
L-nets, strategies and proof-nets

Pierre-Louis Curien1 and Claudia Faggian2 ?1 CNRS - Université Paris 72 Universitá di Padova

Abstract. We consider the setting of L-nets, recently introduced by Faggian and
Maurel as a game model of concurrent interaction and based onGirard’s Ludics.
We show how L-nets satisfying an additional condition, which we call logical
L-nets, can be sequentialized into traditional tree-like strategies, and vice-versa.

1 Introduction

In the context of Game Semantics several proposals are emerging - with different mo-
tivations - towards strategies where sequentiality is relaxed to capture a more parallel
form of interaction, or where the order between moves in a play is not totally specified.
Such strategies appear as graphs, rather then more traditional tree-like strategies. We are
aware of work by Hyland, Schalk, Melliès, McCusker and Wall. Here we will consider
the setting of L-nets, recently introduced by Faggian and Maurel [8] as a game model
of concurrent interaction, based on Girard’s Ludics.

The idea underlying L-nets (as well as other approaches) is to not completely spec-
ify the order in which the actions should be performed, whilestill being able to express
constraints. Certain tasks may have to be performed before other tasks. Other actions
can be performed in parallel, or scheduled in any order.

More traditional strategies, and in particular Hyland-Onginnocent strategies [13],
are trees. In this paper we are interested in relating some representatives of these two
kinds of strategies. We show how strategies represented by graphs, with little ordering
information, can be sequentialized into tree-like strategies; conversely, sequential (tree)
strategies can be relaxed into more asynchronous ones.

Two flavours of views.It is known that tree strategies (innocent strategies) can be pre-
sented as sets of views with certain properties. A view is a linearly ordered sequence of
moves (again with certain properties), and the set of views forms a tree. Any interaction
(play) results into a totally ordered set of moves.

A graph strategy (an L-net) is a set of partially ordered views (p.o. views), where a
p.o. view is a partially ordered set of moves, which expresses an enabling relation, or
a scheduling among moves. The set of such p.o. views forms a directed acyclic graph.
Any interaction (play) results into a partially ordered setof moves.

In our setting a tree strategy is, in particular, a graph strategy. Hence we have an ho-
mogeneous space, inside which we can move, applying our proceduresSeq andDeseq,
which respectively add or relax dependency (sequentiality).? Research partially supported by Cooperation project CNR-CNRS Italy-France 2004-2005 (In-

teraction et complexité, project No 16251).

From graph strategies to tree strategies and vice-versa.The graph strategies we will
consider are (a class of) L-nets. The tree-like strategies we will consider are Girard’s
designs [11] (syntactically, designs are particular sortsof Curien’s abstract Böhm trees
[4, 5]). As a computational object a design is a Hyland-Ong innocent strategy on a
universal arena, as discussed in [7]. An L-net is a graph strategyon the same arena.

We will show how to associate a design to certain L-net, in such a way that all
constraints expressed by the L-net are preserved. This is not possible for an arbitrary
L-net; it is easy to build a counter-example taking inspiration from Gustave function (a
well-known example of a non-sequential function, see e.g. [1]). For this reason, we first
introduce the notion oflogical L-nets, which are L-nets satisfying a condition called
cycles condition3. We then make the following constructions: in section 4, we show
how to obtain a set of designsseq(D) from a logical L-netD, while in section 5, we
show how to obtain a logical L-netdeseq(D) from a designD, in such a way that for
all designsD we haveD 2 seq(deseq(D)).
The proof-net experience.Tree strategies can be seen as abstract (and untyped) se-
quent calculus derivations. By contrast, L-nets are graphswhich can be seen as abstract
multiplicative-additive proof-nets. Indeed, there are two standard ways to handle proofs
in Linear Logic: either as sequent calculus derivations, oras proof-nets. Sequent calcu-
lus derivations can be mapped onto proof-nets, by forgetting some of the order between
the rules, and conversely proof-nets can be sequentializedinto proofs. In this paper
we use similar techniques in the framework of game semantics. It is a contribution of
the paper to transfer the use of proof-net technologies to the semantic setting of Game
strategies. This appears to be a natural consequence of a general direction bringing
together syntax and semantics.

2 Tree strategies (designs) and sequent calculus derivations

Designs, introduced in [11], have a twofold nature: they areat the same time semantic
structures (an innocent strategy, presented as a set of views) and syntactic structures,
which can be understood as abstract sequent calculus derivations (in a focusing calculus,
which we will introduce next).

While we do not recall the standard definitions of view and innocent strategy, in the
following we review in which sense a tree strategy is a sequent calculus derivation, and
viceversa.

2.1 Focalization and synthetic connectives

Multiplicative and additive connectives of Linear Logic separate into two families: pos-
itives (
;�; 1; 0) and negatives (

&;&;?;>). A formula is positive (negative) if its
outermost connective is positive (negative).

