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Abstract

This paper proposes an approach for extending to graphddbke relation between
proofs and innocent strategies. We work in the setting oktsnintroduced by Fag-
gian and Maurel as a game model of concurrent interaction.sNésv how L-nets
satisfying an additional condition, which we cal-nets, can be sequentialized into
traditional tree-like strategies. Conversely, sequéstiategies can be relaxed into
more asynchonous ones.

We develop an algebra of constructors and destructors é¢imeg $o build and de-
compose graph strategies, and to describe a class of mipisegjuential graph strate-
gies, which can be seen as an abstract kind of multiplicatdlditive proof nets.

1. Introduction

The attempt to go beyond sequential computation, to cagptyrarallel or asyn-
chronous notion of computation, appears currently an edlivection in game se-
mantics. Starting with the pioneering paper by Abramsky Kellies [1], several
proposals have emerged - with different motivations - talsaa notions of strategy
where sequentiality is relaxed to capture a more asyncluofmrm of interaction
[2,3,4,5, 6,7, 8, 9] (and most recently [10]). Such straegire often defined as
graphswith certain properties, in contrast to more tradition@gsential) strategies,
such as Hyland-Ong innocent strategies [11], whichtares In this sense, we will
talk of graph strategies, as opposed to tree strategies.

Our specific goal and contribution here, is to relate parattategies and sequen-
tial strategies, by showing how strategies representeddphg, with partial ordering
information, can be sequentialized into tree-like streggand how conversely, se-
quential strategies can be relaxed into more asynchrommss &Ve work in the setting
of L-nets that were introduced by Faggian and Maurel [4]. Asdiscuss at the end
of this section, there are a number of closely related ggttito which our techniques
should extend. The present paper builds on a preliminagnebed abstract [12].

An innocent strategy describes in an abstract way the dpeedtbehaviour of a
proof (or program). An interaction between “standard” tstrategies produces a se-
quence of actions (called play) which describes the tratleeo€omputation. The idea
underlying L-nets (as well as other of the approaches citede) is that the order in
which the actions should be performed is nhot completelyifipd¢while still remain-
ing able to express constraints. Certain tasks may have petiermed before other
tasks; other actions can be performed in parallel, or sdbeddn any order. A strategy
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as L-net is airected acyclic graphThe interaction results in a partial order, allowing
for parallelism.

L-nets are based atesignswhich form the first brick of Girard’s Ludics [13]. The
tree strategies and the graph strategies that we will censite designs and L-nets,
respectively:

e Designs are a linear variant of Hyland-Ong innocent stiategn a universal
arena, as discussed in [14] (see also [15]). They are ald@ylar sorts of
abstract Bohm trees [16, 17].

To be precise, we actually work with forests (which we cafblrests, rather than
trees), relaxing the connectedness of Girard’s originsigies.

e L-nets are (potentially infinite) graph strategies on theasaniversal arena.

Note that sequential strategies are a special case of grapbgses: a tree is, in partic-
ular, a graph. On the other hand, it is possible to define & dak-nets of minimal
sequentiality, which we caflarallel L-nets. As a result, we have a homogeneous space
inside which we can move, adding or relaxing sequentiailiéy,(dependency between
the actions). Between completely sequential and complptahllel strategies, we get

a full range of intermediate strategies with decreasingsetjality level.

Two flavours of viewslt is known that (innocent) tree strategies can be preseaged
sets of views with certain properties. A view is a totally ereld sequence of moves
(again with certain properties), and the set of views fortne& Any interaction results
into a totally ordered set of moves.

An L-net is a set of partially ordered views, each of which igaatially ordered
set of moves, where the partial order expresses a (partiaddsiling among moves.
The set of such partially ordered views forms a directed lacgecaph. Any interaction
results into a partially ordered set of moves.

The proof net experiencelree strategies can be seen as abstract sequent calculus
proofs. Specifically, designs arose as abstract (untypedjons of (focalized) sequent
calculus proofs of multiplicative-additive linear logiBy contrast, parallel L-nets can
be seen as abstract multiplicative-additive proof netsled, there are two standard
ways to handle proofsin linear logic: either as sequenutasproofs, or as proof nets,
which are graph-like structures satisfying a so-calledeminess criterion. Sequent cal-
culus proofs can be mapped onto proof nets, by forgettingesointhe order between
the rules, and conversely proof nets can be sequentialitegroofs. The correctness
criterion is precisely the key property that makes seqaéndtion possible. Here we
are looking for an abstract counterpart of this corresponée

While the origins of game semantics are closely connectdetanalysis of correct
proof structures [18], this paper, to the best of our knogteds the first one to transfer
— so to say in the other direction — the use of proof net tealesgo the semantic
setting of (innocent) games. In this respect, our contidloufits into a general research
direction aiming at bringing closer together syntax andasetios.



Relating sequential and parallel strategiefs we have anticipated, L-nets are a con-
servative extension of innocent strategies (in the formduseludics). This makes it
possible to relate the two approaches (graphs versus.trééspre able to associate
a set of tree-strategie® a parallel L-net (actually, to any “correct” L-net, seddve)

D, by saturating the order, i.e., we add sequentiality to thi@tghat all choices of
scheduling of the moves during an execution are determi@edversely, given a tree
strategyll, we have a desequentialization procedure, which retursallel strategy,
forgetting some “inessential” information on the schedgli

Sequentialization is not possible for an arbitrary L-net, anets can be intrinsically
parallel, in the sense that actions depend on each otheréasamtial way (see Figure
5 for an example based on a well-known non-sequential fanti For this reason, we
introduceL.g-nets ( for “sequentializable™), which are L-nets satisfying amgidnal
condition calledCycles. This condition upgrades the acyclicity condition of [4hiah
is sufficient for computation purposes (i.e., to guararte¢ strategies compose), but
not for our goals here. ConditidBycles can be considered as an abstract correctness
criterion, and as a matter of fact, it is the adaptation tosatting of Hughes and Van
Glabbeek’s toggling condition [20].

A correctness criterion for proof nets has two roles: it gméees that (i) normal-
ization is possible (we are not stuck with cycles during naieation), and (ii) it is
possible to associate a sequent calculus proof to the gidghacyclicity condition is
a minimal criterion which takes care of (i); the new conditidycles guarantees also
(ii).

We present an algebra of constructors and destructorsiatiave to build and de-
compose graph strategies. This in particular allows us ®ir{ductively define the
classes of strategies of maximal and minimal sequenti@lay of sequential and par-
allel strategies, respectively). The destructors andtcocters are also used to define
the sequentialization procedure. This procedure workstream-like, bottom-up pro-
cess (coinductively) acting on potentially infinitg-nets. Dually, the same operations
serve us to define a desequentialization procedure thaftrans L-forests into parallel
L-nets. We will show that sequentialization and deseqaénétion can be performed
so0 as to be inverse to each other.

A novelty of our framework is also that it allows us to definedasequential-
ize) intermediate strategies that are neither “maximatuential” (tree strategies) nor
“minimally sequential”, hence allowing for a whole rangesefjuentiality.

Some related worlkisee also Section 13.1)n this paper we are interested in the ques-
tion of “sequentialization”. Such a notion, together wilte thotion of proof net, is
central to proof theory, in particular that based on Lineagic. For this reason, we
carried this first investigation quite naturally in a seftthat is close enough to proof
theory, namely Ludics, which maintains a close and direnheation with proofs, of
which strategies are an abstraction. This in particulabktbus to take profit of the
important work of Hughes and Van Glabbeek in our very debtinitf Lg-nets.

We expect that methods similar to those proposed in thisrgapsed be applied to

1Some background on sequentiality in denotational semsantay be found in [19].



more general frameworks and to larger classes of stratefytes matter of fact, several
of the approaches quoted at the beginning of this sectioguate close to L-nets:

e Mimram has shown in his PhD thesis [21][Section 2.5.8] hovehiaracterize
L-nets (but notLg-nets) in the terminology of asynchronous games. Via his
translation, it may be possible to import our techniqueshia $etting of [9].
Even though the focus of their work and our work is differehis might lead to
insights on how to accommodalg-nets rather than just L-nets, which would
amount to accommodate additives in their framework (intf83,study of a crite-
rion relating sequential and asynchronous games is limdtéde multiplicative
fragment).

e The recentwork by Rideau and Winskel [10], that builds ond®jd also on some
follow-up of our work [22, 23] (see Section 13.1), providesadtractive, well-
structured generalization of asynchronous strategiebaénlanguage of spans
of event structures. Further reformulations and exterssafour approach to
sequentialization and desenquentialization could becegglin that setting.

Our work is also close in spirit to the work of Abramsky and M [1] on con-
current games:

¢ In their approach of strategies as closure operators, trergnplicit identifica-
tions of more or less sequential strategies.

e They sketch a proof of full completeness that involves aeranttive / realizabil-
ity style criterion. Hence they investigate the relatiotwsEen sequential and
parallel, if we note that definability can be seen as a kinceqtigntializability.

But direct technical comparisons with our work would be difft, partly because the
strategies under study are typed (ours are not) and, moreriangly, because their
strategies are closure operators, and not directely cabjgwvith HO strategies. How-
ever, Mellieés and Mimram’s work [9] (building itself on [Bprovides an explicit link
between concurrent strategies as closure operators acdreent strategies as strate-
gies played on graphs or more precisely on asynchronousiticansystems.

Asynchronous games and concurrent games are thereforéeangtiiral direction
in which to look for extending the results of this paper.

Lgs-nets versus Girard’s and Hughes and Van Glabbeek’s prots. riehe problem
of making explicit the (typed) proof nets which underly (gmed)Ls-nets and their
connection with other notions of proof nets have been stubieDi Giamberardino
[24] (which moreover provides a “local” sequentializationthe typed setting — see
Section 13.1). It turns out that there is an injection fromma@i’'s proof nets with
weights [25] into (a typed version of)s-nets and from these into Hughes and Van
Glabbeek’s proof nets. All of these inclusions are stridtisTis because our strategies
have an “operational semantics” flavour which carries samef certain amount of
sequentiality, given by additive jumps.



Plan of the paper.Section 2 provides some rather informal introduction tolihsic
language of ludics, and to the close connection betweerfpamal designs (i.e., strate-
gies), and between logical rules and actions (moves). We ttogt having a grasp on
such intuitions can help the reader. The reader may howeigettgs section, or con-
sult it later. The interested reader can of course learn mate on ludics in [13], but
note that none of the structures built by Girard on top ofglesis used here.

Appendix Appendix A is instead a quite formal account of thfotests as abstract
sequent calculus proofs, and will be needed in connectitin 8éction 8.

Sections 3 and 5 introduce our graph strategies: we realli¢finition of L-net
[4], and we define our subclass of sequentializable L-nle¢d,¢-nets.

The main technical result abolig-nets is the Splitting Lemma (the key to sequen-
tialization) which we prove in Appendix Appendix B. The carkthe paper lies in
Sections 6 through 11: we present our basic (co)algebraeaieitary operations on
L-nets (Sections 6 and 10), we describe, illustrate, arate@lur sequentialization and
desequentialization procedures (Sections 7, 8, 9, 11).

In Section 12, we impose connectedness restrictions onthetkource and target
of the procedures, so as to adjust the picture to Girard@iral designs. Section 4
provides a more precise road-map for the Sections 5 to 12i08€k3 is a concluding
section.

Notation. We usel4 to denote disjoint union, and for the prefix ordering on words.
We denote concatenation of words or of a word and a letter kiaposition, and iff
is a set of letters, we lgt« I denote{¢i : i € I}.

2. Tree strategies and sequent calculus proofs

Designs, introduced in [13], have a twofold nature: theyethe same time seman-
tic structures (an innocent strategy, presented as a setve§and syntactic structures,
which can be understood as abstract sequent calculus ginasocusing calculus,
which we introduce next).

In the following, we review in which (intuitive) sense a treteategy can be asso-
ciated with a sequent calculus proof, and vice versa. In AgpeAppendix A , we
provide formal procedures.

2.1. Focalization and synthetic connectives

Multiplicative and additive connectives of linear logigseate into two families:
synchronous (also called positive) connectives®, 1, 0, and asynchronous (or nega-
tive) ones: @, &, L, T. A formula is positive (negative) if its outermost conneetis
positive (negative).

A cluster of connectives with the same polarity can be seensaisgle connective
(called asyntheticconnective), and a “cascade” of decompositions with theespoa
larity as a single rule. This corresponds to a property knas/focalization, discovered
by Andreoli (see [26]), and which provides a (complete) atleci focusingstrategy in

2Lg-nets were called logical L-nets in [12].



proof-search: (i) negative connectives, if any, are giveorjty for persistent decom-
position, (ii) when a subgoal containing only positive fafas is reached, choose a
positive focus, and persistently decompose it up to its tagaub-formulas.

The division of connectives into positive and negative aa@®t only fundamental
to proof-search in linear logic, but also corresponds toRtagrer/Opponent duality in
a strategy, and the organisation in clusters / synthetinectives corresponds to the
strict Opponent/Player alternation.

Shift. To these standard connectives, it is natural to add two nealYdonnectives,
calledshift (first introduced in [27])] (positive) andf (negative). The role of the shift
operators is to change the polarity of a formulan ifs negative, n is positive, and if

p is positive,1p is negative. When decomposing a positive connective iatoagative
subformulas (or viceversa), the shift marks the polaritgradie. As an example, the
formula(a&b) @ (¢ ® d) should now be writteri| (a’&b")) & (¢’ ® d’), where, saya’

is the result of recursively decoratingvith shift operators. The shift is the connective
which captures “time” (or sequentiality): it marks a step in computation.

Focusing calculus (HS)Focalization is captured by the following sequent calculus
called HS, originally introduced by Girard in [28], and abbg related to Andreoli’'s
focusing calculus (see [26]). A nice reference where to fimdentletails on HS and its
motivations is [29].

Axioms: zt,
We assume by convention that all atomare positive (hence™ is negative).

Any positive (resp. negative) cluster of connectives cawbigen as ab of @ (resp.

a & of %), modulo distributivity and associativity. The rules fgmshetic connectives
are as follows. Notice that each rule has labels; rather thare usual labels such as
® Left» QRight, €tC., we use formulas in the labels, as described below.

Positive connectiveg:etp(ny, . .., n,) = ®ren(®Ricr({n;)), whereN is a set of sets
I of indices (with eachl subset of{1,...,n}). Each®,c;({n;) is called an additive
component. In the calculus, there is an introduction rufeefech additive component:
}—ni,Ai }—nj,Aj .
}_p,...,Ai,...,Aj,... (p,nl)
wherei, . .., j range overl. Each positive rule is labelled with a pair of (i) the active

formula (or focus)y of the conclusion, and (ii) the set; = {n; : ¢ € I} of the
subformulas of the additive component to which the ruleesponds.

Note that we should rather speak of a rule scheme, becausevhenp andn;
have been fixed, there remains freedom in the way of splittiegrest of the sequent
between the premises.

