L-nets, strategies and proof-nets

Pierre-Louis Curiehand Claudia Faggidn

1 CNRS - Université Paris 7
2 Universita di Padova

Abstract. We consider the setting of L-nets, recently introduced hygf@n and
Maurel as a game model of concurrent interaction and bas&lrand’s Ludics.
We show how L-nets satisfying an additional condition, vihige call logical
L-nets, can be sequentialized into traditional tree-likatsgies, and vice-versa.

1 Introduction

In the context of Game Semantics several proposals are amgergith different mo-
tivations - towards strategies where sequentiality isxedato capture a more parallel
form of interaction, or where the order between moves in g iglaot totally specified.
Such strategies appear as graphs, rather then more trediitiee-like strategies. We are
aware of work by Hyland, Schalk, Mellies, McCusker and \Wdkre we will consider
the setting of L-nets, recently introduced by Faggian anditdig8] as a game model
of concurrent interaction, based on Girard's Ludics.

The idea underlying L-nets (as well as other approaches)nistcompletely spec-
ify the order in which the actions should be performed, whkilkt being able to express
constraints. Certain tasks may have to be performed betber tasks. Other actions
can be performed in parallel, or scheduled in any order.

More traditional strategies, and in particular Hyland-Gmgocent strategies [13],
are trees. In this paper we are interested in relating sopresentatives of these two
kinds of strategies. We show how strategies representeddphg, with little ordering
information, can be sequentialized into tree-like strggconversely, sequential (tree)
strategies can be relaxed into more asynchronous ones.

Two flavours of viewslt is known that tree strategies (innocent strategies) eaprb-
sented as sets of views with certain properties. A view inesdlily ordered sequence of
moves (again with certain properties), and the set of vieus$ a tree. Any interaction
(play) results into a totally ordered set of moves.

A graph strategy (an L-net) is a set of partially ordered @€po. views), where a
p.o. view is a partially ordered set of moves, which expresseenabling relation, or
a scheduling among moves. The set of such p.o. views form®etdil acyclic graph.
Any interaction (play) results into a partially ordered gemoves.

In our setting a tree strategy is, in particular, a graphagy Hence we have an ho-
mogeneous space, inside which we can move, applying oueguvesSeq andDeseq,
which respectively add or relax dependency (sequentjality

* Research partially supported by Cooperation project CNNRS Italy-France 2004-2005 (In-
teraction et complexité, project No 16251).

From graph strategies to tree strategies and vice-verfhe graph strategies we will
consider are (a class of) L-nets. The tree-like strategiesvill consider are Girard’s
designs [11] (syntactically, designs are particular softSurien’s abstract Bohm trees
[4,5]). As a computational object a design is a Hyland-Ongpient strategy on a
universal arena, as discussed in [7]. An L-netis a graplegtyan the same arena

We will show how to associate a design to certain L-net, irhsaavay that all
constraints expressed by the L-net are preserved. Thistisassible for an arbitrary
L-net; it is easy to build a counter-example taking inspirafrom Gustave function (a
well-known example of a non-sequential function, see &J. For this reason, we first
introduce the notion olfogical L-nets which are L-nets satisfying a condition called
cycles conditiod. We then make the following constructions: in section 4, Wwevs
how to obtain a set of designsg(®) from a logical L-net®, while in section 5, we
show how to obtain a logical L-neteseq(®) from a desigr®, in such a way that for
all designsD we have® € seq(deseq(D)).

The proof-net experiencelree strategies can be seen as abstract (and untyped) se-
guent calculus derivations. By contrast, L-nets are graytish can be seen as abstract
multiplicative-additive proof-nets. Indeed, there are standard ways to handle proofs

in Linear Logic: either as sequent calculus derivationgsproof-nets. Sequent calcu-

lus derivations can be mapped onto proof-nets, by forgestimme of the order between

the rules, and conversely proof-nets can be sequentialitedoroofs. In this paper

we use similar techniques in the framework of game semartitsa contribution of

the paper to transfer the use of proof-net technologiesaa#mantic setting of Game
strategies. This appears to be a natural consequence ofeaag€lirection bringing
together syntax and semantics.

2 Tree strategies (designs) and sequent calculus derivati®

Designs, introduced in [11], have a twofold nature: theyadrthe same time semantic
structures (an innocent strategy, presented as a set o$)vavd syntactic structures,
which can be understood as abstract sequent calculustilemsén a focusing calculus,
which we will introduce next).

While we do not recall the standard definitions of view ancirent strategy, in the
following we review in which sense a tree strategy is a seticaoulus derivation, and
viceversa.