A cluster of connectives with the same polarity can be seen asa single connec-
tive (called asynthetic connective), and a “cascade” of decompositions with the same

3 This condition is a simplified version Hughes and Van Glabbeek’s toggling condition [12].

polarity as a single step (rule). This corresponds to a property known as focalization,
discovered by Andreoli (see [2]), and which provides a strategy in proof-search: (i) neg-
ative connectives, if any, are decomposed immediately, (ii) we choose a positive focus,
and persistently decompose it up to its negative sub-formulas.

Shift. To these standard connectives, it is convenient to add two new (dual) connectives,
called Shift4: # (positive) and" (negative). The role of the Shift operators is to change
the polarity of a formula: ifN is negative,# N is positive. When decomposing a positive
connective into its negative subformulas (or viceversa), the shift marks the polarity
change. The shift is the connective whichcaptures “time” (or sequentiality): it marks a
step in computation.

Focusing calculus.Focalization is captured by the following sequent calculus, orig-
inally introduced by Girard in [10], and closely related to the focusing calculus by
Andreoli (see [2]). We refer to those papers for more details.

Axioms: ` x?; x
We assume, by convention, that all atomsx are positive (hencex? is negative).

Any positive (resp. negative) cluster of connectives can bewritten as a� of
 (resp. a& of
&
), modulo distributivity and associativity. The rules for synthetic connectives are

as follows. Notice that each rule has labels; rather than more usual labels such as
L,
R, etc., we label the rules with the active formulas, in the waywe describe below.

Positive connectives:LetP (N1; : : : ; Nn) =LI2N (Ni2I(# Ni)), whereI andN are
index sets. Each

Ni2I(# Ni) is called an additive component. In the calculus, there is
an introduction rule for each additive component. Let us writeNI for

Ni2I(# Ni).: : : ` Ni; �i ` Ni0 ; �i0 : : :` P;� (P;NI)
A positive rule is labelled with a pair: (i) the focus and (ii)the
 of subformulas which
appear in the premises (that is, the additive component we are using).

Negative connectives:LetN(P1; : : : ; Pn) = &I2N (&i2I(" Pi)). We have a premise
for each additive component. Let us writePI for

&i2I (" Pi).: : : ` PI ; � ` PJ ; � : : :` N;� : : : ; (N;PI); (N;PJ); : : :
A negative rule is labelled by a set of pairs: a pair of the form(focus,

&
of subformulas)

for each premise.

4 The Shift operators have been introduced by Girard as part ofthe decomposition of the expo-
nentials.

: : :` a0;

` a?;
 a? : : :` b0; d d` b?; d b?`
; d; a?
 b? a?
 b?`
 &d; a?
 b?
 &d
 &da?
b?a?
 b?d
 �� �2�1 f1; 2gf1; 2g f0g�2 f0g�1 f0gf0g

� ` �
Fig. 1.

We call each of the pairs we used in the labels anaction.(If a proof does not use&, to each rule corresponds an action. Otherwise, there is an action for each additive
component.)

It is important to notice theduality between positive and negative rules: to each
negative premise corresponds a positive rule. For each action in a negative rule, there is
a corresponding positive action, which characterizes a positive rule.

2.2 Designs as (untyped) focusing proofs

Given a focusing proof, we can associate to it a design (forgetting the types). Con-
versely, given a tree of actions which is a design, we have the“skeleton” of a sequent
calculus derivation. This skeleton becomes a concrete (typed) derivation as soon as we
are able to decorate it with types. Let us sketch this using anexample.

First example. Consider the (purely multiplicative) derivation on the l.h.s. of Figure
1. Each rule is labelled by the active formula.a?; b? denote negative formulas which
respectively decompose intoa0; b0. Notice that we deal with Shift implicitly, writinga?
 b? for # a?
 # b?, and so on.

Now we forget everything in the sequent derivation, but the labels. We obtain the
tree of labels (actions) depicted in Figure 1.

This formalism is more concise than the original sequent proof, but still carries all
relevant information. To retrieve the sequent calculus counterpart is immediate. Rules
and active formulas are explicitly given. Moreover we canretrieve the context dynami-
cally. For example, when we apply the Tensor rule, we know that the context ofa?
b?
is
; d, because they are used afterwards (above). After the decomposition ofa?
 b?,
we know that
 (resp.d) is in the context ofa? because it is used aftera? (resp.b?).

Addresses (loci).One of the essential features of Ludics is that proofs do not manipulate
formulas, butaddresses. An address is a sequence of natural numbers, which could be
thought of as a name, a channel, or as the address in the memorywhere anoccurrence of
a formulais stored. If we give address� to an occurrence of a formula, its (immediate)
subformulas will receive addresses�i; �j, etc. Leta = ((p1 &p2) � q?)
 r?. If we
locatea at the address�, we can locatep1 &p2; q; r respectively in�1; �2; �3 (the choice
of addresses is arbitrary, as long as each occurrence receives a distinct address).

