Designs, disputes and strategies

Claudia Faggian and Martin Hyland

DPMMS - University of Cambridge

Abstract. Ludics has been proposed by Girard as an abstract general
approach to proof theory. We explain how its basic notions correspond
to those of the “innocent strategy” appraoch to Games Semantics, and
thus establish a clear connection between the two subjects.

1 Introduction

Interaction has become an important notion both in theoretical computer science
and in proof theory. From the computational point of view, when running an
application the result of computation (if there is any) is not necessarily the
most interesting aspect. The dynamics, the process of computation itself may
play the central role. Moreover, composition of programs is in general a rich
two-directions process, which entails communication and exchanges between the
components. A paradigm of computation as interaction underlies several models
of computation. This paradigm is particularly significant today, since for reactive
systems, the process of interaction rather than any final result is what is at issue.

Important progress in logic has also lead to interactive and dynamical mod-
els. Major examples are Geometry of Interaction and Games Semantics. The
Geometry of Interaction [5], which arose from Linear Logic, interprets normal-
ization (computation) as a flow of information circulating around a net. Games
Semantics interprets computation as a dialog between two parties, the program
(player) and the environment (opponent), each one following its own “strategy”.
Games Semantics (see [2] for a survey) has been both an important development
in logic, and a successful approach to the semantics of programming language.
The strength of these models is to capture the dynamical aspects of computa-
tion, so as to take into account both qualitative (correctness) and quantitative
(efficiency) aspects of programming languages. Ludics, recently introduced by
Girard in [6], is a further step in this development, the fundamental notion in
the theory being that of interaction.

The basic objects of Ludics are designs, which are both (i) an abstraction of
formal proofs and (ii) a concretion of their semantical interpretation. A design
can be described as the skeleton of a sequent calculus derivation, where we do not
manipulate formulas, but their locations (the addresses where the formulas are
stored). A design can also be presented in a very natural way as the collection of
its possible interactions. Our paper focuses on this presentation . An advantage
of the approach we follow is to establish a bridge with the notions of Game
Semantics, in particular with HON Games [7], [9]. In fact, we are going to make
precise the following correspondences:

actions — moves

disputes — plays

chronicles — views

designs — innocent strategies

The crucial correspondence is
“view - chronicle - sequent calculus branch.”

(In what follows one should keep in mind the concrete interpretation of a chron-
icle as a branch in a sequent calculus derivation, a design being the “skeleton”
of a sequent calculus derivation.)

The correspondence view-chronicle is the key to translating between Ludics
and Games Semantics settings. We expect to be able to transfer experiences and
techniques between the two settings.

2 Ludics: designs

2.1 The universe of proofs

The program of Ludics is to overcome the distinction between syntax (the formal
system) on one side and semantics (its interpretation) on the other side. Rather
then having two separate worlds, proofs are interpreted via proofs. To determine
and test properties, a proof of A should be tested with proofs of A+. Ludics
provides a setting in which proofs of A interact with proofs of A*; to this end,
it generalizes the notion of proof.

A proof should be thought in the sense of “proof search” or “proof construc-
tion”: we start from the conclusion, and guess a last rule, then the rule above.
What if we cannot apply any rule? A new rule is introduced, called daimon:

myalll

Such a rule allow us to assume any conclusion, without providing a justification.

The syntax of proofs is not the sequent calculus, but a more abstract for-
malism, close to Bohm trees, and called “design”. The proofs do not manipulate
formulas, but addresses. These are sequences of natural number, which can be
thought of as the address in the memory where the formula is stored.

2.2 Designs

Let us first give an intuition of what is a design. This should be enough to follow
the rest of the paper. At the end of the section we recall the formal definitions.
We will not really enter in the details of the logical calculus associated to designs,
which is a focalized version of second order multiplicative-additive Linear Logic
(MALL,).

Designs capture the geometrical structure of sequent calculus derivations.
The simplest way to introduce designs is to start from the sequent calculus. Let

us consider the following derivation, where the rules are labelled by the active
formula and the subformulas which appear in the premises!: for example, ®r,
would be labelled as (a @ b, {a}).