Negative connectived:et n(py,...,pn) = &ren(Bicr(Tp:)). Again, we call each
®.:c1(Tpi) an additive component. There is only one introduction rulkich has a
premise for each additive component :

}_pI,A }_p‘],A
P {..,(n,p1)y-..,(n,pg),... }




wherep; = {p; : ¢ € I'}. Anegative rule is labelled by a set of pairs, each of the form
(focus, set of subformulas), for each premise.

We call each of the pairs we used in the labelsetion. We call an action positive
(resp. negative) if it appears in the label of a positivef{reegative) rule. In a negative
rule, there is an action for each additive component.

In the purely multiplicative case (no connectives&), all negative rules have a
single premise, and hence are labelled by a single actioite whly one rule can be
applied to each positive connective.

It is important to notice theluality between positive and negative rules: each
premise (encoded by the actiofr), p;) of a negative rule corresponds to one posi-
tive rule (nt, pt) (Wherepr = {ni- : i € I}).

Another observation is that, starting with a proof of a sexjtiep or - n consisting
of one formula only, the rules maintain the invariant thasabuents contain at most
one negative formula, a fact that can be stressed by writing A (resp.n;- + A;,
ni k= Aj,..) instead of- n, A (resp.t- n;, Ai, - nj, Aj,.. ).

Finally we note the following two special cases of the pwesitind negative rules
(whenN = {I} is a singleton and is a singleton):

nt kA _FnA
A ) (tp)t F A

In the sequel, we will keep the shift operators mostly implithey can easily be re-
constructed).

2.2. Designs as (untyped) focusing proofs
Designs are an abstract version of focusing proofs. Theglataned in two steps:

1. One transforms a sequent calculus proof into a tree whodesare labelled by
actions.
2. One replaces all the formula occurrences by addresses.

Conversely, given a design, we can build the “skeleton” oéguent calculus proof.
Such a skeleton becomes a concrete (typed) proof as soonagable to decorate it
with formulas. Let us sketch this using an example.

First example. Consider the (purely multiplicative) proof on the left-lbside of Fig-
ure 1, wherer = tag andb = 1by are negative formulas and wherg! are positive
formulas.

By forgetting everything in the sequent calculus proof betlabels of the rules, we
obtain the tree depicted in the top right corner of Figure HisTepresentation is more
concise than the original sequent proof, but it still caradl relevant information, i.e.,
the sequents can be reconstructed. For example, when wethppb rule, we know
that the context ofi ® b is ¢, d, because they are used afterwards (above). After the
decomposition ofi ® b, we know that: (resp.d) is in the context of: (resp.b) because
it is used aften (resp.b).



Sequent calculus | Tree
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Tr. (a,{ao}) Tr 4 (b {bo}) (@{ao})  (b{bo})
Cedash (a®b),{a,b})
c,d,a (nyd {C d}) (a®b,i{a,b})
Typed Bd)trFa®b Y
yp ( ) (c%’d,{cyd})

(02,)
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(€1,{0}) (€2,1{0}) <51,|{0}> (52,|{0}>
ElFol ©ro2 3 5
Fol,02,¢ 19 (€, {1,2})
Untyped oh¢ (0 {1,2}) (o{h2])

Figure 1: From focalized proofs to designs

Addresses (loci).One of the essential features of ludics is that proofs do rastipu-
late formulas, buaddressesAn address is a sequence of natural numbers, which could
be thought of as a channel, or as the address of a memory celevanoccurrence of
a formulais stored. If we give addreggo an occurrence of a formula, its (immediate)
subformulas will receive addressgs¢j, etc. Leta = ((p1%p2) @m)@n. If we locate
a at the address, we can locate; ¥ps, m, n respectively at1, £2, £3 (the choice of
addresses is arbitrary, as long as each occurrence reeedlisinct immediate exten-
sion of¢). Hence what remains of a formula is a positional notatict tetains the
subformula information.

Let us consider an action, say, ny), wheren; corresponds t®;c;(n;). Its
translation is(¢, K'), where¢ is the address gf, and K is the (finite) set of natural
numbers corresponding to the relative addresséshe subformulas;.

First example, continuedComing back to our example (Figure 1), let us abstract from
the type annotation (the formulas), and work with addres¥és locates ® b at the
addresg; for its subformulas: andb we choose the subaddresggésand£2. In the
same way, we locat€¥d, ¢, d, ag, bg at the addresses o1, 02, £10, £20, respectively.
The result is depicted in the bottom right corner of Figure 1.

The two successive transformations are in fact indepen@erd can first transform
formulas into addresses in the sequent calculus proofjipigthe bottom left abstract
sequent calculus proof, and then keep only the tree of atbdttaels. In Girard’s ter-
minology, the bottom left proof and the bottom right tree eabeddessinanddessein
respectively: they are the syntactic face and the semaatie 6f the same objects,
which are called designs.

To indicate the polarity, in our pictures of designs and lksp&ve circle positive



actions (as a reminder of the fact that they come from clastep and®).

Understanding the additivesA &-rule must be thought of as the superposition of
two unary rules on the same formula, corresponding to theamtimns(aézb, a) and
(a&b,b). Given a sequent calculus proof in Multiplicative Addititénear Logic
(MALL), if for each &-rule we select one of the premises, we obtain a proof where
all &-rules are unary. This is calledstice[30]. For example, below, the proof on the
left can be decomposed into the two slices on the right.:

Fa,c Fbec Fa,c Fbc
F a&b,c Fa&b,c (akd,a) F a&b,c (akeb,b)
F (a&b) ® d,c ~ F (a&b) @ d,c and F (a&b)®d,c

A more structured exampld.et
a=men)dc, m=(p13p2)&(1Bq2)&r , n = b1 baWbs ,

with 7, p;, ¢; (0 = 1,2), b, (: = 1,2, 3) positive formulas. Consider the following proof:

s S e (A B e
}—pl,pg (pl ) l—ql,q2 (q2 ) Fr ( ) |—b1,b2,b3
Rl - R2
m* - nt
a,{m,n}
Fmen)dc

whereR; = {(m, {pl,pg}), (m, {ql, QQ}), (m, T)} andR; = {(n, {bl, ba, bg})} The
associated design is obtained as above in two steps:

(P1;--) (g2,---) (7.

| |
(m,{p1,p2}) (m,{q1,92}) (m,r) (n,{b1,b2,b3})
\\ //

a,{m,n}
@
(€1,{1,2}) (€1,{3,4}) (€1,{5}) (€2,{1,2,3})
\\ //
It has three slices:
- CF - CF - CF

(€1, {1 2}) (€2.{1.2.3}) (&1, {3 43) (€2.{1.23}) (&1, {5}) (62,{1.2.3})



Bipoles. It is very natural to read a design (or an L-net) as built outipbles which
are the groups formed by a positive action (say, on addfessheroot of the bipole
—, and all the negative actions which follow it (all being mtnediate subaddressgs
of £). The positive action corresponds to a positive connecfiee negative actions
are partitioned according to the addresses: each addmnessponds to a formula oc-
currence, and each action on that address corresponds dagineacomponent of that
formula. Each set of the partition is called atditive rule For example,

(51,{1,2})%4}\) g&l,{y(a{l,m})

is a bipole, with the following two additive rules:
{(€2,{1,2,3})} and {(£1,{1,2}),(£1,{3,4}), (€1,{5})} .

2.3. Towards L-nets
Relating two orders.Let us consider a multiplicative design (or a slice). We avery
two partial orderswhich correspond to two kinds of information on each (ocence
of) action(o, I): (i) a time relation $equential ordéey; specified by the tree structure
of the design; (ii) a space relatiopréfix orde), corresponding to the relation of being
subaddress (the arena dependency in game semantics).

Let us look again at our first example of design. We make thaticel of being a
subaddress explicit, by means of a dashed arrow, as follows:

{0} \{0} I —
e @ e @ 51 &2
\\\ {1’2} //, \“‘ :'.' \: ",
o Tom /@
| (o

If we emphasize the prefix order rather than the sequentigrpwe recognize some-
thing similar to a proof net (see [31]), with some additiomébrmation on sequential-
ization. Taking forward this idea of proof nets leads us todts.

Additives: alternative choices and shariné\ strategy can be seen as representing the
abstraction of a program, or the evolution of a system. Antasdule marks a choice
in the possible evolution of the system.

This is immediate to see in the case of a tree. Each additleeXwan be inter-
preted as giving rise to different possible evolutions. &ample, ifX = {x1, 22}, t0
select a possible evolution, we choose one of the additimgomentse; or zs.

Assume that some actions are performed in both evolutiorfsenMorking with
trees, this part has to be duplicated. When working with lgsapnly the actions that
are specific to a certain evolution are made to depend on thiegtwhile the parts that
are common are shared.

This is illustrated in Figure 2 (with;; = (£0, 1), x> = (£0,J)). We will discuss
this issue in more detail in Sections 6.6, 6.7, and 9.2 (whierexample of Figure 2 is
revisited).

10
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Figure 2: Duplication and sharing

Additives: a typed exampleThe following (typical) example with additives illustrate
the relation between tree strategies and (parallel) L{méixh will be defined shortly).
Assume that we have proofs,, ..., II4 of - a,¢, F a,d, - b, ¢, - b, d, respec-
tively. In the sequent calculus (and in proof nets with addiboxes [30]) there are two
distinct ways to derive a&b, c&d, and the two proofs differ only by commutations of

the rules.
I Iy I3 Iy I 113 Iz Iy
Fa,e Fa,d Fb,e Fbd Fa,e Fbec Fa,d Fbd
c&d c&d a&b a&b
Foa,c&d - b, c&d F a&b, ¢ - a&b, d
a&b c&d
F a&b, c&d F a&b, c&d

The same phenomenon can be reproduced in the setting ofndedle above
proofs closely correspond to the following two (typed) desi®; and®, (we write
formulas instead of addresses, to make the example eagigadp):

Iy 2 3 Iy ! 3 2 Hy
| | | | | | | |
c&d,c c&d,d c&d,c c&d,d a&b,a a&b,b a&b,a a&b,b
N/
L(c&a) L(e&a) L(akb) L(akb)
| | | |
a&b,a a&b,b c&d,c c&d,d
1(a&b) I(c&d)

The following graph (which is a typed version of an L-net) ig intended common
desequentialization &, and®, (more on this example in Section 9.3).

i) (o) (113 (m3)

TN

a&b, a c&d d

L(a&b) T L&d)

3. L-nets

In this section, we introduce L-nets, which were first présdiin [4]. Our defini-
tion is simpler than, but equivalent to the original defwnitj forgetting for the moment
about one condition (the acyclicity condition), to which sreall return in Section 5.
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L-nets are given by an interface, providing the names on lwthie L-net can com-
municate with other L-nets, and an internal structure, diesd by adirected acyclic
graphwhose nodes are labelled bgtions Before giving the definition of L-net, we
recall some preliminary notions on directed acyclic graphs

3.1. Directed acyclic graphs and terminology

We recall that a directed acyclic graph (d&g)s an oriented graph without (ori-
ented) cycles. We write < b for an edge fronb to . In all our pictures, the edges
are oriented downwards. We denoteeEythe transitive closure of-, which defines a
strict partial order on the nodes 6f.

We recall that theransitive reductiorof a dagG is the graph that has the same
vertices as= and whose edges are the edges- b of G such thatG does not contain
another path frond to a of length> 1. (In terms of the underlying partial order, the
transitive reduction retains only the covering relatiomeney coversz whenxz < y
and there is na such thatr < z < y).) If an edgen < b of G is also in its transitive
reduction, we say thatis apredecessonf b. A dag is callededucedif it coincides
with its transitive reduction.

A noden of G is called aroot (resp. deal) if there is no node such thats + n
(resp.n < a).

Downward closure.Given a node: € G, we denote by the downward closure of
n, i.e., the sub-graph induced by restrictiontobn {n} U {n/: n’ & n}.

3.2. L-nets

Addresses and interface#\n address(calledlocusin [13]) is a string of natural
numbers. We use the variablgsr, o, . . . to range over addresses . Two addresses are
disjointif neither is a prefix of the other.

An interface (calledbasein [13]) is a finite set of pairwise disjoint addresses,
together with goolarity (positive or negative) for each address, such #&tahost one
is negative. We write an interface as a sequent A, where= is the set of the
addresses with negative polarity, ahdhose with positive polarity.

An interface isnegativeif it contains a negative namppsitiveotherwise. In par-
ticular, the empty interface is positive.

An interface= - A induces the definition of a polarity for each address of thmfo
o’ such thatthere is C ¢’ for o € ZU A: the polarity ofc’ is the same as the polarity
of ¢ if the length ofr (wheres’ = o) is even, opposite otherwise.

Actions (moves)An action is either the special symbol(called daimon) or a pair
k = (&, I) wheref is an address anbafinite set of natural numbers. We will say that
the actionk usesthe address.

Given an actiork = (&, I), we say thak generateg:, for eachi € I, and also that
k is theparent of b, if b is an action of the forn(¢z, J).

The definition of polarity for the addresses induces a dé&imiof polarity for all
actions of the formk = (¢, I): the polarity ofk is the same as the polarity of. The
polarity of { is always defined positive.

12



Given an interfac& - A, we denote byA(= F A) the set of all actions for which
a polarity is defined.

In the terminology of game semantics, the positive and megattions are the
Player and Opponent moves of our universal arena, respgtivhile the parent rela-
tion expresses enabling constraints between the moves.

Nodes labelled by actionsWe will work with dag’s whosenodes are labelled by ac-
tions We extend to nodes the terminology that we have introducetthé actions. We
will say that a node is positive or negative, and that a nods asgenerates an address,
if it is the case for the labelling action.

As a matter of fact, we shall quite freely confuse a node vigHabelling action,
so that in the sequél, a, b, ¢, . .. may denote either nodes and actiohs= (£, I) will
read as eitherk is a node labelled by¢, I)", or “k is an action equal t¢, I)” (and
what is meant in each instance should be clear from the ctntex

Now we can give the definition of L-net, as a dag whose traresigduction satis-
fies six conditions. Conditions 1-4 are enough if all addzesare distinct (i.e., if the
structure is purely multiplicative). Conditions 5-6 allayg to deal with the multiple
use of addresses induced by the additive structure.

Definition 3.1 (L-nets). AnL-net® is given by:
e Aninterface= F A.

e A possibly infinite setl of nodes which are labelled by actions 4{= +~ A)
(hence nodes areccurrencesf actions).

e A structure onA of directed acyclic, reduced, and bipartite grgjght <~ £/,
then their labelling actions have opposite polarity), wadsansitive reduction
satisfies conditions 1-4 and 5-6 below. We say that a node s#iy® (resp.
negative) according to the polarity of the labelling action

1. Views. For each nodé, all the addresses used it are distinct .
2. Parents.
— For each node:, using address, eithero belongs to the interface, or
o is generated by an action which labels a preceding node a.
— If a + banda is positive, the must use an address generated:By
— If a is negative, it has at most one predecessor.

