
HAL Id: cel-01422101
https://hal.archives-ouvertes.fr/cel-01422101v2

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Operational methods in semantics
Roberto Amadio

To cite this version:

Roberto Amadio. Operational methods in semantics. Master. Paris, France. 2016. �cel-01422101v2�

https://hal.archives-ouvertes.fr/cel-01422101v2
https://hal.archives-ouvertes.fr

Operational methods in semantics

Roberto M. Amadio

Université Paris-Diderot

May 3, 2017

2

Contents

Preface 7

Notation 11

1 Introduction to operational semantics 13
1.1 A simple imperative language . 13
1.2 Partial correctness assertions . 17
1.3 A toy compiler . 21
1.4 Summary and references . 25

2 Rewriting systems 27
2.1 Basic properties . 27
2.2 Termination and well-founded orders . 29
2.3 Lifting well-foundation . 30
2.4 Termination and local confluence . 32
2.5 Term rewriting systems . 33
2.6 Summary and references . 35

3 Syntactic unification 37
3.1 A basic unification algorithm . 37
3.2 Properties of the algorithm . 38
3.3 Summary and references . 39

4 Termination of term rewriting systems 41
4.1 Interpretation method . 41
4.2 Recursive path order . 44
4.3 Recursive path order is well-founded . 47
4.4 Simplification orders are well-founded . 48
4.5 Summary and references . 52

5 Confluence and completion of term rewriting systems 53
5.1 Confluence of terminating term rewriting systems . 53
5.2 Completion of term rewriting systems . 54
5.3 Summary and references . 57

6 Term rewriting systems as functional programs 59
6.1 A class of term rewriting systems . 59
6.2 Primitive recursion . 60
6.3 Functional programs computing in polynomial time . 62
6.4 Summary and references . 66

7 λ-calculus 67
7.1 Syntax . 67
7.2 Confluence . 70
7.3 Programming . 73
7.4 Combinatory logic . 75

3

4

7.5 Summary and references . 75

8 Weak reduction strategies, closures, and abstract machines 77

8.1 Weak reduction strategies . 77

8.2 Static vs. dynamic binding . 80

8.3 Environments and closures . 82

8.4 Summary and references . 84

9 Contextual equivalence and simulation 85

9.1 Observation pre-order and equivalence . 85

9.2 Fixed points . 86

9.3 (Co-)Inductive definitions . 88

9.4 Simulation . 90

9.5 Summary and references . 94

10 Propositional types 95

10.1 Subject reduction . 98

10.2 A normalizing strategy for the simply typed λ-calculus . 99

10.3 Termination of the simply typed λ-calculus . 100

10.4 Summary and references . 102

11 Type inference for propositional types 103

11.1 Reduction of type-inference to unification . 103

11.2 Reduction of unification to type inference . 105

11.3 Summary and references . 107

12 Predicative polymorphic types and type inference 109

12.1 Predicative universal types and polymorphism . 109

12.2 A type inference algorithm . 112

12.3 Reduction of stratified polymorphic typing to propositional typing 114

12.4 Summary and references . 115

13 Impredicative polymorphic types 117

13.1 System F . 117

13.2 Inductive types and iterative functions . 119

13.3 Strong normalization . 125

13.4 Summary and references . 127

14 Program transformations 129

14.1 Continuation passing style form . 129

14.2 Value named form . 134

14.3 Closure conversion . 135

14.4 Hoisting . 138

14.5 Summary and references . 139

15 Typing the program transformations 141

15.1 Typing the CPS form . 142

15.2 Typing value-named closures . 142

15.3 Typing the compiled code . 145

15.4 Summary and references . 146

16 Records, variants, and subtyping 147

16.1 Records . 147

16.2 Subtyping . 148

16.3 Variants . 151

16.4 Summary and references . 152

5

17 References 153

17.1 References and heaps . 153

17.2 Typing . 155

17.3 Typing anomalies . 157

17.4 Summary and references . 157

18 Object-oriented languages 159

18.1 An object-oriented language . 159

18.2 Objects as records . 164

18.3 Typing . 165

18.4 Summary and references . 168

19 Introduction to concurrency 169

19.1 A concurrent language with shared memory . 170

19.2 Equivalences: a taste of the design space . 172

19.3 Summary and references . 174

20 A compositional trace semantics 175

20.1 Fixing the observables . 175

20.2 Towards compositionality . 176

20.3 A trace-environment interpretation . 178

20.4 Summary and references . 180

21 A denotational presentation of the trace semantics 181

21.1 The interpretation domain . 181

21.2 The interpretation . 182

21.3 Summary and references . 186

22 Implementing atomicity 187

22.1 An optimistic strategy . 187

22.2 A pessimistic strategy . 188

22.3 A formal analysis of the optimistic strategy . 189

22.4 Summary and references . 192

23 Rely-guarantee reasoning 193

23.1 Rely-guarantee assertions . 193

23.2 A coarse grained concurrent garbage collector . 197

23.3 Summary and references . 199

24 Labelled transition systems and bisimulation 201

24.1 Labelled transition systems . 201

24.2 Bisimulation . 202

24.3 Weak transitions . 205

24.4 Proof techniques for bisimulation . 206

24.5 Summary and references . 207

25 Modal logics 209

25.1 Modal logics vs. equivalences . 209

25.2 A modal logic with fixed points: the µ-calculus . 211

25.3 Summary and references . 215

26 Labelled transition systems with synchronization 217

26.1 CCS . 217

26.2 Labelled transition system for CCS . 218

26.3 A reduction semantics for CCS . 222

26.4 Value-passing CCS . 226

26.5 Summary and references . 227

6

27 Determinacy and confluence 229
27.1 Determinism in lts . 229
27.2 Confluence in lts . 232
27.3 Kahn networks . 236
27.4 Reactivity and local confluence in lts . 238
27.5 Summary and references . 241

28 Synchronous/Timed models 243
28.1 Timed CCS . 243
28.2 A deterministic calculus based on signals . 246
28.3 Summary and references . 247

29 Probability and non-determinism 249
29.1 Preliminaries . 249
29.2 Probabilistic CCS . 250
29.3 Measuring transitions . 252
29.4 Summary and references . 254

30 π-calculus 257
30.1 A π-calculus and its reduction semantics . 257
30.2 A lts for the π-calculus . 259
30.3 Variations . 262
30.4 Summary and references . 262

31 Processes vs. functions 263
31.1 From λ to π notation . 263
31.2 Adding concurrency . 264
31.3 Summary and references . 270

32 Concurrent objects 271
32.1 Review of concurrent programming in Java . 272
32.2 A specification of a fragment of concurrent Java . 274
32.3 Summary and references . 277

Bibliography 279

Index 285

Preface

The focus of these lecture notes is on abstract models and basic ideas and results that re-
late to the operational semantics of programming languages largely conceived. The approach
is to start with an abstract description of the computation steps of programs and then to
build on top semantic equivalences, specification languages, and static analyses. While other
approaches to the semantics of programming languages are possible, it appears that the op-
erational one is particularly effective in that it requires a moderate level of mathematical
sophistication and scales reasonably well to a large variety of programming features. In prac-
tice, operational semantics is a suitable framework to build portable language implementations
and to specify and test program properties (see, e.g., [MTH90]). It is also used routinely to
tackle more ambitious tasks such as proving the correctness of a compiler or a static analyzer
(see, e.g., [Ler06]).

These lecture notes contain a selection of the material taught by the author over several
years in courses on the semantics of programming languages, foundations of programming,
compilation, and concurrency theory. They are oriented towards master students interested
in fundamental research in computer science. The reader is supposed to be familiar with the
main programming paradigms (imperative, functional, object-oriented,. . .) and to have been
exposed to the notions of concurrency and synchronization as usually discussed in a course
on operating systems. The reader is also expected to have attended introductory courses on
automata, formal languages, mathematical logic, and compilation of programming languages.

Our goal is to provide a compact reference for grasping the basic ideas of a rapidly evolving
field. This means that we concentrate on the simple cases and we give a self-contained
presentation of the proof techniques. Following this approach, we manage to cover a rather
large spectrum of topics within a coherent terminology and to shed some light, we hope, on
the connections among apparently different formalisms.

Chapter 1 introduces, in the setting of a very simple imperative programming language,
some of the main ideas and applications of operational semantics. A sequential programming
language is a formalism to define a system of computable functions; the closer the formalism
to the notion of function, the simpler the semantics. The first formalism we consider is the
one of term rewriting systems (chapters 2–6). On one hand, (term) rewriting is ubiquitous
in operational semantics and so it seems to be a good idea to set on solid foundations the
notions of termination and confluence. On the other hand, under suitable conditions, term
rewriting is a way of defining first-order functions on inductively defined data structures.

The second formalism we introduce (chapters 7–9) is the λ-calculus, which is a notation to
represent higher-order functions. In this setting, a function is itself a datum that can be passed
as an argument or returned as a result. We spend some time to explain the mechanisms needed
for correctly implementing the λ-calculus via the notion of closure. We then address the issue
of program equivalence (or refinement) and claim that the notion of contextual equivalence

7

8 Preface

provides a natural answer to this issue. We also show that the co-inductively defined notion
of simulation provides an effective method to reason about contextual equivalence.

Chapters 10–13 introduce increasingly expressive type systems for the λ-calculus. The
general idea is that types express properties of program expressions which are invariant under
execution. As such, types are a way of documenting the way a program expression can be used
and by combining program expressions according to their types we can avoid many run-time
errors. In their purest form, types can be connected with logical propositions and this leads to
a fruitful interaction with a branch of mathematical logic known as proof theory. Sometimes
types lead to verbose programs. To address this issue we introduce type inference techniques
which are automatic methods discharging the programmer from the task of explicitly writing
the types of the program expressions. Also sometimes types are a bit of a straight jacket in
that they limit the way programs can be combined or reused. We shall see that polymorphic
types (and later subtyping) address, to some extent, these issues.

Chapters 14–15, introduce various standard program transformations that chained to-
gether allow to compile a higher-order (functional) language into a basic assembly language.
We also show that the type systems presented in the previous chapters shed light on the
program transformations.

Chapters 16–18 consider the problem of formalizing the operational semantics of imper-
ative and object-oriented programming languages. We show that the notion of higher-order
computable function is still useful to understand the behavior of programs written in these
languages. We start by enriching the functional languages considered with record and variant
data types. This is an opportunity to discuss the notion of subtyping which is another way
of making a type system more flexible. Concerning functions with side-effects, we show that
they can be compiled to ordinary functions by expliciting the fact that each computation
takes a memory as argument and returns a new memory as result. Concerning objects, we
show that they can be understood as a kind of recursively defined records.

Starting from chapter 19, we move from sequential to concurrent programming models
where several threads/processes compete for the same resources (e.g. write a variable or a
channel). Most of the time, this results into non-deterministic behavior which means that
with the same input the system can move to several (incomparable) states. Chapters 20–23
focus on a concurrent extension of the simple model of imperative programming introduced
in chapter 1. In particular, we introduce a compositional trace semantics, rely-guarantee
assertions, and mechanisms to implement atomic execution.

Chapters 24–27 take a more abstract look at concurrency in the framework of labelled tran-
sition systems. We develop the notion of bisimulation and we consider its logical characteriza-
tion through a suitable modal logic. Labelled transition systems extended with a rendez-vous
synchronization mechanism lead to a simple calculus of concurrent systems known as CCS .
We rely on this calculus to explore the connections between determinacy and confluence.

Chapters 28 and 29 describe two relevant extensions of CCS . In the first one, we consider
the notion of timed (or synchronous) execution where processes proceed in lockstep (at the
same speed) and the computation is regulated by a notion of instant. In the second one, we
consider systems which exhibit both non-deterministic and probabilistic behaviors.

Chapters 30–31 introduce another extension of CCS , known as π-calculus, where processes
can communicate channel names. We show that the theory of equivalence developed for CCS
can be lifted to the π-calculus and that the π-calculus can be regarded as a concurrent
extension of the λ-calculus.

Finally, chapter 32 builds on chapter 18 to formalize a fragment of the concurrency avail-

Preface 9

able in the Java programming language and to discuss the notion of linearization of concurrent
data structures.

While the choice of the topics is no doubt biased by the interests of the author, it still
provides a fair representation of the possibilities offered by operational semantics. Links
between operational semantics and more ‘mathematical’ semantics based, e.g., on domain
and/or category theory are not developed at all in these lecture notes; we refer the interested
reader to, e.g., [AC98, Gun92, Win93].

Most topics discussed in these lecture notes can form the basis of interesting programming
experiences such as the construction of a compiler, a static type analyzer, or a verification
condition generator. The proofs sketched in these lecture notes can also become the object of
a programming experience in the sense that they can be formalized and checked in suitable
proof assistants (experiments in this direction can be found, e.g., in the books [Chl13, NK14,
PCG+15]).

Each chapter ends with a summary of the main concepts and results introduced and a few
bibliographic references. These references are suggestions for further study possibly leading
to research problems. Quite often we prefer to quote the ‘classic’ papers that introduced a
concept than the most recent ones which elaborated on it. Reading the ‘classics’ is a very
valuable exercise which helps in building some historical perspective especially in a discipline
like computer science where history is so short.

These lecture notes contain enough material for a two semesters course; however, there are
many possible shortcuts to fit just one semester course. The chapters 1–18 cover sequential
languages. Chapters 1, 2, and some of 4 are a recommended introduction and the chapters
7–10 constitute the backbone on the λ-calculus. The remaining chapters can be selected
according to the taste of the instructor and the interests of the students. Topics covered
include: term rewriting systems (chapters 3, 5, 6), type systems (chapters 12, 13, 16), type
inference (chapters 3, 11, 12), program transformations (chapters 14, 15), and imperative
and object-oriented languages (chapters 17, 18). The chapters 19–32 focus on concurrent
languages and assume some familiarity with the basic material mentioned above. Chapter 19
is a recommended introduction to concurrency. Chapters 20–23 cover a simple model of shared
memory concurrency while chapters 24–26 lead to the calculus CCS , a basic model of message
passing concurrency. The following chapters explore the notions of deterministic (chapter
27), timed (chapter 28), and probabilistic (chapter 29) computation. The final chapters move
towards models of concurrency that integrate the complexity of a sequential language. In
particular, we discuss the π-calculus (chapters 30, 31) which relates to the λ-calculus and a
concurrent object oriented language (chapter 32) which extends the object-oriented language
presented in chapter 18.

10 Preface

Notation

Set theoretical

∅ empty set
N natural numbers
Z integers
∪,∩ union, intersection of two sets⋃
,
⋂

union, intersection of a family of sets
Xc complement of X
P(X) subsets of X
Pfin(X) finite subsets of X
]X cardinality of X
R∗ reflexive and transitive closure of R

Order theoretical

(P,<) transitive partial order
(P,≤) reflexive and transitive partial order
f : (P,≤)→ (P ′,≤′) f is monotonic if it preserves the preorder∨
X least upper bound (lub)∧
X greatest lower bound (glb)

Syntax

We introduce a number of operators that bound variables. The rules for renaming bound variables and for
substituting a term in a term with bound variables are the same that apply in, say, first-order logic. If T, S, . . .
are terms and x is a variable, we denote with fv(T) the set of variables occurring free in T and with [T/x]S
the substitution of T for x in S.

Semantics

f [e/d] function update, f [e/d](x) =

{
e if x = d
f(x) otherwise

11

12 Notation

Chapter 1

Introduction to operational
semantics

The goal of this introductory chapter is to present at an elementary level some ideas of the
operational approach to the semantics of programming languages and to illustrate some of
their applications.

To this end, we shall focus on a standard toy imperative language called Imp. As a first
step we describe formally and at an abstract level the computations of Imp programs. In
doing this, we identify two styles known as big-step and small-step. Then, based on this
specification, we introduce a suitable notion of pre-order on statements and check that this
pre-order is preserved by the operators of the Imp language.

As a second step, we introduce a specification formalism for Imp programs that relies on
so called partial correctness assertions (pca’s). We present sound rules for reasoning about
such assertions and a structured methodology to reduce reasoning about pca’s to ordinary
reasoning in a suitable theory of (first-order) logic. We also show that the pre-order previously
defined on statements coincides with the one induced by pca’s.

As a third and final step, we specify a toy compiler from the Imp language to an hypothet-
ical virtual machine whose semantics is also defined using operational techniques. We then
apply the developed framework to prove the correctness of the compiler.

1.1 A simple imperative language

We assume the reader is familiar with the idea that the syntax of a programming language
can be specified via a context-free grammar. The syntax of the Imp language is described in
Table 1.1 where we distinguish the syntactic categories of identifiers (or variables), integers,
values, numerical expressions, boolean conditions, statements, and programs. We shall not
dwell on questions of grammar ambiguity and priority of operators. Whenever we look at a
syntactic expression we assume it contains enough parentheses so that no ambiguity arises on
the order of application of the operators.

We also assume the reader is familiar with the notion of formal system. A formal system
is composed of formulae specified by a certain syntax and inference rules to derive formulae
from other formulae. Depending on the context, the formulae may be called assertions or

13

14 Introduction

judgments. We often rely on the following suggestive notation to describe inference rules:

A1, . . . , An
B

,

which means that if we can infer formulae A1, . . . , An (the hypotheses) then we can also infer
formula B (the conclusion). To bootstrap the inference process we need some rule with no
hypothesis, i.e., where n = 0. Such rules are called axioms. A rule with m conclusions is
regarded as an abbreviation for m rules which share the same hypotheses:

A1, . . . , An
B1, . . . , Bm

is equivalent to
A1, . . . , An

B1
, · · · , A1, . . . , An

Bm
.

The Imp language is a rather standard imperative language with while loops and if-then-
else. We call the language imperative because the execution of a program is understood as the
execution of a sequence of statements whose effect is to modify a global entity known as the
state. We can regard the state as an abstract model of the computer’s memory. As in every
modeling activity, the name of the game is to have a simple model but not too simple. In
other words, the model should not contain too many details and still be able to make useful
predictions on programs’ behaviors. For the Imp language, we shall assume the state is a total
function from identifiers to integers. Notice that by representing the state as a total function
we avoid some technicalities, namely we make sure that the evaluation of a variable in a state
is always defined.

If s is a state, x an identifier, and n an integer, then we denote with s[n/x] an elementary
state update defined as follows:

s[n/x](y) =

{
n if x = y
s(y) otherwise.

A first approach at specifying the execution of Imp programs relies on the following judgments
(or assertions):

(e, s) ⇓ v, (b, s) ⇓ v, (S, s) ⇓ s′, (P, s) ⇓ s′,

and it is described in Table 1.2. The defined predicates ⇓ are often called evaluations. They
specify the final result of the execution (if any) while neglecting the intermediate steps. Thus,
for a given state, a (boolean) expression evaluates to a value while a statement (or a program)
evaluates to a state. This specification style is called big-step.

