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Abstract—We prove that is possible to extend Ludics [12] interaction mayterminate well(the two strategies “accept
so as to have repetitions (hence exponentials), and still %  each other”, and are samthogona) or not (theydeadlocl.
the results on semantical types which characterize Ludicsni An interactive typeis a set of strategies which “compose

the panorama of Game Semantics. The results are obtained " d tin th t t of test Secti
by using less structure than in the original paper; this has a well”, and react in the same way to a set of tests (see Section

interest on its own, and we hope that it will open the way to V). A semantical typeG is any set of strategies which
applying the approach of Ludics to a larger domain. react well to the same set of tedis which are themselves

Keywords-Linear Logic: Ludics; Interactive types; Game  Strategies (counter-strategies),(@ = E-.
Semantics. Internal completenessWith Ludics, Girard introduces
a new notion of completeness, which is calledernal
. INTRODUCTION completenesgsee Section V). This is a key, characteriz-
Ludics is a research program introduced by Girarding element of Ludics. We have already mentioned that a
[12] with the aim of providing a foundation for logic semantical type is a set of strategy closed by biorthogonal
based on interaction. It can be seen as a form of GamgG = G11). Internal completeness is the property thz
Semantics wherérst we have the definition ointeraction  constructions on semantical types do not require any clsur
(composition, normalization), antthen we have semantical i.e. are already closed by biorthogonaVhile it is standard
types as sets of strategies which "behave well” w.r.t.in realizability that a semantical type is a sgtof terms
composition. This role of interaction in the definition of closed by biorthogonaly( = S*+), when interpreting types
types is where lies the specificity of Ludics in the panoraméene has to perform some kind of closure, and this operation
of Game Semantics. canintroduce new terms~or example, the interpretation of
A® Bis (AUB)*. This set of terms could be in general
Recently, a growing body of work is starting to explore strictly greater thamA U B. We have internal completeness
and to develop the potential of this specific approach, anif A U B is provento be equal to/ A U B)++). Since the
to put at work the more general notion of type offered byclosure by biorthogonal does not introduce new terms, we
Ludics: the notion of type defined through interaction. Wehave acomplete description of what inhabits the semantical
mention in particular work by Saurin on interactive proof- type.
search as a logic programming paradigm [18], and work |n Girard's paper [12], the semantical types which are
by Terui on computability [20]. Terui gives an especially interpretation of formulas enjoy internal completenegsisT
interesting use of the notion of orthogonality (“to interac s really the key property (and the one used in [18], [20]).
well"): if the strategy® describes an automat®," (the set  Full completeness (for Multiplicative Additive Linear Liag
of all strategies which “interact well” with it) consists of MALL, in the case of [12]follows from it.
the languages accepted by that automata. Moreover, inter-
active types seem natural in a process calculus setting, a
Faggian-Piccolo ([9]) have shown a close correspondence o
Ludics with the Linear Pi-calculus [19]. The purpose of this paper is two-fold. On the one hand,
Interactive types:The computational objects of Ludics we show that it is possible to overcome the main limitation
— designs— can be seen as a linear form of Hyland- of Ludics, namely the constraint of linearity, hence theklac
Ong (HO) innocent strategies (as pointed out in [8]) or asof exponentials, in the sense that internal completenesks (a
Curien’s Abstract Bohm Trees. from that full completeness) can be obtained also when
However, in Game Semantics, we first define the typedaving repetitions, if one extends in a rather natural way
(arenas), and then the composition of strategies; the tiee ( the setting of Ludics. On the other hand, we provide proofs
arena) guarantees that strategies compose well. In Ludicghich use less structure than the original ones by Girard.
strategies are untypedn the sense that all strategies are Not only we believe this improve the understanding of the
given on a universal arena (the arena of all possible movesjesults, but — more fundamentally — we hope this opens
strategies can always interact with each other, and théhe way to the application of the approach of Ludics to a
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larger domain. We now give more details on the content ohot pursue it further because of the failure of the Separatio
the paper. Theorem. Our work builds on his simpler solution.
Ludics Architecture:A difficulty in [12] is that there is
a huge amount of structure. Strategies are an abstraction 8 Our approach
MALL proofs, and enjoy many good properties (analytical There are two standard branches of Game Semantics:
theorems). In [12], all proofs of the high level structure AJM style Game Semantics [1] which is based on Girard’s
of Ludics make essential use of these properties. Sinc&eometry of Interaction and HO style Game Semantics [14],
the properties are very specific to the particular nature ofntroducinginnocent strategiesStrategies in [8] are a linear
the objects, this makes it difficult to extend the — very form of innocent strategies.
interesting — approach of Ludics to a different setting, or The most natural solution to extend Ludics with expo-
build the interactive types on different computationakmlt$.  nentials is hence to have as strategies standard HO innocent
Ludics is introduced in [12] as a construction in severalstrategies (on an universal arena). To do so, there are two
layers. kind of difficulties, which we deal with in this paper.
« At the low level, there is the definition of than- The first difficulty in extending Ludics with repetitions, is
typed computational structurestrategies, there called that using HO-style style strategies, separation fails.o@é
design$ and their dynamics(interaction). Interaction with this by showing that the proofs of internal completenes

