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Plan

A foundational study of functional programming languages,

* building on:
» proof theory (Types, Curry-Howard isomorphism) and
» the theory of lambda-calculus,

« adopting the dynamic and quantitative view brought by Linear Logic.

» Focus first part: a quantitative view in Operational Semantics
» Focus second prat: a quantitative view in Denotational Semantics

» Openings towards active research topics: Bayesian learning/
probabilistic programming, ...

* Courses from LMFI first term we build on:
» Proof Theory (cut-elimination, lambda calculus, Curry-Howard iso)

* Connected to the MPRI course: Semantics of Programming Language
(which builds on the models of Linear Logic)

Linear Logic [Girard87] breakthroughs

N‘?W insights into proof especially suitable for
_(V'a the Curw-H?ward €9 . Cost analysis (runtime/memory space/ other resources)
into the semantics of pro . modelling probabilistic & quantum programming

* Proof Nets: advanced formal system + Dynamic view, capturing the flow of

computation:

» Game Semantics

S .

« representation of proofs (\-terms, Geometry of Interaction
functional programs) by graphs

+ tool for the analysis of cut-elimination
(= execution) as graph-rewriting * Account for resources
process » Quantitative Semantics

»Quantitative Type Systems

16/01/2025

Organization

* Lectures:
Wednesday 14h00-16h00
Friday 14h00-16h00

* Grading:
»weekly homework projects

Linear Logic [Girard87] breakthroughs

New insights into proof theory and
(via the Curry-Howard correspondence between proofs and programs )
into the semantics of programming language.

* Proof Nets: advanced formal

system * Dynamic view, capturing the flow

of computation:

»Game Semantics
»Geometry of Interaction

« representation of proofs (A-terms,
functional programs) by graphs

« tool for the analysis of cut-
elimination (= execution) as graph-
rewriting process

Resource awareness (Quantitative Types)
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Higher-Order Bayesian Networks

Higher-Order Caleulus

First-Order Rules
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Quantum lambda calculus

1
Quantum memory (Alr, u).CNOT (Her, 1)) (0, 0)

H, cuo: unitary operators
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* Entanglement —+ individual qubit states non-separaile

+ Operation on one or o0 several qubits in parallel
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synchranization

O en the wire: elassical < quantum
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for A binary operator:

[Q: (U {ro. 1)) =4 £ 1Q'; (ro, r)] B where @ is (A ® 1d)Q.
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Plan / topics for Part 1 Hap,
D&ON
* Theoretical tools to study the operational properties of a system:
» Rewrite Theory (rewriting=abstract form of program execution)

+ Linear Logic and Proof-Nets.
* Bridging between lambda-calculus and functional programming:
»  Call-by-Value and Call-by Name, weak and lazy calculi.

* Beyond pure functional:

» Probabilistic programming and Bayesian Inference:
Probabilistic lambda calculi, Bayesian proof-nets

(Internships possible on operational aspects of probabilistic and
quantum computation)

11
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Higher-Order Bayesian Networks
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LINEAR LOGIC

Proof-nets / ! A-calculus

CbV A-calculus CbN A-calculus

Resources

* Webpage https://www.irif.fr/~faggian/LMFI2025

* Lecture Notes (by A. Middeldorp, O. Laurent, L. Ong)



Operational semantics
of formal calculi and programming languages

Rewriting theory

* Rewriting = abstract form of program execution

« Paradigmatic example: A-calculus
(functional programming language, in its essence)

13

Math formalizations...

Example (Group Theory

signature e (constant) (unary, postfix) (binary, infix)
equations e-x ™ X X" -xme (x-y)-zmx-(y z) &
theorems e mge  (x-y) mey -xT
rewrite rules e-x — X X-e —+ X R
X x = e Xx — e
(x:y)-z = x-(y-2) X7 = x
e — e (x-¥) = y -x
X o(xy) ooy x-(x"-y) 2y

@ s tisvalidin & (s~ t) if and only if s and t have same R-normal form
@ R admits no infinite computations

@ & @ == £ has decidable validity problem

15

Graph Rewriting

LL proof-nets

Geometry of Interaction
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A colony of chameleons includes 20 red, 18 blue, and 16
green individuals. Whenever two chameleons of different
color meet, each changes to the third color. Some time ,
passes during which no chameleons are born or die nor do é'

any enter or leave the colony. Is it possible that at the end
of this period, all 54 chameleons are the same color?