By opposition, the small-step approach is based on the definition of ‘elementary’ reduction
rules. The final result, if any, is obtained by iteration of the reduction rules. In order to

id ::= x || y || . . . (identifiers)
n ::= 0 || −1 || +1 || . . . (integers)
v ::= n || true || false (values)
e ::= id || n || e+ e (numerical expressions)
b ::= e < e (boolean conditions)
S ::= skip || id := e || S;S || if b then S else S || while b do S (statements)
P ::= prog S (programs)

Table 1.1: Syntax of the Imp language

Introduction 15

(v, s) ⇓ v (x, s) ⇓ s(x)

(e, s) ⇓ v (e′, s) ⇓ v′
(e+ e′, s) ⇓ (v +Z v

′)

(e, s) ⇓ v (e′, s) ⇓ v′
(e < e′, s) ⇓ (v <Z v

′)

(skip, s) ⇓ s
(e, s) ⇓ v

(x := e, s) ⇓ s[v/x]

(S1, s) ⇓ s′ (S2, s
′) ⇓ s′′

(S1;S2, s) ⇓ s′′

(b, s) ⇓ true (S, s) ⇓ s′
(if b then S else S′, s) ⇓ s′

(b, s) ⇓ false (S′, s) ⇓ s′
(if b then S else S′, s) ⇓ s′

(b, s) ⇓ false

(while b do S, s) ⇓ s
(b, s) ⇓ true (S;while b do S, s) ⇓ s′

(while b do S, s) ⇓ s′

(S, s) ⇓ s′
(prog S, s) ⇓ s′

Table 1.2: Big-step reduction rules of Imp

(x := e,K, s) → (skip,K, s[v/x]) if (e, s) ⇓ v

(S;S′,K, s) → (S, S′ ·K, s)

(if b then S else S′,K, s) →
{

(S,K, s) if (b, s) ⇓ true
(S′,K, s) if (b, s) ⇓ false

(while b do S,K, s) →
{

(S, (while b do S) ·K, s) if (b, s) ⇓ true
(skip,K, s) if (b, s) ⇓ false

(skip, S ·K, s) → (S,K, s)

Table 1.3: Small-step reduction rules of Imp statements

describe the intermediate steps of the computation, we introduce an additional syntactic
category of continuations. A continuation K is a list of statements which terminates with a
special symbol halt:

K ::= halt || S ·K (continuation).

A continuation keeps track of the statements that still need to be executed. Table 1.3 defines
small-step reduction rules for Imp statements whose basic judgment has the shape:

(S,K, s)→ (S′,K ′, s′) .

Note that we still rely on the big-step reduction of (boolean) expressions; the definition of a
small step reduction for (boolean) expressions is left to the reader. We define the reduction of
a program prog S as the reduction of the statement S with continuation halt. We can derive
a big-step reduction from the small-step one as follows:

(S, s) ⇓ s′ if (S, halt, s)
∗→ (skip, halt, s′) ,

where
∗→ denotes the reflexive and transitive closure of the relation →.

Let us pause to consider some properties of both the big-step and the small-step reductions.
In both cases, reduction is driven by the syntax of the object (program, statement,. . .) under

16 Introduction

consideration. Moreover it is easy to check that for each state and program (or statement, or
expression, or boolean expression) at most one rule applies. This entails that the computation
is deterministic. In some situations the computation is stuck, i.e., no rule applies. This
happens if we try to add or compare two expressions whose values are not integers. Also in
some situations the computation diverges and this happens because of the unfolding of the
while loop.

To summarize, given a program and a state, 3 mutually exclusive situations may arise:
(1) the computation terminates producing a new state, (2) the computation is stuck in a
situation where no rule applies, and (3) the computation diverges. Because, our computation
rules are deterministic, in situation (1) there is exactly one state which is the outcome of the
computation. Situation (2) corresponds to an erroneous configuration. Rather than leaving
the computation stuck it is always possible to add rules and values so that the computation
actually terminates returning some significant error message. As for situation (3), in the
big-step approach, it arises as an infinite regression in the proof tree. For instance, assuming
S = while true do skip, we have:

(skip, s) ⇓ s (S, s) ⇓ ?

(skip;S, s) ⇓ ?

(S, s) ⇓ ?

In the small-step approach, a diverging computation is an infinite reduction as in:

(S, halt, s)→ (skip, S · halt, s)→ (S, halt, s)→ · · ·

Specifying the way programs compute is actually only the first step in the definition of an
operational semantics. The second step consists in defining a notion of program equivalence.
To answer this question, we need to decide what exactly is observable in the computation of
a program. In general, sequential programs are regarded as functions that transform input
data into output data. In particular, sequential imperative programs such as those of the Imp
language can be interpreted as partial functions from states to states. Following this idea, we
also interpret statements as partial functions from states to states and (boolean) expressions
as total functions from states to numerical (boolean) values.

Definition 1 (IO interpretation) The IO interpretation of Imp programs, statements, and
(boolean) expressions is defined as follows:

[[P]]IO = {(s, s′) | (P, s) ⇓ s′}, [[S]]IO = {(s, s′) | (S, s) ⇓ s′},
[[b]]IO = {(s, v) | (b, s) ⇓ v}, [[e]]IO = {(s, v) | (e, s) ⇓ v} .

A third step consists in checking the compositionality properties of the proposed interpre-
tation. For instance, suppose we have shown that the IO-interpretations of two statements
S and S′ coincide. Does this guarantee that we can always replace any occurrence of the
statement S in a program with the statement S′ without affecting the overall behavior of the
program? To make this idea precise we introduce the notion of statement context.

Definition 2 (context) A statement context (or context for short) C is defined by the
following grammar:

C ::= [] || C;S || S;C || if b then C else S || if b then S else C || while b do C

where [] is a fresh symbol which stands for a placeholder (or a hole).

Introduction 17

If C is a context and S a statement then C[S] is the statement resulting from replacing
the special symbol [] with S in C. For instance, if C = S′; [] then C[S] = S′;S.

Proposition 3 (compositionality) For all statements S and S′ and context C, if [[S]]IO ⊆
[[S′]]IO then [[C[S]]]IO ⊆ [[C[S′]]]IO.

Proof. We proceed by induction on the height of the proof of the judgment (C[S], s) ⇓ s′
and case analysis on the shape of the context C. For instance, suppose C = while b do C ′.
We distinguish two cases.

• If (b, s) ⇓ false then s′ = s and (C[S′], s) ⇓ s.

• If (b, s) ⇓ true, (C ′[S], s) ⇓ s′′, and (C[S], s′′) ⇓ s′. Then, by inductive hypothesis, we
have that: (C ′[S′], s) ⇓ s′′ and (C[S′], s′′) ⇓ s′. Hence (C[S′], s) ⇓ s′. 2

Exercise 4 Implement in your favorite programming language the big-step and small-step
reduction rules (Tables 1.2 and 1.3) of the Imp language.

Exercise 5 Suppose we extend the Imp language with the commands break and continue.
Their informal semantics is as follows:

break causes execution of the smallest enclosing while statement to be terminated. Program
control is immediately transferred to the point just beyond the terminated statement. It
is an error for a break statement to appear where there is no enclosing while statement.

continue causes execution of the smallest enclosing while statement to be terminated. Program
control is immediately transferred to the end of the body, and the execution of the affected
while statement continues from that point with a reevaluation of the loop test. It is an
error for continue to appear where there is no enclosing while statement.

Define the big-step and small-step reduction rules for the extended language. Hint: for the
big-step, consider extended judgments of the shape (S, s) ⇓ (o, s′) where o is an additional
information indicating the mode of the result, for the small-step consider a new continuation
endloop(K), where K is an arbitrary continuation.

1.2 Partial correctness assertions

Most programming languages support the insertion of logical assertions in the control flow.
At run time, whenever a logical assertion is crossed its validity is checked and an exception
is raised if the check fails. Inserting assertions in programs is an excellent way of docu-
menting the expectations on the input (pre-conditions) and the guarantees on the output
(post-conditions). Moreover, assertions are quite helpful in nailing down bugs. In the follow-
ing, we consider systematic methods to compose pre and post conditions and possibly prove
for a given statement and pre-condition that a certain post-condition will always hold. We
denote with A,B, . . . assertions. When we regard them as syntax they are formulae with
variables ranging over the set program variables. For instance:

∃ y (x = 3 ∧ z > y > x) . (1.1)

18 Introduction

We write s |= A if the assertion A holds in the interpretation (state) s. Thus a syntactic
assertion such as (1.1) is semantically the set of states that satisfy it, namely:

{s | s(x) = 3, s(z) ≥ 5} .

Definition 6 (pca) A partial correctness assertion (pca) is a triple {A} S {B}. We say
that it is valid and write |= {A} S {B} if:

∀ s (s |= A and (P, s) ⇓ s′ implies s′ |= B) .

The assertion is partial because it puts no constraint on the behavior of a non-terminating,
i.e., partial, statement. Table 1.4 describes the so called Floyd-Hoare rules (logic). The rules
are formulated assuming that A,B, . . . are sets of states. It is possible to go one step further
and replace the sets by predicates in, say, first-order logic, however this is not essential to
understand the essence of the rules.

We recall that if S is a statement then [[S]]IO is its input-output interpretation (definition
1). This is a binary relation on states which for Imp statements happens to be the graph of
a partial function on states. In particular, notice that for an assignment x := e we have:

[[x := e]]IO = {(s, s[v/x]) | (e, s) ⇓ v} ,

which is the graph of a total function. In the assertions, we identify a boolean predicate b
with the set of states that satisfy it, thus b stands for {s | s |= b}. We denote with A,B, . . .
unary relations (predicates) on the set of states and with R,S, . . . binary relations on the set
of states. We combine unary and binary relations as follows:

A;R = {s′ | ∃ s s ∈ A and (s, s′) ∈ R} (image)
R;A = {s | ∃ s′ s′ ∈ A and (s, s′) ∈ R} (pre-image).

The first rule in Table 1.4 allows to weaken the pre-condition and strengthen the post-
condition while the following rules are associated with the operators of the language. The
rules are sound in the sense that if the hypotheses are valid then the conclusion is valid too.

Proposition 7 (soundness pca rules) The assertions derived in the system described in
Table 1.4 are valid.

A ⊆ A′ {A′} S {B′} B′ ⊆ B
{A} S {B}

{A} S1 {C} {C} S2 {B}
{A} S1;S2 {B}

{A ∩ b} S1 {B} {A ∩ ¬b} S2 {B}
{A} if b then S1 else S2 {B}

A ⊆ B
{A} skip {B}

A; [[x := e]]IO ⊆ B
{A} x := e {B}

(A ∩ ¬b) ⊆ B {A ∩ b} S {A}
{A} while b do S {B}

Table 1.4: Floyd-Hoare rules for Imp

Introduction 19

Proof. We just look at the case for the while rule. Suppose s ∈ A and (while b do S, s) ⇓ s′.
We show by induction on the height of the derivation that s′ ∈ B. For the basic case, we
have s ∈ ¬b and we know A ∩ ¬b ⊆ B. On the other hand, suppose s ∈ b and

(S; while b do S, s) ⇓ s′ .

This means (S, s) ⇓ s′′ and (while b do S, s′′) ⇓ s′. By hypothesis, we know s′′ ∈ A and by
inductive hypothesis s′ ∈ B. 2

Exercise 8 Suppose A is a first-order formula. Show the validity of the pca {[e/x]A} x :=
e {A}. On the other hand, show that the pca {A} x := e {[e/x]A} is not valid.

Interestingly, one can read the rules bottom up and show that if the conclusion is valid
then the hypotheses are valid up to an application of the first ‘logical’ rule. This allows to
reduce the proof of a pca {A} S {B} to the proof of a purely set-theoretic/logical statement.
The task of traversing the program S and producing logical assertions can be completely
automated once the loops are annotated with suitable invariants. This is the job of so-called
verification condition generators.

Proposition 9 (inversion pca rules) The following properties hold:

1. If {A} S1;S2 {B} is valid then {A} S1 {C} and {C} S2 {B} are valid where C =
(A; [[S1]]IO) ∩ ([[S2]]IO;B).

2. If {A} if b then S1 else S2 {B} is valid then {A ∩ b} S1 {B} and {A ∩ ¬b} S2 {B} are
valid.

3. If {A} skip {B} is valid then A ⊆ B holds.

4. If {A} x := e {B} is valid then A; [[x := e]]IO ⊆ B holds.

5. If {A} while b do S {B} is valid then there is A′ ⊇ A such that (i) A′ ∩ ¬b ⊆ B and
(ii) {A′ ∩ b} S {A′} is valid.

Proof. The case for while is the interesting one. We define:

A0 = A An+1 = (An ∩ b); [[S]]IO A′ =
⋃
n≥0An .

We must have: ∀n ≥ 0 An ∩ ¬b ⊆ B. Then for the first condition, we notice that:

A′ ∩ ¬b = (
⋃
n≥0An) ∩ ¬b =

⋃
n≥0(An ∩ ¬b)

⊆
⋃
n≥0B = B .

For the second, we have:

(A′ ∩ b); [[S]]IO = (
⋃
n≥0An ∩ b); [[S]]IO = (

⋃
n≥0(An ∩ b)); [[S]]IO

=
⋃
n≥0(An ∩ b); [[S]]IO =

⋃
n≥1An

⊆
⋃
n≥0An = A′ .

An assertion such as A′ is called an invariant of the loop. In the proof, A′ is defined as
the limit of an iterative process where at each step we run the body of the loop. While in

20 Introduction

theory A′ does the job, in practice it may be hard to reason on its properties; finding a usable
invariant may require some creativity. 2

Given a specification language on, say, statements, we can consider two statements logically
equivalent if they satisfy exactly the same specifications. We can apply this idea to pca’s.

Definition 10 (pca interpretation) The pca interpretation of a process P is:

[[P]]pca = {(A,B) | |= {A} P {B}} .

So now we have two possible notions of equivalence for statements: one based on the
input-output behavior and another based on partial correctness assertions. However, it is not
too difficult to show that they coincide.

Proposition 11 (IO vs. pca) Let S1, S2 be statements. Then:

[[S1]]IO = [[S2]]IO iff [[S1]]pca = [[S2]]pca .

Proof. (⇒) Suppose (A,B) ∈ [[S1]]pca, s |= A, (S2, s) ⇓ s′. Then (s, s′) ∈ [[S2]]IO = [[S1]]IO.
Hence s′ |= B and (A,B) ∈ [[S2]]pca.

(⇐) First a remark. Let us write s =X s′ if ∀x ∈ X s(x) = s′(x). Further suppose X ⊇ fv(S)
and (S, s) ⇓ s′. Then:

1. The variables outside X are untouched: s =Xc s′.

2. If s =X s1 then (S, s1) ⇓ s′1 and s′ =X s′1.

We now move to the proof. Given a state and a finite set of variables X, define:

IS(s,X) =
∧
x∈X

(x = s(x)) .

Notice that: s′ |= IS(s,X) iff s′ =X s. We proceed by contradiction, assuming (s, s′) ∈ [[S1]]IO

and (s, s′) /∈ [[S2]]IO. Let X be the collection of variables occurring in the commands S1 or
S2. Then check that:

(IS(s,X),¬IS(s′, X)) ∈ [[S2]]pca .

On the other hand: (IS(s,X),¬IS(s′, X)) /∈ [[S1]]pca. 2

Exercise 12 Let S be a statement and B an assertion. The weakest precondition of S with
respect to B is a predicate that we denote with wp(S,B) such that: (i) {wp(S,B)} S {B}
is valid and (ii) if {A} S {B} is valid then A ⊆ wp(S,B). Let us assume the statement S
does not contain while loops. Propose a strategy to compute wp(S,B) and derive a method to
reduce the validity of a pca {A} S {B} to the validity of a logical assertion.

Introduction 21

Rule C[i] =

C ` (i, σ, s)→ (i+ 1, n · σ, s) cnst(n)
C ` (i, σ, s)→ (i+ 1, s(x) · σ, s) var(x)
C ` (i, n · σ, s)→ (i+ 1, σ, s[n/x]) setvar(x)
C ` (i, n · n′ · σ, s)→ (i+ 1, (n+Z n

′) · σ, s) add

C ` (i, σ, s)→ (i+ k + 1, σ, s) branch(k)
C ` (i, n · n′ · σ, s)→ (i+ 1, σ, s) bge(k) and n <Z n

′

C ` (i, n · n′ · σ, s)→ (i+ k + 1, σ, s) bge(k) and n ≥Z n
′

Table 1.5: Small-step reduction rules of Vm programs

1.3 A toy compiler

We introduce a simple virtual machine Vm to execute Imp programs. The machine includes
the following elements: (1) a fixed code C (a possibly empty sequence of instructions), (2)
a program counter pc, (3) a state s (identical to the one of Imp programs), (4) a stack of
integers σ which, intuitively, is used to evaluate boolean and numerical expressions. The
machine includes the following instructions with the associated informal semantics where
‘push’ and ‘pop’ act on the stack:

cnst(n) push n
var(x) push value x
setvar(x) pop value and assign it to x
add pop 2 values and push their sum
branch(k) jump with offset k
bge(k) pop 2 values and jump if greater or equal with offset k
halt stop computation

In the branching instructions, k is an integer that has to be added to the current program
counter in order to determine the following instruction to be executed. Given a sequence C,
we denote with |C| its length and with C[i] its ith element (the leftmost element being the
0th element). The (small-step) reduction rules of the instructions are formalized by rules of
the shape:

C ` (i, σ, s)→ (j, σ′, s′) ,

and are fully described in Table 1.5. As already mentioned, the Imp and Vm reduction rules
share the same notion of state. We write, e.g., n ·σ to stress that the top element of the stack
exists and is n. We denote with ε an empty stack or an empty sequence of Vm instructions.
We write (C, s) ⇓ s′ if C ` (0, ε, s)

∗→ (i, ε, s′) and C[i] = halt.
In Table 1.6, we define compilation functions C from Imp to Vm which operate on expres-

sions, boolean conditions, statements, and programs. We write sz (e), sz (b), sz (S) for the num-
ber of instructions the compilation function associates with the expression e, the boolean con-
dition b, and the statement S, respectively. For instance, the statement while (0 < 1) do skip
is compiled as:

(cnst(0))(cnst(1))(bge(1))(branch(−4)) .

We now consider the question of proving the ‘correctness’ of the compilation function.
The following proposition relates the big-step reduction of Imp programs to the execution of
the compiled code.

22 Introduction

C(x) = var(x) C(n) = cnst(n) C(e+ e′) = C(e) · C(e′) · add

C(e < e′, k) = C(e) · C(e′) · bge(k)

C(skip) = ε C(x := e) = C(e) · setvar(x) C(S;S′) = C(S) · C(S′)

C(if b then S else S′) = C(b, k) · C(S) · (branch(k′)) · C(S′)
where: k = sz (S) + 1, k′ = sz (S′)

C(while b do S) = C(b, k) · C(S) · branch(k′)
where: k = sz (S) + 1, k′ = −(sz (b) + sz (S) + 1)

C(prog S) = C(S) · halt

Table 1.6: Compilation from Imp to Vm

Proposition 13 (soundness, big-step) The following properties hold:

(1) If (e, s) ⇓ v then C · C(e) · C ′ ` (i, σ, s)
∗→ (j, v · σ, s) where i = |C| and j = |C · C(e)|.

(2) If (b, s) ⇓ true then C ·C(b, k)·C ′ ` (i, σ, s)
∗→ (j+k, σ, s) where i = |C| and j = |C ·C(b, k)|.

(3) If (b, s) ⇓ false then C · C(b, k) ·C ′ ` (i, σ, s)
∗→ (j, σ, s) where i = |C| and j = |C · C(b, k)|.

(4) If (S, s) ⇓ s′ then C · C(S) · C ′ ` (i, σ, s)
∗→ (j, σ, s′) where i = |C| and j = |C · C(S)|.

Proof. All proofs are by induction on the derivation of the evaluation judgment. We detail
the proof of property (4) in the case the command is a while loop while b do S whose boolean
condition b is satisfied. So we have:

(b, s) ⇓ true, (S, s) ⇓ s′′, (while b do S, s′′) ⇓ s′ .

By definition of the compilation function, we have a code C ′′ of the shape:

C · C(b, k) · C(S) · branch(k′) · C ′ .

By property (2), we have for any σ, s:

C ′′ ` (i, σ, s)
∗→ (j, σ, s) ,

where i = |C|, j = |C · C(b, k)|. By inductive hypothesis on property (4), we have:

C ′′ ` (j, σ, s)
∗→ (j′, σ, s′′) ,

where j′ = |C · C(b, k) · C(S)|. Since k′ = −(|C(b, k) · C(S)|+ 1), we have:

C ′′ ` (j, σ, s′′)→ (i, σ, s′′) .