allows the definition oforthogonality. and full completeness can be given in a direct way, without
« The computational objects satisfy certain remarkablgelying on Separation (Section 4).
properties, callednalytical theoremsn particularsep- The second difficulty is that one needs to have enough

aration: two strategies?, B are syntactically equal tests. This problem is analogous to the one which has led
if and only if they are observationally equal (i.e., for Girard to the introduction of thdaimon rule in Ludics, one
each counter-strategy, the strategiesi, 8 react in  typically opposes to an abstract “proof af’ an abstract

the same way td@). “counter-proof ofA”. To have enough tests (that is, to have
« At the high level, there is the definition dfiteractive  both proofs of A and proofs ofA') there is a new rule
types which satisfyinternal completeness. which allow us to justify any premise. Similarly, when we

By relying on less structure, we show that the high leveloppose to a proof of A a proof of ![A* (= (?A)*), we
architecture of Ludics is somehow independent from the lowneed enough counter-strategies. As we illustrate in Sectio
level entities (strategies), and in fact could be built omeot 5, we need non-uniform counter-strategies. We realize this
computational objects. by introducing anon-deterministic surof strategies. Moti-

In particular, separation is a strong property. This makegations and a sketch of the solution are better detailed in
it a great property to have, but also a property which is noSection VI-C.
common to have in other settings. However, the fact thal
computational objects do not enjoy separation does not mea
that it is not possible to build the “high level architecture AJM style exponentialsA different solution that uses
of Ludics. We show (Section V) in fact that the proofs of AJM style exponentials is developed by the first author in
internal and full completeness rely on much less structurg3]: !4 is interpreted as an infinite tensor product of the
namely operational properties of the interaction. interpretation ofA, where each copy of the interpretation

We believe that discriminating between internal completeof A receives a different index. However, the approach we
ness and the properties which are specific to the objectdgse in this paper is considerably simpler, and we hope more
is important both to improve understanding of the resultssuitable for more applicative uses of Ludics [9], [18], [20]
and to make it possible to build the same construction on ~ Game SemanticsWe build on the variant of HO
different entities. strategies introduced in [15]. Moreover, we are interested

In particular, strategies with repetitions have weakeppro in connections with the resource modalities of Games Se-
erties than in the original version. We show that it is still mantics [17].
possible to have interactive types, internal completersass Abstract Machines:Curien and Herbelin in [6] have
from this full completeness for polarizedELL (Multi- studied composition of strategies as sets of views. In garti
plicative — Exponentials — Linear Logic). The extension ular they have developed the View Abstract Machine (VAM)
to full polarized Linear Logic [15] is straightforward. which is the device we use in this paper.

Exponentials in Ludics:Exponentials have been the Non-deterministic innocent strategiesere introduced
main open problem in Ludics since [12]. Maurel in [16] by Harmer in [13], with the purpose of modeling non-
proposes a first solution based on the use of probabilistideterminism (PCF with erratic choice). In this paper we
strategies. This solution is limited by its technical coexpl  introduce non-uniform strategies, which are realized by
ity. Therefore, it is not developed till a result of full com- means ofhon-deterministic sum®lying on work developed
pleteness. Maurel explores also a simpler solution, bus doeby Faggian and Piccolo [10]. Our purpose here is not to
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model non-determinism, but to implemenon uniformity  where immediate subformulas have opposite polarity. Hence
via “formal sums” of strategies, in order to provide enoughin a (cut-free) proof o MELLS, there is a positive/negative
tests to make possible the interactive approach of Ludicalternation of rules, which matches the standard Player
(inside the model), similarly to Girard’s introduction of (positive)/ Opponent (negative) alternation of moves in a
strategies corresponding to "incomplete” proofs. The dif-strategy (see Section Ill).

ferent purpose is reflected in the composition, which inFormulas of MELLS split into positive (P) and negative
our setting is reduced to deterministic composition. Our(N) as follows:

sHtrategu'as cclnutI.d bg seen asllfq ;’jcont(irete” mplzrr;en;atltcr)]n of P i= 207X [?2(N@---@N)
d;;rﬁse)rssou ion, in a simplified setting (see [4] for fue N u= IT|IXL[(P®---3P)

where X and X are propositional variables.

