal form we only
need to record the open actions. However, the normal form is not necessarily
the most interesting thing in normalization. In Ludics, the most important case
of cut-net is by far the closed one. If normalization converges, the normal form

reserves no surprise: it is F T. What is interesting is the interaction itself,
that is the sequence of actions that have actually been visited (used) during the
normalization.

We call normalization path the sequence of actions visited during the normal-
ization of a cut-net. We indicate by Paths(R) the collection of all normalization
paths on R. We call dispute the sequence of actions visited during the normal-
ization of a closed net. If the net is {®, €}, we indicate the dispute by [D = €].

Remark 1. Tt is immediate to modify the abstract machine given in the previous
section into a machine that keeps track of all the visited actions.

Views. In a design, action with the same focus may appear several times,
because of the use of n-ary negative rules (additives!). Each occurrence of an
action k is identified by the minimal chronicle ¢k in which it appears. We can
see this as the position of that k. As we shall see, for each action k used in the
normalization, the normalization path allows us to retrieve its position.

The key is to invert the process of constructing the path. This is in fact a
well-known operation of HO-Nickau games [7], [8] the view operation. The notion
of view is relative to a player, or to a parity in our setting. Let us recall some
technical notions we need.

The space of addresses, and thus of actions, is split between two players:
Even and Odd, according to the length of the address. A base has the same
parity (even or odd) as the addresses on its positive side (all addresses on the
right-hand side —positive— have the same parity, opposite to that of the address
on the left-hand side). The empty base F is defined positive. A design is even
or odd according to its base. An action is even or odd according to its focus.
When an action (or a base, or a design) has parity Even (Odd) we also say that
it belongs to Even (Odd).

The polarity (positive or negative) of each action in a design is relative to
the parity (even, odd) of the design. In a design of base X, each X action is
positive. We use the variable X, for X either Even or Odd, and X for the dual.
To explicit if an action & is Even or Odd, positive or negative we use the notation:
A A T

Any cut-net {D;} splits into two components: the collection of even de-
signs (DF), and the collection of odd designs (D). Hence we can write R
as {(@f),(@?)} We extend the notation for disputes to this case, writing
[(0F) = (99)].

Let us define the function view on p € Paths(2R). Observe that each action k
in p has a parity (Even/Qdd). If k belongs to X, it is X-positive and X-negative.
Given an action (£,I) € p, we say that it is initial if £ is not a sub-address of any
other address in p (£ belongs to the base of one of the designs in the cut-net).

Definition 1 (Views). Let p € Paths(R) and X be either Even or Odd. Its
view "p X of p is defined as follows (positive and negative is relative to X).

— Tel=¢;
— et =g Tk;

— Tsk™ "=k if K is initial;

— stk ="sk'k if k = (&, K) and k' = (£,).

We denote Odd view by "q"o and the Even view by "q"E. It is convenient to
adopt the following convention: by "qxT™ we mean the view of the player for

which k is positive. If k belongs to X, then "qgx™ 7 = rq/-c"'X and gk~ = '_q/c—'X

Notice that the notion of view applies to any p = [(Df) = (DF)].

Chronicles extraction. Let R be a cut-net whose designs are all slices and
p € Paths(R). We have that:

Proposition 1. Let R be a cut-net of slices, p € Paths(R) and qx C p. If &
appears positive in R, then the chronicle ck™ € R is given by "qx™ 7. If k appears
negative in R, then the chronicle ck™ € R is g™ .

Notice that an open action x will appear in R either positive or negative, never
both.

Proof. The proof is by induction on the length of gk. Let x be an open action.
The action 7 visited just before x by normalization is the action that precedes
% in the chronicle. Let ¢ = ¢'p and ¢k = ¢/ngk. By induction, "¢'n™ = ¢'n. If &
is positive, "¢'nk™ T = T¢'n7k. If k is negative, "¢'nk~ 7 = T¢'nt kK, because the
focus of k is sub-address of that of 1.
Let x be closed. The positive case is as before. ¢k~ is of the form ¢(¢, I)* (&, J)~,

where (£,1) < (&, J)” in p. Hence ¢'(§,I) C ¢, "gs~ 7 = "¢’ (&, 1)7(&i, J) and
"6, 1) = (&, 1),

Proposition 1 has immediate consequences which we develop in the next
sections.