(It follows that if a negative node is not a root then its parsrthe label of
the unique predecessor.)

3. Negativity. If = = {£} is not empty (i.e. the interface is negative), then
either the set of node4 is empty, or at least one node uges

4. Positivity. If a is a leaf, then it is positive.

3This is the innocence condition, cf. [11, 32].
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Two distinct nodes are callecbnflictingif they use the same address. We call
additive paira pair of conflictingnegativenodes which have the same predeces-
sor.

5. Siblings. Any two conflicting nodes which have the same predecesser ha
distinct labels, i.e., of the forrtv, 1), (o, I2), with I; # Is.

6. Additives. Given twopositiveconflicting nodes, k2, there exists an ad-
ditive pairwy , wo such thatw, & k1, andwsq & ko.

Remark 3.2. Note that by conditiorParents every root uses an address in the inter-
face. Conversely, the same condition also imposes that tmnagsing the negative
address of the interface (if any) is a root, kadtions using a positive address of the
interface need not be roots

In order to obtain a good computational behaviour of L-netstaategies, and to
be able to relate them to sequential innocent strategiesstilaneed a correctness
condition. This will lead us td.s-nets in Section 5.

Rules and conclusionsWe callrule of an L-net a maximal set of nodes that are pair-
wise conflicting and have the same or no predecessor. A rylesiive or negative
according to the polarity of the nodes.

We say that a rule isinary if it is a singleton (a positive rule is always unary).
When a rule is not unary, we call it aadditive rule(think of each action as an additive
component). Note that an additive rule is necessarily athegaile, but negative rules
can be unary (see Section 3.3). Note also that;ifw, form an additive pair, then
w1, wy belong to the same negative rule.

By analogy with proof nets, we catbnclusiora rule whose nodes are all roots. By
conditionsParents andNegativity, we have:

e An L-netis positive if and only if it has only positive coneiions (which are all
on distinct addresses by conditiddditives).

¢ A (non-empty) L-net is negative if and only if it has a negatbonclusion. (Note
that an L-net can have at most one negative conclusion, britiefi of a rule,
and by the assumption that an interface contains at mosteyegine address.)

We note that the positive nodes induce a partition of the ai@gdipoles (cf. Section
2.2) (plus possibly a negative conclusion), where a biporesists of a positive rule (its
root) and a set of negative rules. For example, the follovidipgle has two negative
rules @y = {(¢1,J)} andRy = {(02,J'),(02,J")}) and one positive rulel =
{(o:{1,21)})-

(01,7) (02,J%) (02,J")
|
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Enabling sets.The key role of conditiorAdditives is to ensure a one-to-one corre-
spondence between the nodes of an L-net and the sets of agtidineir downward
closure, that represent their history, or their precoodgi

Lemma 3.3. For each pair of distinct nodek, &’ of an L-net®, the sets of actions of
k+ andk't are different.

Proof. Suppose that, k' are distinct, but that the sets of actionskofandk’* are
the same. Then in particular there exists sdmes k't such thatt andk, have the
same label. We distinguish two cases:

o If ky # K, thenk% is strictly contained irk’*, and hence by our assumptién
andk must be distinct.

o If k; = K/, thenk; # k by assumption.

Hence in both cases we have proved thaandk are distinct. By conditiordditives,
there exists an additive pair;, w, such thaty, € k+ andw, € k:f (and hencev, €
k'V). Then, by our assumption, there is a nade k* that has the same label as.
But this is impossible, as it would violate conditidtews applied tok. O

3.3. Slices

A slice & of an L-net® is adownward closedubgraph of9 in which no two
nodes are conflicting, and which is an L-net (i.e., satisf@xliion Positivity). In this
paper, we also insist that slices are alweaximalsuch subgraphs.

3.4. L-nets as sets of views

Just as innocent strategies (and designs), an L-net caeberped as a set of views,
with some properties. In this setting, a view is not a seqeearienoves, but a partial
order (with a top element).

Definition 3.4 (View). A view on the interfacéE - A is a setc of polarized actions
equipped with a partial order with a maximal element, whiatinen considered as a
dag where the nodes are labelled by themselves, is an L-rigieosame interface. A
view is called positive or negative, not according to theifdace, but according to the
polarity of its top element. We define a partial order on viasgollows: ¢ C ¢’ if ¢
is the restriction ok’ to {z : = < a}, for a certaina € ¢’. A setS of views isclosed
under restrictiorif ¢ € S andc¢ C ¢’ impliesc € S.

We note that the conditiorf8blings andAdditives are vacuous for a view since by
definition actions are not repeated.

When the order is total, views coincide with Girardisronicleg[13] (and conform
with the notion of view in Hyland-Ong’s framework), whencerahoice of notation
¢, ¢’ for views.
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From L-nets to sets of viewsAny nodek of an L-net® defines a view: indeed;
induces a partial order on its nodes (cf. Section 3.1) andhéygonditionViews, in k+
there is a one-to-one correspondence between the noddssndbelling actions. Let
m be the action labelling the node We set:

Tk = {n: n € k'}, with the order induced by- .

Hence we can associate to each LDet setViewsD) of views, as follows:
Viewg®) = {"n7: nisanode o®} .
The selViewg®) is closed under restriction.

From sets of views to L-netsConversely, given a séX of views which is closed under
restriction, we define a directed gra@hnaph(A) as follows: the nodes are the elements
of A, andc + ¢’ iff ¢ 7 ¢'.

Lemma 3.5. Let A be a (possibly infinite) set of views closed under restnictibhen
Graph(A) is an L-net iff it satisfies conditiorfositivity and Additives.

Proof.  The conditionsParents andViews hold obviously. Conditiorbiblings also
holds: two negative views with the same pareftave the forme; = ¢ U {a} and
co = cU{b}. If ¢ # cq, Nnecessarily, # b. O

It is rather easy to express bd®bsitivity and Additives in terms of views. Hence
we can also define an-L-net on a given interface as a set obwitged under restric-
tion, which satisfies (the analogue ®®sitivity andAdditives.

Relating the presentationdt is immediate thaViewgGraph(A)) = A, if A is a set of
views closed under restriction. Conversely, given (theditive reduction of) an L-net
D, we have thaGraph(Viewg®)) is isomorphic ta® (easy consequence of Lemma
3.3).

Summarizing, we have shown thdewsandGraphare inverse bijections.

We will use both presentations for L-nets. The presentatioh-nets as sets of
views, on which we will largely rely, allows us to compare Bedn different graphs,
by comparing the corresponding views. This will be partelyl useful in Sections 6.3
and 6.6.

Sometimes, the graph presentation is more intuitive. Hewéis obvious that all
notions and conditions can be expressed in either term.r@baeparticular that

kl(ikg iff Thki7C Tk iff k_1<k_2in'_k27.

Conventions.We will often not distinguish between isomorphic notionscls as a
view ¢ and the induced node, or a nokland the view k. Moreover, to keep notation
simple, we will sometimes writé € ¢ (for example,k € "k") instead ofk < «,
and we will decorate actions, nodes, views and L-nets wiir fiolarity (for example,
kEt,ct, D) only if we want to stress it.
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3.5. L-forests and designs

If the views are totally ordered, the above definitions piada forest, correspond-
ing to a “standard” innocent strategy.

Definition 3.6. An L-forest is an L-nefl which is a forest; we require that ifl is
negative, then it has only one conclusion.

In Appendix Appendix A, we will show that L-forests arise ifincadding a MIX
rule to the sequent calculus underlying designs.
By further restricting the notion of L-forest, we arrivedssigns

Proposition 3.7. An L-forest which has a unique conclusion, and whiciinches only
on positive nodess a design (as defined in [13]).

4. Sequential versus parallel strategies: an overview

Let us stop a moment to reflect on the notions we have seen,dmefare entering
the more technical part of the paper.

Part of the process of abstraction leading from concretefptto the abstract proofs
of ludics is that an action (a move) can be seen as a clustggavhtions that can be
performed together (thanks to focalization). However, ittee strategy (L-forests,
designs, innocent strategies...), there remains a lottdica sequentiality, like in
sequent calculus proofs for linear logic. In the case of fgoile solution has been
to develop proof nets, a theory which gave rise to many ssfaedevelopments. The
advantage of proof nets is that information which is irrai@to the “essence” of the
proof is forgotten. More precisely, proof nets allow us terntlfy sequent calculus
proofs that only differ by sompermutations of rulesConsider, for example, the two
standard proofs

Fa,at Fb,bt Fe et Fa,at Fb,bt Fe et

éajg b)

aeh ((bL ® cg

at @b
Fat®bbt®ec,... and Fat®bbt®ec,...

and compare them with the (unique) corresponding proofwiath has the following

shape:
SRS

Thedifferent permutationsf the rules correspond tifferent sequentializatiores
the proof net, that is, in our view, wifferent schedulingsf the rules.

Similarly, sequential strategies (hence designs, in@aetr) distinguish proofs (or
programs) which only differ by the order in which the operat are performed.
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Proof nets and sequentializatiodRroof nets were introduced by Girard along with lin-
ear Logic as a graph representation of proofs. To each segakmlus proof, one
associates a proof net (several sequent calculus derigatam become the same proof
net). Conversely, given a proof net, we can associate toniesusually more than
one) sequent calculus derivations; this procedure isctaiquentializationProof nets
are defined in two steps. One first defines “logically corrégted graphs, which are
called proof structures. A proof net is a proof structurechtis the image of a sequent
calculus derivation. Proof nets are characterized by gé@rakproperties, calledor-
rectness criterion A very useful one is AC, for Acyclic and Connected (also eall
Danos-Regnier criterion). Acyclicity (of certain paths)the fundamental property
which guarantees sequentialization. Connectness (ofathspis instead related to the
refusal in the logic of the MIX rule (see Section 12). We wlipdy similar techniques
to L-nets.

The dynamics.In this paper, we focus on sequentialization. The dynamidsmets
is described in[4] (more details -in a more general settarg-in [22]). Normalization
(i.e., composition) of L-nets is reduced to normalizaticorfiposition) of slices: (i)
decompose each L-netin its slices, (ii) normalize the slie@d (i) put them together
(superimpose), where the superposition of the slices iplgithe union of the views.
Composition of slices, which is the core of L-nets normdiaa, is as straightfor-
ward as normalization on MLL (multiplicative linear logiproof-nets, as slices are
sort of purely multiplicative proof-nets. There are seVe@ssible ways to present it.
One can use rewriting rules in the style of MLL proof-netsanrabstract machine (as
in[4]). The most elegant way is however based on Girard’'srgimg of orders”, de-
fined in [13] (the generalization to L-nets is in [22] ): eatibescan be seen as a partial
order on occurrences of actions; the merging of two ordeteis the transitive closure
of their set-theoretical union; the acyclicity conditiqmehich are true for designs, but
also for L-nets) insures that the result is a partial orded,ia in fact a slice.

4.1. Sequentialization (and desequentialization) of tsne

In Section 5.1, we will define eorrectness criterioninspired by [20], which guar-
antees that an L-net can be “sequentialized”. An L-net wkfisfies the criterion is
calledLg-net. If we continue the analogy with proof nets, we can seets as proof
structures, andl.s-nets as proof nets.

We will then define (Sections 7 and 8) two procedures which alledesequential-
izationandsequentializationthat associate

e anLg-netdesedlI) to an L-forestI (Section 8), and

e aset{sed®)} of L-forests to arl.g-net® (Section 7), respectively.

We will show (Theorem 11.2) thatll dependency which is taken away by desequen-
tialization can be (non-deterministically) restored thgh sequentializatianThe non-
determinism corresponds to the fact that several L-fof@sisan be associated to the
samelg-net®, each of which can be recovered by sequentializatio.oln Section

10, we make precise in which serdesedll) has less sequentiality thah and give a
description of thd.g-nets of “minimal sequentiality” (which we call parallel hets),
based on the operations presented in Section 6.
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Figure 3: Maximally parallel L-net

Targetting L-forests (instead of designhs we said, we will first prove a sequential-
ization (resp. desequentialization) result that holdsafibi.g-nets, and that has the
class ofL-forests as targefresp. source). Only later, in Section 12, we will restrict
this procedure so as to hadesigns as targetMore precisely, we can characterize
the class ol.g-nets which sequentialize into a design as those which besigclicity
satisfy also &onnectness criterian

We make this choice for a number of reasons. First, it is mereegal, and more
natural, to target L-forests instead of designs. An L-netdoot need to be connected
(in the ordinary graph-theoretic sense), and its naturgétas an L-forest.

Also, non-connectedness appears as a natural and deseatulee if we want par-
allelism. In further work joint work of the second author [38 full abstraction result
for the linearr-calculus [34] which involves L-forests rather than desigs estab-
lished: this is because thparallel compositiorin process calculi corresponds to jux-
taposition in the semantics; the natural result is not agme$iut a forest. (See Section
13 for more discussion.)

Non-connectedness may also arise in proof developmens dhiingredient of
Andreoli’'s concurrent proof construction [35]. In such #isg, there may be discon-
nected partial proofs that will be connected later in theopdvelopment.

4.2. Graduating sequentiality

Consider the L-ne® in Figure 3. It is maximally parallel, in the sense that the
only sequentiality that it expresses is relative to the mrd@see Section 8). The three
actionsa, b, ¢ can be performed in parallel, or in any order. This L-netesponds to
the multiplicative proof net depicted on the right-handes{dre can think ofi, b, ¢ as
tensors).

The L-net®’ in Figure 4, is more sequential. Indeed, the order has beeedsed:
the actionb has now to be performed after the action The actions: andc can still
be performed in parallel.

The L-net®” is completely sequential, as there are no choices in thedstihg:
the actionc has to be performed first.

This last L-net is in fact a tree, and corresponds to the fotig sequent calculus
proof (which we only sketch). Once again, rules are labdilethe active formula, i.e.
the formula which is decomposed in the rule.
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5. Lg-nets

In this section we refine the notion bfnetof Faggian and Maurel [4]. Instead of
the acyclicity condition in the original definition, we halwere a stronger one, resulting
in the (new) notion of.g-nets.

We recall that we are only interested in the properties ofutinggerlying transitive
reduction of anL-net. All conditions in this section are therefore on thensitive
reduction of the graph.

Paths. The following notions are relative to some L-r@t An edge is arentering
edgeof the nodes if it hasa as target, as an oriented edgemfif R is a negative rule
ande an entering edge of an actianc R, we calle a switching edgef R.

A rule pathis a sequence of nodés, ...k,, belonging to distinct rules, and such
that for each < n eitherk; — k;+1 (the path is going down) o¢; + k; 1 (the path
is going up). A rule cycle is defined similarly as a sequenceaufesk, ...k, kn+1,
where thek;’s (i < n) are distinct, wheré; = k1, and for eachi < n + 1 either
k; — kiJrl ork; < kiJrl.
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A switching pathis a rule path which uses at most one switching edge for each
negative rule, i.e., the path does not contain three sugeassdes:; 1, k;, k;11 such
thatk; is negativek; < k;—1, andk; < k;11.

