TD1: CbN and CbV Lambda Calculus

Wednesday, February 24, 2021 9:34 PM

• RECAP:

CbN and CbV Calculi.

• The (pure) **Call-by-Name** calculus $\Lambda^{cbn} = (\Lambda, \rightarrow_{\beta})$ is the set of terms equipped with the contextual closure of the β -rule.

 $(\lambda x.M)N \mapsto_{\beta} M\{N/x\}$

The (pure) **Call-by-Value** calculus $\Lambda^{cbv} = (\Lambda, \rightarrow_{\beta_v})$ is the same set equipped with the contextual closure of the β_v -rule.

 $(\lambda x.M)V \mapsto_{\beta_v} M\{V/x\}$ where $V \in \mathcal{V}$

Head reduction in CbN

Head reduction is the closure of β under head context

 $\lambda x_1 \dots x_n . () M_1 \dots M_k$

Head normal forms (hnf), whose set is denoted by \mathcal{H} , are its normal forms.

- Given a rule ρ , we write $\rightarrow \rho$ for its closure under head context.
- A step \rightarrow_{ρ} is non-head, written $\xrightarrow{\neg h}_{\rho}$ if it is not head.

Weak reductions in CbV

The result of interest are **values** (*i.e.* functions). In languages, in general the reduction is *weak*, that is, it does not reduce in the body of a function

There are three main weak schemes: left, right and in arbitrary order. Left contexts L, right contexts R, and (arbitrary order) weak contexts W are defined by

L ::= () | LM | VLR ::= () | MR | RVW ::= () | WM | MW

Given a rule \mapsto on Λ , weak reduction $\xrightarrow[]{}$ is the closure of \mapsto under context \mathbf{W} . A step $T \to S$ is non-weak, written $T_{\rightarrow w} S$ if it is not weak. Similarly for left $(\xrightarrow[]{}$ and $\xrightarrow[]{})$, and right $(\xrightarrow[]{}$ and $\xrightarrow[]{})$.

▶ Fact 3 (Weak normal forms). Given M a closed term, M is \rightarrow -normal iff M is a value.

• TD 1. We work on the properties and exercises which are highlighted

BASIC PROPERTIES OF THE CONTEXTUAL CLOSURE

If a step $T \to_{\gamma} T'$ is obtained by closure under *non-empty context* of a rule \mapsto_{γ} , then T and T' have the same shape, i.e. both terms are an application (resp. an abstraction, a variable).

- **Fact 5** (Shape preservation).
- Assume $T = \mathbf{C}(\mathbb{R}) \to \mathbf{C}(\mathbb{R}') = T'$ and that the context **C** is non-empty. Then T and T' have the same shape.
- Hence, for any internal step $M \xrightarrow{\rightarrow} M'$ ($s \in \{h, w, l, r, ...\}$) M and M have the same shape.

OneNote

The following is an easy to verify consequence.
▶ Lemma 6 (Redexes preservation).
1. CbN: Assume T → βS. T is a β-redex iff so is S.
2. CbV. Assume T → βv.S. T is a βv-redex iff so is S.

Fixed a set of redexes \mathcal{R} , M is w-normal (resp. h-normal) if there is no redex $R \in \mathcal{R}$ such that M = W(R) (resp. M = H(R))

- ▶ Lemma 7 (Surface normal forms). 1. CbN. Let \mathcal{R} be the set of β_v -redexes. Assume $M \underset{\neg h}{\rightarrow} \beta M'$. M is h-normal $\Leftrightarrow M'$ is h-normal.
- **2.** CbV. Let \mathcal{R} be the set of β_v -redexes. Assume $M_{\rightarrow \overrightarrow{\mathsf{w}}} \beta_v M'$. M is w-normal $\Leftrightarrow M'$ is w-normal.

Using FACTORIZATION

CbN:

■ Head Factorization: $\rightarrow_{\beta}^* \subseteq \xrightarrow[h]{}_{\beta}^* \cdot \xrightarrow[h]{}_{\beta}^*$. ■ EX. A Prove that *M* has *hnf* if and only if head reduction from *M* terminates.

CbV: Left contexts L, right contexts R, and (arbitrary order) weak contexts W are defined by

 $\mathbf{L} ::= () | \mathbf{L}M | V\mathbf{L}$ $\mathbf{R} ::= () | M\mathbf{R} | \mathbf{R}V$ $\mathbf{W} ::= () | \mathbf{W}M | M\mathbf{W}$

The closure under L (resp. W,R) context is noted $\xrightarrow{}_{I}$ (resp $\xrightarrow{}_{w}, \xrightarrow{})$

Let $s \in \{w, l, r\}$ *weak factorization of* \rightarrow_{β_v} : $\rightarrow_{\beta_v}^* \subseteq \overrightarrow{}_{\beta_v}^* \cdot \overrightarrow{}_{\beta_v}^*$.

► Fact X(?). Let M be a closed term. We say that M returns a value when $M \to_{\beta}^{*} V$ for some V. **EX B** Prove any of the following 1. M returns a value, if and only if $_{\beta_{v}}$ -reduction from M terminates.

2. M returns value, if and only if $_{\overrightarrow{\mathsf{W}}\beta_v}$ -reduction from M terminates.

EX. C. Normalization.

1. Give an inductive definition of leftmost reduction, completing the following b

Consider (Λ, \rightarrow) , where $\rightarrow = \rightarrow_{\beta}$. The relation $\xrightarrow{}_{\text{Lo}} \subseteq \rightarrow$ is induce If $M \xrightarrow{}_{h} M'$ then $M \xrightarrow{}_{\text{Lo}} M'$. If $M \xrightarrow{}_{h} (i.e., M \text{ is h-normal})$ then: $P \xrightarrow{}_{\text{Lo}} P'$ $\overline{M := (\lambda x.P) \xrightarrow{}_{\text{Lo}} (\lambda x.P')}$ $\overline{M := PQ \xrightarrow{}_{\text{Lo}} P'Q}$ $\overline{M := PQ \xrightarrow{}_{\text{Lo}} PQ'}$

2. Prove that it is a normalizing strategy, using head factorization.

Normalization (or, make your own Normalizing strategy)

▶ Definition 8 (Iteration of surface reduction). ■ Given (Λ, \rightarrow) , where \rightarrow is the context closure of a rule $b \in \{\beta, \beta_v\}$, let $\rightarrow \subseteq \rightarrow$ be as follows:

$$\overrightarrow{s} = \overrightarrow{h} \quad if \ b = \beta \ (CbN) \qquad \overrightarrow{s} \in \{\overrightarrow{w}, \overrightarrow{h}, \overrightarrow{r}\} \quad if \ b = \beta_v \quad CbV$$

The relation $\xrightarrow{F} \subseteq \rightarrow$ is inductively defined by

$$If M \xrightarrow{\rightarrow} M' then M \xrightarrow{\rightarrow} M'.$$

$$If M \xrightarrow{\rightarrow} (i.e., M \text{ is s-normal}) then:$$

$$\frac{P \xrightarrow{\rightarrow} P'}{M := (\lambda x.P) \xrightarrow{\rightarrow} (\lambda x.P')} \frac{P \xrightarrow{\rightarrow} P'}{M := PQ \xrightarrow{\rightarrow} P'Q} \frac{Q \xrightarrow{\rightarrow} Q'}{M := PQ \xrightarrow{\rightarrow} PQ'}$$

Theorem 10 (Normalization).

 $\begin{array}{l} \text{CbN:} \underset{E}{\rightarrow} is \ a \ normalizing \ strategy \ for \rightarrow_{\!\!\beta} \\ \text{CbV:} \underset{E}{\rightarrow}_{\beta_v} is \ a \ normalizing \ strategy \ for \rightarrow_{\beta_v}. \end{array}$