2.1 Focalization and synthetic connectives

Multiplicative and additive connectives of Linear Logigseate into two families: pos-
itives (®, 9, 1,0) and negatives?®, &, L, T). A formula is positive (negative) if its
outermost connective is positive (negative).

A cluster of connectives with the same polarity can be seea sisgle connec-
tive (called asynthetic connectiyeand a “cascade” of decompositions with the same

% This condition is a simplified version Hughes and Van Glaklss@ggling condition [12].

polarity as a single step (rule). This corresponds to a ptgg@own as focalization,

discovered by Andreoli (see [2]), and which provides a stypin proof-search: (i) neg-
ative connectives, if any, are decomposed immediate)yw@ichoose a positive focus,
and persistently decompose it up to its negative sub-famul

Shift. To these standard connectives, it is convenient to add twddeal) connectives,
called Shift*: | (positive) and (negative). The role of the Shift operators is to change
the polarity of a formula: itV is negative] N is positive. When decomposing a positive
connective into its negative subformulas (or viceverdag, ghift marks the polarity
change. The shift is the connective whitdptures “time” (or sequentiality): it marks a
step in computation.

Focusing calculus.Focalization is captured by the following sequent calcubugy-
inally introduced by Girard in [10], and closely related teetfocusing calculus by
Andreoli (see [2]). We refer to those papers for more details

Axioms: -z, z
We assume, by convention, that all atomare positive (hence" is negative).

Any positive (resp. negative) cluster of connectives cawbten as ab of ® (resp. a
& of), modulo distributivity and associativity. The rules fgnshetic connectives are
as follows. Notice that each rule has labels; rather tharerasual labels such asL,
®R, etc., we label the rules with the active formulas, in the waydescribe below.

Positive connectivestet P(Ny, ..., N,) = @ (@ (3 Ni)), wherel and\ are
index sets. Eacl®),, (I N;) is called an additive component. In the calculus, there is
an introduction rule for each additive component. Let usewi; for &), (1 Ny).

FNi,Ai FNir,Air...
FP A

(PaNI)

A positive rule is labelled with a pair: (i) the focus and (lie ® of subformulas which
appear in the premises (that is, the additive component e/asing).

Negative connectivestet N(Py, ..., P,) = &1en(Bics (T Pi)). We have a premise
for each additive component. Let us wrige for %;c; (1 B;).

FP,A kP AL
FN,A

. (N, Pp), (N, Py), ...

A negative rule is labelled by a set of pairs: a pair of the f@fmaus,? of subformulas)
for each premise.

4 The Shift operators have been introduced by Girard as paheoflecomposition of the expo-
nentials.

{0} {0}
£1{0} €2 {0}

Faoc ¢ Food? i T {1,2}
Fat,c N H)ldbL at b+

Cedatopt L e A @ b2}

s Uy al®bl ‘
T T c¥d |
FceBd,a~ @b ~ 3, o€
Fig. 1

We call each of the pairs we used in the labelsaation. (If a proof does not use
&, to each rule corresponds an action. Otherwise, there istondor each additive
component.)

It is important to notice thaluality between positive and negative rules: to each
negative premise corresponds a positive rule. For eaabreictia negative rule, there is
a corresponding positive action, which characterizes d@ipesule.

2.2 Designs as (untyped) focusing proofs

Given a focusing proof, we can associate to it a design (fongethe types). Con-
versely, given a tree of actions which is a design, we havéskaleton” of a sequent
calculus derivation. This skeleton becomes a concrete@ygerivation as soon as we
are able to decorate it with types. Let us sketch this usingxample.

First example. Consider the (purely multiplicative) derivation on the.$.hof Figure
1. Each rule is labelled by the active formule:, b denote negative formulas which
respectively decompose int, by. Notice that we deal with Shift implicitly, writing
at ® bt for | at® | bt, and so on.

Now we forget everything in the sequent derivation, but tigels. We obtain the
tree of labels (actions) depicted in Figure 1.

This formalism is more concise than the original sequenvftaut still carries all
relevant information. To retrieve the sequent calculusepart is immediate. Rules
and active formulas are explicitly given. Moreover we cetieve the context dynami-
cally. For example, when we apply the Tensor rule, we know thatdhéext ofa’ @ b+
is ¢, d, because they are used afterwards (above). After the deasitigm ofa- ® b+,
we know that: (resp.d) is in the context ofi- because it is used after- (resp.bt).

Addresses (loci)One of the essential features of Ludics is that proofs do rmotipulate
formulas, butaddressesAn address is a sequence of natural numbers, which could be
thought of as a name, a channel, or as the address in the meinery aroccurrence of

a formulais stored. If we give addregsto an occurrence of a formula, its (immediate)
subformulas will receive addressgis ¢, etc. Leta = ((py¥p2) @ ¢) @ r+. If we
locatea at the address, we can locate, Bp., ¢, r respectively ir¢1, £2, £3 (the choice

of addresses is arbitrary, as long as each occurrence es@elistinct address).