We useF’ as a variable for formulas, and indicate the polarity
In this section, we introduce a calculus that we callalso by writingF* or F~. We often writeF T (N, ..., N,)

MELLS, which is a variant of polarize@ELL based and F~(Py,...,P,).
on synthetic connectives. In section VIII-B, we prove that [inear negation' is defined as usualF++ F,
our model is fully complete foMELLS. (70)+ = 1T, ?X)t = IXL, (N, @ --- @ Np))* =
(Nt BN, ).
A. MELL " . . .
A sequent of MELLS is a multi-set of formulas written

Formulas of propositional Multiplicative Exponential kin | Fi,...,F, such that it contains at most one negative
ear LogicMELL [11] are finitely generated by the follow- o5rmula.

ing grammar:

II. CALCULUS

[

For I" multi-set of positive formulas, we have the following
Fu=X|X"|0|T|1|L|FeF|FXF|\F|?F 'ules
whereX, X+ are propositional variables (also callatbms. Ny F+.T.. .- N, F.T FPr.....P,.T

Linear logic distinguishes formulas into: T Pos — Neg
- linear formulas 0,1, T, L, F ® F,F B F; FFT FET

- exponential formulas? F, | F. i — — T
Linear formulas can only be used once, while the modal- FIXIXET =TT
ities !, 7 allow formulas to be repeated. The possibility of FPET FpPLT
repeating formulas is expressed by t@ntractionrule on . ’k =T ~—— cut
?F formulas: -
HYETED where in the last rul& is either empty or negative.
F?F T Notice that usual Linear Logic structural rules (weak-

ening, contraction, promotion and dereliction) are always

Dually, the modality! allows proofs to be used several times . 9’ =
implicit in our calculus.

during Cut-Elimination procedure, once for each duplmati
of 7F. Proposition 11.2. Cut-Elimination holds folM ELLS.
Connectives and constants MELL are also split into

two classes, according to theiplarity Remark 11.3 (Intuitionistic Logic). It is easy to check that

this calculus is a focalized version of the A fragment of
Positive 0,1,®,? | Negative T,.1,%,! intuitionistic calculusLJ ( The reader can refer to [4] for

Remark 11.1 (Modalities) Following [19], we write! for more details).

the negative modality, and? for the positive one, because I1l. HO STYLE GAME SEMANTICS

these symbols are more familiar. However in a polarized  ap innocent strateg§14] can be described either in terms
setting such as in [15], it is more common to write, 1esp.,q¢ 4| possible interactions for the playestiategy as set
t(negativg and» (positive). of play9, or in a compact way, which provides only the
B. MELLS minimal information for Player to movesf{rategy as set
of viewg [13]. It is standard that the two presentations

We now introduce the calculuMIELLS. Formulas are ’ . . Y

) : . . . are equivalent. Here we use the “strategy as set of views
here built bysynthetic connectivg4?] i.e. maximal clusters - . L . :
description. We revise the definitions, following Harmer's

of connectives of the same polarity. The key ingredient , .
- . f ._and Laurent’s presentation.

that allows for the definition of synthetic connectives is -

o . . . Let Pol = {+,—} be the set of thepolarities (here,
focalization [2]. Andreoli has proven that if a sequent is . . X

L . . .~ positive and negative). We use= Pol as a variable.

provable, then it is provable with a focusing proof. By using
synthetic connectives, formulas are in a canonical formDefinition Ill.1 (Arena) Anarena (A, 4,A4) is given by:



« a directed acyclic graph d.a.g. for short,(A,F4) Composition of strategiesComposition of strategies as
where: sets of views is well studied by Curien and Herbelin, who
— A (elements of the d.a.g.) is the setrobves introduce the View — Abstract — Machine (VAM) [6] by
— 4 (edges of the d.a.g.) is a well foundedabling ~ elaborating on Coquand’s Debates machine [5].
relation on A. If there is an edge frorm to n, we

write m F n. If no move enables: we write m, IV. Lupics
and call m initial . In this and the next section we give a compact but
« afunction A4 : A — Pol which labels each element complete presentation of Ludics, in a language which fits
with a polarity. that of Game Semantics.

Let us first stress the peculiarity of Ludics in the panorama
of Game Semantics. In Game Semantics, one defines con-
if n - m, they have opposite polarity. structions on arenas which correspond to the interpretatio
of types. A strategy is always “typed”, in the sense that# is
If all the initial moves have the same polaritywe say  strategy on a specific arena. When strategies are oppoytunel
that ¢ is the polarity of the arena. In this case we say thattyped, they interact (compose) well.
A'is apolarized arena (of polarity e). In the approach of Ludics, strategies are “untyped”, in the
Definition 1.2 (Strategy) Let A be an arena. sense t_hat all styategies are defined on the unive_rsal arena.
Strategies then interact with each other, and the int@nacti

« Ajustified sequences = sg.s1....s, ONA IS ASUING o terminate well(the two strategies “accept” each other)
s € A with pointers between the elements in the stringg, ¢ deadloch

which satisfies:

Enabling relation and polarity satisfy the following:

Daimon: Ludics provides a homogeneous setting in

— Justification. For each non-initial moves; of s,  which live both proofs and tests: proofs df interact with
there is a unique pointer to an earlier occurrence proofs of A*; to this end, it generalizes the notion of proof.
of moves; of s (j < i), called the justifier ofs;,  To this purpose, a new rule is introduced, caligimon:
such thats; 4 s;.