Again, by inductive hypothesis on property (4) we have:

C ′′ ` (i, σ, s′′)
∗→ (j′′, σ, s′) ,

where j′′ = |C · C(while b do S)|. 2

Introduction 23

We can prove similar results working with the small-step reduction of the Imp language.

To this end, given a Vm code C, we define an ‘accessibility relation’
C
; as the least binary

relation on {0, . . . , |C| − 1} such that:

i
C
; i

C[i] = branch(k) (i+ k + 1)
C
; j

i
C
; j

.

Thus i
C
; j if in the code C we can go from i to j following a sequence of unconditional

jumps. We also introduce a ternary relation R(C, i,K) which relates a Vm code C, a number
i ∈ {0, . . . , |C| − 1}, and a continuation K. The intuition is that relative to the code C, the
instruction i can be regarded as having continuation K.

Definition 14 The ternary relation R is the least one that satisfies the following conditions:

i
C
; j C[j] = halt

R(C, i, halt)

i
C
; i′ C = C1 · C(S) · C2

i′ = |C1| j = |C1 · C(S)| R(C, j,K)

R(C, i, S ·K)

.

We can then state the correctness of the compilation function as follows.

Proposition 15 (soundness, small-step) If (S,K, s)→ (S′,K ′, s′) and R(C, i, S ·K) then

C ` (i, σ, s)
∗→ (j, σ, s′) and R(C, j, S′ ·K ′).

Proof. Preliminary remarks:

1. The relation
C
; is transitive.

2. If i
C
; j and R(C, j,K) then R(C, i,K).

The first property can be proven by induction on the definition of
C
; and the second by

induction on the structure of K. Next we can focus on the proof of the assertion. The

notation C
i· C ′ means that i = |C|. Suppose that:

(1) (S,K, s)→ (S′,K ′, s′) and (2) R(C, i, S ·K) .

From (2), we know that there exist i′ and i′′ such that:

(3) i
C
; i′, (4) C = C1

i′· C(S)
i′′· C2, and (5) R(C, i′′,K) .

And from (3) it follows that:

(3′) C ` (i, σ, s)
∗→ (i′, σ, s) .

We are looking for j such that:

(6) C ` (i, σ, s)
∗→ (j, σ, s′), and (7) R(C, j, S′ ·K ′) .

We proceed by case analysis on S. We just detail the case of the conditional statement as the
remaining cases have similar proofs. If S = if e1 < e2 then S1 else S2 then (4) is rewritten as
follows:

C = C1
i′· C(e1) · C(e2) · bge(k1)

a· C(S1)
b· branch(k2)

c· C(S2)
i′′· C2 ,

where c = a+ k1 and i′′ = c+ k2. We distinguish two cases according to the evaluation of the
boolean condition. We describe the case (e1 < e2, s) ⇓ true. We set j = a.

24 Introduction

C[i] = Conditions for C : h

cnst(n) or var(x) h(i+ 1) = h(i) + 1
add h(i) ≥ 2, h(i+ 1) = h(i)− 1
setvar(x) h(i) = 1, h(i+ 1) = 0
branch(k) 0 ≤ i+ k + 1 ≤ |C|, h(i) = h(i+ 1) = h(i+ k + 1) = 0
bge(k) 0 ≤ i+ k + 1 ≤ |C|, h(i) = 2, h(i+ 1) = h(i+ k + 1) = 0
halt i = |C| − 1, h(i) = h(i+ 1) = 0

Table 1.7: Conditions for well-formed code

• The instance of (1) is (S,K, s)→ (S1,K, s).

• The reduction required in (6) takes the form C ` (i, σ, s)
∗→ (i′, σ, s)

∗→ (a, σ, s′), and it
follows from (3′), the fact that (e1 < e2, s) ⇓ true, and proposition 13(2).

• Property (7), follows from the preliminary remarks, fact (5), and the following proof
tree:

j
C
; j b

C
; i′′ R(C, i′′,K)

R(C, b,K)

R(C, j, S1 ·K)

2

Remark 16 We have already noticed that an Imp program has 3 possible behaviors: (1) it
returns a (unique) result, (2) it is stuck in an erroneous situation, (3) it diverges. Proposition
13 guarantees that the compiler preserves behaviors of type (1). Using the small-step reduction
rules (proposition 15), we can also conclude that if the source program diverges then the
compiled code diverges too. On the other hand, when the source program is stuck in an
erroneous situation the compiled code is allowed to have an arbitrary behavior. The following
example justifies this choice. Suppose at source level we have an error due to the addition of
an integer and a boolean. Then this error does not need to be reflected at the implementation
level where the same data type may well be used to represent both integers and booleans.

Exercise 17 (stack height) The Vm code coming from the compilation of Imp programs has
very specific properties. In particular, for every instruction of the compiled code it is possible
to predict statically, i.e., at compile time, the height of the stack whenever the instruction
is executed. We say that a sequence of instructions C is well formed if there is a function
h : {0, . . . , |C|} → N which satisfies the conditions listed in Table 1.7 for 0 ≤ i ≤ |C| − 1. In
this case we write C : h.

The conditions defining the predicate C : h are strong enough to entail that h correctly
predicts the stack height and to guarantee the uniqueness of h up to the initial condition. Show
that: (1) If C : h, C ` (i, σ, s)

∗→ (j, σ′, s′), and h(i) = |σ| then h(j) = |σ′|. (2) If C : h,
C : h′ and h(0) = h′(0) then h = h′.

Next prove that the result of the compilation is a well-formed code. Namely, for any
expression e, statement S, and program P the following holds. (3) For any n ∈ N there is a
unique h such that C(e) : h, h(0) = n, and h(|C(e)|) = h(0) + 1. (4) For any S, there is a
unique h such that C(S) : h, h(0) = 0, and h(|C(e)|) = 0. (5) There is a unique h such that
C(P) : h.

Introduction 25

1.4 Summary and references

The first step in defining the operational semantics of a programming language amounts
to specify the way a program computes. The following steps are the specification of the
observables (of a computation) and the definition of a compositional pre-order (or equivalence)
on programs.

An alternative and related approach amounts to introduce (partial) correctness assertions
on programs and deem two programs equivalent if they satisfy the same assertions. Also
the validity of a program’s assertion can be reduced to the validity of an ordinary logical
statement in a suitable theory of first order logic.

The formal analysis of compilers is a natural application target for operational semantics.
Each language in the compilation chain is given a formal semantics and the behavior of the
source code is related to the behavior of its representation in intermediate languages, and
down to object code.

The lecture notes [Plo04] are an early (first version appeared in 1981) systematic pre-
sentation of an operational approach to the semantics of programming languages. Rules for
reasoning on partial correctness assertions of simple imperative programs are presented in
[Flo67] and [Hoa69] while [MP67] is an early example of mechanized verification of a simple
compiler. The presented case study builds on that example and is partially based on [Ler09].

26 Introduction

Chapter 2

Rewriting systems

In computer science, a set equipped with a binary reduction relation is an ubiquitous structure
arising, e.g., when formalizing the computation rules of an automaton, the generation step of
a grammar, or the reduction rules of a programming language (such as the rules for the Imp
language in Table 1.3).

Definition 18 A rewriting system is a pair (A,→) where A is a set and →⊆ A × A is a
reduction relation. We write a→ b for (a, b) ∈→.

If we regard the reduction relation as an edge relation, we can also say that a rewriting
system is a (possibly infinite) directed graph.

Next we introduce some notation. If R is a binary relation we denote with R−1 its inverse
and with R∗ its reflexive and transitive closure. In particular, if → is a reduction relation we
also write ← for →−1,

∗→ for (→)∗ and
∗← for (←)∗. Finally,

∗↔ is defined as (→ ∪ →−1)∗.
This is the equivalence relation induced by the rewriting system.

2.1 Basic properties

Termination and confluence are two relevant properties of rewriting systems. Let us start
with termination, namely the fact that all reduction sequences terminate.

Definition 19 (termination) A rewriting system (A,→) is terminating if all sequences of
the shape a0 → a1 → a2 → · · · are finite.

In this definition, we require the sequence (not the set) to be finite. In particular, a
rewriting system composed of a singleton set A where →= A×A is not terminating.

When the rewriting system corresponds to the reduction rules of a programming language
the termination property is connected to the termination of programs. This is a fundamental
property in program verification. As a matter of fact, the verification of a program is often
decomposed into the proof of a partial correctness assertion (cf. section 1.2) and a proof of
termination.

Example 20 Let A be the set of words composed of a (possibly empty) sequence of ‘function
symbols’ f and an integer n. Write fk for f · · · f , k times, and define a rewriting relation →
on A as follows:

fk+1(n)→
{
fk(n− 10) if n > 100
fk+2(n+ 11) otherwise.

27

28 Rewriting systems

This is known as McCarthy’s function 91. For instance:

f(100)→ f(f(111))→ f(101)→ 91 6→

Proving its termination is not trivial, but the name of the function gives a hint. For another
example, let N+ be the collection of non-negative natural numbers with the following rewriting
relation:

n→
{
n/2 if n > 1, n even
3n+ 1 if n > 1, n odd.

This is known as Collatz’s function and its termination is a long standing open problem.

Exercise 21 Consider the following Imp command (extended with integer addition and divi-
sion) where b is an arbitrary boolean condition:

while (u > l + 1) do (r := (u+ l)/2 ; if b then u := r else l := r) .

Show that the evaluation of the command starting from a state satisfying u, l ∈ N terminates.

Definition 22 (normalizing) We say that a ∈ A is a normal form if 6 ∃b (a → b). We
also say that the rewriting system is normalizing if for all a ∈ A there is a finite reduction
sequence leading to a normal form.

A terminating rewriting system is normalizing, but the converse fails. For instance, con-
sider: A = {a, b} with a→ a and a→ b. In some contexts (e.g., proof theory), a terminating
rewriting system is also called strongly normalizing. A second property of interest is conflu-
ence.

Definition 23 (confluence) A rewriting system (A,→) is confluent if for all a ∈ A:

∀ b, c (b
∗← a

∗→ c)

∃ d (b
∗→ d

∗← c)
.

We also write b ↓ c if ∃ d (b
∗→ d

∗← c).

A property related to confluence is the property called Church-Rosser, after the logicians
who introduced the terminology in the framework of the λ-calculus (cf. chapter 7).

Definition 24 (Church-Rosser) A rewriting system (A,→) is Church-Rosser if for all

a, b ∈ A, a
∗↔ b implies a ↓ b.

Proposition 25 A rewriting system is Church-Rosser iff it is confluent.

Proof. (⇒) If a
∗→ b and a

∗→ c then b
∗↔ c. Hence ∃ d b

∗→ d, c
∗→ d.

(⇐) If a
∗↔ b then a and b are connected by a finite sequence of ‘picks and valleys’. For

instance:
a
∗→ c1

∗← c2
∗→ c3 · · ·

∗← cn
∗→ b .

Using confluence, we can then find a common reduct. To show this, proceed by induction on
the number of picks and valleys. 2

Let us look at possible interactions of the introduced properties.

Rewriting systems 29

Proposition 26 Let (A,→) be a rewriting system.

1. If the rewriting system is confluent then every element has at most one normal form.

2. If moreover the rewriting system is normalizing then every element has a unique normal
form.

Proof. (1) If an element reduces to two distinct normal forms then we contradict confluence.

(2) By normalization, there exists a normal form and by (1) there cannot be two different
ones. 2

Exercise 27 Let (A,→1) and (A,→2) be two rewriting systems. We say that they commute

if a
∗→1 b and a

∗→2 c implies ∃ d (b
∗→2 d and c

∗→1 d). Show that if→1 and→2 are confluent
and commute then →1 ∪ →2 is confluent too.

2.2 Termination and well-founded orders

Terminating rewriting systems and well-founded orders are two sides of the same coin.

Definition 28 A partial order (P,>) is a set P with a transitive relation >. A partial order
(P,>) is well-founded if it is not possible to define a sequence {xi}i∈N ⊆ P such that:

x0 > x1 > x2 > · · ·

Notice that in a well-founded system we cannot have an element x such that x > x for
otherwise we can define a sequence x > x > x > · · · (a similar remark concerned the definition
of terminating rewriting system).

Exercise 29 Let N be the set of natural numbers, Nk the cartesian product N × · · · ×N,
k-times, and A =

⋃
{Nk | k ≥ 1}. Let > be a binary relation on A such that :

(x1, . . . , xm) > (y1, . . . , yn) iff ∃ k (k ≤ min(n,m), x1 = y1, . . . , xk−1 = yk−1, xk > yk) .

Prove or disprove the assertion that > is a well-founded order.

Clearly, every well-founded partial order is a terminating rewriting system if we regard
the order > as the reduction relation. Conversely, every terminating rewriting system, say

(P,→), induces the well-founded partial order (P,
+→) where

+→ is the transitive (but not
reflexive) closure of →.

Proposition 30 (induction principle) Let (P,>) be a well-founded partial order and for
x ∈ P let ↓ (x) = {y | x > y}. Then the following induction principle holds where ⊃ stands
for the logical implication:

∀x ((↓ (x) ⊆ B) ⊃ x ∈ B)

B = P
(2.1)

Proof. If x is minimal then the principle requires x ∈ B. Otherwise, suppose x0 is not
minimal and x0 /∈ B. Then there must be x1 < x0 such that x1 /∈ B. Again x1 is not minimal
and we can go on to build: x0 > x1 > x2 > · · · which contradicts the hypothesis that P is
well-founded. 2

30 Rewriting systems

Exercise 31 Explain why the principle fails if P is a singleton set and > is reflexive.

Remark 32 On the natural numbers the induction principle can be stated as:

∀n (∀n′ < n n′ ∈ B ⊃ n ∈ B)

∀n n ∈ B ,

which is equivalent to the usual reasoning principle:

0 ∈ B ∧ (∀n (n ∈ B ⊃ (n+ 1) ∈ B))

∀n n ∈ B .

We have shown that on a well-founded order the induction principle holds. The converse
holds too in the following sense.

Proposition 33 Let (P,>) be a partial order for which the induction principle (2.1) holds.
Then (P,>) is well-founded.

Proof. Define: Z = {x ∈ P | there is no infinite descending chain from x} and ↓ (x) = {y |
y < x}. The set Z satisfies the condition: ∀x (↓ (x) ⊆ Z ⊃ x ∈ Z). Hence by the induction
principle Z = P . Thus P is well-founded. 2

2.3 Lifting well-foundation

We examine three ways to lift an order to tuples so as to preserve well-foundation, namely
the product order, the lexicographic order, and the multi-set order.

Definition 34 Let (P,>) be a partial order and let Pn = P×· · ·×P , n times, be the cartesian
product (n ≥ 2). The product order on Pn is defined by (x1, . . . , xn) >p (y1, . . . , yn) if:

xi ≥ yi, i = 1, . . . , n and ∃ j ∈ {1, . . . , n} xj > yj .

The lexicographic order (from left to right) on Pn is defined by (x1, . . . , xn) >lex (y1, . . . , yn)
if:

∃ j ∈ {1, . . . , n} x1 = y1, . . . , xj−1 = yj−1, xj > yj .

Notice that (x1, . . . , xn) >p (y1, . . . , yn) implies (x1, . . . , xn) >lex (y1, . . . , yn) but that the
converse fails.

Proposition 35 If (P,>) is well-founded and n ≥ 2 then (Pn, >p) and (Pn, >lex) are well-
founded.

Proof. For the product order, suppose there is an infinite descending chain in the product
order. Then one component must be strictly decreasing infinitely often which contradicts the
hypothesis that (P,>) is well-founded. As for the lexicographic order, we proceed by induc-
tion on n. For the induction step, notice that the first component must eventually stabilize
and then apply induction on the remaining components. 2

A third way to compare a finite collection of elements is to consider them as multi-sets
which we introduce next.

Rewriting systems 31

Definition 36 A multi-set M over a set A is a function M : A → N. If M(a) = k then a
occurs k times in the multi-set. A finite multi-set is a multi-set M such that {a |M(a) 6= 0}
is finite.

Definition 37 Let Mfin(X) denote the finite multi-sets over a set X.

Definition 38 Assume (X,>) is a partial order and M,N ∈Mfin(X). We write M >1,m N
if N is obtained from M by replacing an element by a multi-set of elements which are strictly
smaller.

Example 39 If X = N then {|1, 3|} >1,m {|1, 2, 2, 1|} >1,m {|0, 2, 2, 1|} >1,m {|0, 1, 1, 2, 1|}.

Exercise 40 Find an example where the relation >1,m is not transitive.

Definition 41 Let (X,>) be a partial order. We define the multi-set order >m on Mfin(X).
as the transitive closure of >1,m.

We want to show that if (X,>) is well-founded then >m is well-founded. First we recall
a classical result known in the literature as König’s lemma.

Proposition 42 A finitely branching tree with an infinite number of nodes admits an infinite
path.

Proof. First let us make our statement precise. A tree can be seen as a subset D of N∗

(finite words of natural numbers) satisfying the following properties.

1. If w ∈ D and w′ is a prefix of w then w′ ∈ D.

2. If wi ∈ D and j < i then wj ∈ D.

Notice that this representation is quite general in that it includes trees with a countable
number of nodes and even trees with nodes having a countable number of children (e.g., N∗

is a tree). We say that a tree is finitely branching if every node has a finite number of children
(this is strictly weaker than being able to bound the number of children of every node!).

Now suppose D is a finitely branching tree with infinitely many nodes. If π ∈ N∗ let ↑ (π)
be the set of paths that start with π. We show that it is always possible to extend a path π
such that ↑ (π) ∩D is infinite to a longer path π · i with the same property, i.e., ↑ (π · i) ∩D
is infinite. Indeed, the hypothesis that D is finitely branching entails that there are finitely
many i1, . . . , ik such that πij ∈ D. Since ↑ (π) ∩ D is infinite one of these branches, say i,
must be used infinitely often. So we have that ↑ (π · i) ∩D is infinite. 2

Proposition 43 If (P,>) is well-founded then (Mfin(P), >m) is well-founded.

Proof. By contradiction suppose we have an infinitely descending chain:

X0 >m X1 >m · · ·

Because >m is the transitive closure of >1,m this gives an infinitely descending chain:

Y0 >1,m Y1 >1,m · · ·

32 Rewriting systems

where X0 = Y0. By definition of >1,m, the step from Yi to Yi+1 consists in taking an element
of Yi, say y, and replacing it by a finite multi-set of elements {|y1, . . . , yk|} which are strictly
smaller. Suppose we have drawn a tree whose leaves correspond to the elements of Yi (if
needed we may add a special root node). Then to move to Yi+1 we have to take a leaf of Yi,
which corresponds to the element y, and add k branches labelled with the elements y1, . . . , yk
(if k = 0 we may just add one branch leading to a special ‘sink node’ from which no further
expansion is possible). The tree we build in this way is finitely branching and is infinite. Then
by König’s lemma (proposition 42) there must be an infinite path in it which corresponds to
an infinitely descending chain in (P,>). This is a contradiction since (P,>) is supposed to
be well-founded. 2

Exercise 44 Does the evaluation of the following Imp commands terminate assuming initially
a state where m,n are positive natural numbers?

while (m 6= n) do (if (m > n) then m := m− n; else n := n−m;) ,
while (m 6= n) do (if (m > n) then m := m− n; else (h := m;m := n;n := h;)) .