1
I—CL(),C()
Fag,c
Fat,c

(e,{cot}) ——5— (d,{do"})
LS

(a* ®bt,{at,bt})

(e®d, {c,d})

Fedat @bt
Fe®d,at ® bt

at,bt, c,d are formulas that respectively decompose into ag, bo, co™, do™.

Let us forget everything in the sequent derivation, but the labels. The deriva-
tion above becomes the following tree of labels, which is in fact a (typed) design:

T {co™} 11 {do*}
a* {ao} * {bo}
at ®bt {at, bt}
cid {c,d}
Fc®d,at @bt

This formalism is more concise than the original sequent proof, but still
carries all relevant information to retrieve its sequent calculus counter-part.

What makes this formalism possible is focalization. Multiplicative and ad-
ditive connectives of Linear Logic (MALL) split into two families: positives
(®,®,1,0) and negatives (%,&, L, T). A cluster of operations of the same po-
larity can be decomposed in a single step. Such a cluster can be written as a
single connective, which is called a synthetic connective. For example the for-
mula (P+ ® Q1) ® R* has as immediate subformulas P+, Q+, R, to which we
applied the connective (— ® —) ® —

As a consequence, in a derivation positive and negative synthetic connectives
alternate at each step.

To complete the process, let us now abstract from the type annotation (the
formulas), writing only the addresses. In the example above, we locate a’ ® bt
at the address &; for its subformulas a and b we choose the sub-addresses £1 and
£2. Finally we locate ag in £10 and by in £20. In the same way, we locate ¢%d at
the address o and so on for its subformulas. Our design becomes:

! In first approximation, we slightly simplify the labels.

(@1) {0} (02){0)
Qsl {0) f%}
{1.2}
v {1,2}
ok¢&

where we have circled the address of positive formulas (we will give more detailed
on the polarity —positive or negative— of the addresses in Section 2.3).

The pair (£,1) is called an action. £ is an address (a list of natural numbers,
intended as the address of the formula) and I € P¢(N) is a finite set of natural
numbers, the relative addresses of the immediate subformulas we are considering.
¢ is called focus of the action.

t is also an action.

A design is given by:

a base, which is a sequent giving the conclusion of the proof (the specification
of the process) and

a tree of actions with some properties that we recall in Section 2.3. A branch
in the tree is called a chronicle. If k; is before ko we write k1 < kKa.

Additives. The example we have used is simple, in that we have used a mul-
tiplicative proof, where each formula (each address) only appears once. What
about the “additives”? Informally speaking, an &-rule can be seen as the super-
imposition of two unary rules: (a&b, a) and (a&b, b). Given a derivation, if for any
&-rule we select one of the premises, we obtain a derivation (where all &-rules
are unary). This is called a slice. For example, the derivation

(a,..) —=— (b,..)
e (b, {a)), (akh,)

Fa,c

can be decomposed into two slices:

Fac (@) “e (b,
Fakeb,c (@A) G 3 0)
F (o&b) B d, c (a&b) @ d,{akb}) F (o) G d.c ((a&b) @ d, {a&b})

Therefore, the &-rule is a set (the super-imposition) of two actions on the same
address.

This is the key to understand the &-rule in terms of designs. Taking again
the above examples, let us locate ¢ in the address 7, (a&b) @ d in the address
&, (a&b) in €1, a in €11, and b in £12. The derivation of our previous example
corresponds to the following design

7 ? %

g {1y £1{2} £1{1} €1 {2}

\Cg/{l} whose two slices are @ {1} and @ {1}

The actions (£1{1}) and (£1{2}) should be be thought of as unary &, while the
usual binary rule is recovered as the set of actions on the address £1.

2.3 Designs as sets of chronicles

A design is given by a base and a tree of actions with some properties that we
are going to present. A base is a sequent of addresses which correspond to the
“initial” sequent of the derivation, the conclusion of the proof. Focalization leads
to consider only sequents of the form = F A ,where = has at most one element
(and A is finite). The base (i) gives the addresses of the formulas we are going
to decompose, (ii) establishes the polarity of the addresses, (iii) establishes a
dependency relation between the addresses.

