Proof Nets

Reference:
Notes on proof-nets by Olivier Laurent

(Note: most slides are taken from the notes of Olivier Laurent)
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Proof Nets

A graph syntax for proofs

In the graphical representation of a proof structure, we do not mention
explicitly the direction of edges, but we draw them in such a way that
direction in represented in a top-down way:

example

Translate each of these sequent calculus proofs. Start from axioms....
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Proof structures

A proof structure M is a labelled directed acyclic graph
(DAG) with possibly pending edges (i.e. some edges may have
no source and/or no target) built over the alphabet of nodes
which is represented below.

( Note: in figures, the edges orientation is always top-bottom. )

A : At AL‘@JAl A &) B A @ B
ApB A®B

o The nodes are labelled by ax, cut, ®, %
o The edges are labelled by MLL formulas.

[ For each node/link: premisses = entering edges, conclusions = exiting edges ]

The conclusions of M is the set of pending edges of M.
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From proofs to proofs structures
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Is every structure the image of an MLL proof?
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Proof Nets

A PROOF NET is a proof structure which is the image of an MLL proof

Internal condition!
Purely geometrical conditions (correction) characterize the proof structures
which are proof nets

Theorem 1. A proof structure is correct iff it is a proof net.

Correctness criteria:

— (LT) Long trip [Girard]
— (AC) Connected-Acyclic [Danos-Regnier]
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Acyclicity. A multiplicative proof structure is acyclic if its switching graphs
do not contain any undirected cycle.

A proof structure with p % nodes induces 27 switchings and thus 27 switching
graphs. A switching graph is not a proof structure in general since its % nodes
have only one premisse.

A connected component of a switching graph is a connected component of
its underlying (undirected) multigraph.
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Danos-Regnier Criterion

Correctness Criterion

Switching Graphs

£
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Correctness
o Switching graphs are acyclic.
o Switching graphs are connected.
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Definition 2 (Correctness criterion AC (Danos-Reguier)). Let R le o
proof structure.

A switching s is o function on the nodes of R, which chooses, for each
3-link, either the left or the right premise.

A proof structure B is correct if for each switching, the unoriented
graph obtained by erasing for each 3-link of R the edges not chosen by s. is:

connected and acyclic
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Is this correct?
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« Correctness guarantees:
+ Graph is image of a proof (sequentialization)

+ Normalization progresses (no deadlocks)
+ Normalization terminates (no infinite cycles)
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Sequentialization

Theorem 4.1.1 (Sequentialization). Any connected multiplicative proof net is
the translation of a sequent calculus proof of MLL.
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The beauty of proof nets is
normalization
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Soundness

Proposition 4.1.1 (Soundness of Correctness)., The translation of a sequent
calculus proof of MLL is a connected multiplicative proof net.

(e (o) .
RuCal s
Ty Al faypt Ay a

| (s ) (s )
T .
Iy A ‘\/_\E‘ 5l T A v .\‘/I . n
FET L amm

20

Sequentialization answers the question:

‘We have a proof net. The problem: it is the image of a sequent calculus proof?

And which?
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Normalization
(local graph reductions!)
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Let us try out!
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Write a proof net with this conclusion... and
normalize it
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Let us try one more. First, write a proof net with this conclusion... ~— ‘WO,-/( /

(X®X) o (X®X) -

XX ¥ (XeX) . XIXHIXoX)

TIP: How we write a proof net? As before, all proof nets with the same
conclusion, start with the same nodes (the formula tree!)
What distinguishes different proofs are the axiom links

To distinguish the different occurrences of atoms, let us write indices:
(1T XN T (X @ Xy)
In this case, we have two possible proofs, corresponding to two possible way to
write axioms:
1,3 and 2,4
OR
1,4 and 2,3
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When we have a formula whose normal proofs are exactly two, we have a - ;lilo'hew T~
good candidate to code BOOLEANS :) ~~—— °l‘I( /

xraxhr(xex
Let us indicate the formula ( )T XeX) with B (for boolean).

We call one proof true, and the other false...

We can feed one of our two values to a proof which takes a boolean, and return a boolean.

Bt B

We know that the normal form (i.e the result of computation)
will be of type B... Hence one of our two values.
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How we write a proof net of these conclusions?

AN AL musttype an edge conclusion of a par link, with premisses ....

A® AL musttype an edge conclusion of a tensor link, with premisses ...

Then we have to choose the axiom links!
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In sequent calculus, they correspond to these two proofs (one uses exchange, one no)

FXat X XX FXh X FXLX

FXOL NN GeX, FXOL 0N XaeX |
FXA X Xa@Xs FXOE 306N XX,

X @Xa)t D (X0 Xy) F (X @ X))t (X @ Xy)
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Try to normalize one of the proofs of

with the proof net which has conclusions

(X1®X)® (X" ¥ X)) (X T XeH) T (X7 ®Xs)

and axiom links: (1,6) (2,5 (3,7) (4,8)

What is the function coded by this proof net?
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Properties of MLL normalization

1. Confluence?
2. Is normalization weakly/strongly normalizing?
3. Would you be able to define a normalizing strategy?

4. Would you be able to define a normalizing strategy
which reaches normal form in a minimal number of

steps?
33
Properties of MLL normalization
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« Strongly normalizing
* Confluent
* Cut-elimination:
a proof-net in normal form contains no cuts
35
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MLL normalization
(local graph reductions)
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Properties of normalization

If the proof structure R is correct and reduces to R’,

Lemma (preservation of correctness)
then R’ is correct. J

34

Correctness criterion,
simplified
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Correctness: if we focus on aciliciti Danos—Reinier criterion

A proof structure is correct if every (undirected ) cycle contains a segment
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W(M ir) we can throw away MIX later
. By requiring connectness
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4 new nodes

41

FTL,A
FoT, A

@ Boxes never overlap.

