M2 LMFI **Proofs and programs: advanced topics Linear Logic and Quantitative Semantics** Teachers: Claudia Faggian CNRS (IRIF) faggian@irif.fr https://www.irif.fr/~faggian/ Gabriele Vanoni

INSTITUT
DE RECHERCHE
EN INFORMATIQUE
FONDAMENTALE

Organization

· Lectures:

Wednesday 14h00-16h00 Friday 14h00-16h00

Grading:

2

>weekly homework projects

Plan

- A foundational study of functional programming languages,
- · building on:

1

3

- proof theory (Types, Curry-Howard isomorphism) and
 the theory of lambda-calculus,
- · adopting the dynamic and quantitative view brought by Linear Logic.
 - ➤ Focus first part: a quantitative view in Operational Semantics
 - ➤ Focus second prat: a quantitative view in Denotational Semantics
 - ➤ Openings towards active research topics: Bayesian learning/
- · Courses from LMFI first term we build on:
 - ➤ Proof Theory (cut-elimination, lambda calculus, Curry-Howard iso)
- Connected to the MPRI course: Semantics of Programming Language (which builds on the models of Linear Logic)

New insights into **proof theory** and (via the Curry-Howard correspondence between proofs and programs) into the semantics of programming language.

Linear Logic [Girard87] breakthroughs

• Proof Nets: advanced formal system

· Dynamic view, capturing the flow of computation:

▶Game Semantics ➤ Geometry of Interaction

- representation of proofs (λ-terms, functional programs) by graphs
- · tool for the analysis of cutelimination (= execution) as graph-rewriting process

4

Linear Logic [Girard87] breakthroughs

New insights into **proof** especially suitable for

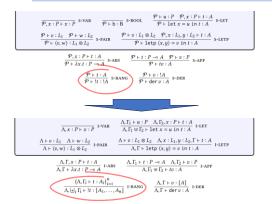
(Via the Curry-Howard co into the semantics of pro modelling probabilistic & quantum programming

• Proof Nets: advanced formal system

- representation of proofs (λ -terms, functional programs) by graphs
- tool for the analysis of cut-elimination (= execution) as graph-rewriting process
- Dynamic view, capturing the flow of computation:

- ➤ Game Semantics
- ➤ Geometry of Interaction
- Account for resources ➤ Quantitative Semantics
 - ➤ Quantitative Type Systems

Resource awareness (Quantitative Types)



Higher-Order Bayesian Networks

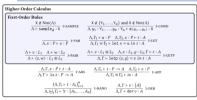
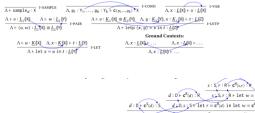


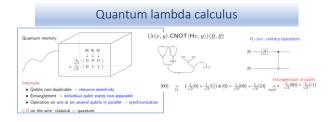
Fig. 12. First-order type system annotated with the cost of computing the factor.

Higher-Order Bayesian Networks

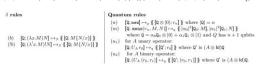


 $\begin{aligned} s: S, r: R + e^{t}(x): \mathbb{N} & \quad \text{$v: M \mapsto w: W$} \\ d: D + e^{t}(d): \mathbb{R} & \quad \text{$s: S, r: R \mapsto e^{t}(x): \mathbb{N}$} \\ d: D + e^{t}(d): \mathbb{R} & \quad \text{$s: S, r: R \mapsto e^{t}(x): \mathbb{N}$} \\ bernoulli_{0, s}: D & \quad d: D + \text{$e^{t}(s): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } w = e^{t}(x): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d): \mathbb{N}$} \\ het d = bernoulli_{0, s}: \text{$i: het } e^{t}(d$ ⊢ bernoulli_{0.6}:D

7 8



 $M,N,P ::= x \mid !M \mid \lambda x.M \mid \lambda !x.M \mid MN \mid r_i \mid U_A \mid \mathtt{new} \mid \mathtt{meas}(P,M,N) \qquad (\mathtt{terms} \ \Lambda_q)$