Exercise 45 Let (A,→) be a rewriting system and let N be the set of natural numbers. A
monotonic embedding is a function µ : A → N such that if a → b then µ(a) >N µ(b).
Define the set of immediate successors of a ∈ A as: suc(a) = {b | a → b}, and say that A
is finitely branching if for all elements a ∈ A, suc(a) is a finite set. Prove that: (1) If a
rewriting system has a monotonic embedding then it terminates. (2) If a rewriting system
is finitely branching and terminating then it has a monotonic embedding. (3) The following
rewriting system (N×N,→) where: (i+ 1, j)→ (i, k) and (i, j + 1)→ (i, j), for i, j, k ∈ N,
is terminating, not finitely branching, and does not have a monotonic embedding.

2.4 Termination and local confluence

In general, it is hard to prove confluence because we have to consider arbitrary long reductions.
It is much simpler to reason locally.

Definition 46 A rewriting system (A,→) is locally confluent if for all a ∈ A:

∀ b, c ∈ A (b← a→ c)

∃ d ∈ A (b
∗→ d

∗← c)
.

Proposition 47 If a rewriting system (A,→) is locally confluent and terminating then it is
confluent.

Proof. We apply the principle of well-founded induction to (A,
+→) ! Suppose:

c1
∗← b1 ← a→ b2

∗→ c2 .

By local confluence: ∃ d (b1
∗→ d

∗← b2). Also, by induction hypothesis on b1 and b2 we have:

∃ d′ (c1
∗→ d′

∗← d) , ∃ d′′ (d′
∗→ d′′

∗← c2) .

But then c1 ↓ c2. Thus by the principle of well-founded induction, the rewriting system is
confluent. 2

Rewriting systems 33

Example 48 Let A = N ∪ {a, b} and → such that for i ∈ N: i → i + 1, 2 · i → a, and
2 · i+ 1→ b. This rewriting system is locally confluent and normalizing, but not terminating
and not confluent.

Exercise 49 Let Σ∗ denote the set of finite words over the alphabet Σ = {f, g1, g2} with
generic elements w,w′, . . . As usual, ε denotes the empty word. Let → denote the smallest
binary relation on Σ∗ such that for all w ∈ Σ∗:

(1) fg1w → g1g1ffw , (2) fg2w → g2fw , (3) fε → ε ,

and such that if w → w′ and a ∈ Σ then aw → aw′. This is an example of word rewriting; a
more general notion of term rewriting will be considered in the following section 2.5. Prove
or give a counter-example to the following assertions:

1. If w
∗→ w1 and w

∗→ w2 then there exists w′ such that w1
∗→ w′ and w2

∗→ w′.

2. The rewriting system (Σ∗,→) is terminating.

3. Replacing rule (1) with the rule fg1w → g1g1fw, the answers to the previous questions
are unchanged.

2.5 Term rewriting systems

When rewriting systems are defined on sets with structure, we can exploit this structure, e.g.,
to represent in a more succinct way the reduction relation and to reason on its properties.
A situation of this type arises when dealing with sets of first-order terms (in the sense of
first-order logic). Let us fix some notation. A signature Σ is a finite set of function symbols
{f1, . . . , fn} where each function symbol has an arity, ar(fi), which is a natural number
indicating the number of arguments of the function. Let V denote a countable set of variables
with generic elements x, y, z, . . . If V ′ ⊆ V then TΣ(V ′) is the set of first order terms over the
variables V ′ with generic elements t, s, . . . (respecting the arity). So TΣ(V ′) is the least set
which contains the variables V ′ and such that if f ∈ Σ, n = ar(f), and t1, . . . , tn ∈ TΣ(V ′)
then f(t1, . . . , tn) ∈ TΣ(V ′). If t is a term we denote with var(t) the set of variables occurring
in the term.

A natural operation we may perform on terms is to substitute terms for variables. Formally,
a substitution is a function S : V → TΣ(V) which is the identity almost everywhere. We
represent with the notation [t1/x1, . . . , tn/xn] the substitution S such that S(xi) = ti for
i = 1, . . . , n and which is the identity elsewhere. Notice that we always assume xi 6= xj if
i 6= j. We use id to denote a substitution which is the identity everywhere. We extend S to
TΣ(V) by defining, for f ∈ Σ:

S(f(t1, . . . , tn)) = f(S(t1), . . . , S(tn)) (extension of substitution to terms).

Thanks to this extension, it is possible to compose substitutions: (T ◦ S) is the substitution
defined by the equation:

(T ◦ S)(x) = T (S(x)) (composition of substitutions).

As expected, composition is associative and the identity substitution behaves as a left and
right identity: id ◦ S = S ◦ id = S.

34 Rewriting systems

Example 50 If t = f(x, y), S = [g(y)/x], and T = [h/y] then:

(T ◦ S)(t) = T (S(t)) = T (f(g(y), y)) = f(g(h), h) .

Next we aim to define the reduction relation schematically exploiting the structure of
first-order terms. A context C is a term with exactly one occurrence of a special symbol []
called hole and of arity 0. We denote with C[t] the term resulting from the replacement of
the hole [] by t in C. A term-rewriting rule (or rule for short) is a pair of terms (l, r) that
we write l→ r such that var(r) ⊆ var(l); the variables on the right hand side of the rule must
occur on the left hand-side too.

Definition 51 A set of term rewriting rules R = {l1 → r1, . . . , ln → rn}, where li, ri, i =
1, . . . , n are terms over some signature Σ, induces a rewriting system (TΣ(V),→R) where →R

is the least binary relation such that is l → r ∈ R is a rule, C is a context, and S is a
substitution then:

C[Sl]→R C[Sr] .

Example 52 Assume the set of rules R is as follows:

f(x) → g(f(s(x))) , i(0, y, z) → y , i(1, y, z) → z .

Then, for instance:

f(s(y)) →R g(f(s(s(y)))) →R g(g(f(s(s(s(y)))))) →R · · ·
i(0, 1, f(y)) →R 1
i(0, 1, f(0)) →R i(0, 1, g(f(s(0)))) →R · · ·

There is a natural interplay between equational and term rewriting systems. We illustrate
this situation with a few examples.

Example 53 Suppose we have a set of equations dealing with natural numbers:

+(x, Z) = +(Z, x) = x, +(S(x), y) = +(x, S(y)) = S(+(x, y)),
+(+(x, y), z) = +(x,+(y, z)) .

Here the numbers are written in unary notation with a zero Z and a successor S function
symbols, and the equations are supposed to capture the behavior of a binary addition symbol +.
Now it is tempting to orient the equations so as to simplify the expression. E.g. +(x, Z)→ x ,
but this is not always obvious! For instance, what is the orientation of:

+(S(x), y) = S(+(x, y)) or + (+(x, y), z) = +(x,+(y, z)) ?

One proposal could be:

+(x, Z)→ x, +(Z, x)→ x, +(S(x), y)→ S(+(x, y)),
+(x, S(y))→ S(+(x, y)), +(+(x, y), z)→ +(x,+(y, z)) .

Thus we have defined a term rewriting system and some interesting and natural questions
arise. Is there a reduction strategy always leading to a normal form? Does any reduction
strategy reach a normal form? Suppose we apply different reduction strategies, is it always
possible to reach a common reduct?

Rewriting systems 35

In our case we are lucky. Termination (and therefore normalization) is guaranteed. More-
over the system is confluent and therefore each term has a unique normal form. These proper-
ties can be verified automatically by state of the art tools dealing with term rewriting systems.
Once these properties are verified, we have a strategy to decide the equality of two terms: we
reduce the terms to their normal forms and check whether they are identical.

Example 54 In this example we look at the equations of group theory:

∗(e, x) = x, ∗(x, e) = x, ∗(i(x), x) = e, ∗(x, i(x)) = e, ∗(∗(x, y), z) = ∗(x, ∗(y, z)) .

Here e is the identity, i is the inverse function, and ∗ is the binary operation of a group.
If we orient the equations from left to right we obtain a term rewriting system and again
automatic tools can check that the system is terminating. However the system as it stands
is not confluent. In this case, a procedure known as completion tries to add rewriting rules
to the system which are compatible with the equations and preserve termination. A possible
outcome of this analysis is to add the following rules:

i(e)→ e, ∗(i(x), ∗(x, y))→ y, i(i(x))→ x,
∗(x, ∗(i(x), y))→ y , i(∗(x, y))→ ∗(i(y), i(x)) .

The previous examples may give the impression that checking termination and confluence
is a task that can be automatized. While this is true in many practical cases, the reader
should keep in mind that in general these properties are undecidable. Term rewriting systems
constitute a powerful computational model and it is easy to reduce, e.g., the halting problem
for Turing machines to a termination problem for term rewriting systems.

2.6 Summary and references

We have shown that the following concepts are ‘equivalent’: (1) terminating rewriting sys-
tem, (2) well-founded set, and (3) partial order with well-founded induction principle. Also,
whenever working in a terminating rewriting system we have shown that to prove confluence
it suffices to prove local confluence. We have also introduced the notion of term rewriting
system which is a way of presenting schematically a rewriting system using first-order terms.
Term rewriting systems are tightly connected to equational theories and can provide proce-
dures to decide when two expressions are equated. The book [BN99] is a standard and quite
readable introduction to term rewriting. Proposition 42 is a special case of a theorem due to
König [K2̈6] while proposition 47 is due to Newman [New42].

36 Rewriting systems

Chapter 3

Syntactic unification

Syntactic unification is about solving equations on terms, or equivalently on finite labelled
trees. We introduce some notation and terminology. We write t = s if the terms t and s are
syntactically equal. We define a pre-order on substitutions as follows:

R ≤ S iff ∃T T ◦R = S .

Thus R ≤ S if S is an instance of R or, equivalently, if R is more general than S (note that
id ≤ S, for any S).

Exercise 55 Give an example of two substitutions S, T such that: S 6= T , S ≤ T , and T ≤ S.

A system of equations E is a finite set of pairs {t1 = s1, . . . , tn = sn}. A substitution S
unifies a system of equations E, written S |= E, if St = Ss (here = means identity on TΣ(V))
for all t = s ∈ E. Notice that we are abusing notation by using = both for the identity on
terms (semantic level) and for a constraint relation (syntactic level).

Exercise 56 Show that if S is a substitution unifying the system {s1 = s2, x = t} then S
unifies {[t/x]s1 = [t/x]s2} too.

3.1 A basic unification algorithm

A basic algorithm for unification is presented in table 3.1 as a rewriting system over pairs
(E,S) and a special symbol ⊥ (the symmetric rules for (vti), i = 1, 2, are omitted). This
‘abstract’ presentation of the algorithm is instrumental to the proof of its properties. The
idea is that we transform the system leaving the set of its solutions unchanged till either
the solution is explicit or it appears that no solution exists. This is a standard methodology
for solving systems of constraints, e.g., consider Gaussian elimination for solving systems of
linear equations.

Example 57 Applying the unification algorithm to the system:

{f(x) = f(f(z)), g(a, y) = g(a, x)} ,

leads to the substitution: S = [f(z)/y] ◦ [f(z)/x].

Exercise 58 Apply the unification algorithm to the systems of equations: {f(x, f(x, y)) =
f(g(y), f(g(a), z))}, a constant, and {f(x, f(y)) = f(y, f(f(x)))}.

37

38 Syntactic unification

3.2 Properties of the algorithm

We analyse formally the unification algorithm.

Proposition 59 The following properties of the algorithm specified in table 3.1 hold:

1. The reduction relation → terminates.

2. If (E, id)→∗ (∅, S) then S unifies E.

3. If T unifies E then all reductions starting from (E, id) terminate with some (∅, S) such
that S ≤ T .

Proof. (1) We define a measure on a set of equations as µ(E) = (m,n) where pairs are
lexicographically ordered from left to right (cf. section 2.3), m is the number of variables
in E, and n is the number of symbols in the terms in E. The measure is extended to pairs
(E,S) and ⊥ by defining µ(E,S) = µ(E) and µ(⊥) = (0, 0). Then we check that (E,S)→ U
implies µ(E,S) > µ(U).

(2) We start with a preliminary remark. In (E,S), the second component S is just used to
accumulate the substitutions. Therefore:

(E,S)→m (∅, Sn ◦ . . . ◦ S1 ◦ S) iff (E, id)→m (∅, Sn ◦ . . . ◦ S1) ,

where m ≥ 1, n ≥ 0 and the Si are the elementary substitutions of the shape [t/x] introduced
by rule (vt1). Next we prove the assertion by induction on the length of the derivation. For
instance, suppose:

(E ∪ {x = t}, id)→ ([t/x]E, [t/x])→∗ (∅, S ◦ [t/x])

Then, by the preliminary remark, the inductive hypothesis applies to ([t/x]E, id). Thus
S |= [t/x]E. Which entails S ◦ [t/x] |= E. Moreover, since x /∈ var(t), S ◦ [t/x](x) = S(t) =
S ◦ [t/x](t).

(3) By (1), all reduction sequences terminate. We proceed by induction on the length of the
reduction sequence. We observe that if E is not empty then at least one rule applies. Since
T |= E it is easily checked that rules (vt2) and (f2) do not apply. Now suppose, for instance,
that:

(E ∪ {x = t}, id)→ ([t/x]E, [t/x])

applying rule (vt1). We recall (exercise 56) that if T |= E ∪ {x = t} then T |= [t/x]E
and T = T ◦ [t/x]. Then, from T |= [t/x]E and by inductive hypothesis we conclude that
([t/x]E, id)→∗ (∅, S) and S ≤ T . Hence: S ◦ [t/x] ≤ T ◦ [t/x] = T . 2

(v) (E ∪ {x = x}, S) → (E,S)
(vt1) (E ∪ {x = t}, S) → ([t/x]E, [t/x] ◦ S) if x /∈ var(t)
(vt2) (E ∪ {x = t}, S) → ⊥ if x 6= t, x ∈ var(t)
(f1) (E ∪ {f(t1, . . . , tn) = f(s1, . . . , sn)}, S) → (E ∪ {t1 = s1, . . . , tn = sn}, S)
(f2) (E ∪ {f(t1, . . . , tn) = g(s1, . . . , sm)}, S) → ⊥ if f 6= g

Table 3.1: Unification algorithm

Syntactic unification 39

Exercise 60 Let the size of a term be the number of nodes in its tree representation. Consider
the following unification problem:

{x1 = f(x0, x0), x2 = f(x1, x1), . . . , xn = f(xn−1, xn−1)} . (3.1)

Compute the most general unifier S. Show that the size of S(xn) is exponential in n.

In view of exercise 60, you could expect unification algorithms to be hopelessly inefficient.
However a closer look at the solution of the unification problem (3.1) reveals that the solution
can be represented compactly as soon as we move from a tree representation to a directed
acyclic graph (dag) representation. This change of perspective allows to share terms and keep
the size of S(xn) linear in n. Indeed, unification algorithms based on a dag representation
can be implemented to run in quasi-linear time.

Exercise 61 Propose a method to transform a unification problem of the shape:

E = {t1 = s1, . . . , tn = sn}

over a signature Σ = {g1, . . . , gm} with n,m ≥ 1 into a unification problem E′ with the
following properties:

1. The problem E′ contains exactly one equation.

2. The terms in E′ are built over a signature Σ′ containing exactly one binary symbol f .

3. The problem E has a solution if and only if the problem E′ has a solution.

4. Apply the method to the system: E = {x = h(y), g(c, x, z) = g(y, z, z)}, where x, y, z
are variables.

Exercise 62 Let t, s, . . . be terms over a signature Σ. We say that t is a filter (or pattern)
for s if there is a substitution S such that St = s. In this case we write: t ≤ s. Show or give
a counter-example to the following assertions:

1. If t ≤ s then t and s are unifiable.

2. If t and s are unifiable then t ≤ s and s ≤ t.

3. If t ≤ s and s ≤ t then s and t are unifiable.

4. For all t, s one can find r such that r ≤ t and r ≤ s.

5. For all t, s one can find r such that r ≥ t and r ≥ s.

3.3 Summary and references

We have shown that there is a simple algorithm to solve the unification problem on first-order
terms. The algorithm either shows that no solution exists or computes a most general one.
Moreover the algorithm is efficient as soon as terms are represented as directed acyclic graphs.
The unification algorithm was brought to the limelight by Robinson’s work on the resolution
principle and its application to theorem proving [Rob65].

40 Syntactic unification

Chapter 4

Termination of term rewriting
systems

We introduce two methods to prove termination of TRS. The interpretation method, where
we regard the function symbols as certain strictly monotonic functions, and the recursive
path order (RPO) method which provides a syntactic criterion to compare terms. We give
two proofs that RPO’s guarantee termination. The first relies on reducibility candidates, a
technique imported from proof theory, and the second on the notion of well-partial order
and a combinatorial result on the embedding of trees known as Kruskal’s theorem. The
interpretation and the RPO methods are examples of reduction orders which are defined as
follows.

Definition 63 (reduction order) A reduction order > is a well-founded order on TΣ(V)
that is closed under context and substitution:

t > s

C[t] > C[s] , St > Ss
,

where C is any one hole context and S is any substitution.

The notion of reduction order is quite general.

Proposition 64 A TRS R terminates iff there is a reduction order > such that l → r ∈ R
implies l > r.

Proof. (⇒) If the system terminates then the transitive closure of the reduction relation
provides a reduction order.

(⇐) If we have a reduction order then well-foundedness enforces termination. 2

4.1 Interpretation method

Suppose the TRS is given over a signature Σ. Fix a well-founded set (A,>) and assume that
for each function symbol f ∈ Σ, with arity n, we select a function fA : An → A which is
strictly monotonic. That is, for all a1, . . . , an, a

′
i if a′i > ai then

fA(a1, . . . , ai−1, a
′
i, ai+1, . . . , an) > fA(a1, . . . , ai−1, ai, ai+1, . . . , an) .

41

42 Termination of TRS

Now if we fix an assignment θ : V → A, for every t ∈ TΣ(V) there is a unique interpretation
in A which is defined as follows:

[[x]]θ = θ(x) , [[f(t1, . . . , tn)]]θ = fA([[t1]]θ, . . . , [[tn]]θ) .

Incidentally, this is the usual interpretation of terms in first-order logic: a term t with variables
x1, . . . , xn induces a function gt : An → A such that:

gt(a1, . . . , an) = [[t]][a1/x1, . . . , an/xn] .

In particular, a variable x is interpreted as the identity function: gx(a) = [[x]][a/x] = a.

Proposition 65 Under the hypotheses described above, the interpretation induces a reduction
order >A on TΣ(V) defined by: t >A s if ∀ θ [[t]]θ >A [[s]]θ.

Proof. First, let us show >A is well founded. Suppose by contradiction:

t0 >A t1 >A · · ·

Then by taking an arbitrary assignment θ we have: [[t0]]θ >A [[t1]]θ >A · · · But this contradicts
the hypothesis that (A,>) is well-founded.

Second, let us check that >A is preserved by substitution. Suppose t >A t
′. For any s, x

we show [s/x]t >A [s/x]t′ (the generalization to a substitution [s1/x1, . . . , sn/xn] is left to the
reader). In other terms, we have to show that for any assignment θ:

[[[s/x]t]]θ >A [[[s/x]t′]]θ .

We note that: [[[s/x]t]]θ = [[t]]θ[[[s]]θ/x]. Thus taking θ′ = θ[[[s]]θ/x] we have:

[[[s/x]t]]θ = [[t]]θ′ >A [[t′]]θ′ = [[[s/x]t′]]θ .

Third, we check that >A is preserved by contexts. To do this, we proceed by induction on
the context. The case for the empty context is immediate. For the inductive step, suppose
C = f(· · · , C ′, · · ·). By inductive hypothesis, C ′[t] >A C ′[s] if t >A s. Then we conclude by
using the fact that fA is strictly monotonic in every argument. 2

Corollary 66 Let R be a TRS and A be an interpretation as specified above. Then the TRS
terminates if for all l→ r ∈ R we have: l >A r.