Let us consider aaction (P, N;), whereN; = @,.,(1 N;) is (¢, K). Its trans-
lation is (¢, K), where¢ is the address oP, and K is the set of natural numbers
corresponding to the relative addresses of the subformilas

First example, continuationComing back to our example (Figure 1), let us abstract
from the type annotation (the formulas), and work with addes. We locate ® b+
at the addresg; for its subformulas andb we choose the subaddresgésand{2. In
the same way, we locaté¥d at the address and so on for its subformulas.

To indicate the polarity, in the pictures we circle positagtions (to remind that
they are clusters ab and®). Our example leads to the tree of actions on the r.h.s. of
Figure 1, which is an actual design.

2.3 Understanding the additives (slices)

The treatment of the additive structure is based on the nofiglice.

A &-rule must be thought of as the superposition of two unargsdt,, & . We
write the two components of the rule which introduedsh as(a&b, a) and(a&b, b).
Given a sequent calculus derivation in Multiplicative Atikd Linear Logic (MALL), if
for each&-rule we select one of the premises, we obtain a derivaticerevall&-rules
are unary. This is calledslice[9]. For example, the derivation on the |.h.s. below, can
be decomposed into the slices on the r.h.s..

Fa,c Fbc Fa,c Fbc
Fa&b,c F ak&b,c Fa&b,c
F (a&b) ®d,c ~ F (a&b) P d,c and F (a&b) ®d,c

(a&ebd,a) (a&ebd,b)

An &-rule is a set (the superposition) of unary rules onghme formulaFor this
reason, we will writex&b also as{(a&eb, a), (a&b,b)}.

A more structured examplé.eta = (m ® n) @ ¢,

m = (plLy&DQL)&((hLYXQQL)&TL, n = blL??bQL??IBL, with pi;Qi;bi positive for-
mulas. Consider the following derivation, where the setbglsR; is
{(m,p1tBpat), (m, 1 - Bq2), (m, 1)} and Ry is {(n, by - by 8b3 1) 1.

l—p1,p2 n |‘Q1,Q2 © Fr " |‘b1,b2,b3
|_ Rl |_ R2
m n am@n
F(m®n)dc

It is immediate to obtain the corresponding typed design:

p1 q2

| | |
(m,p1+pat) (m,q1+ W g2t) (m,r+) (n,b1+Tbat B L)
\\//

a,m@n

Let us now give addresses to the subformulasioThe counterpart of the previous
tree is the following one, which is actually a design.

CiD
(€1,{1,2}) (€1,{3,4}) (€1,{5}) (€2,{1,2,3})

Bipoles (reading a design)it is very natural to read a design (or an L-net) as built out
of bipoles which are the groups formed by a positive action (say, omesdg) and all
the negative actions which follow it (all being at immediatdaddresses of £). Each
address corresponds to a formula occurrentle positive action corresponds to a pos-
itive connective. The negative actions are partitionedetiog to the addresses: each
address corresponds to a formula occurrence, each actitrabaddress corresponds
to an additive component.

Towards proof-nets. Let us consider a multiplicative design (a slice). We aregtwo
partial orders,which correspond to two kinds of information on each actioa (o, I):
(i) a time relation $equential ordey; (ii) a space relationgrefix orde), corresponding
to the relation of being subaddress (the arena depende@grire Semantics).

Let us look again at our first example of design. We make eitpphie relation of
being a subaddress with a dashed arrow, as follows:

{0} (@2){o} | 2
; . €1 2
Cergr e240r
o Tom N
| o

If we emphasize the prefix order rather than the sequenti@rowe recognize some-
thing similar to a proof-net (see [6]), with some additiodbrmation on sequential-
ization. Taking forward this idea of proof-nets leads us {odts.

3 Logical L-nets

In this section, we recall the notion of L-net of Faggian analv! [8], but we replace
the acyclicity condition by the stronger cycles condition.

Actions (arena and moves).An actionis either the special symbégl(called daimon)
or (cf. above) a paik = (&, 1) given by an address and a finite setl of indices.
When not ambigous, we write justfor the action(¢, I). In the following, the letters
k,a,b, c,d vary on actions.