Let us consider anaction (P;NI); whereNI = Ni2I(# Ni) is (�;K). Its trans-
lation is (�;K), where� is the address ofP , andK is the set of natural numbers
corresponding to the relative addresses of the subformulasNi.
First example, continuation.Coming back to our example (Figure 1), let us abstract
from the type annotation (the formulas), and work with addresses. We locatea?
 b?
at the address�; for its subformulasa andb we choose the subaddresses�1 and�2. In
the same way, we locate
 &d at the address� and so on for its subformulas.

To indicate the polarity, in the pictures we circle positiveactions (to remind that
they are clusters of
 and�). Our example leads to the tree of actions on the r.h.s. of
Figure 1, which is an actual design.

2.3 Understanding the additives (slices)

The treatment of the additive structure is based on the notion of slice.
A &-rule must be thought of as the superposition of two unary rules,&L;&R. We

write the two components of the rule which introducesa&b as(a&b; a) and(a&b; b).
Given a sequent calculus derivation in Multiplicative Additive Linear Logic (MALL), if
for each&-rule we select one of the premises, we obtain a derivation where all&-rules
are unary. This is called aslice [9]. For example, the derivation on the l.h.s. below, can
be decomposed into the slices on the r.h.s..` a;
 ` b;
` a&b;
` (a&b)� d;
 ` a;
` a&b;
 (a&b; a)` (a&b)� d;
 and

` b;
` a&b;
 (a&b; b)` (a&b)� d;

An &-rule is a set (the superposition) of unary rules on thesame formula. For this

reason, we will writea&b also asf(a&b; a); (a&b; b)g.
A more structured example.Let a = (m
 n)�
,m = (p1? &p2?)&(q1? &q2?)&r?, n = b1? &b2? &b3?, with pi; qi; bi positive for-
mulas. Consider the following derivation, where the set of labelsR1 isf(m; p1? &p2?); (m; q1? &q2?); (m; r?)g andR2 is f(n; b1? &b2? &b3?)g.: : :` p1; p2 p1 : : :` q1; q2 q2 : : :` r r` m R1 : : :` b1; b2; b3 : : :` n R2` (m
 n)�
 a;m
 n
It is immediate to obtain the corresponding typed design:a;m
n(m;p1? &p2?)p1 (m;q1? &q2?)q2 (m;r?)r (n;b1? &b2? &b3?):::

Let us now give addresses to the subformulas ofA. The counterpart of the previous
tree is the following one, which is actually a design.�;f1;2g(�1;f1;2g)�11;::: (�1;f3;4g)�14;::: (�1;f5g)�15;::: (�2;f1;2;3g):::
Bipoles (reading a design).It is very natural to read a design (or an L-net) as built out
of bipoles, which are the groups formed by a positive action (say, on address�) and all
the negative actions which follow it (all being at immediatesubaddresses�i of �). Each
address corresponds to a formula occurrence. The positive action corresponds to a pos-
itive connective. The negative actions are partitioned according to the addresses: each
address corresponds to a formula occurrence, each action onthat address corresponds
to an additive component.

Towards proof-nets. Let us consider a multiplicative design (a slice). We are giventwo
partial orders,which correspond to two kinds of information on each action� = (�; I):
(i) a time relation (sequential order); (ii) a space relation (prefix order), corresponding
to the relation of being subaddress (the arena dependency inGame Semantics).

Let us look again at our first example of design. We make explicit the relation of
being a subaddress with a dashed arrow, as follows:

 �� �2�1 f1; 2gf1; 2g f0g�1 f0g �2 f0gf0g � ��1 �2�1 �2

If we emphasize the prefix order rather than the sequential order, we recognize some-
thing similar to a proof-net (see [6]), with some additionalinformation on sequential-
ization. Taking forward this idea of proof-nets leads us to L-nets.

3 Logical L-nets

In this section, we recall the notion of L-net of Faggian and Maurel [8], but we replace
the acyclicity condition by the stronger cycles condition.

Actions (arena and moves).An action is either the special symboly (called daimon)
or (cf. above) a pairk = (�; I) given by an address� and a finite setI of indices.
When not ambigous, we write just� for the action(�; I). In the following, the lettersk; a; b;
; d vary on actions.

We say that� is asubaddressof � if � is a prefix of� (written � v �). We say that
an action(�; I) generatesthe addresses�i, for all i 2 I , and writea v1 b if the actiona generates the address of the actionb (a is the parent ofb). We will write a v b for

the transitive closure of this relation. Actions together with the relationv1 define what
could be called auniversal arena.