5 LAM,: generalized version

The normalization procedure given in Section 3 is well defined since in the case of
slices there is only one occurrence of any focus. At the same time, it is idealized
in the sense that we assume that the machine is able to find the next action
by itself, in particular when moving from ot to o~ . Moreover, it would not be
feasible if we were not working by slices: in a general design, the same action may
appear several times (additive duplications). However, the sequence of visited
actions carries all information needed to retrieve the position of any of its action
(Proposition 1). In particular, when we enter a positive action k™ we are able
to retrieve the chronicle that identifies the negative action x~ to which we have
to move. Assume p is the sequence of actions we have visited so far, and we
enter the positive action k. We then move to the action k= identified by the
chronicle d = "px~.

We can therefore define the following general machine to normalize arbitrary
designs. Let Paths(R) be the set of all paths described on . We have that:

— € € Paths(R)
— Let n be open and of polarity z € {+,—}.

If pn € Paths(R) and "pn” 'k € R then pnk € Paths(R).
— Let o be a closed action.

If po € Paths(R) and "po~ 'k € R then pok € R.

Let Norm(R) = {hide(p) : p € Paths(R)}, where hide(p) is p where we
have deleted (hidden) all closed actions. We have that [R] = {s,s C ¢*,¢" €
Norm(R)}, where ¢ is a sequence whose last action is positive.

6 Calculating the pull-back

The normalization of a closed cut-net produces a unique maximal path, the
dispute. If we are given a dispute, we can calculate the minimal cut-net that
produces it. We indicate this operation by Pull(p).

Let p = [® = €]. Pull®(p) is defined as {T¢"¥ : ¢ T+t C p,q # €}. Pull®(p)
is defined symmetrically. Pull(p) = {Pull?, Pull®}.

It is immediate, and it is important to notice, that Pull(p) only depends on p.
Thus for any cut-net R, the normalization produces the dispute p iff Pull(p) C R.
As a consequence

Proposition 2. Given a cut-net R whose normalization produces the dispute p,
Pull(p) gives the the minimal Ro C R which produces p.

In [6] Ro is called the pull-back of p along R.

It is easy to extend the definition above to any closed cut net R. In such
a case Pull?(p) and Pull®(p) are a set of chronicle that we can split into a
collection of designs.

7 Computing a counter-design

Let us present another way to use the same machine “the other way round:”
given a slice and a path on it, we calculate a counterdesign realizing the path.

A path p on a slice & is a sequence of actions such that for any p' C p the
region of & covered by p' contains the root and is a tree. Now suppose we freely
draw such a path on a slice. Is there a counter-design which realizes that path?
Can we produce it? If we know that the counter-design exists, we can calculate
the pull-back. Otherwise, we can build the counter-design “by hand” as follows.

Procedure. Assume we have a slice & and a path p = ko,&, on it. Our aim
is to build a counter-design ¥ such that [& = %] = p. (We focus our discussion
on the case where G has base F £ or £ |; the case of base = F A is similar, but
we have a family ¥; of counter-designs).

The base of ¥ is determined. To build ¥, we progressively place the actions
of p to form a tree. The polarity of the actions in ¥ is opposite to that in &, as
is the polarity of the base. If k; is negative in ¥, there is no ambiguity on where
to place it: either it is the root, or it is of the form &i, and we place it just after
¢ (which is positive). If ;11 is positive in ¥, we need to place it just after k;
(which is negative in ¥). In fact once the normalization is on a positive action
ki in &, it moves to the negative action x; in ¥, and then ;.

At any stage in ¥ there is at most one maximal branch terminating with
a negative action. If k,, the last action of p, is negative in T, we complete ¥
with a daimon (}) after k,,. By construction, the normalization applied to {&, %}
produces p. We need to check that the tree we build is actually a design. The
only property that is not guaranteed by construction is that of sub-address on
positive focus.

