

Operational semantics of formal calculi and programming languages

Rewriting = abstract form of program execution

 Paradigmatic example: λ-calculus (functional programming language, in its essence)

13

E

9 0	%	%	40	%	<i>9</i> 0	%	%	%	<i>4</i> 0	9 0	%	%	%	40	%	<i>9</i> 0	%
90	%	%	% 0	%	90	50	<i>9</i> 0	%	% 0	%	%	50	%	%	<i>4</i> 0	<i>4</i> 0	% 0
5C	%	%	%	%	%	90	%	%	%	%	%	%	%	90	%	%	%
A g c P a c	colo reen olor r asses ny er f this	ny o indiv neet duri iter o peri	if cha idua , eac ing v or lea iod,	amel Is. V h ch vhich ave t all 54	eons Vher ange n no he c 4 ch	incl never es to char olon amel	ludes r two o the meleo y. Is leons	20 cha thir ons a it p are	red, mele d col are b ossib the	18 b ons or. S orn ole th same	lue, of d Som or di nat a e col	and iffere e tim ie no it the lor?	16 ent ne or do e end	d			2
	ş	0	%	\rightarrow	Ş	0	0			<u>9</u> 0) 🏺	0	\rightarrow	S O	9	ð	
	Ş	0	%	\rightarrow	60		*			%) 🧳	0	\rightarrow	<u>9</u> 0	9		
	a																
		0	% 0	\rightarrow	9	0	90			Ş) 🏺	0	\rightarrow	90) 🏺		

14

	Math formalizations		
xample (Group T	heory)		Example
signature e	(constant) – (unary, postfix) · (binary, infi	×)	signature
equations e · >	$x \approx x$ $x^- \cdot x \approx e$ $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$	ε	terms
theorems	$e^- pprox_{\mathcal{E}} e$ $(x \cdot y)^- pprox_{\mathcal{E}} y^- \cdot x^-$		α conver
rewrite rules (×	$\begin{array}{cccc} \mathbf{e} \cdot \mathbf{x} \to \mathbf{x} & \mathbf{x} \cdot \mathbf{e} \to \mathbf{x} \\ \mathbf{x}^- \cdot \mathbf{x} \to \mathbf{e} & \mathbf{x} \cdot \mathbf{x}^- \to \mathbf{e} \\ \mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} \to \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) & \mathbf{x}^{} \to \mathbf{x} \\ \mathbf{e}^- \to \mathbf{e} & (\mathbf{x} \cdot \mathbf{y})^- \to \mathbf{y}^- \cdot \mathbf{x}^- \end{array}$	$\mathcal R$	eta reduct
<i>x</i> ⁻	$(x \cdot y) \rightarrow y \qquad x \cdot (x^- \cdot y) \rightarrow y$		rewriting
1 $s \approx t$ is valid in 2 \mathcal{R} admits no in	n ${\mathcal E}$ (s $pprox_{{\mathcal E}}$ t) if and only if s and t have same ${\mathcal R}$ -no finite computations	ormal form	inventor
$(1) \& (2) \implies \mathcal{E}$	has decidable validity problem		

1	5
-	J

	nie dennig eenip addien					
Example (Lambda Calculus)						
signature	λ (binds variables) \cdot (application, binary, infix)					
terms	$M ::= x \mid (\lambda x. M) \mid (M \cdot M)$					
α conversion	$\lambda x. x \cdot y =_{\alpha} \lambda z. z \cdot y$					
β reduction	$(\lambda x. M) \cdot N \rightarrow_{\beta} M[x := N]$ replace free occurrences of x in M by N (and avoid variable capturing)					
rewriting	$(\lambda x. x \cdot x) \cdot (\lambda x. x \cdot x) \rightarrow (\lambda x. x \cdot x) \cdot (\lambda x. x \cdot x)$	2				
inventor	Alonzo Church (1932)					

Modelling computation

both Combinatory Logic and Lambda Calculus are Turing-complete

17

Rewriting

- Rewrite Theory provides a powerful set of tools to study computational and operational properties of a system : normalization, termination, confluence, uniqueness of normal forms
- tools to study and compare strategies:
 - Is there a strategy guaranteed to lead to normal form, if any (normalizing strat.)?
- <u>Abstract</u> Rewrite Systems (ARS) capture the common substratum of rewrite theory (independently from the particular structure of terms) - can be uses in the study of any calculus or programming language.

