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Organization

• Lectures: 

     Wednesday          14h00-16h00

      Friday                    14h00-16h00

• Grading:

➢weekly homework projects

Plan

A foundational study of functional programming languages, 

• building on: 
➢ proof theory (Types, Curry-Howard isomorphism) and 

➢ the theory of lambda-calculus, 

• adopting the dynamic and quantitative view brought by Linear Logic. 

➢Focus first part: a quantitative view in Operational Semantics
➢Focus second prat: a quantitative view in Denotational Semantics
➢Openings towards active research topics: Bayesian learning/ 

probabilistic programming, ….

• Courses  from LMFI first term we build on:
➢Proof Theory (cut-elimination, lambda calculus, Curry-Howard iso)

• Connected to the MPRI course: Semantics of Programming Language 
(which builds on the models of Linear Logic)

Linear Logic [Girard87] breakthroughs

• Proof Nets: advanced  formal 
system 

• representation of proofs (λ-terms, 
functional programs) by graphs

• tool for the analysis of cut-
elimination  (= execution) as graph-
rewriting process

• Dynamic view, capturing the flow 
of computation:

➢Game Semantics
➢Geometry of Interaction

New insights  into  proof theory and 
(via the Curry-Howard correspondence between proofs and programs ) 
into the semantics of programming language. 

Linear Logic [Girard87] breakthroughs

• Proof Nets: advanced  formal system 

• representation of proofs (λ-terms, 
functional programs) by graphs

• tool for the analysis of cut-elimination  
(= execution) as graph-rewriting 
process

• Dynamic view, capturing the flow of 
computation:

➢Game Semantics
➢Geometry of Interaction

• Account for resources
➢Quantitative Semantics
➢Quantitative Type Systems

New insights  into  proof theory and 
(via the Curry-Howard correspondence between proofs and programs ) 
into the semantics of programming language. 

especially suitable for 
• Cost analysis (runtime/memory space/ other resources)
• modelling probabilistic & quantum programming 

Resource awareness (Quantitative Types)
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Higher-Order Bayesian Networks Higher-Order Bayesian Networks

Quantum lambda calculus

LINEAR LOGIC
Proof-nets  /  ! λ-calculus

Plan / topics for Part 1

• Theoretical tools to study  the operational properties of a system: 

➢     Rewrite Theory (rewriting=abstract form of program execution)

• Linear Logic and Proof-Nets.

• Bridging between lambda-calculus and functional programming:

➢     Call-by-Value and Call-by Name, weak and lazy calculi. 

• Beyond pure functional:

➢Probabilistic programming  and Bayesian Inference:

     Probabilistic lambda calculi, Bayesian proof-nets

(Internships possible on operational aspects of  probabilistic and 
quantum computation)

Resources

• Webpage   https://www.irif.fr/~faggian/LMFI2025

• Lecture Notes   (by A. Middeldorp,  O. Laurent, L. Ong)
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Operational semantics
      of formal calculi and programming languages

Rewriting theory 

• Rewriting =  abstract form of program execution

• Paradigmatic example: λ-calculus 
    (functional programming language, in its essence)

Math formalizations… Modelling computation

Graph Rewriting

LL proof-nets 

Geometry of Interaction

ZX- calculus, string diagrams..
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Abstract Rewriting: motivations

Mconcrete rewrite formalisms / concrete operational semantics:

• λ-calculus

• Quantum/ probabilistic/ non-deterministic/…………   λ-calculus 

• Proof-nets / graph rewriting

• Sequent calculus and cut-elimination  

• string rewriting     

• term rewriting     

    abstract rewriting

• independent from  structure of objects that are rewritten

• uniform presentation of properties and proofs 

Why a theory of rewriting matters?

• Rewriting =  abstract form of program execution

Rewriting theory provides a sound framework for reasoning about 
• programs transformations, such as compiler optimizations or parallel implementations, 
• program equivalence. 

Abstract Rewriting
Basic language

ARS

• 

• A (finite) rewrite sequence is a non-empty
sequence (𝑎0, … 𝑎𝑛) of elements in A such that 𝑎i → 𝑎 𝑖+1

We write 𝑎0 →𝑛 𝑎𝑛  or simply 𝑎0 →∗ 𝑎𝑛

rewrite sequences:
 finite a → e → b → c → f
 empty a

 infinite a → e → b → a → e → b → …

**

Composition
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Closure

Normal forms model results

Element a has normal forms ?
How many normal forms has this ARS?

Operational properties of interest

• Termination  and 
Confluence

Existence and uniqueness 

of normal forms

• How to Compute

reduction strategies with good 
properties:

• standardization, 

• normalization

*Termination*

a is WN? SN?
c is WN? SN?
a or c  has UN ?

The nf are convertible? 

An element a is  weakly  normalizing (WN) (or simply normalizing) if it has a normal form. 
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*Confluence*

1.  a  is  confluent?
2.  f is confluent?

3. Can you add a single arrow  so that the resulting ARS 
    has unique normal forms without being confluent ?

f(a,a) has normal form? 
Can you produce two different nf?

we can compute from the same term f(a, a) two different normal-forms c and d
different meaning for same term!

(also: different meaning for equivalent terms)

Same meaning for *equivalent* terms

Confluence & CR

Confluence Church-Rosser

in an ARS with the property UNC every equivalence class of convertible 
elements  contains at most one normal form. 

Q: are UN and UNC equivalent?
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Global vs Local

Confluence

A property of term t is local if it is quantified over only one-step reductions from t; 
it is global if it is quantified over all rewrite sequences from t. 

confluence

Global property:

(WCR)

Confluence

A property of term t is local if it is quantified over only one-step reductions from t; 
it is global if it is quantified over all rewrite sequences from t. 

b←a →c

locally
confluentLocal confluence

(WCR)

Proof by tiling
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