BB DD PW - DD
BB -PDD AP DD
"FEEY I Y B Y

T

14

Modelling computation

Example (Lambda Calculus)

signature A~ (binds variables) (application, binary, infix)

terms M = x| (Ax. M) | (M- M)

a conversion AX.x y =4 Az.2-y

3 reduction (Ax. M) - N — 3 M[x := N|
replace free occurrences of x in M by N
(and avoid variable capturing)

) %
rewriting (A.x - x) - (A x-x) = (A x-x) - (Ax.x - x) L
inventor Alonzo Church (1932)

»

both Combinatory Logic and Lambda Calculus are Turing-complete J

17
Rewriting

m Rewrite Theory provides a powerful set of tools to study computational and
operational properties of a system : normalization, termination , confluence,
uniqueness of normal forms

m tools to study and compare strategies:
m |s there a strategy guaranteed to lead to normal form, if any (normalizing strat. )?

m Abstract Rewrite Systems (ARS) capture the common substratum of rewrite
theory (independently from the particular structure of terms) - can be uses in

the study of any calculus or programming language.

19



Abstract Rewriting: motivations

concrete rewrite formalisms / concrete operational semantics:

A-calculus

... A-calculus

Quantum/ probabilistic/ non-deterministic/....

Proof-nets / graph rewriting

Sequent calculus and cut-elimination

.

string rewriting

.

term rewriting
abstract rewriting

* independent from structure of objects that are rewritten
« uniform presentation of properties and proofs

20

Abstract Rewriting

Basic language

22

. — inverse of —
o transitive and reflexive closure of —
e " inverse of —+*
sogtiffs =g rort —g s
S tiffs=s5) g8 ... ogs, =tfornz0
. o symmetric closure of —
. ot conversion (equivalence relation generated by —+) *%
s 7 transitive closure of —
. - reflexive closure of —

- is relation composition: R-S={(a,c)|aRband bSc}

24
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Why a theory of rewriting matters?

* Rewriting = abstract form of program execution

Rewriting theory provides a sound framework for reasoning about
« programs transformations, such as compiler optimizations or parallel implementations,
* program equivalence.

21

ARS

Definition 1.1.1. An abstract rewrite system (ARS for short) is a pair A = (A, —)
consisting of a set A and a binary relation — on A. Instead of (a, b) € — we write a —
and we say that a — b is a rewrite step.

a b [; +d

ARS A = (A, )

e f * A={a,b,cd,efg}

o [ (3 (5,9 (o), (eF)
o {(e‘b:. (e.6), (Fe). () }

* A (finite) rewrite sequence is a non-empty
sequence (g, ... @y)of elementsin A suchthat a; - a4y

B

We write  ay =™ a, orsimply a, =" a,
® rewrite sequence

» finite a—+e—s>b—sc—of

* empty a

e infinite a—+e—b—ra—se—sb—-

23

Composition

w If =1, —2 are binary relations on A then —,; - —5 denotes their
composition, i.e. £ —; - —5 s iff there exists u € A such that
t— u—¥2 8.

= We write (4,{—.—2}) to denote the ARS (A, —)
where = = — U —a.

25
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Closure

The transitive-reflexive closure of a relation is a closure operator, i.e.

satisfles Terminology

—=C—*, (=) =-*, —+1 € —; implies —] C —3 i i
® if x —+* y then x rewrites to y and y is reduct of x

As a consequence ® if x =" z "+ y then z is common reduct of x and y

® if x ++* y then x and y are convertible
(=1 U=2)" = (=] U=3)"

J
Example

a——b——c¢ d

N e

f o elf fld notgld
\ " s getd
g
J
26 27
Normal forms model results Operational properties of interest

Definition 1.1.11. Let A = (A, —) be an ARS. An element a € A is reducible if there

exists an element b € A with a — b. A normal form is an element that is not reducible.