8 An application: What can be observed interactively?

The program of Ludics is that of an interactive approach to logic. Ideally, we
should be able to express and to test interactively the properties we ask to
designs. Therefore what we know of a design is what we can see testing it against
a counter-design. What part of a design can be visited during normalization?
Normalization is always carried out in a single slice. Given a slice, can we build
a counter-design which is able to completely explore it? Even if we only consider
finite slices, the answer is no, as shown by the following example:

¢l €2
1,2

)

S (o 3

As we have sketched on the right hand side, such a design corresponds to a
purely multiplicative structure. In fact we can easily type it, for example letting
F(&) = F(£1) @ F(£2), F(<>) = F(§)RF(0)BF (1), where by F(x) we indicate
the formula associated to the address *.

Let us build a counter-design to explore this slice. The path will start with
<>, move to &, and then choose one of the branches, going either to £1 or £2.
The two choices are symmetrical, so let us take £1. At o we are forced to stop,
because there is no way to move to the other branch. The counter-design we

have built is the following one ().

The corresponding path is <>,¢,£1, 0, while the path we would like to have is
<>,&,£1,0,82, 7. € (above) is the tree of actions that would realize this path.
However, it is not a design, because it does not satisfy the sub-address condition
(€ £ £2).

An immediate consequence is that we cannot interactively detect the use of
weakening, even in a slice. Consider again the example above, now assuming that
the root is the action (&, {,0,7,A}). The root creates an address, A, which is
never used. However, we cannot interactively detect that A is weakened. Either
we explore the left branch, or the right one. In the first case we see that o is
used. The other addresses, 7 and A, are possibly used after £2. In the second
case we see that 7 is used, ¢ and A being possibly used after £1.

9 Related and further work

Interaction is central in Ludics, so it is important to have a theory telling what
can be interactively recognized, and it is rather natural to take interaction traces
as primitive and study designs from them.

In this paper we developed a concrete approach to designs, which gives us
effective tools to address issues such as the following ones (see [4]).

(i) Study geometrical properties of the normalization paths, in the style of
Geometry of Interaction.

(ii) Rebuild a slice out of a prefix tree of addresses.

(iii) Characterize the (parts of) designs that can be observed interactively:
the designs that can be explored in a test (in a single run of normalization)
represent the primitive units of observability.

(iv) Present designs as the collections of their disputes, which allows then
establish a bridge with Games Semantics [5].

Related work. Our normalization on designs (rather than on the sequent
calculus) is analogous to the order quotient defined in [6], though it was devel-
oped independently. Our approach is more local, hence easier to use for actual
computations. Actually, what the machine does is to calculate the balanced slice.
On the other hand, Girard’s theory provides a synthetic view, which better suits
the development of general results.

The notion of design is very close to that of abstract Bohm tree introduced by
Curien as a generalization of lambda terms and as a concrete syntax for games.
The way we proceed closely relates our work to the abstract machines studied
by Curien and Herbelin in [3]. Our generalized LAM is actually an instance of
the View abstract machine, introduced by Coquand in [2].

References

1. J.-M. Andreoli and R. Pareschi. Linear objects: logical processes with built-in in-
heritance. New Generation Computing, 9(3-4):445-473, 1991.

2. T. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic
Logic, (60), 1995.

3. P.-L. Curien and H. Herbelin. Computing with abstract bohm trees. In Third Fuji
International Conference on Functional and Logic Programming, Kyoto, 1998. Word
Scientific.

4. C. Faggian. On the Dynamics of Ludics. A Study of Interaction. PhD thesis,
Université Aix-Marseille II, 2002.

5. C. Faggian and M. Hyland. Designs, disputes and strategies. In CSL 2002 (this
volume), LNCS. Springer, 2002.

6. J.-Y. Girard. Locus solum. Mathematical Structures in Computer Science, 2001.

7. M. Hyland and L. Ong. On full abstraction for PCF. Information and Computation,
2000.

8. H. Nickau. Hereditarily sequential functionals. In Proceedings of the Symposium on
Logical Foundations of Computer Science: Logic at St. Petersburg, LNCS. Springer,
1994.