We say that is asubaddressf € if £ is a prefix ofo (written ¢ C o). We say that
an action(¢, I') generateshe addresseg, for all i € I, and writea T, b if the action
a generates the address of the actdi is the parent ob). We will write a C b for

the transitive closure of this relation. Actions togethé@hwhe relationC=; define what
could be called ainiversal arena

A polarized actioris given by an actior together with golarity, positive ¢*) or
negative £). The actiony is defined to be positive. When clear from the context, or
not relevant, we omit the explicit indication of the polgrit

L-nets (graph strategies) L-nets have an internal structure, described by a directed
acyclic graph (d.a.g.) on polarized actions, and an interfaroviding the names on
which the L-net can communicate with the rest of the world.

An interfaceis a pair of disjoint set&’, A of addresses (names), which we write
as a sequent + A. We call A the positive (or outer) names, afthe negative (or
inner) namesZ' is either empty or a singleton. We think of the inner namesaasipe,
or receiving, and of the outer names as active or sending.

Directed graphs and notation§Ve consider any directed acyclic graphup to its
transitive closure, and in fact we only draw the skeletor (hinimal graph whose
transitive closure is the same as thatf We writea < b if there is an edge frorhito
a. In all our pictures, the edges are oriented downwards. We ufor <«

A noden of G is calledminimal (resp.maxima) if there is no node: such that
a < n (resp.n < a). Given a nodey, we denote byn s (theviewof n) the sub-graph
induced by restriction of/ on {n} U {n/,n’ < n} (we omit to indicate whenever
possible).

It is standard to represent a strict partial order as a d\altere we have an edge
from b to a whenevera < b. Conversely, (the transitive closure of) a d.a.g. is atstric
partial order.

Definition 1 (pre L-nets). A pre L-netis given by:

— Aninterface= + A.

— A setA of nodes which are labelled by polarized actiens

— Asstructure onA of directed acyclic bipartite graff &£ « &', the two actions have
opposite polarity) such that:

i. ParentsFor any actiona = (o, J), eitherc belongs to the interface (and then
its polarity is as indicated by the base), or it has been gatesf by a preceding
actionc < a of opposite polarity. Moreover, if is negative, ther «+ a.

ii. Views. For each actionk, in "k each address only appears once, i.e.&dl
such thatz < & are on distinct addresses.

iii. Sibling. Negative actions with the same predecessor are all distinct
iv. Positivity.If a is maximal w.r.t<, then it is positive.

To complete the definition of logical L-nets, we still needa(inotion allowing us to
deal with multiple copies of the same action induced by thditag structure and (ii) a
correctness criterion on graphs. We first give a few defingio

5 Hence nodes amccurrencef actions, but we freely speak of actions for brevity.

Bipoles and rulesThe positive actions induce a partition of the d.&dust described.
A bipole (cf. previous section) is the tree we obtain when restricin either (i) to

a positive action and the actions which immediately followor (ii) to the negative
actions which are initial (degenerated case).

Let us partition each bipole according to the addressesildis a maximal set
{(¢, K;)} of actions which have the same address, and belong to thelsiaole. A
rule is positive or negative according to the polarity ofdtgions. When a rule is not
a singleton, we call it aadditive rule(think of each action as an additive component).
An additive pairis a pair(¢, J)—, (&, J')~ belonging to an additive rule. Observe that
if a rule is not a singleton, it must be negative. If we looktet bipole in the following
picture, we have two rulef®; = {(c1,J)} andRy = {(02,J'), (02, J")}.

(61,0) (62,J") (62,d')

Paths. An edge is arentering edgef the actior if it hasa as target. IfR is a negative
rule ande an entering edge of an actiene R, we calle a switching edgeof R. A
pathis a sequence of nodés, ...k,, belonging to distinct rules, and such that for each
i eitherk; — k;+1 (the path is going down) o; « k;+1 (the path is going up). A
switching pathon a pre L-net is a path which uses at most one switching edgefth
negative rule. Aswitching cyclds a cycle (on a sequence of nodgs...k,, belonging

to distinct rules) which contains at most one switching efdgany negative rule.

Definition 2 (logical L-net). A logical L-netis a pre L-net such that

— Additives. Given two positive actionk; = (£, K4),k: = (£, K2) on the same
address, there is an additive pair, , w- such thatk; < w;, andk, < ws.

— Cycles.Given a non-empty unio@’ of switching cycles, there is an additive rule
W notintersecting”, and a pairw;, w, € W such that for some nodes, ¢, € C,
w1 é C1, and’wz é Co.

L-nets as sets of views / chronicles.We call chronicle (view) a setc of actions
equipped with a partial order, such thathas a unique maximal element (the apex),
and satisfies the (analog of the) parent condition.