9

LINEAR LOGIC Proof-nets / $! \lambda$ -calculus CbN λ -calculus CbV λ -calculus

Plan / topics for Part 1

HANDS-ON

- Theoretical tools to study the operational properties of a system:
 - > Rewrite Theory (rewriting=abstract form of program execution)
- Linear Logic and Proof-Nets.
- Bridging between lambda-calculus and functional programming:
 - Call-by-Value and Call-by Name, weak and lazy calculi.
- · Beyond pure functional:
 - ➤ Probabilistic programming and Bayesian Inference: Probabilistic lambda calculi, Bayesian proof-nets

(Internships possible on operational aspects of probabilistic and quantum computation)

Resources

• Webpage https://www.irif.fr/~faggian/LMFI2025

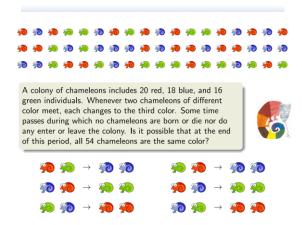
10

• Lecture Notes (by A. Middeldorp, O. Laurent, L. Ong)

Operational semantics of formal calculi and programming languages

Rewriting theory

- · Rewriting = abstract form of program execution
- Paradigmatic example: λ-calculus (functional programming language, in its essence)



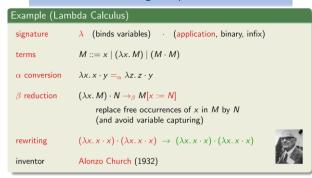
13

Math formalizations...

 $^{\scriptsize{\textcircled{1}}}$ & $^{\scriptsize{\textcircled{2}}}$ \implies \mathcal{E} has decidable validity problem

15

Modelling computation



both Combinatory Logic and Lambda Calculus are Turing-complete

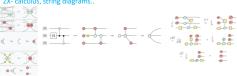
17

14

Graph Rewriting

Geometry of Interaction

ZX- calculus, string diagrams..



18 19

Rewriting

- Rewrite Theory provides a powerful set of tools to study computational and operational properties of a system: normalization, termination, confluence, uniqueness of normal forms
- tools to study and compare strategies:
 - Is there a strategy guaranteed to lead to normal form, if any (normalizing strat.)?
- Abstract Rewrite Systems (ARS) capture the common substratum of rewrite theory (independently from the particular structure of terms) - can be uses in the study of any calculus or programming language.

Abstract Rewriting: motivations

concrete rewrite formalisms / concrete operational semantics:

- λ-calculus
- Quantum/probabilistic/non-deterministic/...... λ -calculus
- Proof-nets / graph rewriting
- Sequent calculus and cut-elimination
- · string rewriting
- term rewriting

abstract rewriting

- independent from structure of objects that are rewritten
- uniform presentation of properties and proofs

Why a theory of rewriting matters?

• Rewriting = abstract form of program execution

Rewriting theory provides a sound framework for reasoning about

- programs transformations, such as compiler optimizations or parallel implementations,
- program equivalence.

20

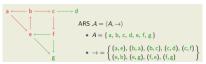
21

Abstract Rewriting

Basic language

ARS

Definition 1.1.1. An abstract rewrite system (ARS for short) is a pair $A = \langle A, \rightarrow \rangle$ consisting of a set A and a binary relation \rightarrow on A. Instead of $(a,b) \in \rightarrow$ we write $a \rightarrow b$ and we say that $a \rightarrow b$ is a rewrite step.



• A (finite) rewrite sequence is a non-empty sequence $(a_0,\dots a_n)$ of elements in A such that $a_i\to a_{\{i+1\}}$. We write $a_0\to^n a_n$ or simply $a_0\to^* a_n$

 $\begin{tabular}{lll} \bullet & \mbox{rewrite sequence} \\ \bullet & \mbox{finite} & a \rightarrow e \rightarrow b \rightarrow c \rightarrow f \\ \bullet & \mbox{empty} & a \\ \bullet & \mbox{infinite} & a \rightarrow e \rightarrow b \rightarrow a \rightarrow e \rightarrow b \rightarrow \cdots \\ \end{tabular}$