Proof. We have shown that >A is a reduction order and we have previously observed
(proposition 64) that a system is terminating if all its rules are compatible with a reduction
order. 2

Example 67 Polynomial interpretations are an important and popular class of interpreta-
tions. Take A = {n ∈ N | n ≥ a ≥ 1}. With fn ∈ Σ associate a multivariate polynomial
pf (x1, . . . , xn) such that:

1. Coefficients range over the natural numbers. Thus there are no negative coefficients and
the polynomials are monotonic.

2. pf (a, . . . , a) ∈ A. Thus pf defines a function over the domain A.

Termination of TRS 43

3. Every variable appears in a monomial with a non-zero multiplicative coefficient Thus
we have strictly monotonic functions.

By extension, we associate with a term t with variables x1, . . . , xn a multivariate polyno-
mial pt with variables x1, . . . , xn. Notice that by taking a ≥ 1, we make sure multiplication is
a strictly monotonic function.

Example 68 Consider the following rules for addition and multiplication over natural num-
bers in unary notation:

a(z, y)→ y , a(x, z)→ x , a(s(x), s(y))→ s(s(a(x, y)) ,
m(z, x)→ z , m(s(x), y)→ a(y,m(x, y)) .

A polynomial interpretation showing the termination of this TRS is:

pz = 1 , ps = x+ 2 , pa = 2x+ y + 1 , pm = (x+ 1)(y + 1) .

Exercise 69 Find a polynomial interpretation showing the termination of the TRS:

f(f(x, y), z)→ f(x, f(y, z)) , f(x, f(y, z))→ f(y, y) .

Exercise 70 (1) Find a polynomial interpretation for the TRS:

x+ 0→ x , x+ s(y)→ s(x+ y) , (addition)
d(0)→ 0 , d(s(x))→ s(s(d(x))) , (double)
q(0)→ 0 , q(s(x))→ q(x) + s(d(x)) (square).

(2) Consider the term t ≡ qn+1(s20) whose size is linear in n. Show that there is a reduction:

t
∗→ q(s22n

) ,

whose length is doubly exponential in n.

While polynomial interpretations are a conceptually simple method to prove termination
the reader should keep in mind that they suffer of a couple of limitations. First, polyno-
mial interpretations are hard to find. Indeed in general even checking whether a polynomial
interpretation is valid is undecidable. This follows from the undecidability of the so-called
Hilbert’s 10th problem. This is the problem of recognizing the multivariate polynomials with
integers coefficients which have a zero. The problem was stated in 1900, and finally in 1970
Matiyasevich proved that the problem is undecidable. Second, polynomial interpretations
cannot handle fast growing functions. Indeed it can be shown that the length of reductions of
TRS proven terminating by a polynomial interpretation can be at most double exponential.
Exercise 70(2) provides a lower bound, and the upper bound is not too hard to obtain. In
theory one could then consider interpretations based on faster growing functions such as ex-
ponentials, towers of exponentials,. . . however in practice most automatic systems just look
for low degree polynomial interpretations.

44 Termination of TRS

(R1)
s ≥r t

f(. . . s . . .) >r t

(R2)
f >Σ g f(s1, . . . , sm) >r ti i = 1, . . . , n

f(s1, . . . , sm) >r g(t1, . . . , tn)

(R3)
(s1, . . . , sm) >

τ(f)
r (t1, . . . , tm)

f(s1, . . . , sm) >r ti i = 1, . . . ,m
f(s1, . . . , sm) >r f(t1, . . . , tm)

Table 4.1: Recursive path-order

4.2 Recursive path order

Recursive path orders are a family of reduction orders which are defined by induction on the
structure of the terms. The way to compare terms is rather simple. First we assume a strict
partial order >Σ on the function symbols in Σ (since Σ is supposed finite, >Σ is well-founded).
If f >Σ g, proving that:

t = f(t1, . . . , tn) >r g(s1, . . . , sm) = s ,

reduces to proving: t >r si for i = 1, . . . ,m. On the other hand, proving that:

t = f(t1, . . . , tn) >r f(s1, . . . , sm) = s ,

reduces to proving that: (t1, . . . , tn) >r (s1, . . . , sm), according to one of the orders that
preserve well-foundation we have considered in chapter 2, namely product order, lexicographic
order, or multi-set order. What we have described is almost the official definition of recursive
path order which is given in Table 4.1.

In this definition, we assume that every function symbol f is assigned a status τ(f) which
determines how f ’s arguments are to be compared (product, lexicographic, multi-set,. . .)
Indeed, this is necessary to guarantee termination. For instance, consider the non-terminating
TRS:

f(a, b)→ f(b, a) , f(b, a)→ f(a, b) ,

with Σ = {f, a, b}. Assume a >Σ b. If f ’s arguments could be compared with a lexicographic
order from left to right or from right to left then we could prove both f(a, b) >r f(b, a) and
f(b, a) >r f(a, b).

Exercise 71 Consider the TRS:

(x+ y) + z → x+ (y + z) , x ∗ s(y) → x+ (y ∗ x) .

Find a status for the function symbols that allows to prove:

(x+ y) + z >r x+ (y + z) , x ∗ s(y) >r x+ (y ∗ x) .

Termination of TRS 45

Another point that deserves to be stressed is that in the rule (R3) we also require that the
term on the left is larger than all the arguments of the term on the right. To see the necessity
of this condition, consider the non-terminating TRS:

f(a, y)→ f(b, f(a, y)) ,

where Σ = {f, a, b}, a >Σ b, and the status of f is lexicographic from left to right.
Finally, we notice that there is an additional rule (rule R1) that entails that a term is

larger than all its proper subterms. This ‘subterm property’ is characteristic of an important
class of orders known as simplification order that we define next.

Definition 72 A strict order > on TΣ(V) is a simplification order if it is closed under context
and substitution and moreover for all functions f ∈ Σ it satisfies:

f(x1, . . . , xn) > xi for i = 1, . . . , n .

Exercise 73 Show that if > is a simplification order and C is a one hole context with C 6= []
then C[t] > t.

We prove next that the recursive path order is a simplification order. Further it will be
proven in section 4.4 that every simplification order is well-founded. This proof relies on a
classical combinatorial argument known as Kruskal’s theorem. This is enough to guarantee
that the recursive path order is a reduction order and therefore can be used to prove the
termination of TRS. We will also give in section 4.3 a direct proof of the fact that the
recursive path order is well-founded that avoids the detour through Kruskal’s theorem by
using a so called reducibility argument (a standard method to prove termination of typed
λ-calculi introduced in chapter 10).

Proposition 74 The recursive path order is a simplification order on TΣ(V).

Proof. To fix the ideas, we consider a particular case where we always compare tuples
via the product order. We prove the following properties: (1) > is strict, (2) s > t implies
var(s) ⊇ var(t), (3) transitivity, (4) subterm property, (5) closure under substitution, and (6)
closure under context.

Before proceeding, we formulate in Table 4.2 a simplified definition of recursive path order
for functions having product status. Notice that in (R3) we drop the condition f(s1, . . . , sm) >r
ti for i = 1, . . . ,m. It turns out that in this case the condition can be derived from the
transitivity property and the fact that for i = 1, . . . ,m: f(s1, . . . , sm) >r si ≥r ti.

> is strict By induction on s show that s > s is impossible. Note in particular that x > t
and f > f are impossible.

s > t implies var(s) ⊇ var(t). By induction on the proof of s > t.

Transitivity Suppose s1 > s2 and s2 > s3. Show s1 > s3 by induction on |s1| + |s2| + |s3|
analyzing the last rules applied in the proof of s1 > s2 and s2 > s3 (9 cases).

Subterm property We check that f(x1, . . . , xn) > xi for i = 1, . . . , n.

Closure under substitution Show that t > r implies [s/x]t > [s/x]r by induction on
|t|+ |r|.

46 Termination of TRS

(R1)
s ≥r t

f(. . . s . . .) >r t

(R2)
f >Σ g f(s1, . . . , sm) >r ti i = 1, . . . , n

f(s1, . . . , sm) >r g(t1, . . . , tn)

(R3)
si ≥ ti for i ∈ 1..m, and ∃ j ∈ 1..m sj > tj

f(s1, . . . , sm) >r f(t1, . . . , tm)
.

Table 4.2: RPO, for functions with product status

Closure under context Show by induction on the structure of a one hole context that t > s
implies C[t] > C[s]. 2

Exercise 75 Consider the following TRS:

ack(z, n) → s(z) , ack(s(z), z) → s2(z) ,
ack(s2(m), z) → s2(m) , ack(s(m), s(n)) → ack(ack(m, s(n)), n) .

This TRS corresponds to a very fast growing function known as Ackermann’s function. For
instance, this function grows faster than any tower of exponentials1 and no polynomial inter-
pretation can prove its termination. In practice, running ack(4 , 4) will produce an out-of-
memory exception on most computers. Prove the termination by RPO.

Exercise 76 The previous exercise 75 marks a point for RPO. However, sometimes the (poly-
nomial) interpretation method beats the RPO method. Consider the TRS:

b(x) → r(s(x)) , r(s(s(x))) → b(x) .

(1) Show that the TRS terminates by polynomial interpretation. (2) Show that there is no
RPO on Σ that can prove its termination. (3) RPO is a particular type of simplification
order. Is there a simplification order that shows termination of the TRS above?

Exercise 77 The previous exercise 76 shows that the termination of certain TRS cannot be
proven by RPO. It turns out that using an arbitrary simplification order does not change this
state of affairs. Consider the TRS:

f(f(x))→ f(g(f(x))) .

(1) Show that the TRS is terminating. (2) Show that there is no simplification order > that
contains →.

We terminate with a few remarks concerning the complexity of working with RPO. Once
the order on the signature and the status of the function is fixed, deciding whether t >r s can
be done in time polynomial in the size of the terms. However, it is possible to come out with
rather artificial examples where the choice of the order on the signature is not obvious. In
fact it can be shown that deciding whether t >r s with respect to some order on the signature
is an np-complete problem.

1Technically, Ackermann showed that this function cannot be defined by primitive recursion.

Termination of TRS 47

s ≥r t
f(. . . s . . .) >r t

f >Σ g f(s1, . . . , sm) >r ti i = 1, . . . , n

f(s1, . . . , sm) >r g(t1, . . . , tn)

(s1, . . . , sm) >lex
r (t1, . . . , tm)

f(s1, . . . , sm) >r ti i = 1, . . . ,m

f(s1, . . . , sm) >r f(t1, . . . , tm)

Table 4.3: RPO for functions with lexicographic, left-to right status

4.3 Recursive path order is well-founded

We know that RPO is a simplification order, i.e., a strict order, closed under context and
substitution. We want to show that it is well-founded (and therefore a reduction order).
To this end, we apply the reducibility candidates method: a proof technique developed first
to prove termination of typed λ-calculi. To simplify the argument, we shall assume that
function arguments are always compared with the lexicographic order from left to right. The
corresponding specialized definition of RPO is given in Table 4.3.

Definition 78 We work on the set of terms TΣ(V) and define:

WF = {t ∈ TΣ(V) | there is no infinite sequence t = t0 >r t1 >r · · ·} ,
Red(t) = {s | t >r s} .

Exercise 79 Show that:

1. (WF , >r) is a well-founded set.

2. If Red(t) ⊆WF then t ∈WF .

3. If s ∈WF and s >r t then t ∈WF .

Let >lexr be the lexicographic ordered induced by >r on vectors of n terms in WF . The
key property follows.

Proposition 80 If s1, . . . , sn ∈WF and f(s1, . . . , sn) >r t then t ∈WF .

Proof. By induction on the triple:

(f, (s1, . . . , sn), |t|) ,

with the lexicographic order from left to right where:

• The first component is a function symbol ordered by >Σ.

• The third is the size of the term with the usual order on natural numbers.

48 Termination of TRS

• For the second, consider the set
⋃
f∈Σ WF ar(f) ordered by:

(s1, . . . , sn) > (t1, . . . , tm) iff n = m and (s1, . . . , sn) >lexr (t1, . . . , tm) .

Notice that two vectors of different lengths are incomparable. Also, (WF,>r) well-
founded implies (WFn, >lexr) is well-founded too.

Case f(s1, . . . , sn) >r t as si = t or si >r t.

• If si = t the conclusion is immediate as si ∈WF by hypothesis.

• If si >r t then t ∈WF as si ∈WF .

Case t = g(t1, . . . , tm), f >Σ g, f(s1, . . . , sn) >r ti for i = 1, . . . ,m.

• We notice that (f, (s1, . . . , sn), |t|) > (f, (s1, . . . , sn), |ti|) for i = 1, . . . ,m. Hence,
by inductive hypothesis, ti ∈WF .

• Suppose g(t1, . . . , tm) >r u. We remark (f, (s1 . . . , sn), |t|) > (g, (t1, . . . , tm), |u|).
Hence, by inductive hypothesis, u ∈WF , and by exercise 79, g(t1, . . . , tm) ∈WF .

Case t = f(t1, . . . , tn), f(s1, . . . , sn) >r ti for i = 1, . . . , n, (s1, . . . , sn) >lexr (t1, . . . , tn). This
case is similar to the previous one.

• We remark that (f, (s1, . . . , sn), |t|) > (f, (s1, . . . , sn), |ti|) for i = 1, . . . , n. Hence,
by inductive hypothesis, ti ∈WF .

• Suppose f(t1, . . . , tn) >r u. We notice (f, (s1 . . . , sn), |t|) > (f, (t1, . . . , tn), |u|)
(second component decreases!). By inductive hypothesis, u ∈WF , and by exercise
79, f(t1, . . . , tn) ∈WF . 2

Corollary 81 All terms are in WF .

Proof. By induction on the structure of the terms. 2

4.4 Simplification orders are well-founded

We prove that all simplification orders (in particular RPO) are well-founded. As already
mentioned, the proof goes through a classical combinatorial result known as Kruskal’s the-
orem. This result concerns a natural binary relation on terms (or labelled trees), known as
homeomorphic embedding, that we denote .; we also denote with . the reflexive closure of ..
The appearance of the embedding relation is justified by the simple observation that every
simplification order contains it.

Kruskal’s theorem states that when considering the embedding relation on the collection of
terms built out of a finite signature and a finite set of variables there is no infinite descending
chain t0 . t1 . · · · (the order is well-founded) and moreover it is not possible to find an infinite
set of terms which are all incomparable (an infinite anti-chain). Technically, one says that
the collection of terms with the embedding relation is a well partial order (wpo).

Termination of TRS 49

Definition 82 Let → be the TRS induced by the rules:

f(x1, . . . , xn)→ xi for i = 1, . . . , n .

We write t . s, read t embeds s, if t
∗→ s, i.e., if we can rewrite t in s in a finite number of

steps (possibly 0).

Example 83 Here is an example of homeomorphic embedding:

f(f(h(a), h(x)), f(h(x), a)) . f(f(a, x), x) .

Exercise 84 Here is another definition of homeomorphic embedding:

x . x
,

si . ti, i = 1, . . . , n

f(s1, . . . , sn) . f(t1, . . . , tn)
,

si . t for some i

f(s1, . . . , sn) . t
.

Check that this definition is equivalent to the previous one.

Exercise 85 Show that if > is a simplification order and ≥ is its reflexive closure then t . s
implies t ≥ s (in other terms, if t . s and t 6= s then t > s).

Exercise 86 We consider a relatively simple situation, known as Dickson’s lemma, where we
have a well-founded order and moreover all sets of incomparable elements are finite. Consider
the product order ≥ on Nk (vectors of natural numbers):

(n1, . . . , nk) ≥ (m1, . . . ,mk) if ni ≥ mi, i = 1, . . . , k .

1. Show that > (the strict part of ≥) is well-founded.

2. Show by induction on k, that from every sequence {vn}n∈N in Nk we can extract a
growing subsequence, namely there is an injective function σ : N→ N such that:

∀n vσ(n+1) ≥ vσ(n) .

3. Show that every set of incomparable elements in Nk (an anti-chain) is finite.

Definition 87 A well partial order (A,>) is a strict (∀ a a 6> a) partial order such that for
any sequence {ai | i ∈ N} in A,

∃ i, j ∈ N j > i and aj ≥ ai .

Such a sequence is called good. Otherwise, we call the sequence bad. This means:

∀ i, j ∈ N (j > i implies aj 6≥ ai) .

Note that if a sequence is bad all its subsequences are.

Remark 88 In this chapter a partial order by default is strict. The reflexive closure of a
well partial order is called a well quasi-ordering (wqo).

Proposition 89 Well partial orders are the well-founded orders that have no infinite anti-
chain.

50 Termination of TRS

Proof. (⇒) A wpo must be well-founded for a strictly descending chain gives a bad sequence.
For the same reason, a wpo cannot contain an infinite anti-chain.

(⇐) Vice versa, take a well-founded set without infinite anti-chain. Given an infinite se-
quence, the set of minimal elements of the sequence must be finite. Therefore there is a
minimal element such that the sequence is infinitely often above it. 2

Proposition 90 Given a sequence in a wpo, it is always possible to extract an ascending
subsequence.

Proof. Consider a sequence {ai}i∈N. We want to show that there is an ascending subse-
quence:

i1 < i2 < i3 < . . . and ai1 ≤ ai2 ≤ ai3 ≤ · · ·

We notice that in a good sequence there are finitely many ai such that ∀ j j > i implies aj 6≥
ai. Otherwise, the sequence composed of all such elements is bad. Thus starting from a
certain point i1, if i ≥ i1 then ∃ j > i aj ≥ ai. Now starting from i1 we can inductively build
a sequence i1 < i2 < . . . such that ai1 ≤ ai2 ≤ · · · 2

Proposition 91 The product A×B of wpo’s A,B, ordered component-wise (product order)
is a wpo.

Proof. Consider {(ai, bi) | i ∈ N} and suppose {ai | i ∈ N} and {bi | i ∈ N} are both
infinite (otherwise it is easy). Then consider the subsequence i0 < i1 < i2 < · · · such that
ai0 ≤ ai1 ≤ ai2 ≤ · · · (cf. previous proposition 90). Then find k > l such that bik ≥ bil . 2

Recall that . is the homeomorphic embedding and that the strict part of ., say ., is
contained in every simplification order.

Proposition 92 (Kruskal) Suppose Σ and V finite. Then the strict homeomorphic embed-
ding . on TΣ(V) is a well partial order.

Proof. We pause to notice that if Σ or V are infinite then (TΣ(V), .) contains an infinite
anti-chain and the proposition does not hold. The proof proceeds by contradiction. Suppose
there is a bad sequence in TΣ(V). Extract from the bad sequence a minimal one with respect
to the size of the terms, say t1, t2, . . . This means that having built the sequence t1, . . . , ti, we
pick a term ti+1 of minimal size among those that follow ti. Define:

Si =

{
∅ if ti variable
{s1, . . . , sn} if ti = f(s1, . . . , sn)

S =
⋃
i≥0 Si .

For the time being, assume (S, .) is a wpo; this is a tricky point whose proof is postponed.
Since Σ and X are finite, there must be a symbol that occurs infinitely often as the root of
the minimal bad sequence t1, t2, . . . If it is a variable or a constant we derive a contradiction.
Otherwise, we have i0 < i1 < . . . with:

tik = f(sik1 , . . . , s
ik
n) .

Now (S, .) is a wpo and the product of wpo’s is a wpo (proposition 91). Therefore, the
sequence:

{(sik1 , . . . , s
ik
n)}k≥0

Termination of TRS 51

is good. So ∃ p, q q > p and s
iq
l
. s

ip
l , l = 1, . . . , n. And this entails tiq . tip . Contradiction!

We now come back to the tricky point. Suppose (S, .) is not a wpo, and let s1, s2, s3 . . .
be a bad sequence. The si must be all distinct. Suppose s1 ∈ Sk. This entails tk . s1. Let
S<k = S1 ∪ · · · ∪ Sk−1. There is an index l such that si /∈ S<k for i ≥ l. Consider:

t1, . . . , tk−1, s1, sl, sl+1, . . .