Any nodek in a pre L-net® defines a chronicle, which ig:7, where the overlining
operation is defined on directed acyclic graghe/hose nodes are injectively labelled,
as follows: replace all nodes 6f by their labels, yielding a grap&’ isomorphic toG,
Thend is the transitive closure @i’, i.e.,G' viewed as a strict partial order (cf. above).
We can associate to each L-r@ta set of chronicleg (D), as follows:

#(®) = {Tn7 | nis anode o}

The setp(D) is closed downwards, in the following senseciE ¢(D), if k is the
maximal action ok, and if &’ € ¢ is such thak coversk’, i.e.,k’ < k and there exists
nok” € c¢suchthat’ < k" < k, then™k'" (taken with respect te) belongs ta)(D).
Conversely, given a sek of chronicles which is closed downwards, we define a di-
rected graph)(A) as follows: the nodes are the elementgiodind the edges are all the

pairs of the form(¢’, ¢) such that, ifk, k' are the maximal actions of ¢’, respectively,
thenk’ € ¢’ andk coversk’ (in ¢). It is easy to see that for any downwards closed set
of chroniclesA we havep(y(A)) = A. Conversely, given afi-net®, we have that
Y(¢p(®D)) is isomorphic as a graph ©.

The functionsp and are inverse bijections (up to graph-isomorphisms of L)nets
between the collection ab-nets and the set of downward closed sets of chronidles
such that)(A) is an L-net.

In this paper, we will largely rely on the presentation of éthas sets of chronicles
(views). This in particular allows us to treat easily the exygmsition of two L-nets as
the union of the two sets of chronicles (see section 5.2). vV wrrite writec € S and
S C ®for¢,S,D respectively a chronicle, a set of chronicles and an L-net.

Slices A sliceis an L-net in which there is no additive pair (or, equivalgnio repeti-
tion of addresses). A sliog® of an L-net® is a maximal subgraph & which is closed
under view (k'g="k'p) and itis a slice.

L-nets and logical L-nets Our definition of logical L-net differs from the defininition
of L-nets in [8] in the cycles condition, which replaces tloydicity condition of L-
nets, which asserts that there are no switching cycles iic& $l is immediate that our
cycles conditioimplies the acyclicity condition. Hence, a logical L-netiisparticular,
an L-net. Notice that while acyclicity is a property of a slithe new condition speaks
of cycles which traverse slices.

Designs. The designs of [11], can be regarded as a special case ofLthey are those
L-nets such that each positive node is the source of at mestegative node, and each
negative node has a single entering edge. Equivalentlyl thets corresponding to
designs are those which are trees that branch only on positiges.

4 Sequentializing a graph strategy

A node in an L-net should be thought of as a cluster of oparatighich can be per-
formed at the same time. An edge states a dependency, amngrralidtion, or a prece-
dence among actions. Let us consider a very simple examplacaiclec, i.e. a par-
tially ordered view (p.o. view). A sequentialization ofis a linear extension of the
partial order. That is, we add sequentiality (edges) tointatdotal order. A total order
which extendg: will define a complete scheduling of the tasks, in such a waydhch
action is performed only after all of its constraints ares$id.

Dependency between the actions of a slice, and of sets eSs{lcnets) is more
subtle, as there are also global constraints.

The aim of this section is to provide a procedure, which takes-net and adds
sequentiality in such a way that the constraints specifiethéy.-net are respected. In
particular, all actions in a p.o. view & will be contained in a (totally ordered) view
of the treeSeq(®). The process of sequentialization is non-deterministgre can
expect, i.e. there are different ways to produce a design &dogical L-net.

As we have both multiplicative and additive structure, whequentializing we will
perform two tasks: 1. add sequentiality (sequential links)l the order in each chron-
icle is completely determined, 2. separate slices whictshaeed through additive su-
perposition.

The key point in sequentialization is to select a rule whickesinot depend on
others. This is the role of the Splitting lemma.

Lemma 1 (Splitting lemma). Given an L-net® which satisfies the cycles condition,
if © has a negative rule, then it has a splitting negative rule.ef§yative rulelW =
{...,w4,...} is splitting if either it is conclusion of the L-net (eagh is a root), or if
deleting all the edge®&; — w there is no more connection (i.e., no path) between any
of thew; andw.

The proof is an adaptation to our setting of the proof of tiilsi lemma in [12].
Moreover, the proof implies that

Proposition 1. The splitting negative rul&’ can always be chosen of minimal height:
either it is conclusion of the L-net, or it is above a positagtion, which is conclusion.

Remark 1.A consequence of the previous proposition is that, whenyéamppthe split-
ting lemma, we are always able to work “bottom up”.

4.1 Sequentialization

An L-net does not need to be connected. This is a natural asicatiée feature if we
want both parallelism and partial proofs, that is proofsakhtan be completed into
a proper proof. Actually, non-connectedness is an ingrédiEAndreoli’s concurrent
proof construction. On the logical side, non-connecteslnesresponds to the mix rule.