The set of normal forms of A is denoted by NF(.A) or NF(—) when A can be inferred from

the context. An element a € A has a normal form if a —* b for some normal form b, In L

that case we write a — b, ¢ Termination and * How to Compute

Confluence
Existence and uniqueness reduction strategies with good
b d of normal forms properties:
Element a has normal forms ? * standardization,
\ T l How many normal forms has this ARS? * normalization
e« f ARS A = (A, )
\ J * dis normal form
S e NF(A)={d g}
g o bo'g
28 29
*Termination*
Definition 1.2.1. Let A= (A,—) be an ARS. An element a € A is called terminating

or strongly normalizing (SN) if there are no infinite rewrite sequences starting at a. The
ARS A is terminating or strongly normalizing if all its elements are terminating. An
* no infinite rewrite sequences element o € A ha.;i unique no-{'mal forms (UN) if it does not have different normal f?rms
(Vb,c€ Aif a =" band a = ¢ then b= ¢). The ARS A has unique normal forms if all
its elements have unique normal forms.

e SN strong normalization  termination

* WN  (weak) normalization
An element a is weakly normalizing (WN) (or simply normalizing) if it has a normal form.

« every element has at least one normal form
«VYadb a='b

s UN unique normal forms a

b
* no element has more than one normal form \I
e

ais WN? SN?
cis WN? SN?
aorc hasUN?
e Vabc ifa—'banda—'cthenb=c

—

\

The nf are convertible?

W mi—— 0

30 31
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*Confluence*

Definition 1.2.3. Let A = (A, ) be an ARS. An element a € A is confluent if for all
elements b,c € A with b *« a —* ¢ we have b | ¢. The ARS A is confluent if all its a b [ d

elements are confluent. \ T l
/ \ ® Ya,b,c a e+ f
* * ‘y & \

3d d

1. ais confluent?
2. fis confluent?

Bonu 5 o,
3. Can you add a single arrow so that the resulting ARS nt

3 has unique normal forms without being confluent ?
Every confluent ARS has unique normal forms. q &

32 33

Same meaning for *equivalent* terms

Given
flex) — ¢ *
R=1{ a — b
flx,by — d /\
~ re
N e
f(a,a) has normal form? o CR .
Can you produce two different nf? * N . L’ *
FOS

we can compute from the same term f(a, a) two different normal-forms c and d
different meaning for same term!
(also: different meaning for equivalent terms)

34 35

Confluence & CR

Definition 1.2.3. Let A = (A, ) be an ARS. An element a € A is confluent if for all
elements b,c € A with b *« a —* ¢ we have b | ¢. The ARS A is confluent if all its
elements are confluent.

Definition 1.2.10. An ARS A = (A, —) has unique normal forms with respect to
conversion (UNC) if different normal forms are not convertible (¥ a,b € NF(A) if a ©* b

Confluence Church-Rosser then a = b).
. *
.. o N N CR L 7 in an ARS with the property UNC every equivalence class of convertible
L e AR L elements contains at most one normal form.
S N - .
e . Q: are UN and UNC equivalent?

a+—b—c+—d—e

An ARS A = (A,—) is confluent if and only if(—)* C .L;

36 37



Global vs Local

38

Confluence

A property of term t is local if it is quantified over only one-step reductions from t;
it is global if it is quantified over all rewrite sequences from t.

Locally confluent (WCR)

Diamond

Strongly confluent

|
* |

I
*

- — =

IR | - — =

[RICIRCTN{TICH Let A = (A, =) be an ARS. An element a € A is m for all
elements b,c € A with| bea—c  |we have b | c. The ARS A is confluent if all its

elements are confluent.

