Proof Nets

Reference:
Notes on proof-nets by Olivier Laurent

(Note: most slides are taken from the notes of Olivier Laurent)
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Proof Nets

A graph syntax for proofs

In the graphical representation of a proof structure, we do not mention
explicitly the direction of edges, but we draw them in such a way that
direction in represented in a top-down way:

example

Translate each of these sequent calculus proofs. Start from axioms....
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Proof structures

A proof structure M is a labelled directed acyclic graph
(DAG) with possibly pending edges (i.e. some edges may have
no source and/or no target) built over the alphabet of nodes
which is represented below.

( Note: in figures, the edges orientation is always top-bottom. )

A : At AL‘@JAl A &) B A @ B
ApB A®B

o The nodes are labelled by ax, cut, ®, %
o The edges are labelled by MLL formulas.

[ For each node/link: premisses = entering edges, conclusions = exiting edges ]

The conclusions of M is the set of pending edges of M.
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From proofs to proofs structures
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Is every structure the image of an MLL proof?
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Proof Nets

A PROOF NET is a proof structure which is the image of an MLL proof

Internal condition!
Purely geometrical conditions (correction) characterize the proof structures
which are proof nets

Theorem 1. A proof structure is correct iff it is a proof net.

Correctness criteria:

— (LT) Long trip [Girard]
— (AC) Connected-Acyclic [Danos-Regnier]
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Acyclicity. A multiplicative proof structure is acyclic if its switching graphs
do not contain any undirected cycle.

A proof structure with p % nodes induces 27 switchings and thus 27 switching
graphs. A switching graph is not a proof structure in general since its % nodes
have only one premisse.

A connected component of a switching graph is a connected component of
its underlying (undirected) multigraph.
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Danos-Regnier Criterion

Correctness Criterion

Switching Graphs

£
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Correctness
o Switching graphs are acyclic.
o Switching graphs are connected.
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Definition 2 (Correctness criterion AC (Danos-Reguier)). Let R le o
proof structure.

A switching s is o function on the nodes of R, which chooses, for each
3-link, either the left or the right premise.

A proof structure B is correct if for each switching, the unoriented
graph obtained by erasing for each 3-link of R the edges not chosen by s. is:

connected and acyclic
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Is this correct?
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« Correctness guarantees:
+ Graph is image of a proof (sequentialization)

+ Normalization progresses (no deadlocks)
+ Normalization terminates (no infinite cycles)
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Sequentialization

Theorem 4.1.1 (Sequentialization). Any connected multiplicative proof net is
the translation of a sequent calculus proof of MLL.
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The beauty of proof nets is
normalization
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Soundness

Proposition 4.1.1 (Soundness of Correctness)., The translation of a sequent
calculus proof of MLL is a connected multiplicative proof net.
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Sequentialization answers the question:

‘We have a proof net. The problem: it is the image of a sequent calculus proof?

And which?
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Normalization
(local graph reductions!)
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Let us try out!
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Write a proof net with this conclusion... and
normalize it
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Let us try one more. First, write a proof net with this conclusion... ~— ‘WO,-/( /

(X®X) o (X®X) -

XX ¥ (XeX) . XIXHIXoX)

TIP: How we write a proof net? As before, all proof nets with the same
conclusion, start with the same nodes (the formula tree!)
What distinguishes different proofs are the axiom links

To distinguish the different occurrences of atoms, let us write indices:
(1T XN T (X @ Xy)
In this case, we have two possible proofs, corresponding to two possible way to
write axioms:
1,3 and 2,4
OR
1,4 and 2,3
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When we have a formula whose normal proofs are exactly two, we have a - ;lilo'hew T~
good candidate to code BOOLEANS :) ~~—— °l‘I( /

xraxhr(xex
Let us indicate the formula ( )T XeX) with B (for boolean).

We call one proof true, and the other false...

We can feed one of our two values to a proof which takes a boolean, and return a boolean.

Bt B

We know that the normal form (i.e the result of computation)
will be of type B... Hence one of our two values.
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How we write a proof net of these conclusions?

AN AL musttype an edge conclusion of a par link, with premisses ....

A® AL musttype an edge conclusion of a tensor link, with premisses ...

Then we have to choose the axiom links!
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In sequent calculus, they correspond to these two proofs (one uses exchange, one no)

FXat X XX FXh X FXLX

FXOL NN GeX, FXOL 0N XaeX |
FXA X Xa@Xs FXOE 306N XX,

X @Xa)t D (X0 Xy) F (X @ X))t (X @ Xy)
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Try to normalize one of the proofs of

with the proof net which has conclusions

(X1®X)® (X" ¥ X)) (X T XeH) T (X7 ®Xs)

and axiom links: (1,6) (2,5 (3,7) (4,8)

What is the function coded by this proof net?
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