— Alternation. No two consecutive moves have the
same polarity.

o Aview (calledchroniclein [12]) is a justified sequence
on A, which satisfies: A. Strategies on a Universal Arena

— View. For each non-initial negative (Opponent)  Strategies communicate on names. We can think of
moves;, its justifier is the immediate predecessor names as channels, which can be used to send outputs (if

FT . Such a rule allow us to assume any conclusion.
In the semantics, the daimon is a special action which
acts as @ermination signal

Si—1. positive) or to receive inputs (if negative). Each strategy
« Astrategy® on A, denoted by : A is a prefix-closed ® has an interface, which provides the names on which
set of views, such that: can communicate with the rest of the world, and the use

— Coherencelf s.m,s.n € © and s.m # s then  (INPutioutput) of each name.

m,n are negative. _ _ _
— Maximality. If s.m is maximal in® (i.e. no other A name (called locus in [12]) is a string of natural
view extends it), them is positive. numbers. We use the variabl€so, 7,... to range over

names. Two names amisjoint if neither of them is the
We call positive (resp.negative a strategy on a positive prefix of the other one.
(resp. negative) arena. An interface T' (called basein [12]) is a finite set of
The polarity of a move in a strategy (i.e. positive/Playerpairwise disjoint names, together with a polarity for each
or negative/Opponent) is given by the arena. We sometimesame, such that at most one name is negative. If a ftame
put in evidence the polarity of a move by writing ™ or  has polaritye, we write £&¢ € T'. We say that an interface
x~, but we omit it when clear from the context. In the sameis negative if it contains a negative name, positive othsewi
way, we annotate strategies with their polarity, henceimgit An action z is either the symbot (calleddaimon) or a
Dt D, pair (¢, 1), where¢ is a name, and is a finite subset oN.
Tree notation: Emphasizing the tree structure, we also Given an action&, I) on the name, the set! indicates
write a strategy whose first move isas® = a.©’. More  the names{{i : i € I} which are generated frorg by
precisely, if© is a positive strategy, we write it @& =  this action. The prefix relation (writtef C o) induces a
a{€y,...,¢,}, instead of{a.s : s € €;,i € I}, where¢; natural relation of dependency on names, which generates
are negative strategies; similarlydfis a negative strategy.of an arena.We caltoots the actionf and any action&, I)
root a. such that¢ € T.



Definition 1V.1 (Universal Arena on an interface.fsiven The most important case in Ludics is the closed one,
an interfacel’, theuniversal arena U(I") onI" is the tuple  when all names iR are internal (for example we have

(U(T),F, \) where: D : &P and € : €). In this case, normal form can be
« Theset of movesis the special actiori together with ~ obtained step by step by applying the following rewriting
the set of all actions of the forrfg’, I). rules:

« Thepolarity of the initial actions(¢, ) is that indi- @) [#7{€1,..., &}, 27D, R] ~ [€4,..., &, D, R];
cated by the interface fof; the polarity of each other b) [T,2R] ~ f;
action is the one induced by alternation. c¢) If none of the case above applies, we have a deadlock

« Theenabling relation is defined as follows: (the output is empty).
(&, 1) b x, where:
(i) eitherz = (&, J) (with ¢ € I);
(i) or x is a positive root action and¢, ) is a
negative root action.

Since each action only appears once, the dynamics is
extremely simple: we match actions of opposite polarity. Le
us give an example of how interaction works.

Example IV.4. Let us consider the following small

Definition V.2 (Strat Uni I A tT' b . .
efinition (Strategy on a Universal Arenale e strategies (think: — (¢, 1) and 21 — (€1, K)).

an interface. Astrategy © on I', also written® : I' is a
strategy (in the sense of Definition 111.2) on the universal

arenaU(I). f
. . . |
A strategy which plays a key role is the stratedgimon :c|1 @
{1}, which (with a slight abuse of notation) we denote also I
by 5. ©) ©) @
Dynamics:_ Composition of §tra§egies is Qescribed_ yia D =zt | Di=atart | €:=a ot
the VAM machine. All we need in this paper is Proposition ) ) ]
VI.1 in Section VI-A. Let us have® interact with &. © starts by playing the
movexz ", & checks its answer to that move, whicheis. If
B. Designs (linear strategies) D receives inputry, its answer ist, which terminates the

Definition IV.3 (Linear strategy) We say that a strategy Interaction. Summing up, the interaction produaes, .i. If
© : T is linear if in D there is no repetition of actions on We hide the internal communicatioh,is the output.
the same name. If we have€¢ interacting with®’, we again matck:™ with

] ) ) o z~. Then¢€ playsz;, but®’ has no answer to the action
Linear strategies are essentially the strategies intrediuc 1. Here we have a deadlock.

in [12] (there calleddesign}. The linearity condition ex-

pressed .there is actually slightly more complex, becggsg_ Orthogonality and Interactive types

it takes into account also the additive structures (adalitiv

duplication is allowed). Since in this paper we do not Inthe closed case, we only have two possible outcomes:
consider additives, for our discussion it is enough to say th either composition fails (deadlock), or it succeeds by neac
in a strategyeach name is only used ondénearity has as ing the actionf, which signals termination.