A sequent has a positive side (right-hand side) and a negative side (left-hand
side). According to its position (r.h.s. or Lh.s.), each address in the base has a
polarity: positive or negative. We have seen that in a synthetic connective the
polarity of subformulas alternates at each layer, so if £ is positive, &i is negative,
&ij is positive. According to its length, we say that an address is even or odd.
This is called the parity of an address. Relative to the addresses £ given in the
base, sub-addresses of ¢ with the same parity as £ have the same polarity, sub-
addresses of £ with opposite parity have opposite polarity.

Designs are described in [6] as sets of chronicles. The definition is in two
steps:

1. definition of chronicle, that is a formal branch in a focalized sequent cal-
culus derivation,

2. definition of a coherence condition making a set of chronicles all belong to
the same proof.

Definition 1 (Chronicle). A chronicle ¢ of base = + A is a sequence of actions
(Ko, K1, --.-Kn) such that:

Alternation. The polarity of k; is equal to that of the base for j even, opposite
for j odd.

Daimon. For j < n, k; is not a daimon.

Positive focuses. The focus of a positive action K, either belongs to the basis
or is an address &i generated by a previous action: kg = (§,1),1 € I and kg < Kp.

Negative focuses. The focus of a negative action k, either belongs to the basis
or is an address £i generated by the previous action: kp,_1 = (§,1),i € 1

Destruction of Focuses. Focuses are pairwise distinct.

Definition 2 (Coherence). The chronicles ¢,¢' are coherent when
Comparability. Either one extends the other, or they first differ on negative
actions, i.e. if ¢ = cKy *e1, ¢y = Cx ko x ey with k1 7# ko then K1, Ko are negative.
Propagation. If ¢1, ¢y first differ on k1, ke with distinct focuses, then all ul-
terior focuses are distinct.

Definition 3 (Design). A design © of base = F A is a set of chronicles of base
=+ A such that:
Arborescence. @ is closed under restriction.
Coherence. The chronicles of ® are pairwise coherent.
Positivity. If ¢ € © has no extension in D, then its last action is positive.
Totality. Then ® is non empty.

One is also interested in the empty design on a positive base, which is called
partial and indicated by (2.

Notice that the above definition admits the empty chronicle, which is more
natural in the setting Game Semantics, even though this is not the case in [6].

Cuts and normalization. A set of designs to be cut together is called a cut-
net. A cut between two designs is a coincidence of addresses of opposite polarity
in the base of the two designs (one appears on the right-hand side, one on the
left-hand side of two distinct bases).

By far, in Ludics the most important case of cut-net is the closed case: all
addresses are cut. Given a base, its opposite is the base (or family of bases)
which allow us to close the net. The opposite of F £ is £ F; the opposite of
EF A1, ..., Ay is the family F &, A, A, k.

Given two design ©, € the normal form is indicated as [, €]. This is a (possi-
bly partial) design. Its base is given by the uncut addresses; if ©, € have opposite
base, since all addresses are cut, 2, € has conclusion F. The normalization pro-
cess then builds the tree of actions (the proof) which justifies this conclusion, as
the result of the interaction between the cut designs. We start we no data (the
empty design): this is our initial partial result. If ©, € do “cooperate,” eventually
we have a rule (an action) to justify the conclusion. In this case we will obtain

a design of the form F (the f-rule is actually the only one able to justify
the empty sequent). In this case, normalization is said to converge, and D, € are
said to be orthogonal. However, it could also be that the two disigns are just
unable to communicate, and normalization does not deliver any result. In this

case, we remain with the partial design: + .

More interesting than the normal form, is the process of calculation itself,
that is the interaction between the designs. The sequence of actions produced
by this interaction is called dispute.

A design can also be presented as the collection of its possible interactions. In
the following we will first characterize the sequences of actions that correspond

to a dispute. We will then characterize the set of disputes which correspond to in-
teractions of the same design, and verify that we have all of them. We therefore
need: (i) a “coherence condition” to guarantee that a set of disputes is com-
patible, meaning that all the disputes are paths on the same design, and (ii) a
“saturation condition” to guarantee we have all the possible paths.

3 Arenas, players and legal positions

Let us revisit some basic notions of Game Semantics in order to express the
setting of Ludics.

As we have seen, an action is a pair (£,I) where £ is a sequence of natural
numbers, called an address, and I is a finite set of natural numbers. Each action
is a “move” in Games Semantics term. The associated “dependency tree” is the
universal Arena {.