22

• \leftarrow inverse of \rightarrow • \rightarrow * transitive and reflexive closure of \rightarrow

inverse of \rightarrow^*

 $s \leftrightarrow_{\mathcal{R}} t \text{ iff } s \to_{\mathcal{R}} t \text{ or } t \to_{\mathcal{R}} s$ $s \leftrightarrow_{\mathcal{R}}^* t \text{ iff } s = s_0 \leftrightarrow_{\mathcal{R}} s_1 \leftrightarrow_{\mathcal{R}} \dots \leftrightarrow_{\mathcal{R}} s_n = t \text{ for } n \ge 0$

 $\bullet \leftrightarrow$ symmetric closure of \to $\bullet \leftrightarrow^*$ conversion (equivalence relation generated by \to) ** $\bullet \to^+$ transitive closure of \to $\bullet \to^-$ reflexive closure of \to

is relation composition: $R \cdot S = \{(a, c) \mid a R b \text{ and } b S c\}$

 $\downarrow \, = \, \rightarrow^* \cdot \, ^* \leftarrow$

23

Composition

- If $\rightarrow_1, \rightarrow_2$ are binary relations on A then $\rightarrow_1 \cdot \rightarrow_2$ denotes their composition, *i.e.* $t \rightarrow_1 \cdot \rightarrow_2 s$ iff there exists $u \in A$ such that $t \rightarrow_1 u \rightarrow_2 s$.
- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} We write $(A,\{\rightarrow_1,\rightarrow_2\})$ to denote the ARS (A,\rightarrow) \\ & \begin{tabular}{ll} where $\rightarrow=\rightarrow_1\cup\rightarrow_2$. \\ \end{tabular}$

24

Closure

The transitive-reflexive closure of a relation is a closure operator, i.e.

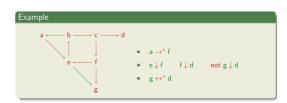
$$\rightarrow \subseteq \rightarrow^*$$
, $(\rightarrow^*)^* = \rightarrow^*$, $\rightarrow_1 \subseteq \rightarrow_2$ implies $\rightarrow_1^* \subseteq \rightarrow_2^*$

As a consequence

$$(\to_1 \cup \to_2)^* = (\to_1^* \cup \to_2^*)^*$$
.

Terminology

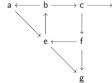
- if $x \to^* y$ then x rewrites to y and y is reduct of x
- if $x \to^* z *\leftarrow y$ then z is common reduct of x and y
- if $x \leftrightarrow^* y$ then x and y are convertible



26

Normal forms model results

Definition 1.1.11. Let $\mathcal{A} = \langle A, \rightarrow \rangle$ be an ARS. An element $a \in A$ is *reducible* if there exists an element $b \in A$ with $a \rightarrow b$. A *normal form* is an element that is not reducible. The set of normal forms of \mathcal{A} is denoted by $\mathsf{NF}(\mathcal{A})$ or $\mathsf{NF}(\rightarrow)$ when A can be inferred from the context. An element $a \in A$ has a normal form if $a \rightarrow^* b$ for some normal form b. In that case we write $a \rightarrow^! b$.



Element a has normal forms?
How many normal forms has this ARS?

ARS
$$\mathcal{A} = \langle A, \rightarrow \rangle$$

- d is normal form
- NF(A) = { d, g }
- b → ! σ

27

Operational properties of interest

 Termination and Confluence

Existence and uniqueness of normal forms

· How to Compute

reduction strategies with good properties:

- standardization,
- normalization

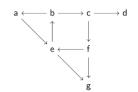
28 29

- SN strong normalization termination
 - no infinite rewrite sequences
- WN (weak) normalization
 - every element has at least one normal form
 - $\forall a \exists b \ a \rightarrow b$
- UN unique normal forms
 - no element has more than one normal form
 - $\bullet \ \forall \, a,b,c \quad \text{if} \ a \to^! b \ \text{and} \ a \to^! c \ \text{then} \ b = c$

Termination

Definition 1.2.1. Let $A = \langle A, \rightarrow \rangle$ be an ARS. An element $a \in A$ is called terminating or strongly normalizing (SN) if there are no infinite rewrite sequences starting at a. The ARS A is terminating or strongly normalizing if all its elements are terminating. An element $a \in A$ has unique normal forms (UN) if it does not have different normal forms $(\forall b, c \in A \text{ if } a \rightarrow^{\dagger} b \text{ and } a \rightarrow^{\dagger} c \text{ then } b = c)$. The ARS A has unique normal forms if all its elements have unique normal forms.

