Notes and Homework 1 (Abstract Rewriting)

Homework 1

Let (A, \rightarrow) be an ARS.

- 1. Prove that if (A.) holds then (B.) holds
 - A. $\forall t \in A$: $(t_1 \leftarrow t \rightarrow t_2)$ implies $(t_1 = t_2 \text{ or } \exists u. \ t_1 \rightarrow u \leftarrow t_2)$
 - B. $\forall t \in A$: if t has a normal form u (ie, $t \to^k u$, for some k), then all maximal reduction sequences from t have the same length, and all end in the same normal form u.
- 2. If (A.) holds, do always all maximal reduction sequences from t have the same length?
- 3. Show that the following property (C.) does not imply (B.)
 - C. $\forall t \in A$: $(t_1 \leftarrow t \rightarrow t_2)$ implies $(\exists u. \ t_1 \rightarrow^= u \leftarrow^= t_2)$

NOTES

Abstract rewriting system (ARS): the basics

We recall basic definitions.

Basics. An abstract rewriting system (ARS) is a pair $\mathcal{A} = (\mathcal{A}, \rightarrow)$ consisting of a set \mathcal{A} and a binary relation \rightarrow on \mathcal{A} whose pairs are written $t \rightarrow s$ and called steps.

- We denote \to^* (resp. $\to^=$) the transitive-reflexive (resp. reflexive) closure of \to . We write $t \leftarrow u$ if $u \to t$ (the reverse relation).
- If $\rightarrow_1, \rightarrow_2$ are binary relations on \mathcal{A} then $\rightarrow_1 \cdot \rightarrow_2$ denotes their composition, *i.e.* $t \rightarrow_1 \cdot \rightarrow_2 s$ if there exists $u \in \mathcal{A}$ such that $t \rightarrow_1 u \rightarrow_2 s$.
- We write $(A, \{\rightarrow_1, \rightarrow_2\})$ to denote the ARS (A, \rightarrow) where $\rightarrow = \rightarrow_1 \cup \rightarrow_2$.
- An element $u \in \mathcal{A}$ is \rightarrow -normal, or a \rightarrow -normal form if there is no t such that $u \rightarrow t$ (we also write $u \not\rightarrow$).
- A \rightarrow -sequence (or **reduction sequence**) from t is a (possibly infinite) sequence t, t_1, t_2, \ldots such that $t_i \rightarrow t_{i+1}$. $t \rightarrow^* s$ indicates that there is a finite sequence from t to s.

A \rightarrow -sequence from t is maximal if it is either infinite or ends in a \rightarrow -normal form.

We freely use the fact that the transitive-reflexive closure of a relation is a closure operator, i.e. satisfies

$$\rightarrow \subseteq \rightarrow^*, \qquad (\rightarrow^*)^* = \rightarrow^*, \qquad \rightarrow_1 \subseteq \rightarrow_2 \text{ implies } \rightarrow_1^* \subseteq \rightarrow_2^*.$$
 (Closure)

The following property is an immediate consequence:

$$(\rightarrow_1 \cup \rightarrow_2)^* = (\rightarrow_1^* \cup \rightarrow_2^*)^*. \tag{TR}$$

Local vs Global Properties. An important distinction in rewriting theory is between local and global properties. A property of term t is local if it is quantified over only one-step reductions from t; it is global if it is quantified over all rewrite sequences from t. Local properties are easier to test, because the analysis (usually) involves a finite number of cases.

2 Notes and Homework 1 (Abstract Rewriting)

Commutation and Confluence Two relations \to_1 and \to_2 on \mathcal{A} commute if $\leftarrow_1^* \cdot \to_2^* \subseteq \to_2^* \cdot \leftarrow_1^*$.

A relation \rightarrow on \mathcal{A} is confluent if it commutes with itself.

A classic tool to modularize the proof of confluence is Hindley-Rosen lemma.

Confluence of two relations \rightarrow_1 and \rightarrow_2 does not imply confluence of $\rightarrow_1 \cup \rightarrow_2$, however it does if they commute.

▶ **Lemma** (Hindley-Rosen). Let \rightarrow_1 and \rightarrow_2 be relations on the set A. If \rightarrow_1 and \rightarrow_2 are **confluent** and **commute with each other**, then

$$\rightarrow_1 \cup \rightarrow_2$$
 is confluent.