Abstract Rewriting: motivations

concrete rewrite formalisms / concrete operational semantics:

- λ-calculus
- Quantum/probabilistic/non-deterministic/...... λ -calculus
- Proof-nets / graph rewriting
- Sequent calculus and cut-elimination
- string rewriting
- term rewriting

abstract rewriting

- independent from structure of objects that are rewritten
- uniform presentation of properties and proofs

Why a theory of rewriting matters?

• Rewriting = abstract form of program execution

Rewriting theory provides a sound framework for reasoning about • programs transformations, such as compiler optimizations or parallel implementations, • program equivalence.

20

21

Basic language

22

23

Composition

- = If $\rightarrow_1, \rightarrow_2$ are binary relations on A then $\rightarrow_1 \cdot \rightarrow_2$ denotes their composition, *i.e.* $t \rightarrow_1 \cdot \rightarrow_2 s$ iff there exists $u \in A$ such that $t \rightarrow_1 u \rightarrow_2 s$.
- $\begin{array}{ll} & \quad \mbox{We write } (A,\{\rightarrow_1,\rightarrow_2\}) \mbox{ to denote the ARS } (A,\rightarrow) \\ & \quad \mbox{ where } \rightarrow = \rightarrow_1 \cup \rightarrow_2. \end{array}$

Global vs Local

Confluence

A property of term t is *local* if it is quantified over only *one-step reductions* from t; it is *global* if it is quantified over all *rewrite sequences* from t.

Locally confluent (WCR) Strongly confluent Diamond

−−−−−		 ▶
1	1	1
* I	* 1	1
· · ·		1
LJ	±,	±₽

confluence Let $\mathcal{A} = \langle A, \rightarrow \rangle$ be an ARS. An element $a \in A$ is *confluent* if for all elements $b, c \in A$ with $b^* \leftarrow a \rightarrow^* c$ we have $b \downarrow c$. The ARS \mathcal{A} is confluent if all its elements are confluent.

39

38

		Confluence	
A p it is	property of term <i>t</i> is <i>local</i> if s <i>global</i> if it is quantified ov	it is quantified over only one-step er all rewrite sequences from t.	reductions from t;
Local	ly confluent (WCR)	Strongly confluent	Diamond
	ا ا ا تو 5		
Loca elema elema	al confluence Let $\mathcal{A} = \langle A,$ ents $b, c \in A$ with $b \leftarrow a -$ ents are confluent.	→> be an ARS. An element $a \in A$ →c we have $b \downarrow c$. The ARS A	t is confluent if all its

An ARS $\mathcal{A} = \langle A, \rightarrow \rangle$ has the diamond property (\diamond) if $\leftarrow \cdot \rightarrow \subseteq | \rightarrow \cdot \leftarrow$

40

• every ARS with diamond property is confluent

Proof by tiling

41

An ARS $\mathcal{A} = \langle A, \rightarrow \rangle$ is strongly confluent (SCR) if $\leftarrow \cdot \rightarrow \subseteq \rightarrow^{=} \cdot^{*} \leftarrow$, see Figure *a* Show that every strongly confluent ARS is confluent.

a Show that every strongly confluent Ab Does the converse also hold?

 $c \quad \text{Show that an ARS } \mathcal{A} = \langle A, \rightarrow \rangle \text{ is confluent if and only if } \xleftarrow{}{}^{*} \cdot \rightarrow \quad \sqsubseteq \quad \rightarrow^{*} \cdot \xleftarrow{}^{*}$