There is no special problem for sequentializing non-cotatet-nets, except that
we need to admit the mix-rule. But as the (controversial) mig is refused by designs,
we distinguish logical L-nets which are connected.

Given an L-ne® and a slice5 C ©, aswitching graphof & is a subgraph obtained
from & by choosing a single edge for each negative node, and dehélithe other ones.
A slice isS-connected all its possible switching graphs are connected. Finaliy call
an L-net S-connected if all its maximal slices are.

Proposition 2. A logical L-net® which is S-connected can be sequentialized into a
design, or (equivalently) into its sequent calculus présgon.

Remark 2.If we admit mix, it is easy to adapt the procedure below to setjalize any
logical L-net.

Proof. The proof is by induction on the numbar of negative nodes of the L-n&t.

Case 1:N = 0. © consists of a single positive actidn which does not need further
sequentialization.

Case 2:N > 0 and there are negative initial nodeBy definition of L-net, all negative
nodes which are initial belong to the same ridfe= {..., w;, ... }.

Let ©; be the union of all slice® C ® such thatw; € &. That is,®D; is the
maximal L-net obtained as set of all chronictesuch thatw; ¢ ¢, for anyw; # w;. It
is immediate that, operationall); is the graph obtained from following these two
steps: (i) delete all nodessuch thatw; <* ¢, for j # i; (i) delete any negative node
which has become a leaf.

D, is S-connected. LeD) be the tree obtained fro®; by removingw; and by

o}
sequentializing the resulting L-net; = w| is a design. The forest given by the union
of all ¢; is a design:

Fe,dA FéA
EF A

Case 3:N > 0 and there are no negative initial nodesVe select a splitting negative
rule X = {z; = (&, h),...,z, = (&, Jy)}. This rule is part of a bipole, with root
k = (¢,1I) and possibly other negative rul¥s. We delete the edges frome X to k,
disconnectin@®.

Let us callGx the part of the graph containing, andG}, the other part. Let us
check that the cycles condition is preserved for b@th and Gy, (preservation of all
other properties is immediate). In the case®f it is obvious, in the case af x it
comes from the fact thdt determines a “bottle-neck” in the graph, as any path going
down fromGx to G, must traversé. Let us assume that there are switching cycles in
G x, hence a fortiori ir®©. The cycles condition fob implies that there is an additive
pairwy , w2 such that eachy; is below a node; in one of the cycles. lfv;, w, were in
G, any path going down from; to w; should traversé. This would mean that there
is a path down fronk to w; for eachw;, and hence that both; belong to" k7, which
is against the definition of L-net.

We conclude by applying inductioti;, will sequentialize into a design containing
the nodek. Gx will sequentialize into a set of trees of roots respectivaly. . ., z,,

We obtain a design by having each of these trees pointikg to

X —
£j, A

Gk A,

Y,
& €1

4.2 Examples of sequentialization
Let us consider the following L-n&t, where we have two negative rules, both splitting:

§0,1 ¢0,J a0, {0}

X = {(€0,1), (€0, J)} andA = {(a0, {0})} ‘

If we chooseX, we obtain the two trees on the left-hand side of Figure 2,thed
the desigrX. Instead, choosing we obtain the desig# (on the r.h.s.).

X: A

| | |
aOI.O «0,0 £€0,I £€0,J

| | ' ~N —"
L @ o

RGOS 0.0

~N -
£0,1 0,0 7
Fig. 2.

5 Desequentializing a tree strategy

Beyond the fact that an action can be seen as a cluster oftmperghat can be per-
formed together thanks to focalization, in a design (attuad any tree strategy) re-
mains a lot of artificial sequentiality, just as in sequemtalas proofs for Linear Logic.
In the case of proofs, the solution has been to develop prets: a theory which has
revealed itself extremely fruitful.

We want to apply similar techniques to designs. Our aim im¢Biction is to remove
some artificial sequentialization, while preserving eiaésequentialization, namely
that allowing to recover axioms and to deal with additives.

All dependency (sequentialization) which is taken away éyedjuentialization can
be (non-deterministically) restored through sequemzédion (Theorem 1).

5.1 Desequentialization

It is rather immediate to move from designs to an explicitugeq calculus style rep-
resentation. We already sketched this with an example, efied to [11] for the details
(notice that, because of weakening, there are several seqaleulus representations

of a design). To each nodein a design we can associate a sequent of addresses, cor-
responding to the sequent on which the action is performedchéose an algorithm
which performs weakening as high as possible in the deoiragiushing it to the leaves.