Local conditions. Commutation is a global condition, which is difficult to test. There are however *easy-to-check* sufficient conditions. One of the most useful such conditions is Hindley's strong commutation:

$$\leftarrow_1 \cdot \rightarrow_2 \subseteq \rightarrow_2^* \cdot \leftarrow_1^=$$
 (Strong Commutation)

▶ Lemma (Local test). Strong commutation implies commutation.

2 Factorization.

Both confluence and factorization are forms of commutation.

Let
$$\mathcal{A} = (A, \{ \xrightarrow{e}, \xrightarrow{i} \})$$
 be an ARS.

■ The relation $\rightarrow = \xrightarrow{e} \cup \xrightarrow{}$ satisfies e-factorization, written $\text{Fact}(\xrightarrow{e}, \xrightarrow{})$, if

$$\mathtt{Fact}(\overrightarrow{e},\overrightarrow{\rightarrow}): \quad \rightarrow^* \subseteq \overrightarrow{e}^* \cdot \overrightarrow{\rightarrow}^* \tag{\textbf{Factorization}}$$

The relation \xrightarrow{i} **postpones** after \xrightarrow{e} , written $PP(\xrightarrow{e}, \xrightarrow{i})$, if

$$PP(\underset{e}{\rightarrow},\underset{\rightarrow}{\rightarrow}): \quad \xrightarrow{*}^{*} \cdot \xrightarrow{e}^{*} \subseteq \underset{e}{\rightarrow}^{*} \cdot \xrightarrow{*}^{*}.$$
 (Postponement)

Postponement can be formulated in terms of commutation, and viceversa, since clearly $(\underset{i}{\rightarrow})$ postpones after $\underset{e}{\rightarrow}$) if and only if $(\underset{i}{\leftarrow})$ commutes with $\underset{e}{\rightarrow})$. Note that reversing $\underset{i}{\rightarrow}$ introduce an asymmetry between the two relations. It is an easy result that e-factorization is equivalent to postponement, which is a more convenient way to express it.

- ▶ **Lemma 1.** For any two relations \Rightarrow , \Rightarrow the following are equivalent:
- 1. $\rightarrow^* \cdot \rightarrow \subseteq \rightarrow^* \cdot \rightarrow^*$
- $2. \xrightarrow{i} \cdot \xrightarrow{e}^* \subseteq \xrightarrow{e}^* \cdot \xrightarrow{i}^*)$
- 3. Postponement: $\overrightarrow{+}^* \cdot \overrightarrow{+}^* \subseteq \overrightarrow{+}^* \cdot \overrightarrow{+}^*$
- **4.** Factorization: $(\stackrel{\rightarrow}{e} \cup \stackrel{\rightarrow}{i})^* \subseteq \stackrel{\rightarrow}{e}^* \cdot \stackrel{\rightarrow}{i}^*$

A local test. Hindley first noted that a local property implies postponement, hence factorization

We say that \rightarrow strongly postpones after \rightarrow , if

Notes and Homework 1 3

▶ Lemma 2 (Local test for postponement). Strong postponement implies postponement:

$$\mathtt{SP}(\underset{e}{\rightarrow},\underset{\rightarrow}{\rightarrow}) \ \mathit{implies} \ \mathtt{PP}(\underset{e}{\rightarrow},\underset{\rightarrow}{\rightarrow}), \ \mathit{and} \ \mathit{so} \ \mathtt{Fact}(\underset{e}{\rightarrow},\underset{\rightarrow}{\rightarrow}).$$

It is immediate to recognize that the property is exactly the postponement analog of strong commutation; indeed it is the same expression, with $\overrightarrow{+} := \leftarrow_1$ and $\overrightarrow{e} := \rightarrow_2$.

A characterization. Another property that we shall use freely is the following, which is immediate by the definition of postponement and property **TR**

▶ **Property.** Given a relation \Leftrightarrow such that $\Leftrightarrow^* = \xrightarrow{}^*$,

$$PP(\xrightarrow{e}, \xrightarrow{i}) \text{ if and only if } PP(\xrightarrow{e}, \xrightarrow{e}).$$

A well-known use of the above is to instantiate \Rightarrow with a notion of parallel reduction (as in [Takahashi])