A polarized actionis given by an actionk together with apolarity, positive (k+) or
negative (k�). The actiony is defined to be positive. When clear from the context, or
not relevant, we omit the explicit indication of the polarity.

L-nets (graph strategies) L-nets have an internal structure, described by a directed
acyclic graph (d.a.g.) on polarized actions, and an interface, providing the names on
which the L-net can communicate with the rest of the world.

An interfaceis a pair of disjoint sets�;� of addresses (names), which we write
as a sequent� ` �. We call� the positive (or outer) names, and� the negative (or
inner) names.� is either empty or a singleton. We think of the inner names as passive,
or receiving, and of the outer names as active or sending.

Directed graphs and notations.We consider any directed acyclic graphG up to its
transitive closure, and in fact we only draw the skeleton (the minimal graph whose
transitive closure is the same as that ofG). We writea b if there is an edge fromb toa. In all our pictures, the edges are oriented downwards. We use

� for ::: .
A noden of G is calledminimal (resp.maximal) if there is no nodea such thata n (resp.n a). Given a noden, we denote bypnqG (theviewof n) the sub-graph

induced by restriction ofG on fng [fn0; n0 � ng (we omit to indicateG whenever
possible).

It is standard to represent a strict partial order as a d.a.g., where we have an edge
from b to a whenevera < b. Conversely, (the transitive closure of) a d.a.g. is a strict
partial order.

Definition 1 (pre L-nets). A pre L-netis given by:

– An interface� ` �.
– A setA of nodes which are labelled by polarized actions5.
– A structure onA of directed acyclic bipartite graph(if k k0, the two actions have

opposite polarity) such that:

i. Parents.For any actiona = (�; J), either� belongs to the interface (and then
its polarity is as indicated by the base), or it has been generated by a preceding
action
 � a of opposite polarity. Moreover, ifa is negative, then
 a.

ii. Views. For each actionk, in pkq each address only appears once, i.e. alla’s
such thata � k are on distinct addresses.

iii. Sibling.Negative actions with the same predecessor are all distinct.
iv. Positivity. If a is maximal w.r.t.

� , then it is positive.

To complete the definition of logical L-nets, we still need (i) a notion allowing us to
deal with multiple copies of the same action induced by the additive structure and (ii) a
correctness criterion on graphs. We first give a few definitions.

5 Hence nodes areoccurrencesof actions, but we freely speak of actions for brevity.

Bipoles and rules.The positive actions induce a partition of the d.a.g.D just described.
A bipole (cf. previous section) is the tree we obtain when restricting D either (i) to
a positive action and the actions which immediately follow it, or (ii) to the negative
actions which are initial (degenerated case).

Let us partition each bipole according to the addresses. Arule is a maximal setf(�;Kj)g of actions which have the same address, and belong to the samebipole. A
rule is positive or negative according to the polarity of itsactions. When a rule is not
a singleton, we call it anadditive rule(think of each action as an additive component).
An additive pairis a pair(�; J)�; (�; J 0)� belonging to an additive rule. Observe that
if a rule is not a singleton, it must be negative. If we look at the bipole in the following
picture, we have two rules:R1 = f(�1; J)g andR2 = f(�2; J 0); (�2; J 00)g.(�;f1;2g)(�1;J) (�2;J0) (�2;J00)
Paths. An edge is anentering edgeof the actiona if it hasa as target. IfR is a negative
rule ande an entering edge of an actiona 2 R, we calle a switching edgeof R. A
path is a sequence of nodesk1; :::kn belonging to distinct rules, and such that for eachi eitherki ! ki+1 (the path is going down) orki ki+1 (the path is going up). A
switching pathon a pre L-net is a path which uses at most one switching edge for each
negative rule. Aswitching cycleis a cycle (on a sequence of nodesk1; :::kn belonging
to distinct rules) which contains at most one switching edgefor any negative rule.

Definition 2 (logical L-net). A logical L-netis a pre L-net such that

– Additives. Given two positive actionsk1 = (�;K1); k2 = (�;K2) on the same
address, there is an additive pairw1; w2 such thatk1 � w1, andk2 � w2.

– Cycles.Given a non-empty unionC of switching cycles, there is an additive ruleW not intersectingC, and a pairw1; w2 2W such that for some nodes
1;
2 2 C,w1 �
1, andw2 �
2.
L-nets as sets of views / chronicles.We call chronicle (view) a set
 of actions
equipped with a partial order, such that:
 has a unique maximal element (the apex),
and satisfies the (analog of the) parent condition.

