Full θ -reduction is the basis for the symbolic manipulation of λ -terms, e.g., in proof assistants, in program transformations, and in higher-order unification.

However, when the λ -calculus is regarded as the core of a programming language it is sensible to consider *weaker* reduction strategies

A weak reduction is a strategy to reduce λ -terms that does not reduce under abstractions (ie in the body of a function)

Memo:

A one-step β -reduction is the closure of the β -rule under context

C:: = [] | Cu | uC |
$$\lambda$$
x.C

Said otherwise

A one-step β -reduction is given inductively by

$$\frac{t \to_{\beta} t'}{\lambda x.t \to_{\beta} \lambda x.t'}$$

$$\frac{t \to_{\beta} t'}{t u \to_{\beta} t' u}$$

$$\frac{u \to_{\beta} u'}{t u \to_{\beta} t u'}$$

 \square **Ex. 0.** Change the rules above, so that we do not reduce under λ . Evaluate K(II)

Def. A value V is a **closed** λ -term of the shape $\lambda x.t$ (a λ -abstraction).

$$E ::= [\] \mid Et$$
 (call-by-name evaluation context)
 $E ::= [\] \mid Et \mid VE$ (call-by-value evaluation context).

Call-by-value (weak)	Call-by-name (weak)
$ \frac{t \leadsto_{\nu} t'}{t u \leadsto_{\nu} t' u} \qquad \frac{u \leadsto_{\nu} u'}{V u \leadsto_{\nu} V u'} $	$(\lambda x.t) u \sim_n t \{u/x\}$ $t \sim_n t'$ $t u \sim_n t' u$
What are the normal forms?	What are the normal forms

■★ Ex 1. Progression.

Assume t is a closed term. Prove that (in both systems) values are exactly the normal forms.

(Hence if a term is not a value, it has a reduction step)

☐★ EX 2. Determinism

Proposition (decomposition) Let t be a closed λ -term. Then either t is a value or there is a unique call-by-name (call-by-value) evaluation context E such that:

1.

$$t \equiv E[(\lambda x.u_1)u_2]$$
 $t \equiv E[(\lambda x.u_1)V].$

- If $t \rightsquigarrow_{v} u$ and $t \rightsquigarrow_{v} u'$, then u = u'.
- If $t \leadsto_n u$ and $t \leadsto_n u'$, then u = u'.
 - If $t \downarrow_{\nu} V$ and $t \downarrow_{\nu} V'$, then V = V'.
- If $t \downarrow_n V$ and $t \downarrow_n V'$, then V = V'.

Call-by-value (small-steps)		Call-by-value (BIG-STEPS)		
$ \frac{t \leadsto_{\nu} t'}{t u \leadsto_{\nu} t' u} \frac{u \leadsto_{\nu} u'}{V u \leadsto_{\nu} V u'} $		$V \Downarrow_{\nu} V$	$ \frac{t \Downarrow_{\nu} \lambda x.r \qquad u \Downarrow_{\nu} W \qquad r\{W/x\} \Downarrow_{\nu} V}{t u \Downarrow_{\nu} V} $	

Call-by-name (small-steps)	Call-by-name (BIG-STEPS)		
$\frac{t \leadsto_n t'}{t u \leadsto_n t' u}$	$V \downarrow_n V$	$\frac{t \downarrow_n \lambda x.r \qquad r\{u/x\} \downarrow_n V}{t u \downarrow_n V}$	

■★ EX 3. Relating big steps and small steps

- 1. If $t \Downarrow_{v} V$, then $t \leadsto_{v}^{*} V$.

 If $t \Downarrow_{n} V$, then $t \leadsto_{n}^{*} V$.
 - $\blacksquare \ \text{If} \ t \leadsto^*_{\scriptscriptstyle \mathcal{V}} u \ \text{and} \ u \ \text{is a CBV normal-form, then} \ t \Downarrow_{\scriptscriptstyle \mathcal{V}} u.$
- 2. If $t \leadsto_n^y u$ and u is a CBN normal-form, then $t \Downarrow_n u$.

■ EX 4. Remember Church numerals?

Consider the definition of *Church Numerals*:

$$\overline{n} \equiv \lambda f. \lambda x. \ (\underbrace{f...(fx)}_{n \text{ times}})...)$$

and the following encodings

$$S \equiv \lambda n.\lambda f.\lambda x.f(nfx)$$
 (successor)

- 1. Evaluate: S <u>1</u>
- 2. Does the following statement still make sense in CbV?

Think of the Church numeral \underline{n} as the procedure that takes a function-input and an argument-input, and applies the function n-times to the argument.

■ EX 5. Scott Numerals

where θ is any closed term and **i** the identity.

Evaluate:

- 1. succ [2]
- 2. pred [2]
- 3. case [n] fg (for f and g values)