Since s1 is smaller than tk, by minimality (!) this sequence must be good. Since t1, t2, . . . and
s1, s2, . . . are bad, this entails sj . ti for some i ∈ {1, . . . , k − 1} and j ∈ {1, l, l + 1, . . .}. We
distinguish two cases, both leading to a contradiction.

j = 1 tk . sj . ti. Contradiction!

j ≥ l Suppose sj ∈ Sm\S<k. Thus m ≥ k > i and tm . sj . ti. Contradiction! 2

Remark 93 The presented result is an interesting case study for logicians. First, the proof we
have presented is non-constructive (two nested arguments by contradiction). The literature
contains proposals for constructive versions of the proof. Second, the theorem is a simple
example of a combinatorial statement that cannot be proved in Peano’s Arithmetic (a standard
formalization of arithmetic in first-order logic).

Exercise 94 The following is a special case of Kruskal’s theorem on words known as Hig-
man’s lemma. Let Σ be a finite set (alphabet). Given two words w,w′ ∈ Σ∗ we say that w′

is a subsequence of w, and write w > w′, if the word w′ can be obtained from the word w by
erasing some (at least one) of its characters. Apply Kruskal’s theorem to conclude that > is
a well partial order.

Incidentally, there is also a famous generalization of Kruskal’s theorem to graphs known
as the graph minor theorem. An edge contraction of a graph consists in removing an edge
while merging the two vertices. A graph G is a minor of the graph H if it can be obtained
from H by a sequence of edge contractions. It turns out that the minor relation is a well
partial order.

Next, we present two relevant applications of Kruskal’s theorem to the termination prob-
lem of TRS. The first one is another proof that RPO is well-founded.

Proposition 95 Every simplification order on TΣ(V) is well founded. Hence, every simpli-
fication order (in particular RPO) is a reduction order.

Proof. By contradiction, suppose t1 > t2 > . . . First, we prove by contradiction that
var(t1) ⊇ var(t2) ⊇ . . . Suppose x ∈ var(ti+1)\var(ti) and consider the substitution S = [ti/x].
Then Sti = ti > Sti+1. By the subterm property, we have Sti+1 ≥ ti. Thus ti > ti which
contradicts the hypothesis that > is strict.

Thus we can take X = var(t1) which is finite. Then we can apply Kruskal’s theorem to
the sequence and conclude:

∃ i, j j > i and tj . ti .

Thus we have both ti > tj and tj ≥ ti. Hence, ti > ti, which contradicts the hypothesis that
a simplification order is strict. Notice that we used the fact that (TΣ(X), .) is a wpo, not just
a well-founded set. 2

52 Termination of TRS

The second application concerns the introduction of the interpretation method over the
reals. Take as domain A = {r ∈ R+ | r ≥ a ≥ 1}. This may appear as a wrong start as the set
A is not well founded! However, suppose that we associate with every fn ∈ Σ a multivariate
polynomial pf (x1, . . . , xn) such that:

1. Coefficients range over the non-negative reals.

2. pf (a, . . . , a) ∈ A: thus pf defines a function over the domain A.

3. pf (a1, . . . , an) > ai for i = 1, . . . , n (the new condition!).

Write s >A t if over the domain A the polynomial associated with the term s is strictly larger
than the one associated with the term t. It is easily checked that this is a simplification
order, hence a reduction order. The fact that we move from integers to real has an interesting
consequence as the first-order theory of reals is decidable (e.g., it is decidable whether a
first-order assertion in analytic geometry is valid).

A corollary of this result is that we can decide whether there is a polynomial interpretation
over the reals where the polynomials have a bounded degree. However, we stress that this is
a rather theoretical advantage because of the high complexity of the decision procedures.

4.5 Summary and references

Proving the termination of a TRS amounts to find a reduction order that is compatible with
the rules of the TRS. One method consists in interpreting the function symbols as functions
over the positive integers with certain strictness properties. Another method consists in
applying the rules of the recursive path orders. It turns out that the recursive path orders
are an instance of the simplification orders and that the latter are well-founded. Many other
methods for proving termination of TRS have been proposed and their implementation is
available in several tools. Recursive path orders were introduced in [Der82] and the presented
termination proof is based on [vR01]. Kruskal’s tree theorem is in [Kru60] with a shorter proof
in [NW63] which is the one we present. Its special case for words is presented in [Hig52] and its
generalization to graphs is presented in a long series of papers starting with [RS83]. Hilbert’s
10th problem was among 23 open problems put forward at a 1900 international conference on
mathematics. The problem was eventually shown to be undecidable by Matiyasevich in 1970.
The decidability of the first-order theory of real numbers was shown by Tarski around 1950.

Chapter 5

Confluence and completion of term
rewriting systems

In general the confluence of a term rewriting system (TRS for short) is an undecidable prop-
erty. However, if the TRS is terminating and finite then the property is decidable. By
proposition 47, we know that checking local confluence is enough and it turns out that to do
that it is enough to consider a finite number of cases known as critical pairs.

5.1 Confluence of terminating term rewriting systems

The definition of critical pair captures the most general way in which two term rewriting rules
can superpose and thus possibly compromise the local confluence of the TRS.

Definition 96 Let li → ri for i = 1, 2 be two rules of the TRS (possibly equal) and assume
that the variables in each rule are renamed so that var(l1) ∩ var(l2) = ∅. Further suppose
l1 = C[l′1] where l′1 is not a variable and let S be the most general unifier of l′1 and l2 (if it
exists). Then (S(r1), S(C[r2])) is a critical pair.

The pair (S(r1), S(C[r2])) is critical because if we take the terms l1 and C[l2] then:

S(r1)← S(l1) = S(C)[S(l′1)] = S(C)[S(l2)]→ S(C)[S(r2)] = S(C[r2]) .

Thus the two terms in the critical pair must be joinable (have a common reduct). The main
insight is that this is enough to guarantee (local) confluence. Let us start with a preliminary
remark. Let the domain of a substitution S be the set:

dom(S) = {x ∈ V | S(x) 6= x} .

Given two substitutions S1, S2 let us define their union as follows:

(S1 ∪ S2)(x) =

S1(x) if x ∈ dom(S1)\dom(S2)
S2(x) if x ∈ dom(S2)\dom(S1)
x otherwise.

Exercise 97 Suppose var(t) ∩ var(s) = ∅, dom(S1) ⊆ var(t), and dom(S2) ⊆ var(s). Then
show that S1(t) = S2(s) entails that S1 ∪ S2 |= t = s. Notice that if var(t) ∩ var(s) 6= ∅ then
the assertion is false. E.g., take: t = x, s = f(x), S1 = [f(x)/x], S2 = id, S1 ∪ S2 = S1 but
S1(t) 6= S1(s).

53

54 Confluence and completion of TRS

Proposition 98 Suppose given a finite and terminating TRS. Then the TRS is confluent iff
all the critical pairs induced by its rules are joinable (and the latter is a decidable condition).

Proof. The test is necessary as explained above. Because the TRS is terminating, it is
enough to show that the test guarantees local confluence. To check local confluence a finite
case analysis suffices. If s→ t1 and s→ t2, then we can find rules l1 → r1, l2 → r2, contexts
C1, C2 and substitutions S1, S2 such that

s = C1[S1l1] = C2[S2l2], t1 = C1[S1r1], t2 = C2[S2r2] .

We sketch and provide concrete examples for the main cases to consider.

Case 1 The paths corresponding to the contexts C1 and C2 are incomparable (neither is a
prefix of the other). In this case one can close the diagram in one step. For instance,
assume the rules:

gi(x)→ ki(x), i = 1, 2 ,

and consider h(g1(x), g2(x)).

Case 2 There is a variable x in l1 such that S2l2 is actually a subterm of S1(x). In this
case one can always close the diagram, though it may take several steps. For instance,
assume the rules:

f(x, x, x)→ h(x, x), g(x)→ k(x) .

and consider f(g(x), g(x), g(x)).

Case 3 We can decompose l1 in C[l′1] so that:

l′1 is not a variable and S1l
′
1 = S2l2 .

One can show that this situation is always an instance of a critical pair. For instance,
assume the rules:

f(f(x, y), z)→ f(x, f(y, z)), f(i(x), x)→ e ,

and consider f(f(i(x), x), z). 2

Exercise 99 Consider the TRS:

f(x, g(y, z)) → g(f(x, y), f(x, z)) , g(g(x, y), z) → g(x, g(y, z)) .

Is the resulting reduction system terminating and/or confluent?

5.2 Completion of term rewriting systems

The test for local confluence is the basis for an iterative symbolic computation method known
as Knuth-Bendix completion. Given an equational theory, the goal is to obtain a confluent
and terminating term rewriting system for it. The main steps in Knuth-Bendix completion
are as follows::

1. Orient the equations thus obtaining a TRS.

Confluence and completion of TRS 55

2. Check termination of the TRS.

3. Then check local confluence.

4. If a critical pair cannot be joined, then we add the corresponding equation and we repeat
the process.

Notice that there is no guarantee that the process terminates! At various places, one
may require a human intervention: orientation of the rules, well-founded order to check
termination, selection of the rules to add,. . .

Example 100 The following law describes so called ‘central grupoids’:

(x ∗ y) ∗ (y ∗ z) = y .

Any simplification ordering > will satisfy:

(x ∗ y) ∗ (y ∗ z) > y ,

so we orient the equation from left to right. A critical pair is:

((x′ ∗ y′) ∗ (y′ ∗ z′)) ∗ ((y′ ∗ z′) ∗ z)→ (y′ ∗ z′), y′ ∗ ((y′ ∗ z′) ∗ z) .

Any simplification ordering satisfies: y′ ∗ ((y′ ∗ z′) ∗ z) > (y′ ∗ z′). Another critical pair is:

(x ∗ (x′ ∗ y′)) ∗ ((x′ ∗ y′) ∗ (y′ ∗ z′))→ (x′ ∗ y′), (x ∗ (x′ ∗ y′)) ∗ y′ .

Again any simplification ordering satisfies:

(x ∗ (x′ ∗ y′)) ∗ y′ > (x′ ∗ y′) .

Thus we get a terminating TRS with three rules. In the next iteration all critical pairs turn
out to be joinable and thus the completion terminates successfully.

Example 101 The equations for left/right distributivity of ∗ over + are:

x ∗ (y + z) = (x ∗ y) + (x ∗ z) , (u+ v) ∗ w = (u ∗ w) + (v ∗ w) .

Ordering from left to right, a critical pair is:

(u+ v) ∗ (y + z)→ ((u+ v) ∗ y) + ((u+ v) ∗ z), (u ∗ (y + z)) + (v ∗ (y + z)) .

If we normalize the two terms on the left-hand-side we get:

((u ∗ y) + (v ∗ y)) + ((u ∗ z) + (v ∗ z), ((u ∗ y) + (u ∗ z)) + ((v ∗ y) + (v ∗ z)) ,

and there is no reasonable way to order them.

56 Confluence and completion of TRS

Example 102 Consider the equations:

x+ z = x, s(x+ y) = x+ s(y), x+ s(z) = s(x) .

It can be easily checked that by orienting them from left to right we obtain a terminating TRS.
However, there is a critical pair between the second and third rule taking:

s(s(x))← s(x+ s(z))→ x+ s(s(z)) .

In turn this forces the rule: x + s(s(z)) → s(s(x)). In this case, a simple completion method
may diverge as one has to add all the rules of the shape:

x+ sn(z)→ sn(x) .

However, an alternative completion strategy succeeds by orienting the second rule in the op-
posite direction: x+ s(y)→ s(x+ y).

Exercise 103 Prove termination and confluence of the TRS considered in examples 53 and
54.

Exercise 104 Consider the TRS:

f(f(x, y), z) → f(x, f(y, z)), f(i(x), x) → e .

(1) Can you show termination by RPO? (2) Can you show termination by polynomial inter-
pretation? (3) Is the system confluent?

Now consider the TRS:

f(f(x))→ g(x) .

(4) Is it confluent? (5) Add the rule f(g(x)) → g(f(x)). Is this terminating by RPO ? (6)
And by polynomial interpretation? (7) Is the system confluent? (8) Same questions if we add
the rule g(f(x))→ f(g(x)).

Exercise 105 Let R1 be a TRS with rules:

f(a, b, x)→ f(x, x, x), x variable,

and let R2 be another TRS with rules:

g(x, y) → x, g(x, y) → y, x, y variables.

(1) Show that the systems R1 and R2 terminate. (2) Prove or give a counter-example to the
confluence of the TRS R1 and R2. (3) Show that the TRS R1 ∪ R2 does not terminate. (4)
However, show that the TRS R1 ∪R2 is normalizing (every term has a normal form).

Confluence and completion of TRS 57

5.3 Summary and references

The critical pair test is a practical test to check the (local) confluence of TRS and the basis
of an iterative method known as Knuth-Bendix completion [KB70]. The method starts with a
TRS which is typically derived from a set of equations. It then checks the TRS for termination
and local confluence. If local confluence fails, then we try to orient the critical pairs and start
the verification again. Many sophisticated refinements of the completion procedure have
been proposed and implemented in a variety of tools. Also similar ideas have been developed
in parallel and independently in the area of computer algebra where a technique known as
Gröbner bases is used to solve decision problems in rings of polynomials. Examples in this
chapter are based on [BN99] and the reader is invited to check them with one of the tools
available online.

58 Confluence and completion of TRS

Chapter 6

Term rewriting systems as
functional programs

We focus on term rewriting systems whose symbols can be partitioned in constructors and
functions and whose term rewriting rules guarantee a deterministic evaluation. Such systems
can be regarded as rudimentary first-order functional programs. We then consider a recursive
definition mechanism known as primitive recursion which guarantees termination. Going
beyond termination, we present conditions that guarantee termination in polynomial time.
More precisely, we define a restricted form of primitive recursion on binary words, also known
as bounded recursion on notation, in which one can program exactly the functions computable
in polynomial time.

6.1 A class of term rewriting systems

We consider term rewriting systems whose signature Σ is partitioned into constructor symbols
denoted with c, d, . . . and function symbols denoted with f, g, . . . A value is a term composed
of constructor symbols and denoted with v, v′, . . . while a pattern is a term composed of
constructor symbols and variables and denoted with p, p′, . . . To make sure the collection of
values is not empty, we assume that there is at least a constant (a symbol with arity 0) among
the constructors. We assume all term rewriting rules have the shape:

f(p1, . . . , pn)→ e .

Moreover given two distinct rules:

f(p1, . . . , pn)→ e , f(p′1, . . . , p
′
n)→ e ,

which refer to the same function symbol f , we assume that they cannot superpose, i.e., it is
not possible to find values v1, . . . , vn and substitutions S and S′ such that vi = S(pi) = S′(p′i)
for i = 1, . . . , n. Under these hypotheses, closed terms are evaluated according to the following
rules:

ej ⇓ vj j = 1, . . . , n

c(e1, . . . , en) ⇓ c(v1 . . . , vn)

ej ⇓ vj , f(p1, . . . , pn)→ e,
Spj = vj , j = 1, . . . , n, S(e) ⇓ v

f(e1, . . . , en) ⇓ v
.

59

60 TRS as functional programs

Notice that the first rule guarantees that for all values v, we have: v ⇓ v. If the term is not
a value, then we look for the innermost-leftmost term of the shape f(v1, . . . , vn) and look for
a rule f(p1, . . . , pn) → e which applies to it (by hypothesis, there is at most one). If no rule
applies then the evaluation is stuck. If v is a value its size |v| is a natural number defined by:

|c(v1, . . . , vn)| = 1 + Σi=1,...,n|vi| .

By extension, if t ⇓ v then |t| = |v|. Thus, in this chapter, the notation |t| denotes the size of
the unique value to which the closed term t evaluates (if any).

Example 106 We introduce some constructors along with their arity.

t0, f0 (boolean values)
z0, s1 (tally (unary) natural numbers)
nil0, c1 (lists)
ε0, 01, 11 (binary words)

and some functions:

ite(t, x, y) → x (if-then-else)
ite(f, x, y) → y

leq(z, y) → t (less-equal)
leq(s(x), z) → f
leq(s(x), s(y)) → leq(x, y)

ins(x, nil) → c(x, nil) (list insertion)
ins(x, c(y, l)) → ite(leq(x, y), c(x, c(y, l)), c(y, ins(x, l)))

Exercise 107 Continue the previous example by defining functions to sort lists of tally nat-
ural number according to various standard algorithms such as insertion sort, quick sort,. . .

Notice that it is straightforward to program the functions above in a language with
pattern-matching such as ML.

6.2 Primitive recursion

We restrict further the class of term rewriting systems so that termination is guaranteed.
Assume the following constructor symbols for tally natural numbers: z0 and s1. Also assume
the following basic function symbols z, s, pni for i = 1, . . . , n with the following rules:

z(x) → z (zero)
s(x) → s(x) (successor)
pni (x1, . . . , xn) → xi (projections).

New function symbols can be introduced according to the composition and primitive recursion
rules which are described below. We shall use x∗ to denote a (possibly empty) sequence of
variables x1, . . . , xn.

TRS as functional programs 61

Composition Given g of arity k and hi of arity n for i = 1, . . . , k introduce a new function
f of arity n with the rule:

f(x∗)→ g(h1(x∗), . . . , hk(x
∗)) .

Primitive Recursion Given g of arity n and h of arity n+ 2 introduce a new function f of
arity n+ 1 with the rules:

f(z, y∗) → g(y∗)
f(s(x), y∗) → h(f(x, y), x, y∗) .

Example 108 We practice primitive recursion by defining a few arithmetic function.

add(z, y) → y (addition)
add(s(x), y) → s(add(x, y))
mul(z, y) → z (multiplication)
mul(s(x), y) → add(mul(x, y), y)
exp(x, z) → s(z) (exponentiation)
exp(x, s(n)) → mul(exp(x, n), x) .

We can go on to describe towers of exponentials,. . . The complexity of the programmable
functions is still very high!

Exercise 109 Define primitive recursive functions to: (1) decrement by one (with 0−1 = 0),
(2) subtract (with x−y = 0 if y > x), (3) compute an if-then-else, (4) compute the minimum
of two numbers.

We notice that there is a trade-off between primitive recursion and full recursion. Namely,
in the former termination is for free but some functions cannot be represented and some
algorithms are more difficult or impossible to represent. For instance, it can be shown by a
diagonalization argument that the universal function (the interpreter) for primitive recursive
functions is a total function but not a primitive recursive one. It can also be shown that
the natural algorithm that computes the minimum of two tally natural number cannot be
expressed by primitive recursion (details in the following example).

Example 110 Primitive recursion is a bit of a straight-jacket to guarantee termination. For
instance, the following rules could be used to define the minimum of two tally natural numbers.

min(z, y) → z
min(s(x), z) → z
min(s(x), s(y)) → s(min(x, y)) .

The rules scan the two numbers in parallel and stop as soon as they reach the end of the
smallest one. However this definition of min is not primitive recursive. Worse, it can be
shown that no primitive recursive definition of min produces an algorithm computing min(v, u)
in time min(|v|, |u|).

We are soon going to address complexity issues and it is well known that in this case
unary notation is rather odd. Indeed unary notation requires too much space and because

62 TRS as functional programs

representation of the input is so large complexities of the operations can be unexpectedly low.
For instance, in unary notation we can compute the addition in constant time: it is enough to
regard numbers as lists and concatenate them. So we revise the notion of primitive recursion
by working with the following constructors which correspond to binary words: ε0, 01, 11. The
basic functions are now e1, s1

i for i = 0, 1, and pni for i = 1, . . . , n with the following rules:

e(x) → ε (empty word)
si(x) → ix (successors)
pi(x1, . . . , xn) → xi (projections).