@ Boxes are sequential (as rules in sequent calculus).
@ Correctness: box by box.

@ Boxes permit duplication and erasure.

43



? = -
P, A i"d FIN.A FA AL

—
FTOA -k B ~- ¢
T, A'_?P)AA.?A o A cu
FraA
LT A Fazatzal -, A FICA b aczal 2at
FrLIA FAAr ¢~ P LA 7AL
FT.A out T A
FiLa -
FrA ra
i Taval t - =LAy,
Teut T A
T, A
2, 244 —_—
LA, LAl Tma! emoeats
FmaAle —FmmE,
L5, 15 Tt

44

46

Reduction Steps: 7w

48

cut
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— ax
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Can you write the proof so that all axioms are atomic (assuming A atomic formula)?
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Reduction Steps: 7d

47

Reduction Steps: 7¢
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Properties of MELL reduction:

Confluence?
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Reduction Steps: 7p

51

53

Local Confluence ...
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Properties of MELL reduction

1. Isconfluent?
2. Is weakly normalizing?
Tip for WN.

Given a proof-net R, try to make decrease a size S(R).

For example:

* Size of a cut: pair (s,t) where

s is the size of the cut formula, and

tis the size of the ?-tree above the ? premisse of the cut if any, or 0

* Size S(R) of the proof-net R:
the multiset of the sizes of all its cuts
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Weak Normalization

e cutrelation: ¢ < ¢ (exponential cuts only)

A
e
T
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-tree| )

( |formulal ,
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From weak to strong normalization

Proposition B.5 (Increasing Normalization)
For any ARS, local confluence A p-increasing A weak normalization

Strong normalization of proof-nets just a matter of some technical steps

Lemma 2.7 (Weak non w Normalization)
The —y reduction of numbered proof nets is weakly normalizing.

—

strong normalization.

Lemma 2.8 (Increasing non w Reduction)
The reduction —+y on numbered proof nets is p-increasing where, for a numbered proof net R,

w(R) = I + p with:
o [ is the sum of all the labels of R,

e p is the sum of the depths of the bozes of R.

60
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Weak Normalization

Weak Normalization

Size of a cut: pair (s,t) where
s is the size of the cut and,
t is the size of the ?-tree above the ? premisse of the cut if any, or 0

Size S(R) of the proof-netR:
the multiset of the sizes of all its cuts

he size of a -tree is its number of nodes.
descent path (bis): from a node downwards to a conclusion or to a cut or to a premisse of !

sde (that is we do not continue down through an | node)

9

o a/a (shared az) ® afa (shared cut)
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Bonus Exercise

A proof-nets is polarized if every edge is labelled by a positive or a negative formula

Let M be a MLL polarized proof structure. We denote by Pol(M) the graph which has the
same nodes and edges as M, but where the edges are directed

downward if positive, upwards if negative.

Do you see any simple way to show that the following are equivalent?

(1.) M is acyclic correct, (2.) Pol(M) is a DAG.
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‘We have a proof net. The problem: it is the image of a sequent calculus proof?
And which?
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In fact, what is a sequent calculus proof?
A sequent calculus proof is a tree of rules...
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Stich a tree directly correspands to the following sequent calculus proof:
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Look at the terminal nodes

* Ax-node
s
a8
* Par-node 6]
A% B
* Tensor-node s
Ax;/jB
2)
)
AmB 1
& &
¢ Cut-node {eut)
]
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72

71
Translating lambda-calculus
into LL
CbN and CbV
73
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Simply typed lambda calculus

(var) Dr:rht:o

—————————— (abs)
F'kXzt:t—=0o

Te:rha:r

X =X
(A= B)* =14* - B*

(IF A) =" - 4°
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CbV translation
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CbN translation

X=X
(4— B)" =14° — B*

(T'FA)®=1"FA°

Fht:r o Thru:r
Thtu:o

(app)

AFMN: B

-~
|

S

Ly g

CbVv

Three lambda calculi... Orindeed just one.

In A, the natural constraint is:

anslations (intuitionistic into linear logic) are well-known to

correspond to the CbN and CbV.

Taking this point of view provides a modular approach.

m | noreduction in the scope of a !-box

® A" no noreduction argument position.

® A noreduction under l-abstraction

Girard's translations transform this policy respectively in:

X' =1X
(A— B)* =1(A* — B") \T
(CF A =T*F A o
AFMAM:A=B x
TR AT E)
-
76 77
linear A-calculus
The two Girard's tr:
CbV A-calculus CbN M\-calculus
The translation gives :
m Confluence
m Standardization (finite and asymptotical)
79

78
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