Players: The universe of addresses (and therefore of actions) is split be-
tween two players: one owning the even-length addresses, the other owning the
odd-length addresses. Since it is convenient to fix a point of view, we will call
Proponent (P) the player who starts, and Opponent (O) the other. Notice that
in Ludics there is a complete symmetry between the two players: they obey
the same rules. Games Semantics is generally biased toward Proponent. We will
come back to this in Section 5.

Arena: An arena is given by a set of moves, a labelling function telling which
player owns each move, and an enabling relation establishing a dependency re-
lation between moves.

In the setting of Ludics, the dependency is induced by the sub-address rela-
tion and by the base. We say that (&,) justifies (&i,J), if i € I. Moreover, if
the base is F £, one can access £ only after having accessed 7. In this sense, &
depends upon 7.

Definition 4 (Universal Arena). The Universal Arena U on the base F<>
is given by (the initial solution of)

U= 1ep(l+ T xU)

where Y is the parallel composition of partial orders, and + is the serial com-
position.

The universal arena U can be relocated to any initial address £&. The moves
of &U) are those of U with the renaming £(o,I) = (£o,I).

The Arena on the base - &1, ..., &, is given by >, o, {&i} x U

The Arena on the base n &1, ..., &y is given by {n} xU « Y, {&} xU
(We do not explain the familiar operator < further here) T

We extend the universal arena with a formal action 1 called daimon. 1 can be
played by any player. It does not justify and is not justified by any other action.
Given the arena on a certain base, we call initial any action whose address
belongs to the base. Notice that on the base n - &;, actions on either n or &; are

initial moves, but any action of address £; depends upon 7.

Definition 5 (Linear positions). A sequence of actions s is a linear position,
or play if it satisfies the following conditions:

Alternation Parity alternates

Justification Each move is either initial or is justified by an earlier move.
Linearity Any address appears at most once.

Daimon Daimon () can only appear as last move.

We call terminating the plays whose last move is . € indicates the empty
sequence.

Notation. To indicate the players, we will use the variable X, X € {P, 0}, and
X for its dual (the other player).

We will also use the notion of polarity: positive and negative. A move is
positive for a player if it belongs to that player, negative if it belongs to the
other.

P-move (“move belonging to P”) = P-positive (“move positive for P”) =
O-negative (“move negative for O”).

Each position belongs to one of the players, according to the last move (or
more precisely to who is to play). We call P-Position a position that expects an
action by Opponent, typically, a position whose last move is P. An O-Position is
a position where P is to play. Since Proponent is the player who starts, we have
that e and all even-length positions are O-position, all odd-length positions are
P-positions.

A P-position is a positive position for P, and a negative position for O. We
use the notation p*,p@, pt,p~.

Let as recall the key notion of view.

Definition 6 (Views). Let q be a linear position and X € {O, P} a player. Its
view "g™ of q is inductively defined as follows. When there is no ambiguity on
the player, we simply write "¢ for "¢ . Below, positive and negative is relative
to X.

— Tel=¢;
— Tt =g kt;

— Tsk™ V= k= if Kk is initial;

— Tsk'tk™ 1 ="s" 'K, if 6 = (i, J) and k' = (§,I)T.

We denote Opponent view by "¢7° and Proponent view by "¢'F. Moreover,
by "qxT T we mean the view of the player for which k is positive. If k belongs to

X, then "gst 7= "™ and gk = g

Definition 7 (Legal positions). A linear position p is legal if it satisfies the
following condition:

Visibility If tk C p and k is non initial, then the justifier of k occurs in
rtlij+-|.

According to our convention, this means that if k is a P-move, its justifier occurs
. P . P
in "tk , and therefore in "t | if k is an O-move, its justifier occurs in r479.

3.1 Designs

Let us revisit the presentation of designs. We first recall normalization. The in-
teraction among the designs of a cut-net leads us to access some of the actions
of the two designs, in a sequence which in Ludics is called dispute. Normaliza-
tion converges if eventually we reach a daimon (). Daimon is in fact is a special
symbol which indicates termination (one of the players gives up). Otherwise, nor-
malization diverges, and the result is “partial”. When normalization converges,
® is said orthogonal to € (D_LE).