An ARS A = (A,—) has the diamond property () if +-— C|—= -

40

An ARS A = (A, =) is strongly confluent (SCR) if + - — C =7 - "+, see Figure
a Show that e
b Daes the col
¢ Show that an ARS A = (A, )} is confluent if and only if &%+ = € —% «

¢ strongly confluent ARS is confluent.

erse also hold?

42

16/01/2025

Confluence

A property of term t is local if it is quantified over only one-step reductions from t;
it is global if it is quantified over all rewrite sequences from t.

Locally confluent (WCR)

Diamond

Strongly confluent

SR | - ==

Let A = (A, —) be an ARS. An element a € A is confluent if for all

elements b,e € A with b "+ a =" ¢ we have b | e. The ARS A is confluent if all its
elements are confluent.

Global property:

39

e diamond property <

Di=e= £ =hoi=

® VYab,c a
7N
b Cc

] L

dd d

e every ARS with diamond property is confluent

Proof by tiling

41
Which is true?
1. SN =>WN (“a—b
2. WN=>SN
3. Confluence => UN Ca——D>b——c¢

4. UN=>Confluence

5. Confluence => Local confluence
6.  Local confluence => Confluence

a——b_ ¢

7.  WN & UN => Confluence
8. WN & Local Conf. => Confluence

9. SN & Local Conf. => Confluence

43



WN vs SN
F:a —— b
(i) WN =& SN
| flay = ¢
R_{ f = fla)

The system is weakly normalising but not strongly normalising:

Can you find an infinite reduction sequence from f(b)?
fb) = fla) = ¢

flb) = fla) = fla)...

44

WN & UN = CR

.

e WN = dn;,m: b —+'mand bb ' ny

* UN = m=m = blb

46
Memo: Well-founded Induction
given
o property P of ARSs| with P(A) <= Va:P(a)
e strongly normalizing ARS A = (A, —)
to conclude

* P(A)

it is sufficient to prove

e if P(b) for every b with a — b then P(a)

induction hypothesis

for arbitrary element a

48
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1. SN =>WN (Ca——b
2. WN=>SN

3. Confluence =>UN
4. UN =>Confluence

5.  Confluence => Local confluence g
6.  Local confluence => Confluence —

7. WN & UN => Confluence
8. WN & Local Conf. => Confluence

9. SN & Local Conf. => Confluence Newman's Lemma

45

Newman Lemma

Newman’s Lemma. Every terminating and locally confluent ARS is confluent.

By well-founded induction

47

Newman Lemma

Newman’s Lemma. Every terminating and locally confluent ARS is confluent.

b @ o
. @
. T @ WCR
S @ induction hypothesis (a — by — by is CR)

@ induction hypothesis (a — ¢; = ¢ is CR)

49



Newman Lemma

on,
S Exg, roise

Newman’s Lemma. Every terminating and locally confluent ARS is confluent.

A second Proof Tet A = (A‘ 4) terminating and locally confluent

It suffices to show that every element has unique normal forms

® suppose B={ac A|-UN(a)} # @
e let b € B be minimal element (with respect to —)

e b—'n and b—' ny with ny # ns

» Conclude by showing that it is impossible (absurd)

50

Recap basics

= An absitract rewriting system (ARS) is a pair (A,—) consisting of a set A and a binary
relation — on A whose pairs are written t— s and called steps.

= We denote —* (resp. —~) the transitive-reflexive (resp. reflexive) closure of —. We
write f4—u if u—1.

= If —,—+; are binary relations on A then —) - —, denotes their composition, i.e. £ —- 25
if there exists ue.A such that t—ju—ss.

= We write (A,{—1,—+2}) to denote the compound system (A,—) where - = —;U—a.

wm A —-sequence (or reduction sequence) from { is a (possibly infinite) sequence
1, 4y, ba,... such that £ — 4.
t—" s indicates that there is a finite sequence from ¢ to s.

A —-sequence from { is marimal if it is either infinite or ends in a —-nf.