Leaves. For each leaf in a design, we can recover the sequent of addresses corre-
sponding to the sequent on which that action is performed.

Given a leafk in the design, its translatioh* is the same nodg, to which we
explicitly associate a set of addresses, which weléakl(k), in the following way:

k=(&1)

if k is either the action of addregson the sequent &, I
actionf ont I" F=1 we haveink(k) = I.

or the special

Positive conclusionLet us condider a design whose root is a positive aqtfo), and
call I1; the forest of subtrees whose conclusions have addie$sie design translates

LERDNEY

§i, K1

into the L-net

in the following way. Associate the L-néf; to each/I;. Take the union of allZ;*. Add
(&,1)T to the nodes, and extend the set of edges with a reldgtioh) <+ & for each
actionk of addresgi.

Negative conclusionLet us consider a design having as conclusion the negatiee ru
X =A{x; = (&) 22 = (£, J)7,...}. Let us callII; the subtree abové,). A
design of negative conclusion translates into an L-netérfofiowing way.

1. For each subtree (premisg) do the following.
— Associate the L-nefl; to II;.
— Add (¢, 1)~ to the nodes ofI}.
— Extend the set of edges with a relati@y)~ « k for each actiork such that:
- k has addres&i (i € I), or
- kis aleaf such thagi € link(k).
Let us call® the resulting graph (which is an L-net).

2. Conside®;, Dy, Obtain®’, D', ... by extending the set of edges of e&@h
with a relation(¢, I)~ <« k for each positive nodé such that k7 € ©;,7k™ &
D7, forsomeJ # I.

3. Superpos®’,®’;, Superposition is obtained by taking the union of the chron-
icles (see [8] and the examples below).

Superposition is the only step which can introduce cyclesvéver, if a new cycle
C'isintroduced we find a node> «; and a node’ > x;, for z;,z; € X.

We have the following result, relating desequentializatiod sequentialization.

Theorem 1. Given (a sequent calculus representation of) a deSigket us desequen-
tialize it into the L-nefR. There exists a strategy of sequentialization (sectiopwihlch
allows us to sequentialiZg into ©.

The proof comes from the fact that for each step in the desdiglization there is a
step of sequentialization which reverses it.

5.2 Examples of superposition

The superposition of two L-nets is their union as sets of uittes. Let us see an ex-
ample. Consider the two L-ne®,;, D, in Figure 3. The superposition @; and®-
produces the L-ned = D, |J D5.

In fact, the set of chronicles &, is the set of chronicleS«™ defined by each of its

o o, @:
50’/1 \ao,{o} ~> €0.T ¢0,J o, {0}

’

, :g
£0, 1 5(/J * / 0, {0}
i

0, {0}
Fig. 5.
actionsk, that is:

a0,0
{, , (€0,1),™(a00,{1})" = D1 }. The set of chronicles &, is:

a0,0
{, , (€0,.J)," (00, {2})™ = D4 }. The resulting union is:
a0,0

{, , (€0,1),(€0,J),D1, D5}, which corresponds t®.

5.3 Examples of desequentialization

Example 1.Desequentializing either of the desigli®r X in our previous example of
sequentialization yields the original L-r#t(cf. section 4.2).

Example 2. Let us consider the design in Figure 4, where we just omit aroois
negative action at the place af..
Following the procedure for desequentializing given
@ above, a few easy steps produce the two L-@gts9,,
| | represented in Figure 5. Observe that we have a chroni-
cIe for each node®; (D, is equal to
- - a,{0})7,"(a0,{0})"}. We obtain®] by adding the
relat|on (&0, I) (a00,{1}), and®), in a similar way.
a0, I{o} @0, {0} Remember that we consider each chronlcle in the graph
modulo its underlying partial order, that is why it is not
necessary to explicitly write the edg¢€), b). The union

eol,z\ P D1 UD} produces the L-net on the right-hand side of

Figure 5.

5.4 Atyped example: additives

The following (typical) example with additives illustratevhat it means to have more
parallelism. Assume we have derivatioffs, I1., I3, I1, of (respectively} A,C, F
A,D,+ B,C,+ B,D. In the sequent calculus (and in proof-nets with boxes)ether
are two distinct ways to deriie A& B, C& D, and the two derivations differ only by
commutations of the rules.

m; Iy 3 Iy Iy s o3 my
FAC FAD FB,C FB,D FAC FAD FB,C FB,D
D :D A&B A&B
A, C&D ck - B,C&D ck + A&B,C & - A&B, D &
A&B Cc&D
- A&B, C&D - A&B,C&D