Any nodek in a pre L-netD defines a chronicle, which ispkq, where the overlining
operation is defined on directed acyclic graphsG whose nodes are injectively labelled,
as follows: replace all nodes ofG by their labels, yielding a graphG0 isomorphic toG,
ThenG is the transitive closure ofG0, i.e.,G0 viewed as a strict partial order (cf. above).
We can associate to each L-netD a set of chronicles�(D), as follows:�(D) = fpnq j n is a node ofDg
The set�(D) is closed downwards, in the following sense: if
 2 �(D), if k is the
maximal action of
, and ifk0 2
 is such thatk coversk0, i.e.,k0 < k and there exists
nok00 2
 such thatk0 < k00 < k, thenpk0q (taken with respect to
) belongs to�(D).

Conversely, given a set� of chronicles which is closed downwards, we define a di-
rected graph (�) as follows: the nodes are the elements of� and the edges are all the

pairs of the form(
0;
) such that, ifk; k0 are the maximal actions of
,
0, respectively,
thenk0 2
0 andk coversk0 (in
). It is easy to see that for any downwards closed set
of chronicles� we have�((�)) = �. Conversely, given anL-netD, we have that (�(D)) is isomorphic as a graph toD.

The functions� and are inverse bijections (up to graph-isomorphisms of L-nets)
between the collection ofL-nets and the set of downward closed sets of chronicles�
such that (�) is an L-net.

In this paper, we will largely rely on the presentation of L-nets as sets of chronicles
(views). This in particular allows us to treat easily the superposition of two L-nets as
the union of the two sets of chronicles (see section 5.2). We shall write write
 2 S andS � D for
;S;D respectively a chronicle, a set of chronicles and an L-net.

Slices A slice is an L-net in which there is no additive pair (or, equivalently, no repeti-
tion of addresses). A sliceS of an L-netD is a maximal subgraph ofD which is closed
under view (pkqS=pkqD) and it is a slice.

L-nets and logical L-nets Our definition of logical L-net differs from the defininition
of L-nets in [8] in the cycles condition, which replaces the acyclicity condition of L-
nets, which asserts that there are no switching cycles in a slice. It is immediate that our
cycles conditionimplies the acyclicity condition. Hence, a logical L-net is, in particular,
an L-net. Notice that while acyclicity is a property of a slice, the new condition speaks
of cycles which traverse slices.

Designs.The designs of [11], can be regarded as a special case of L-nets: they are those
L-nets such that each positive node is the source of at most one negative node, and each
negative node has a single entering edge. Equivalently, theL-nets corresponding to
designs are those which are trees that branch only on positive nodes.

4 Sequentializing a graph strategy

A node in an L-net should be thought of as a cluster of operations which can be per-
formed at the same time. An edge states a dependency, an enabling relation, or a prece-
dence among actions. Let us consider a very simple example: achronicle
, i.e. a par-
tially ordered view (p.o. view). A sequentialization of
 is a linear extension of the
partial order. That is, we add sequentiality (edges) to obtain a total order. A total order
which extends
 will define a complete scheduling of the tasks, in such a way that each
action is performed only after all of its constraints are satisfied.

Dependency between the actions of a slice, and of sets of slices (L-nets) is more
subtle, as there are also global constraints.

The aim of this section is to provide a procedure, which takesan L-net and adds
sequentiality in such a way that the constraints specified bythe L-net are respected. In
particular, all actions in a p.o. view ofD will be contained in a (totally ordered) view
of the treeSeq(D). The process of sequentialization is non-deterministic, as one can
expect, i.e. there are different ways to produce a design from a logical L-net.

As we have both multiplicative and additive structure, whensequentializing we will
perform two tasks: 1. add sequentiality (sequential links)until the order in each chron-
icle is completely determined, 2. separate slices which areshared through additive su-
perposition.

The key point in sequentialization is to select a rule which does not depend on
others. This is the role of the Splitting lemma.

Lemma 1 (Splitting lemma). Given an L-netD which satisfies the cycles condition,
if D has a negative rule, then it has a splitting negative rule. A negative ruleW =f: : : ; wi; : : :g is splitting if either it is conclusion of the L-net (eachwi is a root), or if
deleting all the edgeswi ! w there is no more connection (i.e., no path) between any
of thewi andw.

The proof is an adaptation to our setting of the proof of the similar lemma in [12].
Moreover, the proof implies that

Proposition 1. The splitting negative ruleW can always be chosen of minimal height:
either it is conclusion of the L-net, or it is above a positiveaction, which is conclusion.

Remark 1.A consequence of the previous proposition is that, when applying the split-
ting lemma, we are always able to work “bottom up”.

4.1 Sequentialization

An L-net does not need to be connected. This is a natural and desirable feature if we
want both parallelism and partial proofs, that is proofs which can be completed into
a proper proof. Actually, non-connectedness is an ingredient of Andreoli’s concurrent
proof construction. On the logical side, non-connectedness corresponds to the mix rule.

There is no special problem for sequentializing non-connected L-nets, except that
we need to admit the mix-rule. But as the (controversial) mixrule is refused by designs,
we distinguish logical L-nets which are connected.