52

You have already seen an example:
in the notes by Joly

(Azy)(Azz)z) ——=y (A za)((Ax2)a) ——» (Awx)a((Ar x)x)

(Azy)x =y Do) T -

Definition The development relation is the least reflexive relation > on A such that:
o tpt = AztoAxt
e tot, uvu = tuvth
etot, ubu = (Azt)upt'|r:=u].

Lemmal — C p C —».

54
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Recap Flash Ex

v

EX Say which properties hold

Confluent

Locally confluent

Normalizing (weakly normalizing, WN)
Terminating (strongly normalizing, SN)

Eall ol ot

51

The heart of confluence is a diamond

| Prop. DIAMOND implies CONFLUENCE |

Can rarely be used directly:
Most relations of interest do not satisfy it

(Characterize Confluence). — is confluent if and only if
there exists a relation o such that

a =" =",
b. e is diamond.

53

You have already seen an example:
in the notes by Joly

Lemma 3 (Characterize Confluence). —+ is confluent if and only if
there exists a relation = such that

a. et = ',

b. e is diamond.

Definition The development relation is the least reflexive relation > on A such that:

e tpt = AztoAxt
ottt uvu = tuvt
etot, ubu = (Azt)upt'|r:=u].

Lemmal — C o C —».

55



Closure

—ug 15 the retlexive, transitive closure af 40
(1) M =+ N = M N,
(2) My M,
(3) Mg N, Nomg L= M g L.

The transitive-reflexive closure of a relation is a closure operator, i.e.

satisfies
=4C=*, (2%) == -1 C = implies =} € =5
As a consequence
(i U=n)" = (2]u-=g)”

56
Proving confluence modularly
Lemma (Hindley-Rosen)
If two relations —, and —, are confiuent and commute with each other, then
— U =, is confluent.
58

an effective usable technique

Lemma (Hindley-Rosen)
If two relations —; and —: are confluent and commute with each other, then

= U =, is confluent.

1 1
Global condition | B . ' | Local condition
(all sequences) . | (one-step test)
2|4 +12 2 !
I I
I i
= -+ -
77777777 W O
1

—1-2C =" T (Strong Commutation)

» Lemma (Local test). Strong commutation implies commutation.

60
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Commutation

Commutation. Two relations —; and —9 on A commute if
1Tt T T

Confluence. A relation — on A is confluent if it commutes with itself.

57

An effective usable technique

Lemma (Hindley-Rosen)

If two relations —, and —, are confiuent and commute with each other, then

— U =, is confiuent.

1 1
Global condition | = . “ 7 Local condition
(all sequences) . | (one-step test)
N 12 2 12
| h
| .
* + = -
________ ¥ L
1 1
Lemma (Hindley's local test)
Strong commutation <, - —, C —." -« implies commutation. J

59

3.3.8. LEMMA. —», commutes with —»,.

The Lawnlbda ProoF. By lemma 3.3.6 it suffices to show
Calenlus
]
M —— M,
I
]
'
[,
n [t ]
i
|
- :
My ———— . M,y
=8

3.3.9. THEOREM ( Church—Rosser theorem for [Bn-reduction).
(i) The notion of reduction By is CR.

61
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Operational properties of interest

¢ Termination and * How to Compute

Confluence

Existence and uniqueness reduction strategies with good

of normal forms properties:
 standardization,

* normalization

62

Normalization

» Def. (A,—) is strongly (weakly, uniformly) normalizing if each t € A is, where the three
novmalization notions are as follows.

w1 is strongly —-normalizing: every mazimal —-sequence from t ends in a normal form.
wm ¢ s weakly —-normalizing: there exist a —-sequence from t which ends in a normal form.
w t is uniformly —-normalizing: t weakly —-normalizing itmplies t strongly —-normalizing.

If terms are not strongly normalizing, how do we compute a normal form, or even test if
any exists? This is the problem tackled by nermalization. By repeatedly performing only

specific steps -, we are guaranteed that a normal form will eventually be computed, if any

64

Factorization
(aka weak Standardization)

another commutation!