An element a is weakly normalizing (WN) (or simply normalizing) if it has a normal form.

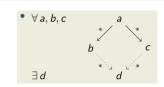


a is WN? SN? c is WN? SN? a or c has UN?

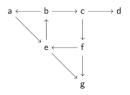
The nf are convertible?

Confluence

Definition 1.2.3. Let $\mathcal{A} = \langle A, \rightarrow \rangle$ be an ARS. An element $a \in A$ is confluent if for all elements $b, c \in A$ with $b *\leftarrow a \rightarrow *c$ we have $b \downarrow c$. The ARS \mathcal{A} is confluent if all its elements are confluent.



Every confluent ARS has unique normal forms.



- a is confluent? f is confluent?
- 3. Can you add a single arrow so that the resulting ARS

Bonus Point

33 32

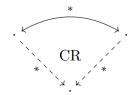
Given

$$\mathcal{R} = \begin{cases} f(x,x) & \to & 0 \\ a & \to & 0 \\ f(x,b) & \to & 0 \end{cases}$$

f(a,a) has normal form? Can you produce two different nf?

we can compute from the same term f(a, a) two different normal-forms c and ddifferent meaning for same term! (also: different meaning for equivalent terms)

Same meaning for *equivalent* terms



35 34

Confluence & CR

Definition 1.2.3. Let $\mathcal{A} = \langle A, \rightarrow \rangle$ be an ARS. An element $a \in A$ is *confluent* if for all elements $b, c \in A$ with b * \leftarrow $a \rightarrow$ * c we have $b \downarrow c$. The ARS \mathcal{A} is confluent if all its elements are confluent.

An ARS $\mathcal{A} = \langle A, \rightarrow \rangle$ is confluent if and only if $\leftrightarrow^* \subseteq \downarrow$

 $\begin{array}{ll} \textbf{Definition 1.2.10.} & \text{An ARS } \mathcal{A} = \langle A, \rightarrow \rangle \text{ has } \textit{unique normal forms with respect to} \\ \textit{conversion (UNC) if different normal forms are not convertible } (\forall \, a,b \in \mathsf{NF}(\mathcal{A}) \text{ if } a \leftrightarrow^* b \\ \end{array}$ then a = b).

in an ARS with the property UNC every equivalence class of convertible elements contains at most one normal form.

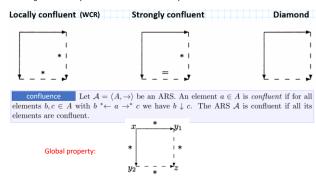
Q: are UN and UNC equivalent?

$$a \leftarrow b \longrightarrow c \leftarrow d \longrightarrow c$$

Global vs Local

Confluence

A property of term t is local if it is quantified over only one-step reductions from t; it is global if it is quantified over all rewrite sequences from t.

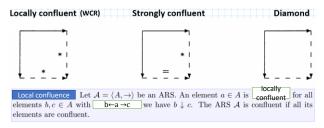


39

38

Confluence

A property of term t is local if it is quantified over only one-step reductions from t; it is global if it is quantified over all rewrite sequences from t.



An ARS $\mathcal{A} = \langle A, \rightarrow \rangle$ has the diamond property (\diamond) if $\leftarrow \cdot \rightarrow \subseteq | \rightarrow \cdot \leftarrow \rangle$

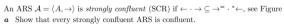
• diamond property \diamond • $\leftarrow \cdot \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$ • $\forall a, b, c$ b c $\exists d$

• every ARS with diamond property is confluent

Proof by tiling

40

41



- b Does the converse also hold?
- c Show that an ARS $A = \langle A, \rightarrow \rangle$ is confluent if and only if $\leftarrow^* \cdot \rightarrow \quad \subseteq \quad \rightarrow^* \cdot \leftarrow^*$

Which is true?