Given an L-netD and a sliceS � D, aswitching graphofS is a subgraph obtained
fromS by choosing a single edge for each negative node, and deleting all the other ones.
A slice isS-connectedif all its possible switching graphs are connected. Finally, we call
an L-net S-connected if all its maximal slices are.

Proposition 2. A logical L-netD which is S-connected can be sequentialized into a
design, or (equivalently) into its sequent calculus presentation.

Remark 2.If we admit mix, it is easy to adapt the procedure below to sequentialize any
logical L-net.

Proof. The proof is by induction on the numberN of negative nodes of the L-netD.

Case 1:N = 0. D consists of a single positive actionk, which does not need further
sequentialization.

Case 2:N > 0 and there are negative initial nodes.By definition of L-net, all negative
nodes which are initial belong to the same ruleW = f: : : ; wi; : : : g.

Let Di be the union of all slicesS � D such thatwi 2 S. That is,Di is the
maximal L-net obtained as set of all chronicles
 such thatwj 62
, for anywj 6= wi. It
is immediate that, operationally,Di is the graph obtained fromD following these two
steps: (i) delete all nodes
 such thatwj �
, for j 6= i; (ii) delete any negative node
which has become a leaf.Di is S-connected. LetD0i be the tree obtained fromDi by removingwi and by

sequentializing the resulting L-net.Ci = wiD0i
is a design. The forest given by the union

of all Ci is a design: : : :` �I ; � : : :` �J ; �� ` � W
Case 3:N > 0 and there are no negative initial nodes.We select a splitting negative
ruleX = fx1 = (�i; J1); : : : ; xn = (�i; Jn)g. This rule is part of a bipole, with rootk = (�; I) and possibly other negative rulesYj . We delete the edges fromx 2 X to k,
disconnectingD.

Let us callGX the part of the graph containingX , andGk the other part. Let us
check that the cycles condition is preserved for bothGX andGk (preservation of all
other properties is immediate). In the case ofGk it is obvious, in the case ofGX it
comes from the fact thatk determines a “bottle-neck” in the graph, as any path going
down fromGX toGk must traversek. Let us assume that there are switching cycles inGX , hence a fortiori inD. The cycles condition forD implies that there is an additive
pairw1; w2 such that eachwi is below a node
i in one of the cycles. Ifw1; w2 were inGk, any path going down from
i to wi should traversek. This would mean that there
is a path down fromk to wi for eachwi, and hence that bothwi belong topkq, which
is against the definition of L-net.

We conclude by applying induction.Gk will sequentialize into a design containing
the nodek. GX will sequentialize into a set of trees of roots respectivelyx1; : : : ; xn.
We obtain a design by having each of these trees pointing tok.�i ` �i X : : : �j;� Yj` �;� (�; I) : : :: : :
4.2 Examples of sequentialization

Let us consider the following L-netR, where we have two negative rules, both splitting:X = f(�0; I); (�0; J)g andA = f(�0; f0g)g. �; f0g �; f0g�0; f0g�0; I �0; J�00; f1g �00; f2g
If we chooseX , we obtain the two trees on the left-hand side of Figure 2, andthen

the designX. Instead, choosingA we obtain the designA (on the r.h.s.).

X : A :
�0;I�;0�0;0�00;1 �0;J�;0�0;0�00;2 �;0�0;I�;0�0;0�00;1 �0;J�;0�0;0�00;2

�;0�0;0�;0�0;I�00;1 �0;J�00;2
Fig. 2.

5 Desequentializing a tree strategy

Beyond the fact that an action can be seen as a cluster of operations that can be per-
formed together thanks to focalization, in a design (actually, in any tree strategy) re-
mains a lot of artificial sequentiality, just as in sequent calculus proofs for Linear Logic.
In the case of proofs, the solution has been to develop proof-nets, a theory which has
revealed itself extremely fruitful.

We want to apply similar techniques to designs. Our aim in this section is to remove
some artificial sequentialization, while preserving essential sequentialization, namely
that allowing to recover axioms and to deal with additives.

All dependency (sequentialization) which is taken away by desequentialization can
be (non-deterministically) restored through sequentialization (Theorem 1).

5.1 Desequentialization

It is rather immediate to move from designs to an explicit sequent calculus style rep-
resentation. We already sketched this with an example, and refer to [11] for the details
(notice that, because of weakening, there are several sequent calculus representations
of a design). To each nodek in a design we can associate a sequent of addresses, cor-
responding to the sequent on which the action is performed. We choose an algorithm
which performs weakening as high as possible in the derivation, pushing it to the leaves.

Leaves. For each leafk in a design, we can recover the sequent of addresses corre-
sponding to the sequent on which that action is performed.

Given a leafk in the design, its translationk� is the same nodek, to which we
explicitly associate a set of addresses, which we calllink(k), in the following way:

if k is either the action of address� on the sequent̀ �; � k = (�; I)
or the special

actiony on` � k = y
, we havelink(k) = � .