67
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Strategies

63

Normalizing strategis

» Def. (A,—) is strongly (weakly, uniformly) normalizing if each t € A is, where the three
novmalization notions are as follows.

w1 is strongly —-normalizing: every mazimal —-sequence from t ends in a normal form.
wm ¢ s weakly —-normalizing: there exist a —-sequence from t which ends in a normal form.
w t is uniformly —-normalizing: t weakly —-normalizing itmplies t strongly —-normalizing.

» Def.
w5 is a strategy for — if —2C—, and it has the same normal forms as —.

w i is a normalizing strategy for — if whenever t€ A has —-normal form, then every
mazimal -sequence from t ends in normal form.

65

Factorization
(aka Semi-Standardization, Postponement, or often simply Standardization)

* most basic property about how to compute

(=L = t—h>*‘—h>*u

B

head factorization J

A key building-block in proofs of more sophisticated how-to-compute
properties:

¢+ allows immediate proofs of normalization
(a reduction strategy reaches a normal form, whenever one exists)

+ simplest way to prove standardization, by using Mitschke's argument
(left-to-right standardization = iterate head factorization)

69
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Factorization
(aka Semi-Standardization, Postponement, or often simply Standardization)

Melliés 97:
the meaning of factorization is that the essential part of a computation can
always be separated from its junk.

Assume computations consists of
m steps o which are in some sense essential, and
m steps > which are not.

Factorization says that every rewrite sequence can be reorganized/factorized as

a sequence of essential steps followed by inessential ones.

t—"u = t ?* - —" U e-factorization
i

70

Local test ?

We say that -+ strongly postpones after —, if
SF(?.?) Do C 2 T\= (Strong Postponement)

» Lemma (Local test for postponement [26]). Strong pestponement im-
plies postponement:

SP(;»,T)) implies PP(-g, ). and so Fact(, T>).

72

Does SP hold for A-calculus?

» Ex (A-calculus and strong postponement). 3 reduction is decomposed
in head reduction w8 and its dual o

=g =8 U ]
Consider:

(Az.xax)(Iz) g (Ar.zax)z RS

(Az.xaw)(iz) 28 (1z)(12)(12) s 2(12)(Iz) s zz(lz) ez

74
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Factorization. Let A = (A, {5, +}) be an ARS.

= The relation — = - U — satisfies e-factorization. written Fact(-. )
if

Fact(?.?] co(gup) et ?' (Factorization)
= The relation - postpones after -, written PP, ), if

PP(— —I~) Lottt et (Postponement)

CA

» Lemma. For any two reloiions 7 the following are equivalent:
1_?._?g?.__i).

2-7"?“9?"7"1‘

3 "

4.

- Postponement: —* - - e

<=y
. Factorization: (5 U—)* € 2%« —°

71

Does SP hold for A-calculus?

» Ex (A-calculus and strong postponement). 3 reduction is decomposed
in head reduction w2 and its dual ']

s =i u ]
Consider:

(Az.zxx)(lz) nd (Az.xzx)z RS

73

et The heart of confluence is a diamond
<

| Prop. DIAMOND _implies CONFLUENCE |

Can rarely be used directly:
Most relations of interest do not satisfy it

(Characterize Confluence). — is confluent if and only if
there exists a relation - such that

a. et = =",

b. e is diamond.

75
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postponement trick

» Property 2 (Criterion). Given —=2U—, e-factorization holds

_>*g_e)* _|>*

iff exists -

(same closure)
- T e (strong postponement)
1 - 1

Hence: 272t € 2Tt (Postponement)

76

Concretely: CbN and Head Factorization
MEMQ from last semester

= &"=—" (same closure)

- .?}.?(_:_e)* o= (strong postponement )

;i3 the smallest reflexive velation on A such that:

o toitt = Azte Aot
o o, unu = tun iy

e tot uby = (Azt)us; Azt '

16/01/2025

Concretely: CbN and Head Factorization
MEMO from last semester

You have already seen this! T. Joly, page 119
We now want to prove that if # —» #' then there is u such that t —», u —»; t":

"
-

\g

= " =" (same closure)

- oG e (strong postponement )