Let ® be a design of base F<> and € a counter-design of base <>F. From
now on we focus on this case to simplify presentation?.

We define the plays according to these two designs, P = Plays(®; €), as:

ecP

p € P is a P to play position and "p"Pka € ® then pk € P

p € P is an O to play position and "p"’k € € then pk € P

Fact 1 P is totally ordered by initial segment.

We indicate by [® = €] the (possibly infinite) sequence of actions which is the
sup of Plays(®; €). A sequence ending with a daimon is called a dispute. In such
a case, ® is said to be orthogonal to €: 1 €.

Fact 2 (Chronicles) If p € Plays(D;€), then for any ¢ T rF T p, "¢ is a
chronicle of ®. For any q C r©° C p, g ee

Proposition 1 (Disputes as legal positions). If p € Plays(®; €) then p is
a legal position. Therefore in particular any dispute is a legal position on the
universal arena.

Conversely, we shall show that, given a legal position p, we can extract a
design & and a counter-design ¥ s.t. [6 = %] = p. 6,% are minimal such
designs.

% In the general case one deals with a family of designs.

N

Definition 8. Let p be a finite legal position on the universal arena.
Des®(p) = {"¢" : q C P C p}.
Des®(p) ={"q"° : ¢ C r° Cp}.

Proposition 2. Let p be a legal position on the universal arena.

(i) Des®(p), Des®(p) are designs on bases -<>, <>F respectively.
(#1) [Des” (p) = Des®(p)] = p.
(iii) If p € Plays(®;€) then Des” (p) C D and Des®(p) C €.

Proof. (i) Let us just check Coherence. Assume ¢q, ¢ are incomparable, ¢; J
ckky and ¢y O ckkg, where k1 # ko. If ¢ A 2 were not positive, then k;, ko
would be. Therefore ckr; = Tsykr; , CKKg = Csqkkig T , and since linearity
forces s1k = sgk, thus k1 = ks.

Examples. Des® (¢) =), which corresponds to the partial design F<> 2

(<>,0)
T

Des©(e) = {e}, which corresponds to the derivation <>k

Des?(< 1 >) = 0, which corresponds to the partial design F<>
Des®(< 1 >) = {e}, as before.

3.2 Designs as set of disputes

A design can be described by the set of its possible interaction (plays or disputes).
Given a design D, let us define

Plays(®) = |J Plays(D; €), for € design of opposite base.
We have that Plays(®) N Plays(€) = Plays(®; €).
Fact 3 If p € D then p € Plays(D)
Fact 4 Plays(®) = {q legal positions, s.tNqgCrt Cp,"q" € D}
Proposition 3. D is recovered from Plays(®) by

D ={"q",q Cr,r is a positive position,r € Plays(D)}

Let Disp © be the set {[D = €], D L€} of terminating plays.

As any non-terminating positive play can be immediately terminated by the
opponent with a daimon, any positive play belongs to Disp ®. Therefore the set
of disputes is enough to recover 2.

Proposition 4. © is recovered from Disp ® by
D={"q",qCr" € Disp (D)}

The set of possible interactions of a design can be characterized directly using
the notions of Game Semantics.

4 Strategies

The universal arena gives us a game in the usual sense. There are two natural
choices to give the game tree: either we consider the tree of all plays (all linear
positions), or we consider only the tree of legal plays. We start by adopting this
second choice, but we will come back to the first in Section 5.

There are a number of standard representations of the simplest notion of
deterministic P-strategy for games. One can take any of the following.

(i) All finite plays “in accord” with the strategy.

(if) All prefix of finite plays ending with P-moves.

(iii) All finite plays ending with P-moves.

(iv) All finite plays ending with P-moves plus all finite plays ending in O-moves
to which P has no response.

These are equivalent and here is convenient to use the form ().

Definition 9 (X-Strategy). A P-strategy (O-strategy) S on the universal arena
is a non-empty collection of plays (on that arena) which is

1. closed under prefiz;

2. if p,q € S are incomparable then p A q is a positive position (a P-position
for a P-Strategy, an O-position for an O-strategy);

3. if p € S is a positive position, then for all legal positions pk, pk € S.