- 1. SN => WN 2. WN => SN
- 2. WN => SN
- Confluence => UN
 UN => Confluence
- Confluence => Local confluence
 Local confluence => Confluence
- 7. WN & UN => Confluence
- 8. WN & Local Conf. => Confluence

SN & Local Conf. => Confluence

e a to to to

 \bigcirc a \longrightarrow b

WN vs SN

 $\overset{\textstyle \frown}{} a \longrightarrow b$ (ii) WN \implies SN

$$\mathcal{R} = \left\{ \begin{array}{lcl} f(a) & \to & c \\ f(x) & \to & f(a) \end{array} \right.$$

The system is weakly normalising but not strongly normalising:

Can you find an infinite reduction sequence from f(b)?

$$f(b) \to f(a) \to c$$

$$f(b) \to f(a) \to f(a) \dots$$

SN => WN WN => SN

Confluence => UN

 \bigcirc a \longleftarrow b \longrightarrow c UN => Confluence

Confluence => Local confluence Local confluence => Confluence

WN & UN => Confluence

WN & Local Conf. => Confluence

SN & Local Conf. => Confluence

Newman's Lemma

44

45

47

Lemma WN & UN \implies CR

Proof \implies $\exists n_1, n_2 \colon b_1 \rightarrow^! n_1 \text{ and } b_2 \rightarrow^! n_2$ UN

Newman Lemma

Newman's Lemma. Every terminating and locally confluent ARS is confluent.

By well-founded induction

46

Memo: Well-founded Induction

given

- property P of ARSs with P(A)∀ a: P(a)
- strongly normalizing ARS $\mathcal{A} = \langle A, \rightarrow \rangle$

to conclude

• P(A)

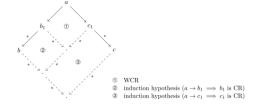
it is sufficient to prove

• if P(b) for every b with $a \rightarrow b$ then P(a)induction hypothesis

for arbitrary element a

Newman's Lemma. Every terminating and locally confluent ARS is confluent.

Newman Lemma



Newman Lemma

Newman's Lemma. Every terminating and locally confluent ARS is confluent.

Let $A = \langle A, \rightarrow \rangle$ terminating and locally confluent A second Proof. It suffices to show that every element has unique normal forms • suppose $B = \{ a \in A \mid \neg UN(a) \} \neq \emptyset$ • let $b \in B$ be minimal element (with respect to \rightarrow) • $b \rightarrow^! n_1$ and $b \rightarrow^! n_2$ with $n_1 \neq n_2$

50 51

Recap Flash Ex



- > EX Say which properties hold

- Confluent
 Locally confluent
 Normalizing (weakly normalizing, WN)
 Terminating (strongly normalizing, SN)

Recap basics

> Conclude by showing that it is impossible (absurd)

- An abstract rewriting system (ARS) is a pair (A, \rightarrow) consisting of a set A and a binary relation \rightarrow on A whose pairs are written $t \rightarrow s$ and called steps.
- We denote \to^* (resp. $\to^=$) the transitive-reflexive (resp. reflexive) closure of \to . We write $t \leftarrow u$ if $u \rightarrow t$.
- If $\rightarrow_1, \rightarrow_2$ are binary relations on $\mathcal A$ then $\rightarrow_1 \cdot \rightarrow_2$ denotes their composition, i.e. $t \rightarrow_1 \cdot \rightarrow_2 s$ if there exists $u \in \mathcal{A}$ such that $t \to_1 u \to_2 s$.
- We write $(\mathcal{A}, \{\rightarrow_1, \rightarrow_2\})$ to denote the *compound system* $(\mathcal{A}, \rightarrow)$ where $\rightarrow = \rightarrow_1 \cup \rightarrow_2$.
- \blacksquare A \rightarrow -sequence (or **reduction sequence**) from t is a (possibly infinite) sequence t, t_1 , t_2 ,... such that $t_i \rightarrow t_{i+1}$.

 $t \mathop{\rightarrow}^* s$ indicates that there is a finite sequence from t to s.