The same phenomenon can be reproduced in the setting ohdesign the setting
of polarized linear logic. Very similar to the above derigas are the two following
(typed) designs, where we introduced sojri® have distinct binary connectives. We
write formulas instead of addresses, to make the exampieréagrasp.

m; s s Iy m; s s my
| | | | | | | |
c&D,C Cc&D,D c&D,C c&D,D A&B,A A&B,B A&B,A A&B,B

/
1C&D lC&D lA&B lA&B
| | | |
A&B,A A&B,B C&D,C C&D,D
\ \
LALE 108D

The desequentialization of either of the trees above isdt@fing L-netfR:
A AD BC

BD

L A&B 1 C&D

Conversely, when sequentializifRy we get back either one or the other, depending on
whether we choose to start frad&: B or from C& D. Notice that bothd& B andC& D
are splitting.

6 Discussion and further work

We can isolate two classes of L-nets, those of maximal seglign(the tree strategies),
which are idempotent with respect fzg and those of minimal sequentiality. Notice
that while Seq applies to arbitrary L-nets, here we have defid&eseq only on trees.
This is still enough to characterize also the class of L-nétainimal sequentiality, as
those for which we hav®eseq(Seq(®)) = D, for any choice inSeq(D).

We expect to be able to define the desequentialization dfrarpiL-nets, by using
the splitting Lemma. Moreover, we believe that sequerzididbn and desequentializa-
tion can be extended to infinite L-nets, by working bottomlagily, or stream-like.

In the setting we presented, if we have just enough sequignt@recover axioms
and dependencies from the additives, we obtain (an abstoactter-part of) MALL

proof-nets. At the other extreme, all sequentiality can lz@lenexplicit, and we have
designs “a la locus solum” [11] (or abstract polarized MALL proof nets as in [14]).

L-nets allow us to vary between these extremes, and heneilpnas with a framework

in which we can graduate sequentiality.

Here we are strongly inspired by a proposal by Girard, to niowa proof-nets to
their sequentialization (sequent calculus derivationd icontinuum, by using jumps.
It must be noticed that edges inducing sequentiality in tsmetually correspond to
Girard’s jumps.

We need to understand better this gradient of sequentiéijtyn this paper we
saturate L-nets to maximal sequentiality. We intend tostudys to perform sequen-
tialization gradually, adding sequential edges progvessi(ii) We would like to have a
more precise understanding of what it means to have maxinrmairomal sequentiality,
and to investigate the extent of our desequentialization.

In future work, we wish to investigate a typed setting. Theniediate typed counter-
part of logical L-nets should be focusing proof-nets [3]. Wprevious work on fo-
cusing proof-nets was limited to multiplicative linear logour framework extends to
additive connectives.

Acknowledgments. We would like to thank Olivier Laurent for crucial discuss®
on MALL proof nets, and also Dominic Hughes and Rob van Glakber fruitful
exchanges on the technique of domination.

References

1. R. Amadio and P.-L. CurienDomains and Lambda-calculiCambridge University Press,
1998.
. J.-M. Andreoli. Focussing and proof constructiédmnals of Pure and Applied Logi2001.
3. J.-M. Andreoli. Focussing proof-net construction as ddigware paradigm. IRroceedings
of Conference on Automated Deduction (CAPHE)02.
. P.-L. Curien. Abstract bohm tredglSCS 8(6), 1998.
. P.-L. Curien. Introduction to linear logic and ludicsrpa. to appear in Advances of
Mathematics, China, available at www.pps.jussieu.fitzyr2004.
6. C. Faggian. Travelling on designs: ludics dynamics.CBL'02 volume 2471 ofLNCS
Springer Verlag, 2002.
7. C. Faggian and M. Hyland. Designs, disputes and stratedieCSL'02 volume 2471 of
LNCS Springer Verlag, 2002.
8. C. Faggian and F. Maurel. Ludics nets, a game model of cmemLinteraction. IrProc. of
LICS (Logic in Computer SciencdlEEE Computer Society Press, 2005.
9. J.-Y. Girard. Linear logicTheoretical Computer Scieng0):1-102, 1987.
10. J.-Y. Girard. On the meaning of logical rules i: syntaxsgsnantics. In Berger and Schwicht-
enberg, editorsComputational logicNATO series F 165, pages 215-272. Springer, 1999.
11. J.-Y. Girard. Locus solunMSCS 11:301-506, 2001.
12. D. Hughes and R. van Glabbeek. Proof nets for unit-freléplicative-additive linear logic.
ACM Transactions on Computational LogR005.
13. M. Hyland and L. Ong. On full abstraction for PARformation and Computatiqr2000.
14. O. LaurentEtude de la polarisation en logiqu€hD thesis, 2002.

N

(S0