A switching cyclds a rule cycle which uses at most one switching edge for each
negative rule.

Correctness criterion.Now we can complete the definition éf-net. We want to
be able to sequentialize our graphs. The following condifihich can be seen as a
correctness criteriopguarantees that it is always possible to find a rule whicls caé
depend on any other rule.

Definition 5.1 (Lg-nets). An Lg-netis an L-net® such that the following condition
holds for its transitive reduction:

e Cycles. Given a non-empty uniafl of switching cycles aD, there is an additive
rule W not intersectingC, and a pairw;,ws € W such that for some nodes

c1,c0 € CLwn & c1, andws & Ca.

This criterion, closely inspired by the analogous critergiven in [20], is delicate; its
technical meaning (and the need to consider a set of cycteaatonly one) will be
apparent in the proof of the Splitting Lemma (in Appendix &pgdix B), which is an
adaptation of the analogous proof in [20]. Below, we try hegreto provide some
intuitions, by giving a typical example of its failure, nalyj@n instance of the well
known Gustave functidh

L-nets and_.g-nets. The conditiorCycles is a strengthening of the acyclicity condition
of [4]. Acyclicity asserts that there are no switching cydie a slicé. It is immediate
that the conditiorCycles implies the acyclicity condition, and reduces to it in a pyre
mutliplicative framework (i.e., in the absence of any additule). Notice that while
acyclicity is a property of a slice, the new condition speaksycles which traverse
slices.

In Figure 5, we show an example of an L-net that satisfies tiieliaity condition
but does not satisfy the conditi@ycles.

There are three additive rule§{a0, {1}), (a0, {2})}, {(80, {1}), (80, {2})}, and
{(70,{1}), (v0,{2})}.

We could type this L-net as follows:

4This example is inspired by the Berry-Kleene function, &isown as Gustave function, which is the
simplest example of a stable but non sequential functiom [(5]). The Gustave function recurs often in the
theory of MALL proof nets; in particular, we adapt here thample given in [20]

S1tis the condition that (together with connectedness) attarizes mutliplicative proof nets.
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Figure 5: Gustave L-net
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We think of the three conclusions as Tensor rules, and ofetheeks §, ¢, ) as occur-
rences of axioms (for example,1). We seeu;, as as the two components oféa, and
similarly for by, by andey, c2 (hence, each conclusion can be typedlasl) ®11). We
check our claims as follows.

1. The Gustave L-net satisfies acyclicibecause there are several switching cy-
cles, but none appears inside a single slice. This propedy immediate con-
sequence of the following two observations:

(@) The set of slices of the Gustave L-net{js", ¢*,r*}. Indeed, any two
axioms are separated by an additive pair, in the sense tblatodahe two
axioms depends on a different component of the additive pairexample,
if we considerp, g we havec; < g andcy < p. Similarly, the pairp, »
(resp.q, r) is separated by the rufé,, b2} (resp.{a1, az}).

(b) Each switching cycle has to use at least two axioms.

2. The Gustave L-net does not satisfy the condifipeies, because there are switch-
ing cycles that use (interseet]) the additive rules, which a fortiori does not leave
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any space for an additive rule outside the cycle to “breakHiere is one: start
from (a;&az) ® o/, go up throughu; to g, down throught’ to (b1 &bs) ® &', up
throughb, to r, down through?’ to (c1&c2) ® ¢/, up throughes to p, and finally
down throughu'.

We will see in Section 6.5 that the Gustave L-net, does noitasbquentialization.

6. Operations onLg-nets

In this section, we introduce operations that allow us tostarct and decompose
L-nets andLg-nets.

e Constructors:rooting, boxing, superposition, and additive union.
e Destructors:root removal, splitting, and scoping.

In the sequel, we will make an extensive use of these opesatio

We will first (Sections 6.2 through 6.4) treat the operatitha deal with positive
rules and unary negative rules (which is enough for the gumeiltiplicative case). We
will then introduce the additive structure, whestgaringplays a crucial role (Sections
6.6 and 6.7).

Warning. Throughout the section, we assume that the operations weedetfkere-
ducedL-nets (respLg-nets) (in the sense that their dag is reduced) as input. Ve wi
see that these operations return (possibly parfiatiets (resp.Ls-nets) that are not
always reduced (see Remark 6.6). This is actually the reaggynwe allowed non
reduced dags in the definition of dnnet.

6.1. Preliminary properties

A convenient notion is that of partial L-net. We say that andt-ispartial if it
possibly does not satisfy conditiGtositivity.
We will make a repeated use of the following result.

Lemma 6.1 (Downward closure).Let® be an L-net. Any downward closed subSet
of © is a (possibly partial) L-net. D satisfies conditiol€ycles, so does.

Proof.  All properties are inherited fror®. Any view of G is also a view of9. Let
us check the preservation of conditiohgditives andCycles. If k1, ko are two distinct
nodes inG on the same address, then conditidditives for © provides a pair of
negative nodes) , wy such thatw; & k;, which (by downward closure) belong .
Observe that any cycle & is also a cycle iD. If we have a collection of switching
cycles inside, the conditionCycles for ® gives us an additive rul@ that is not
traversed by any of the cycles, and a pait w, € W N G. Then, takinghV N G, w1,
andws, the condition holds irt. [l

Corollary 6.2. If ® is anLg-net andK is a set of positive nodes @f, then the sub-
graph induced o J{k* : k € K} is anLg-net.
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Figure 6: Superposition

Superposition of L-netsGiven a collection of L-nets, let us consider their unam
sets of viewgthe union is not disjoint in general). We call this operatsuperposi-
tion. Under which conditions is a superposition of L-nets an t2riey Lemma 3.5, if
91,9, are L-nets (respl.g-nets), D, U D, is an L-net (resp. ahg-net) iff it satisfies
conditionAdditives (resp. condition#\dditives andCycles).

Remark 6.3. In defining the superposition of graphs (and additive unian$ection
6.6), it is crucial that we work not just with nodes, but wiltteir view. This allows us
to compare nodes belonging to different graphs.

Example 1: sharing of contextConsider the two L-net®,,®, in Figure 6. The
superposition o, and®, produces the L-ned = D, | D-.

In fact, the set of views dD; is the set of views defined by each of its nodeshat
is:

«0,0
(D) @) (€0.1). (000, (1) = D1},

The set of views 005 is:

«0,0

(@) ) (€0.7).7(a00, {2})7 = Do},

The resulting union is:

«0,0
(@) @) (€0.1),(€0.7).91, 0},

which corresponds t®.

Example 2: positive n-ary rulesSuperposition allows us to construct positive rutes
which have more then one premiss, as illustrated in Figure 7.
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Figure 7: Positive binary rule

6.2. Constructing: rooting and boxing
The following constructions allow us to add a nanaryconclusion to an L-net.

Definition 6.4 (Rooting). Let ©® be a positive (resp. negative) L-net, of interface
&i,&5, ..., A (resp. & = A). Let (&, 1) be a negative (resp. positive) action. We
indicate byx o © the graph obtained as follows:

1. add anoder = (¢,1) to®;
2. add an edge: <+ k for each nodé which uses an address (for somei € I).

If (&, 1) is positive, the result is always an L-net (on the interfacg A). If (£, 1)
is negative, the result is a possibly partial L-net (on theriiace¢ - A). The condition
Positivity is satisfied only if at least one of the addresgeis used in®.

Definition 6.5 (Boxing). Let® be a positive L-net (of interfade i, ¢5,...,A) and
let (¢, I) be a negative action, with j, . .. € I. We indicate by.® the graph obtained
as follows:

1. add anoder = (£,1) t0D;
2. add an edge: < k for each nodé: which belongs to a conclusion @f.

The resultis clearly an L-net of interfage- A.

Remark 6.6. Note that the edges by the boxing construction survive inrtresitive
reduction, while some of the edges added by the rooting rartsin may be just “tran-
sitivity” edges that do not add anything to the underlyingrisitive reduction.

On positive L-nets, rooting and boxing give us two choicesfiding a new nega-
tive node:

e Rooting is a parallel operationin the sense that it only adds the minimum
amount of sequentiality that is needed for conditRanents to hold.

e Boxing instead is a serial (sequential) operatiarhich adds a maximal amount
of sequentiality. If we think in terms of proof netspxing corresponds to en-
closing® in a box, which has as principal port.

As we will see in Section 10, repetitive and consistent useofing and boxing
will lead to (abstract versions of) proof nets and sequelcubas proofs, respectively.
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Figure 8: Rooting and boxing

Examples.In Figure 8 we give an example of both constructions. Givenltimet

D of interface ¢,£01,£02, we add a negative actiofg, {1,2}). The L-net®’ is
obtained by rooting, whiléd” results from boxing. Again, we can see the positive
action(o, {1,2}) as a Tensor, and the negative actj¢f, {1,2}) as a Par. We can see
D’ as a kind of proof net, whil®" is a tree, corresponding to a sequent calculus proof.

Remark 6.7. Rooting and boxing are two extremes. In between, we can defere
mediate operators which add, on top of rooting, as much satiply as we wish:
after rooting, we add any number of edges from positive ntales Let us indicate
this (generically) byc<®. Hence, considering the respective designs as partialrerde
we have:

(o®) C (z<D) C (z.9).

The differences between the three L-nets are only the anodwmtler between:
and the nodes d®.

6.3. Constructing a positive rule

Let us call®; the L-netr; .£017F, and®D, the L-neto . £027. Letk = (o, {1,2}).
Then the desig® of Figure 8 can be assembled as follois= (k o ©1) J(k 0 D2)
(note the superposition of the two occurrence&)fObserve on the other hand that
D, JD- is not an L-net (there are two negative conclusions).

The correctness of the construction relies on the follovgraperty.

Proposition 6.8. If two positiveLg-nets are of the form™ oD, kT 0D, and are such
that the sets of addresses usedibyand®, are disjoint, then(k* o D) U (kT 0 D3)
is anLg-net.

Proof.  ConditionAdditives is obviously inherited by the disjointness assumption.
We show that this also true of conditi@ycles. Suppose that there is a switching cycle
traversing bottD, and®,, and consider two minimal portions of the cycle going from
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Figure 9: Splitting

D, to ®, and from®D, to D1, respectively. At most one of these portions can go
throughk. Thus, the other portion consists of two consecutive nedesdcs, with,
say,c; € D1, c2 € Do, andey [ ¢z, contradicting the disjointness assumption. [

Remark 6.9. We write (k™ o 1) U (k™ o D5) instead ofk o (D; |4/ D), because
D1 |4 D4 is notan L-net, according to our definition.

In fact, only the superpositions of this form (which are feemcorally disjoint
unions) will be needed in the purely multiplicative caseteNbat the “real” superpo-
sition as we have seen in the Example 1 (Figure 6) involvedditige rule (to get an
intuition, the reader can take a look also at Figure 11).

6.4. Removing a negative unary rule: root removal

The following operation allows us to decomposeagative L-netwhose negative
conclusion isunary (this is the only negative destructor we need in the case ofay
multiplicative L-net).

Definition 6.10 (Root removal). Given an L-ne® (of interface¢ - A) with a nega-
tive unary conclusioqz} with z = (£, I), we indicate byD \ = the graph obtained
from® by removinge.

It is immediate that the result is an L-net on the interface., &i,..., A (i € I).

6.5. Removing a positive rule: splitting

We next state a key lemma, relying on the notion of splittinig rthat allows us to
decompose positiveLg-netinto disjoint components, where each component is itself
anLg-net.

The notion of splitting.The notion of splitting comes from the theory of proof nets:
given a proof nefR whose conclusions are all positive (Tensor), a conclusigplitting

if by deleting it,98 splits into two connected componefis, R,, which are themselves
proof nets. This allows us to (inductively) decomp&seto proof nets of smaller size.
Observe that not any positive conclusion is splitting. Letcansider the proof net in
Figure 9 (left). The right-most Tensor is splitting, whikeetleft-most is not.
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The same notion immediately translates in our setting. ketansider thé.g-net
given in Figure 9 (right). The nodg, {0, 1}) is splitting, while the nodé¢o, {1,2}) is
not, because by deleting it we do not havd aanet. If we delete the nodg, {0,1}),
we obtain twoLg-nets: ©’ (as in Figure 8) and® = (£1,{0}) . (€10)". TheLg-net
illustrated in the picture can indeed be written as

(€{0,11) 0@ | J (6 {0, 1)) 0
Let us formulate this more formally.

Definition 6.11 (Splitting rules). 1. A negative ruléV = {... wy,...} ofan L-
net® is called splitting if either it is conclusion & (eachwy is a root), or if
after deleting the edges «+ w; to the common predecessor (for alf € W),
there is no more connection (i.e., no sequence of conseadiyes) between any
of thew;'s andw.
2. A positive rule of9 is called splitting if it is a conclusion and all negative esl
just above it are splitting.

Lemma 6.12 (Splitting Lemma). EveryLg-net® has a splitting conclusion. In par-
ticular, if all the conclusions are positive (i.e., @ is positive), there is at least one
positive splitting rule.

The proofis given in Appendix Appendix B.
As a consequence of the Splitting Lemma, we have the follgwioperty.

Proposition 6.13 (Splitting). Let® be anLg-net. IfD is positive, then there exists a
positive conclusiott = (£, I), which we call a splitting conclusion @, such that

’D:(U (ko®;)) H‘J ¢.

1€l
where all®;’s and¢ are Lg-nets and do not share addresses.

Proof. Letk = (£, 1) be a splitting positive conclusion. By deletifng the graph
splits into several connected components. Let us indicat® fthe part of the graph
which is connected to some nodes of addégsand let us indicate bg the rest of the
graph.

1. Itis immediate that botlt and eachk o ©;’s are downward closed, and hence
areLgs-nets by Lemma 6.1. It follows readily th@t; = (k o ©,) \ k is anLg-net, for
all 7.

2. Suppose for a contradiction that there are two ndgek,, say in®; and in®;
using the same address. By conditibtiditives applied to®, there exists an additive
pair w1, we, With wy,ws below kq, ks, respectively, which by downward closedness
impliesw; € ©; andw; € ©;. This is impossible because all the nodes in any
negative ruld? of © belong to the same connected component. O
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Figure 10: Marking choices without sharing

An example of a non-splitting L-neThe L-net given in Figure 5 does not satisfy con-
dition Cycles. Observe in fact that all conclusions are positive, but nohthem is
splitting. As a consequence, we have no way to decomposé-iéd into L-nets of
smaller size.

6.6. Constructing: additive union

In this section and the following one, we introduce the opena which deal with
additive structure. We first give an informal intuition féwet constructions.

