
09/01/2025

1

Claudia Faggian

Gabriele Vanoni

Proofs and programs: advanced topics

 Linear Logic and Quantitative Semantics

CNRS (IRIF)

faggian@irif.fr

https://www.irif.fr/~faggian/

Organization

• Lectures:

 Wednesday 14h00-16h00

 Friday 14h00-16h00

• Grading:

➢weekly homework projects

Plan

A foundational study of functional programming languages,

• building on:
➢ proof theory (Types, Curry-Howard isomorphism) and

➢ the theory of lambda-calculus,

• adopting the dynamic and quantitative view brought by Linear Logic.

➢Focus first part: a quantitative view in Operational Semantics
➢Focus second prat: a quantitative view in Denotational Semantics
➢Openings towards active research topics: Bayesian learning/

probabilistic programming, ….

• Courses from LMFI first term we build on:
➢Proof Theory (cut-elimination, lambda calculus, Curry-Howard iso)

• Connected to the MPRI course: Semantics of Programming Language
(which builds on the models of Linear Logic)

Linear Logic [Girard87] breakthroughs

• Proof Nets: advanced formal
system

• representation of proofs (λ-terms,
functional programs) by graphs

• tool for the analysis of cut-
elimination (= execution) as graph-
rewriting process

• Dynamic view, capturing the flow
of computation:

➢Game Semantics
➢Geometry of Interaction

New insights into proof theory and
(via the Curry-Howard correspondence between proofs and programs)
into the semantics of programming language.

Linear Logic [Girard87] breakthroughs

• Proof Nets: advanced formal system

• representation of proofs (λ-terms,
functional programs) by graphs

• tool for the analysis of cut-elimination
(= execution) as graph-rewriting
process

• Dynamic view, capturing the flow of
computation:

➢Game Semantics
➢Geometry of Interaction

• Account for resources
➢Quantitative Semantics
➢Quantitative Type Systems

New insights into proof theory and
(via the Curry-Howard correspondence between proofs and programs)
into the semantics of programming language.

especially suitable for
• Cost analysis (runtime/memory space/ other resources)
• modelling probabilistic & quantum programming

Resource awareness (Quantitative Types)

1 2

3 4

5 6

09/01/2025

2

Higher-Order Bayesian Networks Higher-Order Bayesian Networks

Quantum lambda calculus

LINEAR LOGIC
Proof-nets / ! λ-calculus

Plan / topics for Part 1

• Theoretical tools to study the operational properties of a system:

➢ Rewrite Theory (rewriting=abstract form of program execution)

• Linear Logic and Proof-Nets.

• Bridging between lambda-calculus and functional programming:

➢ Call-by-Value and Call-by Name, weak and lazy calculi.

• Beyond pure functional:

➢Probabilistic programming and Bayesian Inference:

 Probabilistic lambda calculi, Bayesian proof-nets

(Internships possible on operational aspects of probabilistic and
quantum computation)

Resources

• Webpage https://www.irif.fr/~faggian/LMFI2025

• Lecture Notes (by A. Middeldorp, O. Laurent, L. Ong)

7 8

9 10

11 12

09/01/2025

3

Operational semantics
 of formal calculi and programming languages

Rewriting theory

• Rewriting = abstract form of program execution

• Paradigmatic example: λ-calculus
 (functional programming language, in its essence)

Math formalizations… Modelling computation

Graph Rewriting

LL proof-nets

Geometry of Interaction

ZX- calculus, string diagrams..

13 14

15 17

18 19

09/01/2025

4

Abstract Rewriting: motivations

Mconcrete rewrite formalisms / concrete operational semantics:

• λ-calculus

• Quantum/ probabilistic/ non-deterministic/………… λ-calculus

• Proof-nets / graph rewriting

• Sequent calculus and cut-elimination

• string rewriting

• term rewriting

 abstract rewriting

• independent from structure of objects that are rewritten

• uniform presentation of properties and proofs

Why a theory of rewriting matters?

• Rewriting = abstract form of program execution

Rewriting theory provides a sound framework for reasoning about
• programs transformations, such as compiler optimizations or parallel implementations,
• program equivalence.

Abstract Rewriting
Basic language

ARS

•

• A (finite) rewrite sequence is a non-empty
sequence (𝑎0, … 𝑎𝑛) of elements in A such that 𝑎i → 𝑎 𝑖+1

We write 𝑎0 →𝑛 𝑎𝑛 or simply 𝑎0 →∗ 𝑎𝑛

rewrite sequences:
 finite a → e → b → c → f
 empty a

 infinite a → e → b → a → e → b → …

**

Composition

20 21

22 23

24 25

09/01/2025

5

Closure

Normal forms model results

Element a has normal forms ?
How many normal forms has this ARS?

Operational properties of interest

• Termination and
Confluence

Existence and uniqueness

of normal forms

• How to Compute

reduction strategies with good
properties:

• standardization,

• normalization

Termination

a is WN? SN?
c is WN? SN?
a or c has UN ?

The nf are convertible?

An element a is weakly normalizing (WN) (or simply normalizing) if it has a normal form.

26 27

28 29

30 31

09/01/2025

6

Confluence

1. a is confluent?
2. f is confluent?