We will call pre-strategy the way to present a strategy corresponding to the
alternative (i7). A pre-strategy is therefore a non empty collection of plays which
satisfies conditions (1) and (2) above, and such that all maximal plays are posi-
tive.

Definition 10 (Innocent strategy). An X-strategy S is innocent when:
if p,q are negative positions, "p* =T¢™X pke S andge S then gr € S.

It is immediate by construction that

Fact 5 If © is a design of base <> then Plays(®) is an innocent Player
strategy (in the game given by the tree of legal plays). If € is a design of base
<>t then Plays(€) is an innocent opponent strategy.

It is well known in Games Semantics that

(i) the collection of views of an innocent strategy generates the complete strat-
egy, and
(ii) the collections of views of an innocent strategy S is contained in S.

Our main claim is that a design can be seen as the collection of views of an
innocent strategy. From the views we can recover the strategy, from the strategy
we can extract the views. Section 4.1 reviews these notions. Section 4.2 comes
back to designs.

4.1 Innocent strategies: Views and Plays

The views of an innocent strategy are enough to describe the strategy. When we
do this, it is rather natural not to consider the views to which the player does
not reply.

Definition 11 (Views(S)). Let S be an X-strategy. We define
Views(S) = {"¢"¥,q Cp* € S}
We recall some properties of innocent strategies from this perspective.

Fact 6 (Closure under view) If S is an innocent X-strategy then we have
Views(S) C S.

Fact 7 (Saturation) Let T be any strategy and S an innocent strategy. If
Views(T) C S thenT C S.

Fact 8 (Determinism under view) Let S be an innocent X-strategy. If pab €
S,qac € S,"pa? ="qa™ then b = c.

This in particular means that Views(S) itself satisfies determinism (cf. (ii) in
Definition 9).

Plays vs. Views. We say that a set of positions V is stable under viewif "p" = p
for all pe V.

Definition 12 (Plays(V)). Let V be a pre-strategy stable under view. We define
Plays(V) as in 4:
Plays(V) = {q legal positions, s.tNqgCTrt Cp,"q" € V}
Proposition 5. Let S be an innocent strategy.
Plays(Views(S)) = S
Views(S) is a pre-strategy, stable under view.

Proposition 6. LetV be a pre-strategy stable under view.
Views(Plays(V)) =V
Plays(V) is the smallest innocent strategy which contains V.
Proof. Notice that Plays(V) is deterministic because V is.

If S is an innocent strategy and V C S then from Views(Plays(V)) = V and
Proposition 7 we deduce that Plays(V) C S.

4.2 Designs as innocent strategies

Fact 9 Let ® be a design. Then D is a pre-strategy stable under view.

Unfortunately, the converse is not necessarily true.

Consider for example the innocent strategy generated by the following two
plays: {{(¢*,£1,a),(£T,£2,a)}. To this we would associate the following tree of
views:

€1 €2

Even though all plays are linear, we do not obtain a design, in that propagation
is not satisfied (in the next section we explain better what does this mean).

A first solution is simply to translate the condition of propagation from chron-
icles to views. We will give a more natural solution in Section 5.

Definition 13 (Propagation). A strategy S satisfies the propagation condition
if:
If tk,t'k € Views(S) and t = cx (§,1) %0, t' = cx (&', I') x 0 then £ = €.

Fact 10 Let V be a pre-strategy which is stable under view and which also sat-
isfies propagation, then V is a design.

Fact 11 (i) Let © be a design. Plays(®D) is an innocent strategy, the smallest
innocent strategy which contains .

(i) Let S be an innocent strategy which satisfies propagation. Then ViewS is
a design.

(iii) Plays(ViewsS) =S and Views(Plays®) =2

Innocence. Notice that a strategy which is not innocent does not correspond
to any construct in Ludics.

Let us consider the strategy S on <> given by the closure under prefix of
{pl = <(<>7 {07 1, 2})7 (07 IO)7 (017 IOl): (17 J)) and
b2 = <(<>a {07]-a 2})7 ((05 IO); (027 I02)3 (0207 I020)7 (013 I01)7 (25 K))})

S is an O-strategy. Des®(p;) and Des®(ps) respectively produce the trees:

o 9@

01 0 2

<> <>

The first two chronicles cannot co-exist in the same design.