consequence that that all pointers are trivial (eéach mose hayefinition 1V.5 (Orthogonality) Given two strategies of
only one possible justifier), and then can be forgotten. opposite polarity® : ¢, & : ¢, they areorthogonal,

Composition of linear strategies (see [12], [7]}Ve  \ritten © L ¢ if [©,¢] = 1.
can compose two strategié3;, ©, when they have com- |t 5 . ¢ js 5 strategy, itsorthogonal is defined as
patible interfaces, that is they have a common name, Wit%J_ = {€ : €,¢1D} (wherez is the polarity opposite

opposite polarity. For exampl@, : o, I can communicate  y, .y The definition of orthogonality extends to sets of
with ©5 : 0, A through the name. The shared name,

2 . strategies.
and all names hereditarily generated froemare said to be
internal. Two strategies arerthogonalif at each step any positive
If %= {D,,...,D,} is a finite set of strategies which actionz™ findsits negative dual actiom~, and the compu-

have pairwise compatible interfaces, we denote ##j fne  tation terminates, that is we eventually meet action.
result of th.e_ composition, also Ca”@brmal form Example IV.6. In the Example IV.4¢ 1D, while ¢ and ®’
Composition (also called normalization)follows the stan-
: " " . are not orthogonal.

dard paradigm oparallel composition (the interaction) plus
hiding of internal communication:{R] is obtained from the Orthogonality allows the players to agree (or not), without
result of the interaction by hiding all actions on internal this being guaranteed in advance by the type: is the set
names. of the counter-strategies which are consensual With



Remark IV.7. Orthogonality naturally extends to strate- In [12], the set of strategies which interpraf ALL
gies on arbitrary interface. Instead of considering a segl formulas satisfies a remarkable closure property, catied
counter-strategy, one has to consider a family of counterternal completenesshe setS of strategies produced by
strategies (e.g., for® : &¢T,0T7, one has to consider the construction is (essentially) equal to its biorthodona
¢:¢,F : o~ and the family{¢&, §} is orthogonal to® if (S = S*+4). This means that we have a complete description
[©, ¢, §] = t). Details on this generalization are given in of all strategies in the behaviour.
[12]. The best example is the interpretatidn @ A, := (A e
A,)++ of a Tensor formula. One proves thak; e A,) =
(A eAy)*t+, i.e. we do not add new objects when closing
by biorthogonal.
From this, full completeness follows. In fact, because of
We say that a behaviouG is positive or negative internal completeness, ® € A; ® A, we know we can
according to its interface. decompose it a®; e D, with ®; € A; and D, € A..

) ) ) ) _ This corresponds to writing the rule:
We now give constructions on behaviours which will

interpret linear formulas.
IfD,:£17,...,9, :{n~ (i € I) are negative strategies, : :
we define a new positive strategy ¢n: HA F A

Die---0D,:= (1) {D1,...,D,}. FA1® A

Itis | di lize th . . l.e., if each®; corresponds to a proof ofl;, © corre-
tis imme iate to generalize the construction to Stra&\g'esponds to a proof ofl; ® As.
D;: & 7,1, to obtain® : 1.1, E i ;
; et or the rest of this section, we assume t#atB are

Conversely, given any strate@ : £, such that the root . . ) _ _
- : ) : negative behaviours respectively 6h~ and£2™.
is linear (i.e. the action which labels the root occurs only Let ‘der o B. B tructi h strat h
once in®), we can write it a®® = z.{D4,...9,}. By the et us considen ¢ b. by construction, each stralegy has

+ + initi i -
View condition, we have that each subtr®g is a strategy r t'_ (&, {1’h2})t tas ro_ot. Bdei\f'?]'tlon of I|nfa:rr1 nornt1_al
on &i. Given a strategy as just described, we will write 'Z? lon, each strategy ."OA. * B)~ has as root e action
D1, for the operation which returns ;. 2~ (otherwise, normalization would fail immediately). All

Let Ay, A, be negativebehaviours, respectively ofil ~ strategi_es in(A * B rlave a positi\{e root, Whic.h’ to
and¢2—. We denote byA; e A, the set norrrlallze againstA e B)-, must be either the actiof,
or 7. Hence, we know that a strate® € A ® B has
{D1092,9; € A} U{t}. the formz™.{D; : £1,D5 : £2}. We now prove that if
We define: D c(AeB)tt then®, € A and®, € B.

R 11 iti H .
A1 @Ay = (A1 e Ay)=, positive behaviour o™, Proposition V.1 (Internal completeness of Tensor)et

1 1 . 1 R H —
A1 Ay = (Ag e Ag)—, negative behaviour og™. A, B be negative behaviours, respectively@m and£2-.
In the sequelP will always denote a positive behaviour, \ve have thaih © B — A e B.

N a negative one.

The interpretatiorG of a formulaG will be a behaviour, Proof: Given any§ : (17 € A+, we obtain the
i.e. a set of strategies closed by biorthogomal:c G if strategyy’ : £ = z~.§ by adding the rootr—. For any
and only ifD_L ¢, for each® € G*. The interpretation of D : (T = 27.{D,D2}, we have the following equation:

a sequent G, ..., G, naturally extends this definition: [z=F 2] = [T, D1], by definition of normalization, and
by the fact that since if there are only names generated
by £1, §F: £1T7 only interact with the subtre®, : £1-.