A \rightarrow -sequence from t is <u>maximal</u> if it is <u>either infinite or ends in a \rightarrow -nf.</u>

The heart of confluence is a diamond

Prop. DIAMOND implies CONFLUENCE

Can rarely be used directly: Most relations of interest do not satisfy it

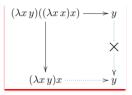
Lemma (Characterize Confluence). \rightarrow is confluent if and only if there exists a relation \Leftrightarrow such that

 $a. \Leftrightarrow^* = \to^*,$

 $b. \Leftrightarrow is \ diamond.$

52 53

You have already seen an example: in the notes by Joly



Definition The development relation is the least reflexive relation \triangleright on Λ such that:

- $\begin{array}{l} \bullet \ t \rhd t' \implies \lambda x \, t \rhd \lambda x \, t' \\ \bullet \ t \rhd t', \ u \rhd u' \implies t u \rhd t u' \\ \bullet \ t \rhd t', \ u \rhd u' \implies (\lambda x \, t) u \rhd t'[x \!:=\! u']. \end{array}$

 $\mathbf{Lemma}\;\mathbf{1}\;\;\rightarrow\;\subseteq\;\triangleright\;\subseteq\;\cdot$

You have already seen an example: in the notes by Joly

Lemma 3 (Characterize Confluence). \rightarrow is confluent if and only if there exists a relation → such that

b. \Rightarrow is diamond.

 $\textbf{Definition} \quad \textit{The} \ \text{development relation} \ \textit{is the least reflexive relation} \ \vartriangleright \ \textit{on} \ \Lambda \ \textit{such that:}$

- $\begin{array}{l} \bullet \ t \rhd t' \implies \lambda x \, t \rhd \lambda x \, t' \\ \bullet \ t \rhd t', \ u \rhd u' \implies t u \rhd t u' \\ \bullet \ t \rhd t', \ u \rhd u' \implies (\lambda x \, t) u \rhd t'[x \!:=\! u']. \end{array}$
- $\mathbf{Lemma}\;\mathbf{1}\;\;\rightarrow\;\subseteq\;\triangleright\;\subseteq\;\cdot$

Closure

→_R is the reliexive, transitive closure of →_R
 (1) M→_RN ⇒ M→_RN,
 (2) M→_RM,
 (3) M→_RN, N→_RL ⇒ M→_RL.

The transitive-reflexive closure of a relation is a closure operator, *i.e.* satisfies

$$\rightarrow \subseteq \rightarrow^*$$
, $(\rightarrow^*)^* = \rightarrow^*$, $\rightarrow_1 \subseteq \rightarrow_2$ implies $\rightarrow_1^* \subseteq \rightarrow_2^*$

As a consequence

$$(\to_1 \cup \to_2)^* = (\to_1^* \cup \to_2^*)^*$$

Commutation

Commutation. Two relations \rightarrow_1 and \rightarrow_2 on A commute if $\leftarrow_1^* \cdot \rightarrow_2^* \subseteq \rightarrow_2^* \cdot \leftarrow_1^*$.

57

Confluence. A relation \rightarrow on A is confluent if it commutes with itself.

56

Proving confluence modularly

Lemma (Hindley-Rosen)

If two relations \rightarrow_1 and \rightarrow_2 are **confluent** and **commute with each other**, then

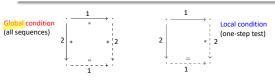
 $\rightarrow_1 \cup \rightarrow_2$ is confluent.

An effective usable technique

Lemma (Hindley-Rosen)

If two relations \rightarrow_1 and \rightarrow_2 are **confluent** and **commute** with each other, then

 $\rightarrow_1 \cup \rightarrow_2$ is confluent.



Lemma (Hindley's local test)

Strong commutation $\leftarrow_1 \cdot \rightarrow_2 \subseteq \rightarrow_2^* \cdot \leftarrow_1^=$ implies commutation.

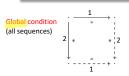
58 59

an effective usable technique

Lemma (Hindley-Rosen)

If two relations \rightarrow_1 and \rightarrow_2 are **confluent** and **commute** with each other, then

 $\rightarrow_1 \cup \rightarrow_2$ is confluent.



2 Local condition (one-step test)

 $\leftarrow_1 \cdot \rightarrow_2 \subseteq \rightarrow_2^* \cdot \leftarrow_1^=$

 $({\bf Strong}\ {\bf Commutation})$

▶ Lemma (Local test). Strong commutation implies commutation.

Strategies