As we have already mentioned in Section 2.3, the additiveseothe notion of
choice between possible different evolutions of the systéath choice is marked by
adifferentaction on the same name, such as for example: (£, ;) andxzy = (&, I2)

For example, consider the two possible evolutions desdtilgehe (generic) L-nets
D and®), given at the top of Figure 10 (see also Section 9.2 for a comesample).
Using the operations introduced so far (boxing and supéipoy we could obtain
(x1.D7) U (z2.D%) (bottom of the figure). The additive rulé = {x;, z2} marks the
branching. Given the resulting L-net, we can select a ptessiolution by selecting
one of the components &f, and consider the sub-net.

Now, as suggested by the drawings, let us assume that a ptne ef/olution is
common to the two possible choices: eahcan be partitioned int®; andC, where
the partB; is specific ta®/, while the parC is common to the two possible evolutions
(i.e.®] N®, = C) Instead of duplicating’ as we have just done by boxing (resp.
x2) below®’ (resp.®}), we want tosharethe common par€'. This is the purpose of
the “additive union” (see figure 11).

Specifically, we start with a collection of L-ne®; , where each one has a unary
negative conclusion of the form = (¢, I;) (for example, we could hav®; = x;09}).
We then obtain their additive union by proceeding in two step
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Figure 11: Additive union

1. We make the dependency from a choice explicit, by addimgedowards the
additive component; for all actions that are not common to all evolutions (i.e.
all actions inB;).

2. We sharethe partC' that is common by superposing the common views (cf.
Remark 6.3).

The operation is illustrated in figure 11. We can now give thretal definition

Definition 6.14 (Additive union). Let ®;,9,,... be a collection of L-nets which
have respective negativmaryconclusionse; = (¢,1), x5 = (&, J), ... on the same
address¢ (with distinctI, J,...). Their additive unionl}), ®; is defined as the fol-
lowing superposition:

o= 2@,
1 1

where eachP(®;) is obtained from®; by adding edges in such a way that < &
(in ®(®;) for each positive nodk € ©; such that k7 ¢ © ; (for someJ # I).

Intuitively, @ is a function on views whicarkswith an edge towards; the views
of ®; which are specific to it, or more precisely those views whiaret sharedby
all ©;’s.

Remark 6.15. 1. Notice that if the set dD,’s is a singleton, the® (D) = D;.
This observation allows us to treat both unary and non unanyctusions as a
single case.

2.0 9, =271.¢,D5 =x;5.¢,,..., then®(D;) = D; for all I, and hence
additive union boils down to superposition (in this casest jdisjoint union):
qu D= Lﬂ[ Dr.
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The following two lemmas will play a crucial role in the decpasition of L-nets.

Lemma 6.16. With the notations of Definition 6.14, and assuming thatdheme at
least two design®;, ® ; in the collection, we have the following partitions:

1. The views o6 (D) can be split into two disjoint sets:
(D) =CWBy,
where

C:ﬂJQ']:{C: ceDy, forall J}
B ={"kT€®®;): a1 &k} ={ce®D): (&) €ec}

2. 1fD =Y, Drthen® = Cw (4§, Br).

Proof.

1. If a viewc of (D) does not belong t@;, then, by construction, no edge has
been added, which implies both thais a view of ©; and that it belongs to all
Dy's(J #I). Thus®(®;) = C U By. Moreover, if(€,I) € ¢, thenc cannot
belong to any®; (J # I), as this would entail thaD; would have a node
labelled by(¢, I), contradicting the assumption th@t; has aunaryconclusion.
Hence the union is disjoint.

2. f9 =Y, 91 =U; (@), wecanwrited = | J, (CwB;) =C(J; Br).
Finally, the B;’s are all pairwise disjoint since a view cannot contgn/) and
(&, J) with I, J distinct.

O

Proposition 6.17. ||J; D is an L-net. Moreover the construction preserves condition
Cycles.

Proof. Itisimmediate that each (D) is an L-net. All properties are inherited from
®. As for conditionCycles, notice that all the newly added edges entgr and no
switching path which uses the new edges ta@an continue to form a cycle. Hence all
®(D;)’s areLg-nets.

We are left to show (cf. Section 6.3) thigt; ©; = |J,; ®(D ) satisfies conditions
Additives andCycles. We just check conditioQycles. It is convenient to partition the
nodes oflY; ®; asin Lemma6.16.

Assume that a collection of switching cycles is containaitie one of th& (D ;)'s:
in such a case the additive pair is given by the conditioniagpb ® (D ;).

Otherwise, we have at least a naklee B; and a nodé, € By (with I #£ J)
traversed by the cycles. By constructi(m,¢ k1 andzy & ko, and conditiorCycles
is satisfied. O

Remark 6.18. Notice tha{)© s is notan L-netin general , because its maximal views
do not need to be positive.

31



6.7. Removing an additive rule: scoping

Root removal is all we need to decompose a negative sliceinBbe general set-
ting where additive rules are not all unary, we need to defmewe complex operation.
Given an L-net whose conclusion is an additive rile= {x1, 22}, we can retrieve the
evolution corresponding to the choicef by deleting all actions that depend og.
In this way, we recover the actions that are specific to thécehrmarked byz;, as well
as the actions that are common to the other possible evotutitde call this operation
scoping.

Definition 6.19 (Scoping).Let® be an L-net of negative conclusidh= {z; : I €
N} wherex; = (§,1),z5 = (§,J),.... Forall I € N, we define thecope ofz; in
D as follows:

Scopézr;, D) = {c: I (¢C ¢, € D, positive and(VJ e N\{I} z; € ¢))}.

or, equivalently:
Scopézr;, D) = U{k:l . k positive andV.J € N\ {I} z; & k)} .

By Lemma 6.1, if© is an L-net (resp. ahg-net),Scopézr;, D) C D is an L-net (resp.
anLg-net).

Lemma 6.20.1f © = |J; Dy, then:

1. Scopézrr,®) = (D) (for all I indexing the additive union).
2. Assume&D; =z;0C€,0rD; = x7.¢;. Then:

SCODQZ‘],Q)\mj =¢r.

Proof.

1. By Lemma 6.16, we can writ® = C'& (I}, Bs). We show:

e Br C Scopérr,®). Indeed, if(¢,I) € ¢, thenc can contain no other
action on the same address.
e C C Scopézx;,®). Cf. the proof of Lemma 6.16, where we have estab-
lished that a view irC' cannot contain any actiof, .J).
e B[\ Scopézr;,®) = 0 (J # I). This is obvious since a view i;
contains by definition an actio(g, J).
It follows thatScopér;, ®) = C'W By = &(Dg).
2. This follows immediately from 1, since all whé&tdoes to®; is undone when
7 IS removed.
[l

Note that whenX = {X;} is unary, then scoping boils down to identity, i.e.,
Scopézrr, ®) = ©, and the more complex operati®topér;, ®) \ x; boils down to
simple root removal.
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6.8. Using constructors and destructors

Summing up the content of this section, the operators thatave presented can
be grouped into two families:

¢ Rooting, boxing, superposition, and additive union@astructors

e Root removal, splitting, and scoping atestructors The decomposition of an
Lg-net goes as follows:

D is positive. All conclusions are positive. If there are no negative rules
are done® is reduced to its conclusions.

Otherwise, by splitting, we g& = (|, (z09;)) ¥ €. Hence

K2

®© decomposesinto ..., D;, ..., C.

D is negativgand non empty). LeX be the unique negative conclusion®f

i. If X is unary, we decompose by root removal.
ii. Otherwise, we reduc® to the previous case by scoping.

Altogether, ifX = {... z;,... },
© decomposesinto ... , Scopéxr;, D)\ zr, ... .

These constructors and destructors are put to use in tlosvialy sections.

7. Sequentializing a graph strategy

An edge of an L-net states a dependency, or a precedence antiogs. The
aim of this section is to provide a procedure, which take&amet® and returns an
L-forest, which is obtained by adding enough such dependedges ta®. Let us
consider a very simple example: a (partially ordered) view

A sequentialization of is a linear extension of the partial order. That is, we add
sequentiality (edges) to obtain a total order. A total orfett extends: defines a
complete scheduling of the tasks, respecting the constrateach action is performed
only after all of its original constraints are satisfied.

Dependency between the actions of a slice, and of sets ekdlicnets) is more
subtle, as there are also global constraints. The key potfie sequentialization is to
select a rule that does not depend on others. This is ex&etlyale of the Splitting
Lemma, and the reason for the conditiOyxles.

The process of sequentialization is non-deterministiorescan expect, i.e., there
are several tree strategies which can be associated tortted ganet.

As we have both multiplicative and additive structure, wheguentializing we will
perform two tasks:

1. add sequentiality (sequential links) until the order atle view is completely
determined,;
2. separate slices which are shared through additive sogidom.

33



Sequentialization procedurel he following procedur@rogressiveljtransforms go-
tentially infiniteLg-net® into an L-forest on the same interface®@slt works bottom-
up and follows the paradigm of lazy, stream-like computatio

The procedure is non-deterministic. In what follos, = sed®) should be read
as: “D’ is a possible sequentialization ®f'.

A) D is negative.Let X = {...,xy, ...} be the unique negative conclusion®f Let
D = Scopérr,®) \ z;, forall I. Then:

° sec{@) = UI ($[ -Squj)).

Here, boxing and scoping take care of the two tasks mentiabegie, respectively.
Note that nodes lying in songcopéx;, D) () Scopéx s, D) are duplicated.

B) © is positive.

1. Assume tha® is connected (in the ordinary graph-theoretic sense).
If © consists of a single positive node, we are done.

Otherwise we select a positive splitting rule= (¢, ) and proceed as follows.
By Proposition 6.13, each of the componeBtsobtained by splitting is ah.g-
net whith a negative conclusion on an add@ss hen:

o se®) =J; (zosed®,)).

2. Assume® = |4, ¢;, where theZ;'s are the connected componentsiaf Then:
e se®) =4, (sedd;)).

Proposition 7.1. If © is anLg-net on the interfac& - A, sed®) is an L-forest on
the same interface.

Proof. We have already established all partial results neededitefhis. O

This procedure applies to infinite L-nets, by coinductiardded, one can formally
show that L-forests form a final coalgebra and tlkenets form a coalgebra for a func-
tor I’ on sets, and thateqis the associated unique coalgebra morphism. We only
sketch the construction below. The reader unfamiliar witlalficoalgebra semantics
can get the necessary background from, say [36].

e One considers the functdr in the category of sets and functions that takes a
setX to the disjoint union of the set of all finite sets whose eleta@ne of the
form ((¢,1),{...,ai,...}), where thea;’s form a collection of elements of
indexed by a subset df and of the set of al...,((¢,J),ay),...}, where the
a;’s form a collection of elements of indexed by som&/ C Py (w).

e One proves that the collection of all L-forests forms a finahlgebra for this
functor. The situation is similar to that of, say, Bohm seeThe coalgebra
structure takes a positive (respectively negative) Lgbamd decomposes it into
its root(s) and its immediate subforests.
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e Thanks to the Splitting Lemma, one can choose a decompuoéiticeach posi-
tive Lg-net, and codify this “oracle” in the form of a coalgebra sture on the
collection of allLs-nets.

e Thenseq(along the oracle) is the unique coalgebra morphism from ¢bal-
gebra to the final coalgebra. That it is a coalgebra morphisrouats to the
equations given above to defised®).

More concretely, the progressive constructios®d ©) yields at any step an actual
finite partll — the part of the forest that has been already recognizedig aallection
of Lg-nets to sequentialize, each associated with a leHf. of

8. Desequentializing a tree strategy

In order to define the desequentialization procedure, we te@troduce a new
notion, that of decoration.

Making the axioms explicit: decorationsn Section 4, we have illustrated the pur-
pose of desequentialization by taking as example the oal&&tween proof nets and
sequent calculus proofs. Our aim is to remove some artifsgiglientialization, while
preserving essential information:

1. axioms(multiplicative proof net = formula tree + axioms [30]);
2. dependency due to additive rule®me nodes must not be shared.

The second issue is addressed by our definition of additiieny(ef. Section 6.6). As
for axioms, such information is present in the source L-gbfer design), but isnplicit
(and not uniquely determined). To make the information anakioms explicit, we
introduce an auxiliary notion: we decorate each leafith a set of addresses, which
we denote byink(k).

The notion of decoration is closely related to the sequeleutizs presentation of
an L-forest. In Section 2.2, we already sketched how to mowe fan L-forest to an
explicit sequent calculus style presentation. Given aprestll, one has to associate
to each nodé: of IT a sequent of addresses. In particular, eachieaf (¢, 1) in the
forest should correspond ta@neralized axiorn the sequent calculus proof, of either

of the two forms N
T k=(1) g k=1

(see Appendix Appendix A for details). This is where dedorahelps: the sequent
associated with a ledf can be inferred fronfink(k) = {&1,...,&,}: if k has label
(&, 1) (resp. 1), the sequent is £, &,...,&, (respk &,...,&,). The other way
around, starting from a proof, we transfer the sequent imédion of the generalised
axioms to the link sets.
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Decorated leaves as boxe$he idea of decoration is also associated with thartuof-
cation Suppose that we truncate the tiéafter the nodé:, leaving out the subtrees
I1;, abovek. The sequent associated to the nédevhich is now a leaf, is the interface
of the subtre¢ J (k o IT;). Hence, the addresseslink(k) are meant as the addresses
which are used in thH;’s. In this sense, a decorated leaf acts as a sort of (black) bo
we hide the content of the box (i.&J, (k oII;)) and only keep memory of the interface
(the conclusion of the box).

Link sets versus infinitary expansions ludics, identity axioms are interpreted by
infinitary strategies, called faxes in [13]. These strategies arestarioe of the copy-
cat strategies of game semantics. In such infinitary stiedegvery generated action
is eventually used. Faxes are the typical example of what aré % enclose in a box.
Actually, even if we are establishing general results, fhe bf strategies we are really
interested in are those corresponding to proofs. Mordiby/(teal) use of link sets is to
deal with finite truncations of these strategies. Seen fitwah point of view, link sets
are a way to express (in a finitary way) the axioms.

Definition 8.1. A decorated.s-net is anLg-net® in which all leaves: are equipped
with a finite setlink (k) of addresses (called the link set &, in such a way that
the conditions ori.s-nets hold with respect to all addresses (thus, includirgséhin
the link sets). The label of a node is now a decorated actien, an action possibly
together with a link set . Two labe($¢, I), A1) and ((§,1), As), with A1 # Ao, are
considered differefit

We still use® to denote a decoratelds-net.

Observe that if0 is an L-net, and given an assignment of link sets to the lealves
®, all what we have to check for it to yield a decoraigg@net are condition®arents
andAdditives.

From now on, we extend the definition of “a node uses an addasdssllows:

Definition 8.2 (used addresses)Let k be a node labelled by an action and possibly a
link set. We say that the nod#auses an addressif either¢ is the address of the action,
or appears in the link seif £.