3. Can you add a single arrow so that the resulting ARS
 has unique normal forms without being confluent ?

f(a,a) has normal form?
Can you produce two different nf?

we can compute from the same term f(a, a) two different normal-forms c and d
different meaning for same term!

(also: different meaning for equivalent terms)

Same meaning for *equivalent* terms

Confluence & CR

Confluence Church-Rosser

in an ARS with the property UNC every equivalence class of convertible
elements contains at most one normal form.

Q: are UN and UNC equivalent?

32 33

34 35

36 37

09/01/2025

7

Global vs Local

Confluence

A property of term t is local if it is quantified over only one-step reductions from t;
it is global if it is quantified over all rewrite sequences from t.

confluence

Global property:

(WCR)

Confluence

A property of term t is local if it is quantified over only one-step reductions from t;
it is global if it is quantified over all rewrite sequences from t.

b←a →c

locally
confluentLocal confluence

(WCR)

Proof by tiling

38 39

40 41

42 43

09/01/2025

8

44 45

46 47

48 49

	Slide 1
	Slide 2: Organization
	Slide 3: Plan
	Slide 4: Linear Logic [Girard87] breakthroughs
	Slide 5: Linear Logic [Girard87] breakthroughs
	Slide 6: Resource awareness (Quantitative Types)
	Slide 7: Higher-Order Bayesian Networks
	Slide 8: Higher-Order Bayesian Networks
	Slide 9: Quantum lambda calculus
	Slide 10
	Slide 11: Plan / topics for Part 1
	Slide 12: Resources
	Slide 13: Operational semantics of formal calculi and programming languages Rewriting theory
	Slide 14
	Slide 15: Math formalizations…
	Slide 17: Modelling computation
	Slide 18: Graph Rewriting
	Slide 19
	Slide 20: Abstract Rewriting: motivations
	Slide 21: Why a theory of rewriting matters?
	Slide 22: Abstract Rewriting
	Slide 23: ARS
	Slide 24
	Slide 25: Composition
	Slide 26: Closure
	Slide 27
	Slide 28: Normal forms model results
	Slide 29: Operational properties of interest
	Slide 30
	Slide 31: *Termination*
	Slide 32: *Confluence*
	Slide 33
	Slide 34
	Slide 35: Same meaning for *equivalent* terms
	Slide 36: Confluence & CR
	Slide 37
	Slide 38: Global vs Local
	Slide 39: Confluence
	Slide 40: Confluence
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Which is true?
	Slide 51: WN vs SN
	Slide 52
	Slide 53
	Slide 54: Newman Lemma
	Slide 56: Memo: Well-founded Induction
	Slide 57: Newman Lemma
	Slide 58: Newman Lemma
	Slide 59: Recap Flash Ex
	Slide 60: Recap basics
	Slide 61: The heart of confluence is a diamond
	Slide 62: You have already seen an example: in the class by Joly
	Slide 63: Closure
	Slide 64: Commutation
	Slide 65: Proving confluence modularly
	Slide 66: An effective usable technique
	Slide 67: an effective usable technique
	Slide 68: Strategies and subreductions
	Slide 69: Normalization
	Slide 70: Normalizing strategis
	Slide 71: Completeness
	Slide 72: Factorization (aka weak Standardization)
	Slide 73: Operational properties of interest
	Slide 74: Factorization (aka Semi-Standardization, Postponement, or often simply Standardization)
	Slide 75: Factorization (aka Semi-Standardization, Postponement, or often simply Standardization)
	Slide 76
	Slide 77: Local test ?
	Slide 78: Does SP hold for lambda-calculus?
	Slide 79: Does SP hold for lambda-calculus?
	Slide 80: The heart of confluence is a diamond
	Slide 81
	Slide 82: Examples of uses for factorization
	Slide 83: Call-by-Name and Call-by-Value lambda-calculus
	Slide 84: Call-by-Name and Call-by-Value lambda −calculus
	Slide 85
	Slide 86: Call-by-Name and Call-by-Value lambda −calculus
	Slide 87: Call-by-Name and Call-by-Value lambda −calculus
	Slide 88: Call-by-Name and Call-by-Value lambda −calculus
	Slide 89: CbN: Head Reduction
	Slide 90: CbN Head Factorization
	Slide 91
	Slide 92: CbV: Weak Reduction
	Slide 93
	Slide 94: CbV Weak Factorization
	Slide 95: Basic properties of the contextual closure
	Slide 96: Basic properties of contextual closure
	Slide 97: Internal steps preserve head and weak normal nf
	Slide 98: Back to Factorization
	Slide 99: Recap
	Slide 100: CbN Head Factorization
	Slide 101: CbV Weak Factorization
	Slide 102: You designed a system You have Factorization Now what?
	Slide 103: From abstract to concrete system
	Slide 104: ARS Recipe
	Slide 105: Concretely: CbN and Head Factorization
	Slide 106: Concretely: CbN and Head Factorization
	Slide 107: Concretely: CbN and Head Factorization
	Slide 108: Concretely: CbV and Weak Factorization
	Slide 109: Recap
	Slide 110: Reflecting on HW2 & normalization
	Slide 111: You designed a system You have Factorization Now what?
	Slide 112: ARS: more abstract tools
	Slide 113: Decreasing (Van Oostrom)
	Slide 114: To commute
	Slide 115: Newman Lemma, again
	Slide 116: Strong Commutation implies Commutation
	Slide 117