Positive conclusion.Let us condider a design whose root is a positive action(�; I), and
call�i the forest of subtrees whose conclusions have address�i. The design translates

into the L-net

�i; K2 �j; J2�j; J1�i; K1 �; I��i ��j
in the following way. Associate the L-net��i to each�i. Take the union of all��i . Add(�; I)+ to the nodes, and extend the set of edges with a relation(�; I) k for each
actionk of address�i.
Negative conclusion.Let us consider a design having as conclusion the negative ruleX = fxi = (�; I)�; x2 = (�; J)�; :::g. Let us call�I the subtree above(�; I). A
design of negative conclusion translates into an L-net in the following way.

1. For each subtree (premiss)�I do the following.
– Associate the L-net��I to�I .
– Add (�; I)� to the nodes of��I .
– Extend the set of edges with a relation(�; I)� k for each actionk such that:

- k has address�i (i 2 I), or
- k is a leaf such that�i 2 link(k).

Let us callDI the resulting graph (which is an L-net).
2. ConsiderDI ;DJ ; : : : . ObtainD0I ;D0J ; : : : by extending the set of edges of eachDI

with a relation(�; I)� k for each positive nodek such thatpkq 2 DI ; pkq 62DJ , for someJ 6= I .
3. SuperposeD0I ;D0J ; : : : . Superposition is obtained by taking the union of the chron-

icles (see [8] and the examples below).

Superposition is the only step which can introduce cycles. However, if a new cycleC is introduced we find a node
 > xi and a node
0 > xj , for xi; xj 2 X .

We have the following result, relating desequentialization and sequentialization.

Theorem 1. Given (a sequent calculus representation of) a designD, let us desequen-
tialize it into the L-netR. There exists a strategy of sequentialization (section 4.1) which
allows us to sequentializeR intoD.

The proof comes from the fact that for each step in the desequentialization there is a
step of sequentialization which reverses it.

5.2 Examples of superposition

The superposition of two L-nets is their union as sets of chronicles. Let us see an ex-
ample. Consider the two L-netsD1;D2 in Figure 3. The superposition ofD1 andD2
produces the L-netD = D1SD2.
In fact, the set of chronicles ofD1 is the set of chroniclesp�q defined by each of its

�; f0g�0; f0g�0; I �0; J�00; f1g �00; f2g�; f0g�0; f0g�0; J�00; f2gD2 :�; f0g�0; f0g�0; I�00; f1gD1 : D :
Fig. 3.

b
cb c

�; f0g�0; f0g�00; f2g�0; I �0; J�00; f1g�; f0g�0; f0g�0; I �; f0g�0; f0g�0; J�00; f1g �00; f2g D2:D1:

Fig. 5.

actions�, that is:f �;0 ; �;0�0;0 ; (�0; I); p(�00; f1g)q = D1g: The set of chronicles ofD2 is:f �;0 ; �;0�0;0 ; (�0; J); p(�00; f2g)q = D2g: The resulting union is:f �;0 ; �;0�0;0 ; (�0; I); (�0; J);D1;D2g; which corresponds toD.

5.3 Examples of desequentialization

Example 1.Desequentializing either of the designsA orX in our previous example of
sequentialization yields the original L-netR (cf. section 4.2).

Example 2. Let us consider the design in Figure 4, where we just omit an obvious
negative action at the place of: : : .

Following the procedure for desequentializing given

�;f0g�0;I�;f0g�0;f0g�00;f1g:::b
�0;J�;f0g�0;f0g�00;f2g:::

Fig. 4.

above, a few easy steps produce the two L-netsD1;D2,
represented in Figure 5. Observe that we have a chroni-
cle for each node;D1TD2 is equal tofp(�; f0g)q; p(�0; f0g)qg.We obtainD01 by adding the
relation(�0; I) (�00; f1g), andD02 in a similar way.
Remember that we consider each chronicle in the graph
modulo its underlying partial order, that is why it is not
necessary to explicitly write the edge(�0; b). The unionD01SD02 produces the L-net on the right-hand side of
Figure 5.

5.4 A typed example: additives

The following (typical) example with additives illustrates what it means to have more
parallelism. Assume we have derivations�1; �2; �3; �4 of (respectively)̀ A;C, `A;D, ` B;C, ` B;D. In the sequent calculus (and in proof-nets with boxes) there
are two distinct ways to derivè A&B;C&D, and the two derivations differ only by
commutations of the rules.�1` A;C �2` A;D` A;C&D C&D �3` B;C �4` B;D` B;C&D C&D` A&B;C&D A&B �1` A;C �2` A;D` A&B;C A&B �3` B;C �4` B;D` A&B;D A&B` A&B;C&D C&D

The same phenomenon can be reproduced in the setting of designs, or in the setting
of polarized linear logic. Very similar to the above derivations are the two following
(typed) designs, where we introduced some# to have distinct binary connectives. We
write formulas instead of addresses, to make the example easier to grasp.