The extension of the operators introduced in Section 6 toméed L-nets is im-
mediate. The extended definition plays a role only when ngadin L-net on a negative
action: now (with the notation of Definition 6.4), we ddah edge&, I) « k for each
nodek such that is generated by, I), or k is a leaf such thagi € link (k) for some
i. We maintain the same notations as in Section 6.

The desequentialization procedure takes as input finiterdésd L-forests. More
precisely we choose a special decoration discipline. Inefplix Appendix A, we
prove that it is always possible to choose a decoration wkitlsfies the following

property.

6This is natural if we consider that they correspond to différaxioms.
"These new edges are close in spirit to thpointers introduced by Laurent in his investigations omga
semantics for first-order (classical) logic [37].
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Definition 8.3 (well-decorated). A well decoratedLs-net is a decorated.s-net ©
such that all addresses of the interface, and all addresse®igited by a negative
action of® are used in® (in the sense of Definition 8.2).

Lemma 8.4. Every L-forest can be well decorated.

Proof. See Corollary Appendix A.5. O

Desequentialization procedurd.et 11 be afinite well-decorated L-forest. Its dese-
quentializatiordesedII) is defined by induction as follows:

IT is negative.Let X = {xzj,z,,...} be the conclusion ofl. Let us callll; the
subforest above; (i.e.,II = |J; (xr.II7)). Then:

e desedll) = |J; (z; o desedll;)).
IT is positive.

1. Assume thall is a tree of conclusion, using address. If the tree is reduced to
a single node, then we are done (base case). Otherwise, thédsrmIl =
U; (z oIl;), where eacHl; is the subforest of all the trees on the addrgss
(¢ € I). Then:
o desedll) = |,

2

(x o desedll;)).
2. Assumell = |4, II;. Then:
o desedll) = |4, (desedll;)).

Remark 8.5. One checks easily that the sets of labelE @ind dese{I) are the same
(intuitively, no node is deleted), and that is the label of a leaf idl, it also labels a
leaf in dese(]I).

Proposition 8.6. If 11 is a finite well decorated L-forest on the interfaé€e- A, then
desed]II) is anLs-net on the same interface.

Proof. Thatdesedll) is a partialLg-net is a consequence of Propositions 6.17 and
6.8 (that the hypotheses of the latter are met is a consequéiemark 8.5).

ConditionPositivity follows from Lemma 8.7 below, and by (the upgraded) defini-
tion of rooting. O

Notice that decorations play a role only to prove tased®) satisfies condition
Positivity: the well-decorated assumptiaguarantees thato rooting involved in the
construction is partial

Lemma 8.7. Let IT be a well decorated L-forest on the interfage A. All the
addresses of the interface are used in déBgq

Proof.  Similar to the proof of Lemma 12.6. O
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0.1 €0,J @0,{0}
| | ~ ~ |
£0,1 £0,J

Figure 12: Two possible sequentializations

Remark 8.8. Note that we have usédductionrather than coinduction in this section.
This is because the operations involved (additive uniontimg, decoration) do not
lend themselves to coinduction, unlike (disjoint) uniod Aoxing: say, boxing on one
hand is a “black box” operation while rooting on the other hrequires visiting the
structure of the L-net (to look for where to add new edges).

We can think of the desequentialization of an infinite Lgbré as follows: take
an (arbitrarily large) finite truncatiorll’ of II, and graft appropriately on deséq’)
the subforests that have been taken away by the truncatitwe. rdsult depends on
the choice of the truncation, and is not a parallel L-net ¢grthe grafted trees are
untouched), but it is the best one can hope.

9. Examples of sequentialization and desequentialization

9.1. Sequentialization
Consider the followind.s-netfR:

€0,1 ¢0,J  a0,{0}

(cf. Figure 2). We have two negative ruleg40, I), (£0, J)} and{(«0, {0})}), and
two positive conclusions, that are both splitting. To sediadize, we choose one of
them. If we chooség, {0}), we obtain the two trees on the left-hand side of Figure 12,
and then the desigii. Instead, by choosinfx, {0}) we obtain the desigf( (on the
right).

9.2. Desequentialization
Example 1. Desequentializing eithéd or X in the example of Section 9.1, equipped
with the only possible uniform decoration

link(a00,1) = {60« I} , link(a00,2)= {0 J},
yields the original L-nefA.
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Example 2. Our next example is a variant of the previous one and illtestrthe process
of adding edges, on one hand because of rooting plus demoyatid of the other hand
because of additive union. Let us consider the design inrEifj8, where we just omit
an obvious negative action at the place af. The only uniform decoration is:

link(b) = {a001,£0x I} | link(c) = {a002,£0 * J} .

«0,{0} «0,{0}
| 1
£0,1 £0,J

Figure 13: An L-forest ...

Following the desequentialization procedure, a few easyssproduce the two L-
nets®.,®,, represented in Figure 14. Note that by the decorationjrrgdtas pro-
duced edges from, c to (£0, 1), (£0, J), respectively.

We then obtai®| = ®(D;) by adding the relatio(€0, I) < («00,{1}), and®},
in a similar way. (Note that, say the edge froito (£0, I) need not be shown anymore,
since it “holds” by transitivity.)

Finally, the superpositio®’ | J @} produces the L-net on the right-hand side of
Figure 14.

9.3. Additives

As our last illustration, we resume the last example of $ac#.3. With the no-
tation of that section, we have that desequentializatigulieg to either®; or D,
yields$R, and that we get eitheéd; or D, back when sequentializir§, depending on
whether we choose to start framdzb or from c&d (botha&b andcé:d are splitting).

@12

| =

£0, T a0, {0} €0,J 0, {0} €,1  £0,7 o0, (0}

Figure 14: ... and its desequentialization
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10. An algebraic presentation

In this section, we focus on thies-nets generated by the constructors (rooting,
boxing, superposition, and additive union), and we singletwo important classes of
Lgs-nets, obtained by consistently using rooting, or constiteising boxing, respec-
tively (cf. Section 6.2). In the first case, we spealpafallel L-nets, which we regard
asabstract proof netsin the second case, we get thdorests which correspond to
abstract sequent calculus proofs

In the following, we denote wittD* a positive L-net, and wittD_ a negative L-
net whose negative conclusion uses addred®e denote by a (possibly decorated)
positive action.

Abstract proof nets.A parallel L-netis anl.g-net generated by the following grammar:

D = D7D

Dt = @*Lﬂ...[ﬂ@+

¢t u= kT Uigr (D)7 0Dy)
9; = WY (0, )7 oDF

Such anLg-net hagninimal sequentialityin the sense that the we use constructors of
minimal sequentiality.

Abstract sequent calculus proof3he sequential-nets are the L-nets generated by
the following grammar:

D u= DT|D;
Dt u= ety ... et
€T = kT [ Ui (617 0Dg)

0,

U, ((e,7)~ . D7)

Itis clear that sequential L-nets and L-forests are one aadame thing.

In both syntaxes, the production rul2™ == &* |4 ... |4 ¢* takes care of
graphs that are not connected. Notice also that, by conigtnyboth classes of L-nets
hereditarily admit splitting.

Remark 10.1. 1. In the description ofequential-nets, we have chosen the form
zT oD, but we could write it also ag™ . D, the result being the same. When
is an L-forest, positive rooting behaves in a “boxing-likashion inz™ o ®. By
this observation, together with Remark 6.9, we see thatyhtas of L-forests
is essentially a combination of boxings and disjoint unies expected for a
forest!).

2. Inthe productio® ::=J, ((o,J)~.©T), we can replace the (disjoint) union

by the (trivial) additive union symbol (cf Remark 6.15). kerthe difference
between the two syntaxes indeed lies in a systematic usetwfgaersus boxing.

Last but not least, according to the discussions in Secfioazd 8, the syntax of
L-forests can be read coinductively, while the syntax offlarL-nets is inductive, and
hence defines finite graphs.
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11. Relating sequential and parallel strategies

In this section, we study the relation between L-forests padllel L-nets. We
have already proved (Proposition 7.1) that for evegynet, seq®) is an L-forest.
Conversely, the following is an immediate consequence efd#finition of parallel
L-nets.

Proposition 11.1. For every finite L-foresll, desedll) is a parallel L-net.

Every time we desequentialize an L-for&ktthere is a way to resequentialize back
to II.

Theorem 11.2. Given a finite L-forestl, there exists a strategy of sequentialization
such thafll = seqdesedlI)).

Proof. We only consider the interesting cases.

IT is negative.Let us denote by{z,,...} the conclusion of the tree. Sindé =
U; (zr.1L), its desequentialization desedll) = ||J; (z;odeseqll;)). To sequen-
tialize, we use scoping. By Lemma 6.20 (Bcopéx;, (desedlI)))\z; = desedll;).
Hence

seqdesedIl)) = | J (s . seqdesedll,))) .

I

ITis positive. If the rootisz, IT = | J; (=.II;). Sincedesedll) = | J, (zodesedIl,;)),
to sequentialize it we selectas splitting rule. Removing gets us back to the set of

all deseqll;)’s. Hence:

seqdesedll)) = U (z o seqdesedll;))) .

O

Theorem 11.2 says that in the desequentialization ther@éssential loss of infor-
mation. All dependency (sequentialization) which is takemy can be restored.

Establishing a result in the opposite direction (igesegsed®)) = D) only
makes sense starting from a parallel L-net, becauskesesdll) reduces sequentiality
to a “minimal” amount, if© is not parallel there is no hope thégsegsed®)) = D.

Theorem 11.3.1f R is a parallel L-net, it admits a sequentialization proceelsuch
that dese(sedR)) = R.

Proof. Following the destructors, we are guaranteed (i) to havtisgl and (ii) that
when we use scoping, we are in the situation described by laefmg0. We just spell
out the definitions.

o If Ris negativewe haveR~ = ||J; (zr o PRr). By definition of sequentializa-
tion, we have

seqR) = J (w1 - (Scopér;, R) \ z1)) -

I
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But by Lemma, 6.20, we hav&copéz;,R) \ z; = R;. Hence we have in fact
seqR) =UJ; (xr.(sedRr)), from which

desegsed® ™)) = || (a1 o desegseqy)))

I
follows.

e If R is positive assumer™ = J, (z o R;) (all others cases are immediate).
By construction,x is a splitting positive rule, and we select it. We have that
seqR) = |J; (z oseq®R;)). Hence we have:

desegseq®)) = J (= o desegseqR;))) .

O

In the result above, we follow the structure of the term disng the L-net, by sub-
stituting all occurrences of boxing with occurrences oftirag, and vice-versa. IR =
R’ as L-nets, even if the description is differedéseqdseqR)) = desegsedR)). In
case we do not follow the structure of a term, it is possibde the operation of scoping
cancel some actions; this is due to the fact that the L-nehatréyped (i.e. are taken
on a universal arena, without constraints).

Corollary 11.4 (Completeness).AnLg-net® is a parallel L-net if and only if there is
an L-forestlI such that® = desedlI). In particular, parallel L-nets ard.g-nets.

Remark 11.5. The crucial point in the proof of Theorem 11.3 is that thedaihg
holds for a parallel L-net:

R~ = ) (21 o (Scopéwr, ) \ z1))

I

i.e. we can decompose (or destruct) a negative paralleltL{smoping) and then re-
construct it (rooting and additive union). This does notchiml general for all (finite)
Lg-nets.

Remark 11.6. We have omitted decorations in this section for simpliciiy.be per-
fectly rigorous, one should maintain decorations througjlitee sequentialization and
desequentialization process. For example, the sequéeaiadn of a well decoratells-
net is defined just as the sequentialization oflannet (the only difference concerns
the base case, where the decorations are kept).

12. Restricting the picture to designs

In this section, we show that we can get rid of the MIX rule (dmhce restrict
our attention to Girard’s original designs) by (unsurprigy) imposing an additional
connectedness assumption bg-nets.
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Given an L-ne® and a slice&s C ©, aswitching graphof & is a subgraph obtained
from & by choosing a single entering edge for each negative nodejelrting all the
other ones. A slice iS-connected all its switching graphs are connected. Finally, we
call an L-net S-connected if all its slices are.

An S-connected L-forest is obviously a tree, and in fact & @esign.

Lemma 12.1. An L-forestlI is S-connected iff it is a design (in the sense of [13]).

Sequentialization and desequentialization preservenfaxedness, and hence by
restriction to S-connectdds-nets our results specialize to designs, rather than arbitr
L-forests. We will give details only for the desequentiatinn. The proofs concerning
the sequentialization are similar and simpler.

Lemma 12.2 (Slices).Let®t = | J, (z* 0 D;). All slices of® have the forns =
U (&t 0 &;), where eacl®; is a slice ofD;.

Let®™ = |Y; (zr0D;) =U; (xr0Dy). If Sisaslice ofD, thenS is a slice
of ®(z; o ®y) (for somel), and conversely. Moreove®; = S \ z; is a slice ofD;.
On can recoves fromx; o & by adding appropriate edges from some nodeS pf
tozx;.

Proposition 12.3. If the L-net® is S-connected, séfj) is S-connected, and hence it
is a design.

In order to restrict the converse transformation, we nedrkbagthening of Lemma
8.7.

Definition 12.4. A uniformly decorated -forest is an L-forest that is well decorated
slicewise, i.e., each slia® uses all the addresses of the interface, and all the addsesse
generated by a negative action®ft

Lemma 12.5. Every L-forest can be uniformly decorated.

Proof. See Corollary Appendix A.5. d

There is a bijective correspondence between uniformly dged L-forests, and
their sequent calculus representation (Proposition Agixeh.4).

Lemma 12.6 (Used addresses).etII be a uniformly decorated L-forest on the inter-
faceZ - A. If & is a slice of the decorated L-net degHg, all the addresses of the
interface are used i®.

Proof.  The claim is true iflI consists of a single decorated actiontori™ (II is
essentially reduced to an axiom).

Assumdl = | J; ((¢,1)" o1II;) is positive and has interfade ¢, A. EachII; is an L-
forest of interface: - A. For each, any sliceS; C desedll;) uses all the addresses
in & F A. HencelJ; ((&i) o desedS;)) is a slice which uses all the addresses in
F& A
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Assumdl = J; ((¢,1I)” .II;) is negative and has interfage- A. By Lemma 12.2,
Tisasliceinly; ((§ 1)~ odesedll;)) iff Tis a slice of®((¢,I) o desedll;)), for
somel. Moreover,T; = ¥\ z; is a slice ofdesedII;).

Eachll; is an L-forest of interface £x I, A HenceX; uses all the addresses in this
interface, and we can obtain the sliEe= (¢, I)~ o &; which uses all the addresses in
¢ F A. Finally, sinceX is obtained fron®t’ by adding some edges, this operation does
not change the nodes, and hence does not change the setedseidthat are used]!

Proposition 12.7. If IT is a finite design, and if we choose a uniform decoratiorifor
then dese(]I) is S-connected.

Proof. By assumptionll is an S-connected L-forest.

