Notes and Homework 1 (Abstract Rewriting)

Homework 1
Let (A,—) be an ARS.

1. Prove that if (A.) holds then (B.) holds
A. Vte A: (t) < t — to) implies (t; = to or Ju. t; — u < t3)
B. Vt € A: ift has a normal form u (ie, t —* u, for some k), then all maximal
¥g§111111c‘%tif)n sequences from ¢ have the same length, and all end in the same normal

2. If (A.) holds, do always all maximal reduction sequences from ¢ have the same length?
3. Show that the following property (C.) does not imply (B.)
C. Vte A: (t1 + t — to) implies (Fu. t1 =~ u +~ t3)

NOTES

1 Abstract rewriting system (ARS): the basics
We recall basic definitions.

Basics. An abstract rewriting system (ARS) is a pair A = (A, —) counsisting of a set A and
a binary relation — on 4 whose pairs are written ¢ — s and called steps.

We denote —* (resp. —~) the transitive-reflexive (resp. reflexive) closure of —. We
write t < u if u — t (the reverse relation).

If —1,—2 are binary relations on A then —; - —o denotes their composition, i.e.
t —1 - —9 s if there exists u € A such that t —1 u —9 s.

We write (A, {—1,—2}) to denote the ARS (A, —) where — = —1 U —.

An element u € A is —-normal, or a —-normal form if there is no t such that u — t
(we also write u /).

A —-sequence (or reduction sequence) from ¢t is a (possibly infinite) sequence

t, t1, ta,... such that t; — t;41. t = s indicates that there is a finite sequence from ¢
to s.

A —-sequence from t is maximal if it is either infinite or ends in a —-normal form.

We freely use the fact that the transitive-reflexive closure of a relation is a closure operator,
i.e. satisfies

—C—=", (=) =", —1 € —o implies =7 C =3 . (Closure)
The following property is an immediate consequence:

(=1 U—=9)" = (27 U—=5)". (TR)
Local vs Global Properties. An important distinction in rewriting theory is between local
and global properties. A property of term ¢ is local if it is quantified over only one-step

reductions from t; it is global if it is quantified over all rewrite sequences from t. Local
properties are easier to test, because the analysis (usually) involves a finite number of cases.

Notes and Homework 1 (Abstract Rewriting)

Commutation and Confluence Two relations —; and —o on A commute if
1% Ot
A relation — on A is confluent if it commutes with itself.
A classic tool to modularize the proof of confluence is Hindley-Rosen lemma.
Confluence of two relations —; and —5 does not imply confluence of —; U —5, however
it does if they commute.

» Lemma (Hindley-Rosen). Let —1 and —3 be relations on the set A.
If —1 and —3 are confluent and commute with each other, then

—1 U —9 is confluent.

Local conditions. Commutation is a global condition, which is difficult to test. There
are however easy-to-check sufficient conditions. One of the most useful such conditions is
Hindley’s strong commutation :

102 C =T (Strong Commutation)

» Lemma (Local test). Strong commutation implies commutation.

2 Factorization.

Both confluence and factorization are forms of commutation.
Let A= (4,{-,—}) be an ARS.

The relation — = - U - satisfies e-factorization, written Fact(—, —I>), if

Fact(g,) : =" C 2" =7 (Factorization)

The relation — postpones after -, written PP(—, —I>)7 if

PP(,—): — (Postponement)
Postponement can be formulated in terms of commutation, and viceversa, since clearly (_|>
postpones after) if and only if (<I— commutes with —). Note that reversing - introduce an

asymmetry between the two relations. It is an easy result that e-factorization is equivalent
to postponement, which is a more convenient way to express it.

» Lemma 1. For any two relations —, - the following are equivalent:
-

| 1
2. " C)
3 —*
4

*

)*

* _>*

. Postponement: .

P & e
. Factorization: (5 U — C o _I>*

A local test. Hindley first noted that a local property implies postponement, hence factor-
ization
We say that - strongly postpones after , if

SP(g,—): — -2 C 2" =7 (Strong Postponement)

i € i

Notes and Homework 1

» Lemma 2 (Local test for postponement). Strong postponement implies postponement:
SP(—, —*) implies PP(-», =), and so Fact(-3, —).
It is immediate to recognize that the property is exactly the postponement analog of
strong commutation; indeed it is the same expression, with — =4 and = —o.
A characterization. Another property that we shall use freely is the following, which is

immediate by the definition of postponement and property TR

» Property. Given a relation <> such that &* =—",

PP(-p,—) if and only if PP(—,).

i
A well-known use of the above is to instantiate <> with a notion of parallel reduction (as in
[Takahashi])

	Abstract rewriting system (ARS): the basics
	Factorization.