77

Examples
of uses for factorization

} . 1. Merge: to; -
The development relation is the least reflerive relation v on A 5
ottt = ArtoArt
o tot ubu = tubty
o tot ubu = (Arth s tr=]

2. Split: Ift > uthent -}

-, u thent o> u

e u

78

The Lambeda
Caleutus

Call-by-Name and
Call-by-Value A-calculus

CALLAY-NAME, CALLEY-VALUE AND THE
LCALCULLS

80

79

Call-by-Name and Call-by-Value A-calculus: terms

Terms and values are generated by the following grammars

Vo=
M ==

z|Az. M ( Values, V)
z|e| Az M| MM (Terms )

where x ranges over a countable set of variables, and ¢ over a disjoint (possibly empty) set
O of constants.

w I the set of constants is empty, the calulus is pure, and the set of terms is denoted A.
= Otherwise, the calculus is called applied, and the set of terms is often indicated as Ap.

Terms are identified up to renaming of bound variables, where Ar is the only binder
constructor. P{Q/x} is the capture-avoiding substitution of (2 for the free occurrences of x

in P.

81
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Contexts (with one hole ( |)) are generated as follows. C|M] stands for the term obtained

from C by replacing the hole with the term M (possibly capturing free variables of M).

Cu=()||MC|CM|Az.C ( Conterts)

82

Call-by-Name vs Call-by-Value A-calculus

e The A-calculus can be seen both as an equational theory on terms and as
an abstract model of computation. g

The Lambda
Caleulus

*  With the functional paradigm point of view, the meaning of any A-term is
the value it evaluates to. LN, AR T o T

84

CbN: Head Reduction

Head reduction in CbN

Head reduction is the closure of 3 under head context
Azy..zn. | DMy M
Head normal forms (hnf), whose set is denoted by H, are its normal forms.

= Given a rule p, we write 3, for its closure under head context.

= A step —, is non-head, written —, if it is not head.
What about?

Hi=( )| Aze.H|[HAM

86
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Reduction = contextual closure of a rule

Contexts (with one hole (| )) are generated as follows. C{M] stands for the term obtained
from C by replacing the hole with the term M (possibly capturing free variables of M).

Co={()||MC|CM | z.C (Contexts)

= A rule pis a binary relation on Ag, which we alse denote v+, writing R, B, R is
called a p-reder.
The best known rule is §:

(Az.MIN 5 M{N/x}

= A reduction step —, is the closure under context C of p.
Explicitly. T T" holds if T=C(R|. T'=C{(R'), and R+, R'.

83

Call-by-Name and Call-by-Value A-calculus

CbN and CbV Calculi.
= The (pure) Call-by-Name caleulus A® = (A,—;) is the set of terms equipped with the
contextual closure of the F-rule.

(Az.M)N =5 M{N/x}

= The (pure) Call-by-Value calculus A% = (A, —4 ) is the same set equipped with the
contextual closure of the &,-rule.

(A M)V =5, M{V/x} where VEV

85

CbN Head Factorization

Head Factorization

Head factorization allows for a characterization of the terms which have head normal form,
that is M has hnf if and only if T‘hrmlucl.ion from M terminates.

» Theorem 2 (Head Factorization).

w Head Factorization: —3* C 7),;" :hm*.

= Head Normalization: M has hnf if and only if M—hr,,*S (for some SEH) .

87
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Call-by-Value

* According to the function paradigm of computation the goal of every
computation is to determine its value

* Since functions are seen as values, it is natural
to consider weak evaluation. In practical implementations, weak evaluation is
more realistic than the full beta reduction

88

CbV:  Left contexts L, right contexts R, and (arbitrary order) weak contexts W are defined
by

Lo=( )[LM VL

Ru=( || MR|RV
= ) WA | MW

The elosure under L (resp. W.R) context. is noted - (resp 7. )

» Fact 3 (Weak normal forms). Given M a closed term, M is g-narmal iff M is a value.