3’ € (A «B)*, because by using the equation we deduce

Definition 1V.8. A behaviour (or interactive type) on the
interfacer, is a setG of strategiesd : I" such thatG++ =
G (it is closed by bi-orthogonal).

Al ® A

Definition 1V.9. A sequent of behaviourss a sequence of
behaviours, noted bl Gq,...,G,, that satisfies® € +

Gi,..., G, ifand only if[D, &;,...,¢&,] = {, for each that3' LD, for anyD € (A o B).

1 1
GreGi . & € G Given® € A®B, it must be® | ¢ for eache € (AeB)* .
It is clear that a sequent of behaviours is itself a behayiouHence in particular, for eac§ € A+, we have® L3 (§’
i.e, a set of strategies closed by orthogonal. defined as above), and hence, again because of that equation,

H 1Nl
V. LINEAR SETTING. INTERNAL AND FULL 0113, i.e.,D1 € (A7)" = A, L

COMPLETENESS Remark V.2 (Important) Observe that here we only use two
In this section we restrict our attention to linear strategi  properties of the strategies: the dynamics (normalizgtion
We introduce internal completeness, as well as full com-and the fact thathe root is linear, i.e. it is the only action
pleteness. All these results can be proven without relyingpn the name (to say that occurrences &fl only appear
on separation. inside®,).



Internal completeness for the connective pars imme-
diate, just spelling out Definition 1V.9.

Full completeness for Multiplicative Linear Logi®ILL
follows from what we have seen in this section, by using
the proof of internal completeness of Tensor and Par, and 2:¢*
Corollary V.3.

Corollary V.3. If ® € = I', P if and only if for each¢ €
P, [®,¢] € - T.

VI. LUDICS WITH REPETITIONS WHAT, HOW, WHY

From this section on, we abandon the hypothesis of linear-
ity. Here we discuss the difficulties in extending the apploa
of Ludics to this setting, and introduce our solution, which
will be technically developed in Section VII. First, let us
introduce some operations which we will use to deal with Figure 2. Composition (with repeated actions)
repeated actions, and describe composition.

Renaming: Given a strategy® : &, let us indicate

by o(¢) the strategy obtained froré by renaming, in all Let us motivate this property, which actually gives a
occurrences of action, the pref§xinto o. l.e., each name description of the composition.
¢’ = ¢.7 becomess.7. Obviously, if € : &, theno(€) : 0. Let® : £ and ¢ : & be two strategies, which we

Renaming of the root:Given a positive strategy representin Figure 2 (a) (again, we indicate an actiam
D : &1, let us indicate byr (D) the strategy obtained by ¢ simply with the namet). The idea behind the abstract
renaming the prefix into o in the root, and in all actions machine in [6] is that, when the two strategi®sand &
which are hereditarily justified by the root. B : ¢+, we  interact, every timeD plays an action: on &, a copy of¢&

obtain a new strategy (D) : 0T, £T. is created; i.e., composition works as if we had a cop¥ of
We picture this in Figure 1, where we indicate an actionfor each occurrence of in ©. It is rather intuitive that the
on ¢ simply with the name. result of normalization is the same if we make this explicit,

by renaming one occurrence af (hamely the root), and
making an explicit copy oft, as illustrated in Figure 2 (b).

B. What are the difficulties

We are ready to discuss which are the difficulties in ex-
tending the approach of Ludics to a setting where strategies
are non linear.

Problem 1: SeparationThe first problem is the failure

of separation (we discuss an example of this in [4]). A main
Figure 1. Renaming of the root reason why previous attempts at the extension of Ludics
with exponentials blocked on that, is because all proofs

Copies of a behaviourTo emphasize thaA is a set in [12] make essential use of a property built on it. Our
of strategies or¢, we annotate the nameas a subscript: key observation is that, even if separation is an important
A¢. If A¢ is a set of strategies on the nafiewe write A, property, its failure is a relative problem, in the sensd tha

for {o(D),D € A¢}. A, is a copy ofA;: they are equal We can still have interactive types and internal compledene

up to renaming. Problem 2: Enough tests (counter-strategieshe sec-
ond problem has to do with having enough tests, i.e. enough
A. Composition (normalization) counter-strategies. Let us explain this.

,?\s in [12], we define an interactive type to be any set of

In strategies, actions can be repeated. Composition o ; . )
strategies as sets of views can be described via the VA%:rategles closed by biorthogonal. Assume we have defined

X . . 1AL
abstract machines introduced in [6]. In this paper, whai ow to interpret formulas, and in particuldri and!A-.