IT is negative.By Lemma 12.2S is a slice ofdesedll) = |J; ®(x; o desedll;))
iff & is a slice of®(x; o D), for somel. We have that5; = & \ z; is a slice of
desedll;). By hypothesis©; is S-connected. Let; = (£,I). By Lemma 12.6, in
x o &5 there are some edges connectingo the nodes 06, those using somg.
We obtainG by adding some more edges.

We conclude by observing that (i) any choice of an edge ergerj leavesz;
connected to a node @, (ii) any switchingS of & restricted taS; is a switching of
&7, and (iii) by hypothesis, any two nodes®f; are connected if§.

IT is positive. By Lemma 12.2 is a slice ofdesegll) = |J, (x o desedll,)) iff
6 =J; (z06;), andG; is a slice ofdesedll;), for all i. By induction, all theS;'s
are S-connected, and hen®eds S-connected. g

13. Discussion and further work

In this section, we point to some follow-up developmentg theve taken place
after our preliminary presentation [12], and we indicateuanber of open questions
and directions for future work.

13.1. Some follow-up developments

Proof nets. Above, we have claimed that tree strategies can be seabsisct se-
quent calculus proofsand that L-nets correspond éstract proof netsand we have
argued that one could move gradually between the two notibmga8], Faggian and
Di Giamberardino have explored and realized these ideasyipeal settingThey have
introduced a new syntax for (multiplicative) proof netdjez J-nets: a J-net is a typed
L-net. They give a new, remarkably simple proof of sequdintition [39], based on
the following insights. By building on the semantical expace, graphs (proof nets)
can be treated as orders. To add sequentiality corresporatkitng edges, in such a
way that the correctness criterion is still satisfied. Whemagh is saturated (no edge
can be added without violating the acyclicity condition loé ttorrectness criterion), it
turns out to be a tree, and hence can be seen as a sequenicpladgf.

The extension of this result to additives is also possihte, ia studied by Di Gi-
amberardino in his PhD thesis [40, 24].
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Event Structures.The goal of generalizing the notion of innocent strategyuohsa
way that sequentiality is relaxed is pursued further in wiaykFaggian and Piccolo
[41, 33, 22, 23]. They observed that L-nets are in fact a a@svent structures [42].
Event structures are a fundamental tool of the “true comeuay” approach to the study
of parallel and concurrent programming languages: coeagy, dependency, and con-
flict are directly expressed. Namely, an event structurerit®ss a concurrent system
in terms of a partial order, which specifies the causalitgtieh between actions, and
a conflict relation, which specifies which actions are muyatclusive. L-nets can be
naturally presented as event structures: the order relaithe same, and the conflict
relation is induced by “using the same name”. More precjdelyets appear as a class
of confusion freeevent strategies, where conflict (choice) is localized itsceOur
notion of rule corresponds directly to the notion of cell.

Linear pi-calculus. The bridge between game semantics and concurrency theadry th
we discussed in the previous paragraph allows also for a gamentical analysis of
the linear pi-calculus, introduced by Yoshida, Honda andgBe[34]. In [33], it is
shown that ludics is a model for the finitary linear pi-caleul More precisely, the
translation (as in [43]) of linear pi-calculus into everrustures produces dnforest
Somehow surprisingly, this seems to say that an L-foresshawe degree of “paral-
lelism”, as it corresponds to a term of an asynchronous fohtiss. The restriction to
designs is obtained if we furthermore assume a “sequdgtiabnstraint (expressed —
and named such — in [34] as “at most one output is active atgaghe time”).

This raises a number of interesting questions. The traasléitom the linear pi-
calculus into event structures follows [43] and closelyresponds to the sequential
constructors given here (cf. Section 10). We wonder whatptirallel constructors
would produce, and what a “parallel” strategy captures &z below).

Completenesslt is natural to wonder if our setting would allow for a comigleess
result with respect to a (focalized) version of MALL. The am®s is positive, and the
calculus is quite naturally the calculus underlying Ludies. HS (see Section 2). The
technical development of the construction goes beyondihyeesof this paper, however
the details are provided in a technical report [44]. Withpeet to the material presented
in this paper, there are only two missing ingredients: tHenden of an arena, and a
notion of total strategy (since in this paper we work in a gahauintyped setting).
Assume to take the natural definitions. By exploiting the iedate relation between
HS proofs and L-forests, it is immediate to interpret an H8opinto into a parallel
L-net: from the proof, one moves to the corresponding Lggrand one then applies
desequentialization. The converse can be obtained byrfacipvia sequentialization:
given a total parallel L-ne®R on the suitable arena, we can sequentialize it into the
L-forestC R, which corresponds to a HS proof.

13.2. Some directions for future work

Graduating sequentialityThe sequentialisation and desequentialisation procedure
that we have defined here are globally and (co)inductivelindd. We should be able

to follow the lines of Section 13.1 in our untyped setting\csi there is no essential
difference between J-nets and L-nets. This would enhareentaning of “maximal
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sequentiality” as a saturation in the sense that adding #er edge would create cy-
cles. However, we still miss and would like to have a moreigeecharacterization and
understanding of what it means to have minimal sequenti@hte also next paragraph).

Induced equivalenceA notion of parallel strategy is not only of interest as anytas
chronous” model of computation, but could play the same ttodé proof nets play in
providing an equational theory for proofs. It would be nicehave an independent
characterization of the equivalence relation on L-forgstsiced by desequentializa-
tion:

II; 211, < desedll;) = deseqll,) .

Also, in reference to the linear pi-calculus interpretatioentioned above, it would be
interesting to understand the induced equivalence relatoprocesses.

Exponentials.A direction in which we expect a rather straightforward esien of
our techniques is the setting of Ludics with exponentiai§1b], building on Maurel's
PhD thesis [45], Basaldella and Faggian have shown thatdudin be extended with
repetitions, so as to have exponentials. We expect thatd aan be extended also
to designs with repetitions, leading to some analogue obeeptial proof nets. In
this perspective, it might be useful to take profit of the ndtictive constructions and
methods developped by Terui and Basaldella [46, and aitatizerein].

From proofs to programsAs we already mentioned, in this paper we have chosen to
work in a framework, Ludics, which originated from a probkbretical analysis, and
maintains a close and direct connection with proofs, to pfadim the toolkit accu-
mulated by the proof-theory of Linear Logic. We hope thatikimmethods as those
proposed in this paper can be extended to a larger classabégies, thus leading to
models that can handle programming languages rather tioafspr

AcknowledgmentsWe wish to thank Dominic Hughes and Rob van Glabbeek for-fruit
ful exchanges on the technique of domination, and Oliviarreat for numerous dis-
cussions on MALL proof nets.

Appendix A. Sequent calculus presentation of L-forests andecoration

In this section, we recall the sequent calculus for desi@B¥ (see also [17]). We
add aMIX rule (that isnotpart of Girard’s original framework in [13]), and we examine
the correspondence between such extended designs anddtsfor

Notation. In this section,IT will range over sequent calculus proofs. This does not
conflict with our use ofI to denote L-forests, since we show here in some detail that
they are essentially one and the same thing.

Girard’s original sequent calculus for designs is the failg (an interface is called
well-formed if it consists of pairwise disjoint addresseghwespect to the prefix or-
dering):

Daimon: (- A well formed)
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HT

Positive rule (I C w finite, one premise for eache I, all A;’s pairwise disjoint and
included inA, - &, A well formed):

iAo
en €D

Negative rule (V" C Py(w) possibly infinite, one premise for eache N, all A;’s
included inA, £ = A well formed):

FeExJ Ay - o
A (&))" JeN}
MIX (F A4, ..., A, well formed, allA,,’s pairwise disjoint)
FAL ... FA, MIX
AL A,

(Replacing the\;’s with concrete contexts; of formulas, this is the well-known MIX
rule of linear logic.)

Remark Appendix A.1. The negative rule conveys some inherent weakening. Each
action(¢, J)~ creates simultaneously all the addres§g$; € J), which are recorded
in the sequent, regardless of whether they will be used or not

Applications of the rule Daimon yield positive leaves in agirtree. We will also
consider as a positive leaf any proof tree of the followingrfo

FA Y
& A &N

where all negative rules are applied withempty. We will write simply:

FEA &nt

We now briefly review how we can translate (in this extendetrngg a sequent
calculus proofl of a sequenE - A into an L-forestl on the interfac& + A. We use
the syntax introduced in Section 10. We omit the (easy) piteetfiI is an L-forest.

e Daimon. Therl = 1.

e (&I)T. ThenIl = {J,; ((¢, 1) o1I;), where thell,’s are the proofs of the
sequentsi - A; (i € I). Note thafll is a tree.

e {(&,J)" : J e N} Thenll =, ((&J)” .1I,), where thell;'s are the
proofs of the sequents ¢ x J, A ;.
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e MIX. ThenII = |4, IL,,,, where thdl,,’s are the proofs of the sequehts\,,,’s.

It should be clear that the rules B (as defined in Section 3) are in one-to-one
correspondence with the occurrences of ruleHinBy going fromII to II, we have
just forgotten all sequent informations except at the rdég.now examine the converse
direction, from L-forests to sequent calculus proofs.

Proposition Appendix A.2. The mappindl > II is onto. More precisely, for every
L-forest® on an interface= - A there exists ainiform sequent calculus prodi of
conclusionZ + A such that® = TI, where a uniform proof is a proof in which the
positive and negative rules are constrained as follows:

EikA; -
A
with the side condition thak = J; A; (i.e., no address is lost)

& 0)*

FEx g A

Ta - {(&,0)": JeN}

i.e., all A ;'s are chosen maximal (and equal A9.

Proof. We have to extend the setting of [13] (see also [17]) fromgtesto L-forests,
and to make sure that the target is restricted to uniformfprdeet® be an L-forest.
There are four cases. In each case, we sketch how to (coimelyttgenerate the
final rule of the proof (we give more details for the quite sanproof of Proposition
Appendix A.4 (2) below).

1. If © is a leaf, then the associated proof s its interface.

2. If © is negative on interfacé F A, then it is easily seen that eaeh¢ « J, A
is an interface for the corresponding subtre&ofso that we can carry on the
construction (cases 1, 3, 4).

3. If ® is a positive L-forest with more than one root, then we tramsfeach of
the trees; of ® into a proof oft- A}, where each\’; consists of the minimal
addresses used i, and then we accommodate the constraint J, A; by
dispatching arbitrarily ang € A\ (J; A;) to exactly one of the\’’s, yielding
suitableA;’s.

4. If © is positive and is a tree, then we carry on the constructioitsdimmediate
subtrees (case 2), and we assemble them essentially a®iB.cas

O

Remark Appendix A.3. The uniform proof discipline described in the statement of
Proposition Appendix A.2 corresponds to pushing weakemiagimally to the leaves.

The assignment of a sequent calculus proof to an L-forestnsdeterministic, i.e.,
the mapll — II is not injective. But, with decorations (cf. Section 8), wet @
bijective correspondence. We recall (cf. Definitions 8.8, &nd 12.4) that:
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e a decorated L-forest is an L-forestin which all leavest are equipped with a
finite setlink (k) of addresses (called the link set ), in such a way that the
conditions on L-nets hold with respect to all addressedyding those in the
link sets);

e a well decorated L-net is a decorated L-figtsuch that all addresses of the
interface, and all addresses generated by a negative adtiDrare used irno,
i.e., appear as a label of the underlying L-net or in a link set

¢ a uniformly decorated L-forest is a decorated L-for@stuch that every slice of
® is well decorated.

Note that the interface of a well decorated L-net is deteeahipy the rest of the struc-
ture: it is the set of all minimal addresses appearing in theet (for non decorated
L-nets, we have only an inclusion of the latter set in therfatee).

Proposition Appendix A.4. 1. Well decorated L-forests are in one-to-one corre-
spondence with sequent calculus proofs (of their uniquetgranined interface)
subject to the restriction that in all applications of thesitive rule (resp. nega-
tive rule) we havet),_; A; = A (resp.U ;o Ay = A).

2. Uniformly decorated L-forests are in one-to-one corregpamce with the proofs
subject to the further restriction of uniformit ¢ = A, for all J, cf. Proposition
Appendix A.2).

Proof. 1. The correspondence in one direction is obtained by auaptj as fol-
lows: for each leaf with conclusion A (resp. - &, A) obtained by an application
of 1 (resp. (&, I)™), the translation is now (resp. (¢, I)1) with link(t) = A (resp.
link((€,I)*) = A). Itis easily checked that the respective restrictionshercbnstruc-
tion of proofs ensure thal is a well decorated or a uniformly decorated L-forest.

Conversely, given a well decorated L-foré&f we associate (deterministically) a
proof of its interface, as follows.

e O = |4, ¢; has several positive conclusions. Then we translate edtie tfees
¢4, ..., &, of ®, yielding proofs of sequents A,,...,- A,. By condition
Additives we are sure that th&;’s are distinct. Therefore we can apply the MIX
rule, and we defin® as

¢ ... C
FA, .. A,

wheret- [+ A, is clearly the interface dd.

MIX

e © has conclusiot = 1 with link(k) = A. Then we can use the positive rule
and defineD as

HT

e D has only one positive conclusidg, I)*. If © is reduced to a leaf, then we
proceed as in the previous caseDlt= U 5y ((€, It o®;), forsomeJ C I,
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by the same reasoning as in the first case, we have thal fiseare proofs of
sequents A, for paiwise disjointA;’s. Then we defin@ as

g !

3) .. N
Y (1)

J

wherej (resp. k) ranges over (resp.I \ J), and where\ is the union of the
A;’s.

e ©=_J, ((§&,J).D,). By definition of well decorated L-nets, the interface of
each® ;ist £ = J, Ay. Then we can use the negative rule and defines

LD, -
&7{/\{(&,&]) :JEN}

whereN = {J: (&, J)~ isarootof®} andA is the union of the\ ;'s.

Itis straightforward to prove that this transformatiormgerse to the transformation
II— II.

2. This correspondence is simply obtained by restrictirgabrrespondence to uni-
formly decorated L-nets and to uniform proofs. O

Corollary Appendix A.5. Every L-forest can be uniformly decorated, and hence a
fortiori well decorated.

Proof. To an L-forestd, we can associate a uniform proof by Proposition Appendix
A.2, and then a uniform decoration, by Proposition Apperdik O

Remark Appendix A.6. Note that the bijective correspondences of Proposition Ap-
pendix A.4 induce a bijective correspondence between tifkeskts used in the dec-
oration of an L-forest and the generalized axioms used irnctireesponding sequent
calculus proof.

Appendix B. Proof of the Splitting Lemma

In this section, we prove Lemma 6.13, namely that elganet® has a splitting
conclusion.

We recall from section 6.5 that a negative riité = {...,wy,...} of an L-net
D is called splitting if either it is conclusion of thies-net (eachw; is a root), or if
after deleting all the edgas; — w there is no more connection (i.e., no sequence of
consecutive edges) between any of ihés andw, and that a positive conclusion ¥
is called splitting if all negative rules just above it ardittipg.