Question: which of the above reductions are deterministic?
» Fact 6 (7 ). Let M be a closed term.
1. flI—‘V‘ V iff M*V. True?
2. My Viff M 5" True?
3. Assume you proved M %V (rantime is k). Daes the sequence of -p-steps also terminates?
Can we say how long does it take?
With the same assurpiion as above, what about

4.

90

Basic properties of the
contextual closure

92
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CbV: Weak Reduction

Weak reductions in CbV

The result of interest are values (i.e. functions).
In languages, in general the reduction is weak, that is, it does not reduce in the body of a
function.

There are three main weak schemes: left, right and in arbitrary order.
Left contexts L, right contexts R, and (arbitrary order) weak contexts W are defined by

La=()|LM|VL
R:=()| MR|RV
W= ( ) [ WM | MW

Given a rule — on A, weak reduction - is the closure of — under context W.
A step T—S is non-weak, written 7' 3 S if it is not weak. Similarly for left (-|0 and :T)
and right (5 and =).

» Fact 3 (Weak normal forms). Given M a closed term, M is p-normal ift M is a value.

89

CbV Weak Factorization

Weak Factorization.

Let se {w.Lr}
= weak fectorization of —p,:  —5," C 35,7 5,
w Convergence: T—5 W(WeV) iland onlyif T—53*V (VeV)

» Corollary 4. Given M a closed term, M has a 3,-reduction to a value, if and only if the
5, -reduction from M terminates.

91

Basic properties of contextual closure

If a step T'—. T" is obtained by closure under non-empty context of a rule ., then T and
T have the same shape, i.c. both terms are an application (resp. an abstraction, a variable).

» Fact 5 (Shape preservation).

= Assume T =C(R) -+ C(R') =T" and thai the context C is non-empty. Then T and 1"
have the same shape.

w  Hence, for any internal step M—3M" (se {h, w.lr,...}) M and M have the same shape.

The following is an easy to verily consequence.

» Lemma 6 (Redexes preservation).
1. CbN: Assume 'I':hm 5. T is a fF-redex iff sois S.

2. CbV. Assume T 55, S. T is a fy-redex iff s0 is S.

93
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Internal steps preserve head and weak normal nf

Fixed a set of redexes R, M is w-normal (resp. h-normal) if there is no redex ReR such
that M =W(R) (resp. M =H{R))

» Lemma 7 (Surface normal forms). 1. CbN. Let R be the set of J-redeves
Assume M g M'. M is h-normal < M’ is h-normal.

2. ChV. Let R be the set of 3,-redexes.
Assume M <35 M'. M is w-normal < M’ is w-normal

Homework: point 2
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Recap

Classical key result (e.g. in Barendregt 84 book) :1.' -.._.:.:

in Call-by-Name:

= Head Factorization: —* C T.C,* . —h>3*_

= Head Normalization: M has hof if and only if M —hm* S (for some SEM) .

CALLEVNAME, CALLBV-AALUE AND Til

* Classical key result [Plotkin 75] P

i o et i, e bt Yoy, B o
T L

i st

in Call-by-Value:

Let se{w,lr}
w  weak factorization of —g, :

=8 S s e

wm  Convergence: T—p W(WeV) ifand only if T4,V (VeV)
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CbV Weak Factorization

Weak Factorization.
Let s {w.l.r}

= weak factorization of =5 ;=" C oo

= Convergence: T—5, WWeV) ifand only if T34,V (VEV)

» Corollary 4. Given M a closed term, M has a 3,-reduction to a value, if and only if the
Pa. -reduction from M terminates.

98
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Back to
Factorization

Back to using it

95

CbN Head Factorization

Head Factorization

Head factorization allows for a acterization of the terms which have head normal form,
that is M has hnf il and only LI'—h>-11-|I|u-l[(m from M terminates,

» Theorem 2 (Head Factorization).
= Head Factorization: — —" C© 5" ra™

= Head Normalization: M has hof if and only if M 34§ (for some SEH) .

97

You designed a system
You have Factorization
Now what?

From Factorization to Normalization (or Standardization)
in a few easy steps [Mitschke 79]

99
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