5 Linearity

As we have seen, there is only one delicate point to establish a correspondence
between designs and innocent strategies, namely that it is not enough to consider
linear legal positions.

The objects described by an innocent strategy are linear for all computational
purpose, but we would not reach a full completeness result for MALL. Typically,
to the example in Section 4.2, we could associate the following proof.

0F A 0OFB
FLT,A FLT,B
VAYHLT | B*HLT
FATAeUtB),IT

The formula | T appears in the context of both component of the tensor. No
play satisfying visibility can detect that a (the address of the formula | T) is
used twice, visiting both branches of the design.

The solution we gave earlier was to ask the condition of propagation, which
is a way explicitly to demand the separation of the contexts on a Tensor rule.
Games suggest a better solution in the use of a more liberal notion of play, as
in [1].

Let us come back to Section 4 and consider the other possible choice for the
game tree: using all linear positions (not only legal ones).
Given a design ®© let us consider

Plays*(®D) = {p linear plays such that for all g C r* C p,"¢" € D}

Fact 12 If® is a design, then Plays*(®) is an innocent strategy (in the game
given by the tree of all linear plays).

Remark 1. In general, there will be p € Plays x (D) in which the opponent does
not play innocently. A position in which the player does not play innocently
never appears in Plays*(D).

Proposition 7. If S is an innocent strategy in the tree of linear plays, then
Views(S) is a design.

Extracting strategies from a play. We have shown that to a play p we
can associate both a design and a counter-design. To be able to extract both
a strategy and a counter-strategy it is essential that p is linear. For example,
to the play (a,a0,a) we can associate a design, but not a counter-design. In
other words, this play belongs to an innocent strategy, but not to an innocent
counter-strategy. Notice that the issue of lifting a play to a strategy (not a
counter-strategy) was addressed by Danos Herbelin and Regnier in [3].

6 Further work

This work suggests several directions to be explored. A natural continuation is
to develop a presentation of Ludics based on disputes. Moreover, since we es-
tablish a bridge between Ludics and Game Semantics, we expect to be able to
transfer experiences and techniques between the two settings. The use of plays
rather than views (chronicles) could allow for a finer analysis. We have seen that
designs correspond to innocent strategies. It is a natural question to ask what
would be the analogue of general strategies in Ludics. Conversely, to what would
lead the notion of location in Games?

In this paper we only consider the first concepts in Ludics. We intend further
to consider the constructions of behaviour and incarnation from the perspective
of Game Semantics. It seems natural to apply the framework of Abstract Games
[8]. A category of behaviours is obtained using orthogonality and double gluing.
We would like to clarify the relation between that structure and the “realizabil-
ity” structure on behaviours given in Ludics. Furthermore it would be interesting
to investigate the extent to which behaviours regarded as abstract games can be
presented as concrete games. (First steps in this direction were given in [4]).

References

1. S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for
general references. In Proceedings LICS’98. IEEE Computer Society Press, 1998.

2. S. Abramsky and G. McCusker. Computational Logic, chapter Game semantics.
Springer-Verlag, 1999.

3. V. Danos, H. Herbelin, and L. Regnier. Games semantics and abstract machines.
In Proceedings LICS’96. IEEE Computer Society Press, 1996.

4. C. Faggian. On the Dynamics of Ludics. A Study of Interaction. PhD thesis,
Université Aix-Marseille 11, 2002.

5. J.-Y. Girard. Geometry of interaction i: Interpretation of system f. In Z. A. Ferro

R.m Bonotto C., Valentini S., editor, Logic Colloguium 88, pages 221-260. North

Holland, 1989.

J.-Y. Girard. Locus solum. Mathematical Structures in Computer Science, 2001.

7. M. Hyland and L. Ong. On full abstraction for PCF. Information and Computation,
2000.

8. M. Hyland and A. Schalk. Abstract Games for Linear Logic. FElectronic Notes in
Theoretical Computer Science, 29:1-24, 1999.

9. H. Nickau. Hereditarily sequential functionals. In Proceedings of the Symposium on
Logical Foundations of Computer Science: Logic at St. Petersburg, LNCS. Springer,
1994.

I