#A&BA&B;A#C&DC&D;C�1 C&D;D�2 A&B;B#C&DC&D;C�3 C&D;D�4
#C&DC&D;C#A&BA&B;A�1 A&B;B�3 C&D;D#A&BA&B;A�2 A&B;B�4

The desequentialization of either of the trees above is the following L-netR:

A&B # C&DA&B;A A&B;BC&D;C C&D;DAC AD BC BD��1 ��2 ��3 ��4
Conversely, when sequentializingR, we get back either one or the other, depending on
whether we choose to start fromA&B or fromC&D. Notice that bothA&B andC&D
are splitting.

6 Discussion and further work

We can isolate two classes of L-nets, those of maximal sequentiality (the tree strategies),
which are idempotent with respect toSeq and those of minimal sequentiality. Notice
that whileSeq applies to arbitrary L-nets, here we have definedDeseq only on trees.
This is still enough to characterize also the class of L-netsof minimal sequentiality, as
those for which we haveDeseq(Seq(D)) = D, for any choice inSeq(D).

We expect to be able to define the desequentialization of arbitrary L-nets, by using
the splitting Lemma. Moreover, we believe that sequentialization and desequentializa-
tion can be extended to infinite L-nets, by working bottom-uplazily, or stream-like.

In the setting we presented, if we have just enough sequentiality to recover axioms
and dependencies from the additives, we obtain (an abstractcounter-part of) MALL

proof-nets. At the other extreme, all sequentiality can be made explicit, and we have
designs “à la locus solum” [11] (or abstract polarized MALL#" proof nets as in [14]).
L-nets allow us to vary between these extremes, and hence provide us with a framework
in which we can graduate sequentiality.

Here we are strongly inspired by a proposal by Girard, to movefrom proof-nets to
their sequentialization (sequent calculus derivation) ina continuum, by using jumps.
It must be noticed that edges inducing sequentiality in L-nets actually correspond to
Girard’s jumps.

We need to understand better this gradient of sequentiality. (i) In this paper we
saturate L-nets to maximal sequentiality. We intend to study ways to perform sequen-
tialization gradually, adding sequential edges progressively. (ii) We would like to have a
more precise understanding of what it means to have maximal or minimal sequentiality,
and to investigate the extent of our desequentialization.

In future work, we wish to investigate a typed setting. The immediate typed counter-
part of logical L-nets should be focusing proof-nets [3]. While previous work on fo-
cusing proof-nets was limited to multiplicative linear logic, our framework extends to
additive connectives.

Acknowledgments.We would like to thank Olivier Laurent for crucial discussions
on MALL proof nets, and also Dominic Hughes and Rob van Glabbeek for fruitful
exchanges on the technique of domination.

References

1. R. Amadio and P.-L. Curien.Domains and Lambda-calculi. Cambridge University Press,
1998.

2. J.-M. Andreoli. Focussing and proof construction.Annals of Pure and Applied Logic, 2001.
3. J.-M. Andreoli. Focussing proof-net construction as a middleware paradigm. InProceedings

of Conference on Automated Deduction (CADE), 2002.
4. P.-L. Curien. Abstract bohm trees.MSCS, 8(6), 1998.
5. P.-L. Curien. Introduction to linear logic and ludics, part ii. to appear in Advances of

Mathematics, China, available at www.pps.jussieu.fr/curien, 2004.
6. C. Faggian. Travelling on designs: ludics dynamics. InCSL’02, volume 2471 ofLNCS.

Springer Verlag, 2002.
7. C. Faggian and M. Hyland. Designs, disputes and strategies. In CSL’02, volume 2471 of

LNCS. Springer Verlag, 2002.
8. C. Faggian and F. Maurel. Ludics nets, a game model of concurrent interaction. InProc. of

LICS (Logic in Computer Science). IEEE Computer Society Press, 2005.
9. J.-Y. Girard. Linear logic.Theoretical Computer Science, (50):1–102, 1987.

10. J.-Y. Girard. On the meaning of logical rules i: syntax vs. semantics. In Berger and Schwicht-
enberg, editors,Computational logic, NATO series F 165, pages 215–272. Springer, 1999.

11. J.-Y. Girard. Locus solum.MSCS, 11:301–506, 2001.
12. D. Hughes and R. van Glabbeek. Proof nets for unit-free multiplicative-additive linear logic.

ACM Transactions on Computational Logic, 2005.
13. M. Hyland and L. Ong. On full abstraction for PCF.Information and Computation, 2000.
14. O. Laurent.Etude de la polarisation en logique. PhD thesis, 2002.