. ”» e would like to associate to each “good” strategy in the
we use is that composition has a fundamental property, . .
L ._“ihterpretation of a formula, for exampleA, a syntactic

expressed by Proposition VI.1, where we use the operations

. : . . proof of 7A (full completeness).
of renaming and renaming of the root described above: If D : e € 7A¢, we would like to transform it into a

Proposition V1.1 (Copies) [D, €] = [a(D), €, o(E)]. strategy®’ € - ?A¢,7A, (where distinct names indicate



distinct copies). This corresponds to a contraction rute (i D. Linearity of the root

its upwards reading). _ Observe that, by construction, i(®) the action at the
A natural idea is to rename the root, and all the actionggot is positive and it is the only action on the name

which are hereditarily justified by it. We have already \we can hence apply the argument we have already given in

illustrated this operation Figure 1. From : {*, we obtain  gection .1 for the internal completeness of Tensor.

a new strategy’ : {*, 0", where®' = ¢(9). As a consequence, ifl = A; @ Ay, given® € F?A,

We would like to prove that: we have thatz(D) actually belongs té-A, ?A, and can be
() D eFTA; = (+x) o(D) € F 7A¢, 7A, decomposed in strategigsé_i))i ek A;7A. _

This allows us to associate @ € F7A, T" a proof which
To have (xx), we need (see Definition IV.9) to know essentially has this form:

that [o(®),¢,3] = 1 for each ¢ € (?A¢)* and

eachg € (?A,)% . Since (?A,)* is a copy (renamed

in o) of (?A¢)t, we can also write this condition as: : :

[2(D), € o(3)] = t, where both§ and € vary in (?A¢)". FAL7(AL®Ag), T F Ay, 7(A; ® Ay),T

Unfortunately Proposition VI.1 only gives us that > ® + contr
[c(®), € o(E)] = 1, where we have two copies of tkame P AL @ A2, 7(A41 ® Az), T dereliction + contr
(up to renaming) strategg. This correspond to the fact that F (A1 ®4),T
in the HO-style setting, strategies i@ are uniform: every VII. L UDICS WITH REPETITIONS NON-UNIFORM
time we find a repeated action of "typ€C~+, Opponent STRATEGIES

| X
(1C) reacts in the same way. In this Section, we implement technically the ideas pre-

C. A solution: non-uniform tests sented in the Section VI-C. In particular, we revise the
egefinition of arena and strategy so to accommodate neutral
. . ) ) ; ctions, which correspond to theaction we have just seen.
which has led Girard to the introduction of tdaimon rule P J

: thi d lead ¢ | th . ¢ We extend the set of theplarities with a neutral polarity,
h our case, this need feads us 1o eniarge Ine Universe Qf, .o e have now three possibilities: positive, negatiek a
tests by introducingnon-uniform counter-strategie3his is

tremely natural to realize in an AJM-style setting [1], [3 C Uak
e>;]reme y Patura Of rtea;:e inan " -fs_yft_e _ste tlng [11. [f We extend the set ddctionswith a setT = {r;,7 € N} of
where a strategy of typsb 1S a sort o Infinite 1ensor o, yeyed tau actionavhose polarity is defined to be neutral.
strategies o, each one with itindex of copyTo have HO- We denote byI' also the neutral arena, where the set of

style npr)-gmform counter-strateg|es, we introduce a NOMroves isT', the enabling relation is empty, and the polarity
deterministic sum of strategies. Let us illustrate the jdea

. . L ] is neutral. We revise strategies (Definition 111.2) giviruet
which we will formalize in the next section. 9 ( ) givirige

. . : _ following definitions.
Non-uniform counter-strategiesthe idea is to allow a
“non-deterministic sum”of negativestrategies. Let us, for Definition VII.1 (N.U. Strategies)Let A be a (positive or
now, informally write the sum of¢ and§ this way: negative) arena.

« A Non-Uniform justified sequences on A is a justified

The need of having enough tests is similar to the on

T.E+T.§ sequence (in the sense of Definition 111.2) dnu T,
Normalization may have to use several times this strat-  Which moreover satisfies the following property:
egy, hence entering the strategy several times. Every time — Neutral actionslf s; is a tau action, thers;_; is
it is presented with this choice, normalization will non- negative ands;;; is positive.
deterministically choose one of the two possible continu- , A Non-Uniform view on A is a view onA U T.
ations. The choice can be different at each repetition. « A Non-Uniform strategy (or N.U. strategy) on4 is
Let us defineorthogonality, by setting® L (7.€ + 7.§) a strategy onA U T, with the following modified
iff [ ©,7.¢ + 7.F] = 1 for each possible choice. coherence condition:
It is immediate that — Coherencelf s.m,s;n € © and s.m # s.n
) DL(1.¢+7.3) = DL¢E andDLF. thenm, n are either both negative or both neutral

actions.

o A Non-Uniform strategy © on T', written® : T, is a
Non-Uniform strategy on the arer@(I') U T'.

As we will see, if¢ € G and§ € G for G interpretation
of a formula, we have thatr.¢ + 7.§) € G, and vice-
versa. Hence, ifd € ?A, for each¢&,§ € (?A)* we have
[®,7.¢ +7.F] = . Using Proposition VI.1 we have that  From now on, we only consider N.U. strategies (the usual
[c(®),(r.€¢ + 7.5),0(1.¢ + 7.5)] = t. Using (***), we  ones being a special case). Figure 3 below shows an example
deduce that §(9), &, o(F)] = 1, as we wanted. of N.U. strategy.