As before, we can introduce new functions according to two mechanisms.

Composition Given g of arity k and hi of arity n for i = 1, . . . , k we introduce a new function
symbol f with the rule:

f(x∗)→ g(h1(x∗), . . . , hk(x
∗)) .

Primitive recursion Given g of arity n and hi of arity n+2 for i = 0, 1 we introduce a new
function symbol f with the rules:

f(ε, y∗) → g(y∗)
f(0(x), y∗) → h0(f(x, y∗), x, y∗)
f(1(x), y∗) → h1(f(x, y∗), x, y∗) .

The class of functions definable in this way are the primitive recursive functions on binary
notation, also known as functions defined by recursion on notation.

Exercise 111 Assume binary numbers are represented as binary words where the least sig-
nificant digit is on the left. We consider the problem of defining some standard arithmetic
functions by primitive recursion on binary words.

1. Define a function that takes a binary word and removes all ‘0′ that do not occur on the
left of a 1 (hence ε can be taken as the canonical representation of zero).

2. Show that the functions division by 2, modulo 2, successor, if-then-else, predecessor,
number of digits can be defined by primitive recursion.

3. Suppose a function that implements addition is given (known definitions of this function
are quite technical). Implement multiplication by primitive recursion on binary notation.

6.3 Functional programs computing in polynomial time

How can we compute a function defined by primitive recursion? Suppose vk = ik . . . i1ε. Here
is a simple loop that computes f(vk, v

∗):

r = g(v∗);
for (j = 1; j ≤ k; j = j + 1){r = hij (r, vj−1, v

∗); }
return r .

TRS as functional programs 63

Problem: suppose that hi and g can be computed in polynomial time. Can we conclude that
f can be computed in polynomial time? Well, here is what can go wrong. Consider first the
function d doubling the size of its input:

d(ε) → 1ε , d(i(x)) → i(i(d(x))) i = 0, 1 .

Then consider the function e:

e(ε) → 1ε , e(i(x)) → d(e(x)) i = 0, 1 .

These functions are definable by primitive recursion on binary notation (exercise!) and |e(v)|
is exponential in |v|. Iterating |v| times polynomial time operations can generate data whose
size is not polynomial in |v|.

We now introduce a notion of definition by bounded recursion on notation (BRN). This
is an ordinary primitive recursion on binary words:

f(ε, y∗) → g(y∗)
f(0(x), y∗) → h0(f(x, y∗), x, y∗)
f(1(x), y∗) → h1(f(x, y∗), x, y∗) ,

with the additional requirement that there exists a polynomial Sf with non-negative coeffi-
cients such that:

|f(v, v∗)| ≤ Sf (|v|, |v∗|) .

It turns out that the functions computable by an algorithm in BRN are exactly those com-
putable in PTIME. This result decomposes in the following two propositions.

Proposition 112 If we can define an algorithm by BRN then we can compute its result in
PTIME.

Proof. First we prove by induction on the definition of a function f in BRN that there is a
polynomial Sf such that for all v1, . . . , vn:

|f(v1, . . . , vn)| ≤ Sf (|v1|, . . . , |vn|) .

This is clear for the basic functions and for BRN. For the composition, say h, of f with
(g1, . . . , gk) we have:

h(v∗)→ f(g1(v∗), . . . , gk(v
∗)) .

Then by inductive hypothesis:
|gi(v∗)| ≤ Sgi(|v∗|) .

Let S be a polynomial that bounds all Sgi . Applying again the inductive hypothesis:

|f(g1(v∗), . . . , gk(v
∗))| ≤ Sf (|g1(v∗)|, . . . , |gk(v∗)|)

≤ Sf (Sg1(|v∗|), . . . , Sgk(|v∗|))
≤ Sf (S(|v∗|), . . . , S(|v∗|)) ,

and the composition of polynomials is a polynomial. Thus data computed by BRN has size
polynomial in the size of the input.

Next, we prove by induction on the definition of a function f in BRN that there is a
polynomial Tf such that f(v1, . . . , vn) can be computed in time Tf (|v1|, . . . , |vn|). Recursion

64 TRS as functional programs

is the interesting case. Consider again the loop computing primitive recursion, where vj =
ij · · · i1ε, 1 ≤ j ≤ k:

r = g(v∗);
for (j = 1; j ≤ k; j = j + 1){r = hij (r, vj , v

∗); }
return r .

For all steps j, we have that: |r| ≤ Sf (k, |v∗|). Let Th be a polynomial that bounds both Th0

and Th1 . Then the computation of the k steps is performed in at most:

k · Th(Sf (k, |v∗|), k, |v∗|) = |vk| · Th(Sf (|vk|, |v∗|), |vk|, |v∗|) ,

which is a polynomial in |vk|, |v∗|. 2

Proposition 113 If there is a PTIME algorithm in some Turing-equivalent formalism then
we can compile it to an algorithm in BRN that computes the same function.

Proof. Let M = (Σ, Q, qo, F, δ) be a Turing machine (TM) with: (i) Σ alphabet, (ii) Q
states, qo ∈ Q initial state, (iii) F ⊆ Q final states, and (iv) δ : Σ × Q → Σ × Q × {L,R}
transition function.

If x is a real number let dxe be the least integer n such that x ≤ n. Obviously, elements
in Σ and Q can be encoded as binary words of length dlog2(]Σ)e and dlog2(]Q)e, respectively.
The configuration of a TM can be described by a tuple (q, h, l, r) where: (i) q is the current
state, (ii) h is the character read, (iii) l are the characters on the left hand side of the head,
and (iv) r are the characters on the right hand side of the head.

Next, we have to define a step function that simulates one step of a Turing machine while
working on the encodings of states and characters. Informally, the function step is a case
analysis corresponding to the finite table defining the transitions of the TM. E.g., the rule:

step(01ε, 1ε, 0l′, r)→ (11ε, 0ε, l′, 0r) ,

describes the situation where being in state 01 and reading 1, we go in state 11, write 0, and
move to the left. The only technical difficulty here is that tuples are not a primitive data
structures in our formalization. However, using the arithmetic functions, we can program
pairing of natural numbers and the related projections. Alternatively (and more naturally),
one could extend the framework with a pairing constructor.

We ignore these problems and assume a function step that takes a tuple (q, h, l, r) and
returns the tuple (q′, h′, l′, r′) describing the following state. Now comes a key idea which we
present first using a simplified notation. We have an initial configuration v0 and a function
step such that:

|step(v)| ≤ |v|+ 1 .

We want to iterate step on vo at least P (|vo|) times where P is a polynomial of degree k.
W.l.o.g., we may assume the TM loops after reaching the final state so that running it longer
does not hurt.

We assume an expansion function exp such that for all k there is an m such that:

|expm(v)| ≥ |v|k .

TRS as functional programs 65

To do this, it is enough to iterate a function that squares the size of its entry. Remember
that k and therefore m are constants, i.e., they do not depend on the size of the input. Then
we define a function it as:

it(ε, v) → v , it(i · u, v) → step(it(u, v)) i = 0, 1 . (6.1)

This is a definition by bounded recursion on notation since assuming Sit(n,m) = n + m (a
polynomial!) we have:

|it(u, v)| ≤ Sit(|u|, |v|) .

Then to iterate the step function at least |v0|k times on the initial configuration we run:
it(expm(v0), v0).

We can now go back to TM. All we have to do is to rewrite the it function above (6.1) as
follows:

it(ε, q, h, l, r) → (q, h, l, r) , it(iu, q, h, l, r) → step(it(u, q, h, l, r)) i = 0, 1 .

To summarize, given a TM running in P time (P fixed polynomial), for any input v0 we: (i)
initialize a counter to a value u such that |u| ≥ P (|v0|) and (ii) perform a BRN on the counter
thus iterating the step function |u| times. Notice that here the iteration works on the length
of the counter and not on its binary representation. Otherwise, the definition would not be
by BRN and termination could take exponential time! 2

Remark 114 (1) It is quite possible to program a function that takes exponential time and
runs in polynomial space (never going twice through the same configuration!). For instance,
take a function that counts from 0nε to 1nε. Implicitly, proposition 112 states that as long
as we stick with BRN such function cannot be programmed. In the counting function, the
problem is not the size of the data (the identity function gives the bound!) but the fact that
the recursion mechanism is not compatible with primitive recursion on notation.

(2) The proof of proposition 113 suggests that there is a trivial way of building PTIME
algorithms. Take any program and instrument it so that it keeps a counter that stops after
a number of steps which is polynomial in the size of the input (for a fixed polynomial). Of
course, the problem with this ‘time-out’ approach is that we have no idea whether the program
will produce interesting answers before running it.

(3) The reader should keep in mind that while it is possible to build a programming language
(a decidable syntax) that computes exactly the PTIME functions, it is not possible to build
one that contains exactly the PTIME programs, e.g., the set of Turing’s machines computing
in PTIME is undecidable.

Proposition 112 restricts the programmer to primitive recursion and it provides no clue
on how to find a polynomial bound on the size. Is it possible to find a syntactic criterion that
guarantees the existence of a polynomial bound? The high-complexity of programs defined by
primitive recursion on binary notation depends on the fact that we have nested recursions,
i.e., the result of a primitive recursion can be used as the main argument of another primitive
recursion as in:

d(ε) → 1ε , d(i(x)) → i(i(d(x))) i = 0, 1 ,
e(ε) → 1ε , e(i(x)) → d(e(x)) i = 0, 1 ⇐ (‘Bad’ recursion!)

66 TRS as functional programs

A key insight is that if we forbid this by a syntactic mechanism then data size stays polynomial
and moreover it is still possible to define all functions computable in PTIME. To this end,
functions’ arguments are partitioned into two zones (syntactically separated by a semi-colon):

f(x1, . . . , xn; y1, . . . , ym) n,m ≥ 0 .

The ones on the left are called normal and those on the right safe. Let us refer to the functions
in this new class as SRN functions. The invariant one maintains on SRN functions is that
there is a polynomial Pf such that:

|f(v1, . . . , vn;u1, . . . , um)| ≤ Pf (|v1|, . . . , |vn|) + max(|u1|, . . . , |um|) .

In particular, if f has no normal arguments then the size of its result is bound by the size of
its arguments up to an additive constant.

Unlike in BRN, the existence of the polynomial is guaranteed by the way recursion and
composition are restricted. Assuming g, h0, h1 are SRN functions, we can define a new SRN
function f with the rules:

f(ε, x∗; y∗) → g(x∗; y∗)
f(0x, x∗; y∗) → h0(x, x∗; y∗, f(x, x∗; y∗))
f(1x, x∗; y∗) → h1(x, x∗; y∗, f(x, x∗; y∗)) .

The main argument lies in the normal zone (on the left) while the recursive calls take place
in the safe zone (on the right). The way SRN functions are composed is also restricted
so that expressions plugged in the normal zone do not depend on arguments in the safe
zone. Specifically, assuming, f, g1, . . . , gk, h1, . . . , hl are SRN functions we define their safe
composition as:

f(g1(x∗;), . . . , gk(x
∗;) ; h1(x∗; y∗), . . . , hl(x

∗; y∗)) .

Example 115 Here is an example and a non-example of SRN functions.

d(ε;) → 1(; ε) , d(i(;x);) → i(; i(; d(x;))) i = 0, 1 ,
e(ε;) → 1ε , e(i(;x);) → d(e(x;)) i = 0, 1 ⇐ Not SRN!

e(x;) should go to the safe zone, while d is waiting for an argument in the normal zone; nested
recursions do not compose.

6.4 Summary and references

Functions defined by primitive recursion on unary or binary notation are guaranteed to ter-
minate; the book [Ros84] is a compact reference on hierarchies of total recursive functions. If
moreover, we restrict the size of the computed values to be polynomial in the size of the input
then we can program exactly the functions computable in polynomial time. This is an early
result in complexity theory [Cob64]. The fact that the size bounds can be obtained through
a syntactic discipline has been observed more recently in [BC92]. The reader is warned that
this syntactic discipline is quite restrictive and hardly practical.

Chapter 7

λ-calculus

The λ-calculus is a compact notation to represent (higher-order) functions. It turns out
that this notation embodies directly many concepts arising in programming languages such
as: (higher-order) functions, recursive definitions, scoping rules, and evaluation strategies.
Moreover, it is sufficiently expressive to describe a number of programming features such
as: control flow operators, side-effects, records, and objects which will be discussed in the
following chapters. When enriched with types, the terms of the λ-calculus can be regarded
as proofs in a (constructive) logic. This connection sheds light on the design of type systems
for programming languages and explains the role of the λ-calculus in (higher-order) proof
assistants.

In this chapter, we start the technical development by introducing an equational theory on
λ-terms known as β-conversion and we prove the confluence of the related reduction rule. We
also prove similar results for a stronger theory known as βη-conversion. Next, we show that
the λ-calculus is sufficiently expressive to represent partial recursive functions (the λ-calculus
is Turing equivalent). Finally we introduce a term rewriting system known as combinatory
logic which simulates, to some extent, the λ-calculus.

7.1 Syntax

The (type-free) λ-calculus is composed of the λ-terms defined by the following grammar:

M ::= id || (λid .M) || (MM) (λ-terms)

where id ::= x || y || . . . This is a minimal language where the only operations allowed are
abstraction λx.M and application MN . In a language such as ML, one would write λx.M as
function x -> M.

It is important to notice that the abstraction λx.M binds the variable x in the λ-term M
just as the quantified first-order formula ∀x.A binds x in A. Consequently, in the λ-calculus
a variable can occur free or bound. We denote with fv(M) the set of variables occurring free
in the λ-term M .

When writing λ-terms we shall take some freedom. First, we may write λx1, . . . , xn.M
for λx1 . . . λxn.M . Second, we assume application associates to the left, and therefore write
M1M2 . . .Mn for (· · · (M1M2) · · ·Mn). Third, we suppose application binds more than λ-
abstraction and write λx.MN for λx.(MN).

67

68 λ-calculus

A number of programming operations can be introduced as syntactic sugar. For instance,
the operation let x = M in N that binds the λ-term M to the variable x and runs N can be
represented as (λx.N)M .

λ-terms, like first-order logic formulae or integrals, are always manipulated up to the
renaming of bound variables. For instance, we identify the λ-terms λx.x and λy.y, just as we
would identify the formulae ∀x x = x and ∀ y y = y, or the integrals

∫
x dx and

∫
y dy.

We remark that renaming involves a substitution of variables for variables. On the other
hand, the operation of substitution is really defined up to renaming. For instance, to define
[y/x](λy.xy) we start by renaming the abstraction as λz.[z/y](xy) = λz.xz, where z is a fresh
variable, and then we apply the substitution [y/x] under the abstraction to obtain λz.yz.
More generally, to define a substitution [N/x](λy.M) we have first to rename the bound
variable y as a (fresh) variable z which does not occur free either in N or in λy.M and then
we can define the substitution as λz.[N/x][z/y]M . As such, the substitution is not a function
since countably many (equivalent) choices of the fresh variable z are possible. However, we
can make it into a function by assuming an enumeration of the variables and picking up, for
instance, the first fresh variable that appears in the enumeration.

So we proceed as follows: first we define a substitution function on λ-terms, second we
define the relation of α-conversion, and third we assume that λ-terms are handled up to α-
conversion. In particular, in the proofs we shall distribute a substitution under a λ-abstraction
by silently assuming that an appropriate renaming has been carried on.

Definition 116 (size) If M is a λ-term then its size |M | is a natural number defined as
follows:

|x| = 1, |λx.M | = 1 + |M |, |MN | = 1 + |M |+ |N | .

Definition 117 (substitution) The substitution of a λ-term N for a variable x in the λ-
term M is defined as follows:

[N/x]y =

{
N if x = y
y otherwise

[N/x](M1M2) = [N/x]M1[N/x]M2

[N/x](λy.M) =

λy.M if x /∈ fv(λy.M)
λy.[N/x]M o.w., and y /∈ fv(N)
λz.[N/x][z/y]M o.w., and z first variable s.t. z /∈ fv(MN).

To show that this definition makes sense consider first the definition restricted to the case
where N is a variable and check that the substitution of a variable for a variable in a λ-term
leaves the size of the λ-term unchanged.

Definition 118 A (one-hole) context C is defined by:

C ::= [] || λid .C || CM ||MC .

We write C[N] for the λ-term obtained by replacing the hole [] with the λ-term N without
paying attention to the potential capture of variables. Formally:

[N] = N, (λx.C)[N] = λx.C[N], (CM)[N] = C[N]M, (MC)[N] = MC[N] .

λ-calculus 69

We are now ready to define the relation of renaming which is called α-conversion in the
λ-calculus. Henceforth λ-terms are considered up to α-conversion.

Definition 119 (α-conversion) α-conversion is the least equivalence relation ≡ on λ-terms
such that for any context C, λ-term M , and variables x, y such that y /∈ fv(M) we have:

C[λx.M] ≡ C[λy.[y/x]M] .

Remark 120 As already mentioned, the replacement operation does not pay attention to the
bound variables. For instance, if C = λx.[] and N = x then C[N] = λx.x. For this reason,
contexts, unlike λ-terms, should not be considered up to renaming.

Definition 121 (β-reduction) The β-rule is the following reduction relation between λ-
terms:

(β) C[(λx.M)N]→ C[[N/x]M] ,

where C is a context, M,N are λ-terms, and x is a variable.

The subterm (λx.M)N which is transformed by the β-rule is called the redex (or β-redex).
We may also refer to the λ-term resulting from the application of the rule as the reduced λ-
term. Notice that definition 121 is schematic but does not quite define a TRS since λ-terms
are not quite first-order terms. The equivalence induced by β-reduction is called β-conversion
and it is defined as follows.

Definition 122 (β-conversion) We denote with =β the equivalence relation
∗↔β.

Example 123 Here are some λ-terms which are used often enough to deserve a specific
name:

I ≡ λx.x, K ≡ λx, y.x, S ≡ λx, y, z.xz(yz), ∆ ≡ λx.xx, ∆f ≡ λx.f(xx) .

And here are some examples of β-reduction (up to α-conversion!):

II → I, KMN →M, SKK → I, ∆∆→ ∆∆, ∆f∆f → f(∆f∆f) .

Exercise 124 (β-normal forms) Let NF be the smallest set of λ-terms such that:

Mi ∈ NF i = 1, . . . , k k ≥ 0

λx1 . . . xn.xM1 . . .Mk ∈ NF
.

Show that NF is exactly the set of λ-terms in β-normal form.

Exercise 125 (Curry fixed point) Let Y ≡ λf.∆f∆f where ∆f ≡ λx.f(xx). Show that:

YM =β M(YM) .

This is known as Curry’s fixed point combinator.

Exercise 126 (Turing fixed point) Turing’s fixed point combinator is defined by:

YT ≡ (λx, y.y(xxy))(λx, y.y(xxy)) .

Show that YT f is not only convertible to, but reduces to: f(YT f).

70 λ-calculus

7.2 Confluence

Clearly, there are many possible ways of reducing a λ-term. Are they confluent? Let us first
examine the case for local confluence.

Proposition 127 (local confluence) Let M be a λ-term. Then the following holds:

1. If M →M ′ then [M/x]N
∗→ [M ′/x]N .

2. If N → N ′ then [M/x]N → [M/x]N ′.

3. β-reduction is locally confluent, that is:

∀M,N,P (M → N, M → P)

∃Q (N
∗→ Q, P

∗→ Q)
.

Proof. (1) By induction on N .

(2) Suppose N = C[(λy.N1)N2]. We notice:

[M/x]((λy.N1)N2) ≡ (λy.[M/x]N1)[M/x]N2 → [[M/x]N2/y]([M/x]N1) ≡ [M/x]([N2/y]N1) .