If © is negative, then the Splitting Lemma holds vacuously. Fsitye ©'s, we
first establish the following Negative Splitting Lemma.
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Lemma Appendix B.1 (Negative Splitting Lemma). Every positivd.g-net® which
has a negative rule has a splitting negative rule among alribgative rules of level 1
(i.e., located just above a conclusion).

Our proofis an adaptation to our setting of the proof of thailsir lemma in [20]. A
switching patheg . . . x,, is calledstrong(and denoted, < z,,) if either its last node
is positive or if it ends upwards in the last node. Strong ahiitg paths satisfy the
following concatenation property: if; is a strong switching path and is a switching
path such that their concatenatiomy, is a rule path (cf. Section 5), then~, is
switching, and if moreoveys, is strong, theny; - is strong.

Definition Appendix B.2 (Domination). Given anLg-net®, a negative ruleX and
a finite set of node&, we say that7 is an X-zone if for every € G there are nodes
x € X andz’ such thatr + 2’ < z, where the path’ < z is included inG. Given a
nodez of ®, we say thatX dominates:, denotedX < z (or simplyX < z), if there
exists anX-zoneG in ® such thatz € G. We say that the zon& and the sequence
x4+ 2’ <= zwithessX < z.

The following statement lists some simple consequencdseadéfinition of domi-
nation.

Lemma Appendix B.3. 1. X-zones are closed under unions.
2. If X < ziswitnessed by a sequence— z’ < z, thenX dominates every node
of the pathr’ < =.
3. If z + y forsomer € X, thenX < y.
4. Given a negative ruléV, if X dominates a node € W, thenX dominates all
w e W.
5. If X <y, andify « z, orif z + y andz is not negative, theiX < z.

Proof.  The first three parts of the statement are obvious. X efl w be witnessed
by G andz + 2’ < w. By definition of strong, the path’ < w terminates with
k < w. Then we obtain a strong path to amy € W by just replacing the last edge
with & < w’. It follows thatGU W is anX-zone, and thereforg/ v’ € W X < w').
We now prove the last assertion of the statement. &eindx <+ a < y be a
witness ofX < y. If z does not belong to a rule that intersects the sequencey, then
the sequence. .. yz is a path, that is switching by the assumptions. Hefce {z}
andzx + a < z are a witness foX < z. If z intersects the sequenge. . y, then we
conclude using the second and fourth parts of the statement. O

Thanks to Lemma Appendix B.3, we will henceforth safely assuhatX-zones
arerule-saturatedli.e. are unions of rules.

The notion of domination extends to rules. l&tbe a rule. We writd?; < W5
if there existsw, € W5 such thatiW; < w, (or, equivalently, ifil; < wo for all
we € Wa, by Lemma Appendix B.3). IX is not dominated, we say that itfiee

Lemma Appendix B.4. Domination is transitive.
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Proof. AssumeX < Y andY < Z, witnessed by (rule-saturate@) andz <+

a < y,and byG andy’ < b < z(z € Z,y,y € Y, x € X), respectively. By
Lemma Appendix B.3, we can assume= 3’. It is enough to show that’ U G

is an X-zone, and for this we only have to considére G’ \ G, if any, witnessed

by v’ + b < 2/. Letz” be the last node in the sequeng8’ ...z’ which is in

G, witnessed by’ + o' < z”. Then, concatenating with the rest of the sequence
from (the successor of)’ to 2/, we obtain a path (by construction, and becatiss
rule-saturated). This path is strong and switching becasisenstituents are. O

Lemma Appendix B.5. Let W be a negative rule. lfv € W is below a node of a
switching cycleC', thenW dominates all nodes of the cycle.uf, w, € W are such

thatw; < 2 andw; & 2,, thenW dominates every node in a switching path fragn

to z,,.

Proof. We prove the second part of the statement (the reasoning sathe for the
first part). LetG, (resp. G2) be the set of nodes on a path going up framto z
(resp. fromws to z,). We will show thatG; U G5 U C'is aW-zone. Thatz; and
G- areW-zones follows readily from Lemma Appendix B.3. Let C. Because&”

is switching, we have eithefy < z or z,, < z. Suppose that we have, say, < z.
Let 2z} be the first node on the way up fromy to z, that belongs to a rule intersecting
zog < z at somez}. Then the sequence obtained by going up fropto 24 and then to
z is witnessingV’ < z. O

Lemma Appendix B.6. Let® be afinite Lg-net. If a rule X intersects a switching
cycle, thenX is dominated by an additive rulé” which intersects no switching cycle.

Proof. We construct a sequence of negative rilésas follows. We sefX = Wj,.

If W, intersects a switching cycle, then applying the conditignles gives us a rule
Witr1. We havelV;,1 < W;, by Lemma Appendix B.5. At each iteration the union
of the cycles increases strictly, and hence by finitene& wk eventually reach some
negative ruldV,, = W which intersects no switching cycle. Moreover, we haivel

X by Lemma Appendix B.4. O

Due to the finiteness condition in the previous lemma, we fivlt establish the
Splitting Lemma in the finite case, and then show how to lif tbsult also to infinite
Lg-nets.

Lemma Appendix B.7. If X < X, then X is in a switching cycle.

Proof. If X < X, we haver + a <« x for somexr € X. Then we can close the
path froma to « with the edger < a. Because the path fromto z is strong, the cycle
is switching. O

Proposition Appendix B.8. Let © be a finiteLg-net. Every negative rule is either
free or dominated by a free negative rule. As a consequefitbere are negative rules,
there exists a free negative rule.
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Proof. The proof is by contradiction. LeX be a negative rule that is neither free
nor dominated by a free negative rule. We will build an inBréequence of ruleX;
which are all distinct, are all dominated, and are such that

X1 9X <DL X <X,

contradicting the finiteness @. We takeX, = X. By assumptionXj is not free.
Suppose that we have constructed the sequence Xp /e distinguish two cases:

1. If X; is notin a switching cycle, we choose aRy, ; such thatX,;,; < X; (this
is possible since&X; is not free by induction hypothesis). This;, ; is fresh as
otherwise we would have by transitivify; < X;, contradicting our assumption
on X;, by Lemma Appendix B.7.

2. If X; is in a switching cycle, then by Lemma Appendix B.6 we can ceoa
rule X;;+1 such thatX,, intersects no switching cycle. This, ., is fresh as
otherwise we would have by transitivity,.; < X;.1, and this contradicts our
assumption about the choice &f_, ;, by Lemma Appendix B.7.

In both cases, we have constructed a fr&sh; such thatX,,; < X;. Moreover, by
transitivity, X; 1 < X, from which it follows thatX;, is not free. O

Let X, Y be distinct negative rules.

e We write X «<—— Y ifthere is a switching pathy . .. z,, (called withessing path)
such thate + z¢ andz,, — y, forsomer € X andy € Y.

e We write X —<« Y if X,Y belong to the same bipole, i.e.,— k andy — k,
for somek and allz € X andy € Y.

Lemma Appendix B.9. If X, Y and Z are negative rules suchtha& # Y, X < Z
andY < Z,thenX +—Y.

Proof. Considerr + a < z (for somex € X andz € Z). Let 2’ be the first node
on the path fromu to z such that” < 2’ (and hencey + b < 2’ for somey € Y).
Then we get a path witnessing <—— Y by going froma to 2z’ and then from:’ to

b. This sequence of nodes is a rule path since if it were notetiweuld bez; in the
first portion andz; in the second portion belonging to the same rule, but we Haate t
Y <z impliesY < z; which in turn impliesY” < z, contradicting the minimality of
Z'. Itis switching since the path froito 2’ is strong. O

Lemma Appendix B.10. If X is a free negative rule o and does not split, then
there exist free negative rulés Z of ® such thatX —+«+ Y andX «— Z.

Proof. Letc be the node just belo{. SinceX does not split, for some € X we

can form a cycle (in the ordinary sense of graph theory, iighout the disjoint rules
assumption)c. . . ax, without using any edge betweerand X other thanc «+ =.
Since X is free,c is a conclusion of the net, and the next node on the cycle nmaust b
somey such that: < y. By constructiony belongs to a rul&” distinct from X, and
thus we haveX —+ Y.

53



Next we observe that we cannot ha¥e< z, becauseX is free, and thaiX < a
becauser < a (since the only edge @ out of z is already used). Lét be the first
node, following the cycle in the directiorr.. . ., such thatX < b. The node:’ before
b must be negative and we must hase« b as otherwise we would hav® < 2’
by Lemma Appendix B.3. LeZ’ be the rule to which:’ belongs. Then we have
X +— Z'. If Z'is free, we can sef = Z'. If Z’ is not free, it dominates some free
Z, by Proposition Appendix B.8, and we conclude by Lemma ApipeB.9 (since
X < {b}, andZ < {b} by transitivity). O

We are now able to prove the Negative Splitting Lemmdfiftite Lg-nets, i.e. for
Ls-nets having finitely many nodes.

Proof (Negative Splitting Lemma, finite caséjthe Lg-net® has no splitting negative
rules, then all its conclusions must be positive, and stgifiom a free negative rule
Xo (whose existence is guaranteed by Proposition Appendik Bl using again and
again Lemma Appendix B.10, we can build an infinite sequeige—+ X; +—

X9 —+ ... whereX,,; is a free negative rule anll; . ; # X;, for all i. Since there
are only finitely many free negative rules, we ha¥e = X; = X for somei < j.

By the definition of the—+«+— and<—— relations, we can form a switching sequence of
nodes starting itk; = X and ending inX; = X which is nondegenerate (i.e. of length
at least 2) since&X; # X,;.. But this sequence is not guaranteed to be a rule path. To
build a rule path, we take two nodes and z, at minimal distance in the sequence
such thatz; andz; belong to the same rule. Again, this distance is non-degémer
asz; andz, cannot belong to the same path witnessing sofag, 1 <— Xogio

(¢ < 2k 4+ 1 < j), and moreover, by the same reason, the path. . . 2}z, from z; to

2o must cross som&,,. We distinguish two cases:

1. If 21 < z1 Or 25, + z9, say,z] + z1, then we also have] « z9, and adding
this (reversed) edge to the path framto 2, yields a switching cycle. Then, by
a (weakened form of) Lemma Appendix B.6, we obtain thigtis dominated.

2. If z1 + 2] andzy « 24, then we are in the situation of the (second part of the
statement of) Lemma Appendix B.5, and we also obtain #jats dominated.

We have reached a contradiction, sig is free by construction. O

The Negative Splitting Lemma holds actually for arbitrégynets. The following
definition and lemma ensure a finiteness condition, evenrif.genet® is infinite.

Definition Appendix B.11. Let® be anLs-net whose conclusions are all positive. We
denote byNeg, (D) the set of negative rules that are just above a conclusien the
set of rules of level 1).

Lemma Appendix B.12. 1. The setNeg, (D) is finite.
2. Every free (negative) rule is iVeg, (D).

Proof. By the finiteness of the interface, there are finitely manyctusions, and
since there are are only finitely many rules just above a ipesitle, it follows that
Neg, (D) is finite. Suppose thall is a rule of level> 1, then, going down from
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W, we reach a ruléV’ that dominate$V (thatWW’ < W follows by repeated use of
Lemma Appendix B.3). The second part of the statement fallow O

Proof (Negative Splitting Lemma, infinite casé)et © be an infiniteLs-net. We con-
centrate onVeg, (©). For each paitX, X’ € Neg, (D) such thatX < X', we take
an X -zone witnessing this domination. Lgtbe a minimal (finite)Lg-net containing
these zones, obtained by possibly adding in a minimal waitippsiews to the se§’
of all views™ k™, wherek ranges over the union of the zones (note §ias already a
partial L-net by Lemma 6.1). By constructiaNeg, (F) consists of all setX N § such
that X € Neg,(D) andX NF # (. Moreover, for any twaX, X’ € Neg,(D), we
have, by construction ¢§:

X <dp X' & (XNF#A0, X'NnF#0,and (X NF) I (X' NF)) .

It follows that if (X N§) € Neg,(F) is free (inF), thenX is free (in®), using the fact
that whenever a rule is dominated, it is dominated by a ruldn, (D).

Now, suppose that there exists a negative pulef © that is neither free nor dom-
inated by a free rule. We can assutiiec Neg, (D) since this property is a fortiori
true of any negative rule below. Then, as we noted ab&ve, § is not free. Neither
canX N g be dominated by a free rul€’ N §, because then we would have tiatis
free andX’ <g X. ThereforeX N § is neither free nor dominated by a free rulegin
contradicting the Negative Splitting Lemma (finite case). o

We now prove the Splitting Lemma, as a consequence of thetNegdgplitting
Lemma.

Proof (Splitting Lemma).Let © be anLg-net that has only positive conclusions. We
definesize(D) as:

e 0 if at least one of the positive conclusions®fis a leaf, and otherwise as
¢ the cardinal of the set of level 1 negative rulesof

Since® has finitely many positive conclusions, the sizeis finite, even ifD is not
finite.

We apply the Negative Splitting Lemma ®. We select a splitting negative rule
X. Since® has no negative conclusiol; is just above a conclusioh of ©. We
delete the edges fromto &, forall z € X.

Let us call® x the union of the connected components (in the ordinary ented
graph-theoretic sense) of the elements{gfand®;, the rest of the graph, which con-
tainsk. We prove thatD x and®,, areLg-nets. Let®’ stand for eithe® y or Dy.
We note that ifc € D', then®’ contains every path & starting frome that does not
go through one of the deleted edges. It follows thaty. possibly differs from ¢ o
only by not containing:. We are thus almost in the situation of Lemma 6.2, modulo
straightforward adaptations. Let us look for example atatedition Additives: the
path leading down fronk; to wy (resp. fromk, to w-) does not go through, and
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hence belongs tok; "o (resp.” k2 '), so conditiomdditives in ©’ is inherited from
conditionAdditives in .

We have thatize(Dy,) < size(®D), because every conclusiéhof Dy, is a conclu-
sion of ©, and every negative rule @, is a negative rule gb. Moreover, every free
splitting negative rule o®, is a splitting negative rule dD: indeed, ifD;, splits into
Dy andD x/, then® splits into(Dy UD x ) and® x,. We are now ready to prove that
® has a positive splitting conclusion, by induction @ge(D):

e Base case. Obvious. Since one positive conlusion is a teiafsplitting vacu-
ously.

¢ Induction case. Let’ be a splitting positive conclusion @¥. If &’ # k, then it
is also a splitting positive conclusion @f, since every negative rule just above
k' is splitting in®y, hence im®. If ¥’ = k, letY be a negative rule just above
k. If Y = X, itis splitting by construction; i” # X, Y belongs to®; by
construction, and hencé is splitting in®, and hence also i®, so thatk is a
positive splitting conclusion. This completes the proof. o
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