A. Sum of strategies are several normal forms: there is a result for each possible
As anticipated in Section VI-C, our N.U. strategies canchoice. We say that two strategies are orthogonal if, foheac

be seen as a non deterministic sum of standard strategig&2SsiPle choice, the result is always

We use N.U. strategies to capture the idea of “non uniform’pefinition VII.5 (Orthogonality) Let § : €=, ¢ : £+ be

tests. Let us make precise what does it mean for a strategy . strategies € LF if and only if [¢,§] = t, for each
to be uniform or not. possible result.

Definition VII.2 (Uniform actions) Given an N.U. strat-
egy ©, we say that anegativeoccurrence of actionc™
is uniform if 2z~ is immediately followed by a positive Corollary VII.6. Let § be a negative strategy such that
occurrence of action (and not by tau actions).Nfis a § = §i- We have that€ L§ = Vi, CL§;.

set of negative strategies, we defibiif N := {D € N :
the rootz— of D is uniform}. VIIl. L UDICS WITH REPETITIONS INTERNAL (AND

FULL) COMPLETENESS

The following is an immediate consequence:

We give constructions on behaviours, and prove that they
enjoy internal completeness. Since these constructiols wi

@ be used to interpret formulas, full completeness will be a
‘ | consequence.
@ T1 T2 Constant typesWe define the positive (resp. negative)
| | 5 - constant behaviour of as follows:
T x
Fi=z u" | Fo=ax "D | = :c*.{rl.uﬂrz.u*.@} 70:= {T}LL T .= {T}J_

It is immediate that{t}++ = {{} and that!T is the set of
all negative strategies af

Compound types:In this section, we use the same
constructions on strategies and operations on sets oéstrat
and 3. gies as in Section IV-C (observe that since strategies have

oo . . . repetitions, even when starting from the same set, the dosu
It is immediate that a strategy whose root is hon uniform : . . :
by bi-orthogonal introduces many more strategies thanen th

can always be written as a sum of strategies whose root B ear case)

uniform. We formalize this in the following: Let Ny,...,N,, be negative behaviours respectively on
Definition VIL.3 (7-sum) Let {®; : T'};,cs be a family £1,... &n. We define a new positive (resp. negative) be-
of negative N.U. strategies such that @ = z~.¢, have  haviour on¢ as follows:

the same uniform root. We define theim: >~/ (D, := N L

Uies #~-{7:-€;}. WhenS is a finite set, say1,..., k}, we F (1111, - -va) = (Nye---e Nn)l

write D, +7 ... +7 Dy F-(N;4,...,N,t) = (Nje---eN,)

Figure 3. N.U. strategies

In Figure 3,F; and§2 have uniform root, while the root
of ¥ is not.§ can be seen as a non-deterministic sung of

of negative strategies in a such way that they do noPehaviours given by the constructions above.
overlap (except for the first negative action). The follogvin
proposition is an immediate consequence of the definitiong™ Internal completeness

We have the following property which characterizes the
relation of orthogonality forr-sums of strategies that belong

to negative behaviours.

Proposition VIL.4. If z~.F is a negative N.U. strategy,
either its root is uniform orz~.§ = >.7 z~.§;, where the
root of eachx™.3§; is uniform.

Proposition VIII.1. LetN = (Nje---eN, )" be a negative
behaviour. If{€&;} C Unif N is a non empty denumerable
We have sketched the definition ocdmpositionfor N.U. set of negative strategies of the fox® = =~.5;, we have

strategies in Section VI-BThe reader here does not need thethat
details of composition. All results use Corollary VII.6 and -
the fundamental property expressed by Proposition VIII.1. 2w S eN.
The result of normalizing N.U. strategies will depend on  Together with Corollary VII.6, this gives the following.

the choice performed at the-sums, in other words there
Lemma VII.2. (Unif N)* = N+ Hence N =

1The details are given in the full paper [4]. Unif N)++,

B. Orthogonality



This lemma expresses the fact that the study of a negativeheorem VIII.8 (Correctness of the interpretatiorj = is
behaviouiN can be reduced to the study Bhif N. We will a proof of - I in MELLS which reduces tor’, then if D
exploit this property both in internal and full completeses is the interpretation ofr and®’ is the interpretation ofr’,

!/
Proposition VIIL.3 (Internal completeness oF~). If we have tha = 9",
z=.F € Unif F~(Pyq,...,P,) thenF e - Py,...,P,. Theorem VIII.9 (Full Completeness)lf © is a winning
strategy in a sequent of behaviours I' then © is the
interpretation of a cut-free proofr of the sequent T' in
Lemma VII4. If © € P¢ theng(®) € +P¢,P,. MELLS.
Moreover, the only occurrence of action enis the root.

Proof: The proof is as in the linear case. |
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