(3) The interesting case arises if one redex is contained in the other. Suppose ∆ is a β-redex.
If M ≡ C[(λx.M ′)C ′[∆]] apply (1), and if M ≡ C[(λx.C ′[∆])M ′] apply (2). 2

Let us notice that β reduction may both erase a redex as in (λx.I)(II)→ I and duplicate
it as in ∆(II) → (II)(II). It turns out that it is possible to define a notion of parallel
reduction ⇒ with the following properties.

• → ⊂ ⇒ ⊂ ∗→.

• A strong confluence property holds for⇒: if M ⇒ N and M ⇒ N ′ then there is P such
that N ⇒ P and N ′ ⇒ P .

• The relation ⇒ is simple enough to be analyzed.

The idea is that in a parallel reduction we are allowed to reduce at once the redexes that
are in the λ-term but not those which are created by the reductions. For instance, we have:
(II)(II)⇒ II but (II)(II) 6⇒ I.

Definition 128 (parallel β-reduction) Parallel β-reduction is defined as follows:

M ⇒M

M ⇒M ′ N ⇒ N ′

(λx.M)N ⇒ [N ′/x]M ′

M ⇒M ′ N ⇒ N ′

MN ⇒M ′N ′
M ⇒M ′

λx.M ⇒ λx.M ′
.

Exercise 129 Let M ≡ (λx.Ix)(II) where I ≡ λz.z. What is the minimum number of
parallel reductions needed to reduce M to I?

λ-calculus 71

First we notice the following structural and substitution properties of parallel reduction.

Proposition 130 Parallel reduction enjoys the following structural properties:

λx.M ⇒ N

N ≡ λx.M ′, M ⇒M ′

MN ⇒ L

(L ≡M ′N ′, M ⇒M ′, N ⇒ N ′) or
(M ≡ λx.P, P ⇒ P ′, N ⇒ N ′, L ≡ [N ′/x]P ′)

Proof. By case analysis on the definition of parallel reduction. 2

Proposition 131 Parallel reduction enjoys the following substitution property:

M ⇒M ′ N ⇒ N ′

[N/x]M ⇒ [N ′/x]M ′
.

Proof. By induction on the definition of M ⇒ M ′. For the base case we also need an
induction on the structure of M . 2

We are then ready to prove strong confluence of parallel reduction.

Proposition 132 Parallel reduction enjoys the following strong confluence property:

∀M,N1, N2 (N1 ⇐M ⇒ N2)

∃P (N1 ⇒ P ⇐ N2)
.

Proof. One can proceed by induction on M ⇒ N1 and case analysis on M ⇒ N2 to close
the diagram. 2

Corollary 133 (confluence, β) β-reduction is confluent.

Proof. We have:
→β ⊂ ⇒ ⊂

∗→β .

If M →β · · · →β Ni, i = 1, 2 then M ⇒ · · · ⇒ Ni, i = 1, 2. Now apply strong conflu-
ence to close the diagram and build P such that Ni ⇒ · · · ⇒ P , i = 1, 2. This implies
Ni

∗→β · · ·
∗→β P , i = 1, 2 and, by transitivity of

∗→β, we conclude that Ni
∗→β P , i = 1, 2. 2

The β-rule is the basic rule of the λ-calculus. The second most popular rule is the η-rule.

Definition 134 (η-reduction) The η-rule is defined by:

(η) C[λx.Mx]→ C[M] if x 6∈ fv(M) ,

for C context, M λ-term, and x variable.

The η-rule is a kind of extensionality rule. If we read it backwards, it asserts that ‘every
λ-term is a function’. This intuition can actually be made precise in the model theory of
λ-calculus.

72 λ-calculus

Proposition 135 (confluence βη) The following properties hold:

1. η reduction is strongly confluent in the following sense:

M →η Ni i = 1, 2 N1 6≡ N2

∃P (Ni →η P, i = 1, 2)
.

2. The β and η reductions commute in the following sense:

M →β N1 M →η N2 N1 6≡ N2

∃P (N1(→η)
∗P, N2 →β P)

.

3. The (→β)∗ and (→η)
∗ reductions commute in the following sense:

M(→β)∗N1 M(→η)
∗N2

∃P (N1(→η)
∗P, N2(→β)∗P)

.

4. βη reduction is confluent.

Proof. (1) Two redexes that superpose have the shape: λx.C[λy.My]x. Analyze what can
happen.

(2) If the β redex contains the η redex we can have the following situations:

• (λx.Mx)N : the reduced are identical.

• (λx.C[λy.My])N : close the diagram in one step.

• (λx.M)C[λy.Ny]: it may take 0, 1 or more η steps to close the diagram.

On the other hand, if the η redex contains the β redex we can have:

• λx.(λy.M)x: the reduced are identical.

• λx.C[(λy.M1)M2]x: close in one step.

(3) First show commutation of (→η)
∗ with respect to →β ∪Id . Then proceed by induction

on the number of β reductions.

(4) Consider the number of alternations of (→β)∗ and (→η)
∗. 2

Example 136 Here is an extension of the λ-calculus that does not preserve confluence (we
refer to [Bar84] for a proof). We add to the language a constant D and the rule:

Dxx→ x .

This rule may seem artificial, but it is actually a simplification of a natural rule called sur-
jective paring (an extensionality rule for pairs) which also leads to a non-confluent system:

D(Fx)(Sx)→ x .

Here D, F , S are constants where intuitively D is the pairing while F and S are the first
and second projection. We stress that here the property that fails is just confluence (not local
confluence). Indeed a surjective pairing rule is introduced in terminating typed λ-calculi. By
proposition 47, surjective pairing in these calculi is confluent.

λ-calculus 73

7.3 Programming

All partial recursive functions can be represented in the (type free) λ-calculus. Thus the
λ-calculus, regarded as a computational model, is Turing equivalent. Proving this result is a
matter of programming in the λ-calculus. The proof we outline below relies on the following
definition of the partial recursive functions.

Definition 137 (minimalisation) Given a total function f : Nk+1 → N a partial function
µ(f) : Nk ⇀ N is defined by minimization as follows:

µ(f)(x1, . . . , xk) =

{
x0 if x0 = min{x ∈ N | f(x, x1, . . . , xk) = 0}
↑ if ∀x f(x, x1, . . . , xk) > 0

where ↑ means that the function is undefined.

Definition 138 The set of partial recursive functions is the smallest set of functions on (vec-
tors of) natural numbers which contains the basic functions (zero, successor, projections) and
is closed under function composition, primitive recursion (see chapter 6.2), and minimization.

We discuss next the representation of partial recursive functions in the λ-calculus.

Definition 139 (Church numerals) A natural number n is represented by the following
λ-term n known as Church numeral:

n ≡ λf.λx.(f · · · (fx) · · ·) (Church numerals) (7.1)

where f is applied n times.

In a sense this is similar to the tally natural numbers considered in chapter 6.2. We shall
see in chapter 13 that the inductive definition of natural numbers actually suggests their
representation in the λ-calculus as Church numerals.

We also have to fix a class of λ-terms that represent a diverging computation. A natural
choice is to consider the λ-terms that do not have a head normal form.

Definition 140 (head normal form) A λ-term is (has) a head normal if it has the shape
(it reduces to a λ-term of the shape):

λx1, . . . , xn.xM1 · · ·Mm n,m ≥ 0.

Definition 141 (function representation) A λ-term F represents a partial function f :
Nk → N if for all n1, . . . , nk ∈ N:

f(n1, . . . , nk) = m iff Fn1 · · ·nk =β m
f(n1, . . . , nk) ↑ iff Fn1 · · ·nk has no head normal form.

We can represent the arithmetic functions addition, successor, and multiplication with the
following λ-terms:

A ≡ λn.λm.λf.λx.(n f)(m f x) (addition)
S ≡ λn.A n 1 (successor)
M ≡ λn.λm.λf.n(m f) (multiplication).

74 λ-calculus

To represent boolean values we introduce the following λ-terms:

T ≡ λx.λy.x (true) , F ≡ λx.λy.y (false).

Then an if-then-else λ-term can be defined as follows:

C ≡ λx.λy.λz.x y z (if-then-else).

The reader may check that: CTxy
∗→β x and CFxy

∗→β y. A test-for-zero λ-term on Church
numerals can be defined as follows:

Z ≡ λn.n(λx.F)T (test-for-zero).

We can also introduce λ-terms to build pairs and to project pairs as follows:

P ≡ λx.λy.λz.z x y (pairing)
P1 ≡ λp.p(λx, y.x) (first projection)
P2 ≡ λp.p(λx, y.y) (second projection).

Again, the reader may check that Pi(PM1Mn)
∗→β Mi for i = 1, 2.

Exercise 142 Check that the λ-term:

Pd ≡ λn, f, x.n(λg, h.h(gf))(λy.x)(λz.z)

represents the predecessor function where it is assumed that the predecessor of 0 is 0 (chapter
13 provides a rational reconstruction of this complicated λ-term). Define λ-terms to represent
the subtraction function, where m− n = 0 if n > m, and the exponential function nm.

Let us now consider the 3 composition mechanisms, namely: function composition, primi-
tive recursion, and minimization. It should be clear that function composition can be directly
represented in the λ-calculus. Primitive recursion can be regarded as a particular case of
recursive function definition. In turn, a recursive function definition such as:

letrec g(x) = M in N ,

where g may appear in M and N is coded in the λ-calculus as:

(λg.N)(Y (λg.λx.M)) ,

where Y is the fixed point combinator of exercise 125 or 126. Moreover, recursive definitions
provide a direct mechanism to mimick definitions by minimization. Given a function f ,
consider the following recursive definition of the function g:

g(x0, x1, . . . , xk) = if (f(x0, x1, . . . , xk) = 0) then x0 else g(x0 + 1, x1, . . . , xk) .

Then µ(f)(x1, . . . , xk) = g(0, x1, . . . , xk). Putting all together, we have the following result.

Proposition 143 For all partial recursive functions f : Nk → N there is a closed λ-term F
which represents f in the sense of definition 141.

λ-calculus 75

7.4 Combinatory logic

Combinatory logic is a relative of the λ-calculus which can be presented as a term rewriting
system.

Definition 144 We consider a binary application operation @ and two constants K and S.
As in the λ-calculus, we write MN for @(M,N) and let application associate to the left. The
system comes with two term rewriting rules:

K x y → x , S x y z → x z(y z) .

It turns out that in combinatory logic there is a way to simulate λ-abstraction.

Definition 145 We define a function λ that takes a variable and a term of combinatory logic
and produces a term of combinatory logic. We abbreviate SKK as I.

λ(x, x) = I
λ(x,M) = KM if x /∈ var(M)
λ(x,MN) = S(λ(x,M))(λ(x,N)) .

The fact that we called the function above ‘λ′ is justified by the following proposition.

Proposition 146 If M,N are terms of combinatory logic and x is a variable then:

λ(x,M)N
∗→ [N/x]M .

Proof. By induction on M following the definition of the translation. 2

Exercise 147 Using the fact that combinatory logic (CL) is a TRS prove local confluence
of CL. Then adapt the method of parallel reduction presented in section 7.2 to prove the
confluence of CL.

Combinatory logic seems mathematically simpler than the λ-calculus. Why is it not used?
One reason is that terms written in combinatory logic tend to be unreadable. Another deeper
reason is that the notion of conversion induced by the rules S and K is weaker than the one
induced by the β rule. For instance, the reader may check that the translations in CL of the
λ-terms λz.(λx.x)z and λz.z do not have a common reduct. An alternative approach goes
through the notion of closure (see following chapter 8). This is quite appropriate for discussing
implementation techniques, but as in combinatory logic, the notation tends to become less
manageable.

7.5 Summary and references

The λ-calculus is a minimal notation to represent higher-order functions. The λ-terms are
transformed according to one basic rewriting rule: the β-rule. The λ-calculus with the β-rule
is a confluent rewriting system and it is sufficiently expressive to represent all partial recursive
functions. A second rule, the η-rule, can be added to the system while preserving confluence.
The λ-calculus is not a term rewriting system but there are term rewriting systems such as
combinatory logic which can mimick to some extent the behavior of λ-terms.

76 λ-calculus

The λ-calculus was introduced by Church as part of an investigation in the formal foun-
dations of mathematics and logic [Chu40]. At the time, the λ-calculus provided one of the
concurrent formalizations of partial recursive functions, i.e., computable functions, along with,
e.g., Turing machines. The foundational character of the language is even stronger when it is
enriched with types. We shall start addressing this point in chapter 10. The related system of
combinatory logic is based on work by Schönfinkel and Curry. The book [Bar84] is the basic
reference for the type-free λ-calculus. It is enough to skim the first introductory chapters to
have an idea of the great variety of results connected to the formalism.

Chapter 8

Weak reduction strategies, closures,
and abstract machines

Full β(η)-reduction is the basis for the symbolic manipulation of λ-terms, e.g., in proof as-
sistants, in program transformations, and in higher-order unification and pattern-matching.
However, when the λ-calculus is regarded as the core of a programming language it is sensi-
ble to consider weaker reduction strategies. This chapter focuses on these weaker reduction
strategies and their implementation.

8.1 Weak reduction strategies

A weak reduction strategy is a strategy to reduce λ-terms that does not reduce under func-
tional abstractions. Thus in a weak reduction strategy all λ-terms of the form λx.M are
normal forms.

Definition 148 (weak reduction) We define the weak β-reduction relation→w as the least
binary relation on λ-terms such that:

(λx.M)N →w [N/x]M

M →w M
′

MN →w M
′N

N →w N
′

MN →w MN ′
.

As such weak reduction is not confluent. For instance, we have:

K(II)→w KI , K(II)→w λx.II ,

and KI and λx.II have no common reduct. The problem here is that the redex II is under
a λ and cannot be reduced. When considering the λ-calculus as the core of a programming
language, the usual approach is to fix a particular deterministic weak reduction strategy. Two
popular ones we discuss next are known as call-by-name and call-by-value. The definition of
these strategies relies on a notion of value.

Definition 149 (value) A value V is a closed λ-term of the shape λx.M (a λ-abstraction).

In the following, the call-by-name and call-by-value reduction strategies are defined on
closed λ-terms. We actually define the reduction strategies in 3 different ways which turn out
to be equivalent.

77

78 Abstract machines

Definition 150 (call-by-name) We define the call-by-name reduction relation →n as the
least binary relation on closed λ-terms such that:

(λx.M)N →n [N/x]M

M →n M
′

MN →n M
′N

.

Definition 151 (call-by-value) We define the call-by-value reduction relation →v as the
least binary relation on closed λ-terms such that:

(λx.M)V →v [V/x]M

M →v M
′

MN →v M
′N

N →v N
′

V N →v V N
′ .

Remark 152 The basic difference between call-by-name and call-by-value is that in the latter
we insist that the term passed to the function is a value. Also notice that in the definitions
above, we have taken the convention that the function is reduced before the argument. Of
course, an alternative definition where the argument is reduced before the function is possible.
This choice only matters if the language has side-effects (cf. chapter 17).

The definitions 150 and 151 give a strategy to look for a subterm which is a redex of the
right shape. The one-hole context which sourrounds the redex is called evaluation context.

Definition 153 (evaluation contexts) Call-by-name and call-by-value evaluation contexts
are denoted with E,E′, . . . and are defined as follows:

E ::= [] || EM (call-by-name evaluation context)
E ::= [] || EM || V E (call-by-value evaluation context).

Proposition 154 (decomposition) Let M be a closed λ-term. Then either M is a value
or there is a unique call-by-name (call-by-value) evaluation context E such that:

M ≡ E[(λx.M1)M2] (M ≡ E[(λx.M1)V]) .

Proof. By induction on the structure of M . M cannot be a variable because it is closed.
If M is a λ-abstraction then it is a value. Suppose, M ≡ M ′M ′′. We consider the case for
call-by-name. If M ′ is a value then it must be a λ-abstraction and E ≡ []. Otherwise, by
inductive hypothesis M ′ ≡ E′[∆] where ∆ is a β-redex and we take E ≡ E′M ′′. 2

We can rely on evaluation contexts to provide alternative and equivalent definitions of
call-by-name and call-by-value.

Definition 155 Let →en be the least binary reduction relation on closed λ-terms such that:

M →en N if M ≡ E[(λx.M1)M2] and N ≡ E[[M2/x]M1], E call-by-name evaluation context.

Let →ev be the least binary reduction relation on closed λ-terms such that:

M →ev N if M ≡ E[(λx.M1)V] and N ≡ E[[V/x]M1], E call-by-value evaluation context.

Proposition 156 The call-by-name reduction relation →n coincides with the relation →en

and the call-by-value reduction relation →v coincides with the relation →ev.

Abstract machines 79

Proof. We consider the proof for call-by-name. To show that →n⊆→en, we proceed by
induction of the proof height of M →n N . For the base case take E = []. For the inductive
case, suppose MN →n M

′N because M →n M
′. Then by inductive hypothesis, there are E′

and ∆ ≡ (λx.M1)M2 such that M ≡ E′[∆] and M ′ ≡ E′[[M2/x]M1]. Then take E = E′N ,
MN ≡ E[∆], M ′N ≡ E[∆′], and ∆′ ≡ [M2/x]M1.

In the other direction, suppose E[∆] →en E[∆′] where ∆ ≡ (λx.M1)M2 and ∆′ ≡
[M2/x]M1. We proceed by induction on the structure of the evaluation context E. If E = []
then ∆ →n ∆′. If E = E′N then by induction hypothesis, E′[∆] →n E

′[∆′] and therefore
E[∆]→n E[∆′]. 2

Yet another presentation of call-by-name and call-by-value consists in defining a big-step
(cf. section 1.1) evaluation relation ⇓.

Definition 157 (call-by-name evaluation) The call-by-name evaluation relation ⇓n is the
least binary relation on closed λ-terms such that:

V ⇓n V
M ⇓n λx.M ′ [N/x]M ⇓n V

MN ⇓n V
.

Definition 158 (call-by-value evaluation) The call-by-value evaluation relation ⇓v is the
least binary relation on closed λ-terms such that:

V ⇓v V
M ⇓v λx.M ′ N ⇓v V ′ [V ′/x]M ⇓ V

MN ⇓v V
.

Proposition 159 Let M be a closed λ-term. Then:

1. If M ⇓n V then M(→n)∗V .

2. If M →n M
′ and M ′ ⇓n V then M ⇓n V .

3. If M(→n)∗M ′ 6→n then M ⇓n M ′.

The same properties hold if we replace ⇓n with ⇓v and →n with →v, respectively.

Proof. (1) By induction on the proof height of the judgment M ⇓n V . The base case follows
by reflexivity of (→n)∗. For the inductive step, suppose MN ⇓n V because M ⇓n λx.M1 and
[N/x]M1 ⇓n V . By inductive hypothesis, M(→n)∗λx.M1. Then:

MN(→n)∗(λx.M1)N →n [N/x]M1 ,

and by inductive hypothesis [N/x]M1(→n)∗V .

(2) If M →n M
′ then M ≡ (λx.M1)M2N1 · · ·Nk and M ′ ≡ [M2/x]M1N1 · · ·Nk. If M ′ ⇓n V

we must have:

[M2/x]M1 ⇓n λx1.P1, [N1/x1]P1 ⇓n λx2.P2, · · · [Nk/xk]Pk ⇓n V .

Then to prove M ⇓ V it suffices to extend the proof for M ′ with an additional step λx.M1 ⇓n
λx.M1.

(3) By proposition 154, if M ′ does not reduce then it is a value and we have M ′ ⇓n M ′. If
M reduces to M ′ in k steps then we apply property (2) k times starting from M ′. 2

80 Abstract machines

v[η] ⇓ v[η]
η(x)[η] ⇓ v[η′]
x[η] ⇓ v[η′]

e[η] ⇓ quote(e′)[η′] e′[η′] ⇓ v[η′′]
unquote(e)[η] ