Wednesday, February 24, 2021 9:34 PM Terms and values are generated by the following grammars $$V ::= x \mid \lambda x.M$$ (Values, V) $M ::= x \mid c \mid \lambda x.M \mid MM$ (Terms) where x ranges over a countable set of variables, and c over a disjoint (possibly empty) set \mathcal{O} of constants. - If the set of constants is empty, the calculus is *pure*, and the set of terms is denoted Λ . - Otherwise, the calculus is called *applied*, and the set of terms is often indicated as $\Lambda_{\mathcal{O}}$. ## **REDUCTION:** **Contexts** (with one hole ($| \rangle$) are generated as follows. $\mathbf{C}(|M|)$ stands for the term obtained from \mathbf{C} by replacing the hole with the term M (possibly capturing free variables of M). $$\mathbf{C} ::= (\!(\)\!) \mid\mid M\mathbf{C} \mid \mathbf{C}M \mid \lambda x.\mathbf{C} \qquad (\textit{Contexts})$$ **A rule** ρ is a binary relation on $\Lambda_{\mathcal{O}}$, which we also denote \mapsto_{ρ} , writing $R \mapsto_{\rho} R'$. R is called a ρ -redex. The best known rule is β : $$(\lambda x.M)N \mapsto_{\beta} M\{N/x\}$$ A reduction step \to_{ρ} is the closure under context \mathbf{C} of ρ . Explicitly, $T \to T'$ holds if $T = \mathbf{C}(|R|)$, $T' = \mathbf{C}(|R'|)$, and $R \mapsto_{\rho} R'$. ## CbN and CbV Calculi. The (pure) Call-by-Name calculus $\Lambda^{\text{cbn}} = (\Lambda, \to_{\beta})$ is the set of terms equipped with the contextual closure of the β -rule. $$(\lambda x.M)N \mapsto_{\beta} M\{N/x\}$$ The (pure) Call-by-Value calculus $\Lambda^{\text{cbv}} = (\Lambda, \to_{\beta_v})$ is the same set equipped with the contextual closure of the β_v -rule. $$(\lambda x.M)V \mapsto_{\beta_v} M\{V/x\}$$ where $V \in \mathcal{V}$ Restricted reductions: head, leftmot-outermost, weak... # Head reduction in CbN Head reduction is the closure of β under head context $$\lambda x_1...x_n$$. () $M_1...M_k$ Head normal forms (hnf), whose set is denoted by \mathcal{H} , are its normal forms. - \blacksquare Given a rule ρ , we write \xrightarrow{h}_{ρ} for its closure under head context. - A step \rightarrow_{ρ} is non-head, written $\xrightarrow{\neg h}_{\rho}$ if it is not head. ### What about? $\mathbf{H} := (\!(\)\!) | \lambda x. \mathbf{H} | \mathbf{H} M$ # **Head Factorization** Head factorization allows for a characterization of the terms which have head normal form, that is M has hnf if and only if $\xrightarrow{}$ -reduction from M terminates. - **► Theorem 2** (Head Factorization). - Head Factorization: $\rightarrow_{\beta}^* \subseteq \xrightarrow[h]{\beta}^* \cdot \xrightarrow[h]{\beta}^*$. - \blacksquare Head Normalization: M has hnf if and only if $M \xrightarrow{h} {}^*S$ (for some $S \in \mathcal{H}$). # Weak reductions in CbV The result of interest are values (i.e. functions). In languages, in general the reduction is *weak*, that is, it does not reduce in the body of a function. There are three main weak schemes: left, right and in arbitrary order. Left contexts \mathbf{L} , right contexts \mathbf{R} , and (arbitrary order) weak contexts \mathbf{W} are defined by $$L := () | LM | VL$$ $$\mathbf{R}\!:=\!(\!(\!)\!)\!\mid\! M\mathbf{R}\!\mid\! \mathbf{R}V$$ $$W := (||) | WM | MW$$ Given a rule \mapsto on Λ , weak reduction $\xrightarrow{\mathsf{w}}$ is the closure of \mapsto under context **W**. A step $T \to S$ is non-weak, written $T \xrightarrow{\neg w} S$ if it is not weak. Similarly for left $(\xrightarrow{} \text{ and } \xrightarrow{\neg})$, and right $(\xrightarrow{} \text{ and } \xrightarrow{})$. ▶ Fact 3 (Weak normal forms). Given M a closed term, M is \Rightarrow -normal iff M is a value. ## Weak Factorization. Let $s \in \{w,l,r\}$ - weak factorization of \rightarrow_{β_v} : $\rightarrow_{\beta_v}^* \subseteq \xrightarrow{s}_{\beta_v}^* \xrightarrow{s}_{\beta_v}^*$. - Convergence: $T \to_{\beta_v} W(W \in \mathcal{V})$ if and only if $T \to_{\beta_v} V(V \in \mathcal{V})$ - ▶ Corollary 4. Given M a closed term, M has a β_v -reduction to a value, if and only if the $\xrightarrow{\varsigma}_{\beta_v}$ -reduction from M terminates. #### **BASIC PROPERTIES OF THE CONTEXTUAL CLOSURE** If a step $T \to_{\gamma} T'$ is obtained by closure under non-empty context of a rule \mapsto_{γ} , then T and T' have the same shape, i.e. both terms are an application (resp. an abstraction, a variable). - ▶ Fact 5 (Shape preservation). - Assume $T = \mathbf{C}(|R|) \to \mathbf{C}(|R'|) = T'$ and that the context \mathbf{C} is non-empty. Then T and T' have the same shape. - Hence, for any internal step $M \rightarrow M'$ ($s \in \{h, w, l, r, ...\}$) M and M have the same shape. The following is an easy to verify consequence. - ▶ Lemma 6 (Redexes preservation). - 1. CbN: Assume $T \xrightarrow{\neg h} S$. T is a β -redex iff so is S. - **2.** CbV. Assume $T \xrightarrow{\neg w} \beta_v S$. T is a β_v -redex iff so is S. Fixed a set of redexes \mathcal{R} , M is w-normal (resp. h-normal) if there is no redex $R \in \mathcal{R}$ such that $M = \mathbf{W}(R)$ (resp. $M = \mathbf{H}(R)$) ▶ **Lemma 7** (Surface normal forms). 1. CbN. Let \mathcal{R} be the set of β_v -redexes. Assume $M \xrightarrow{h}_{\beta} M'$. M is h-normal $\Leftrightarrow M'$ is h-normal. **2.** CbV. Let \mathcal{R} be the set of β_v -redexes. Assume $M \xrightarrow{\neg w} \beta_v M'$. M is w-normal $\Leftrightarrow M'$ is w-normal.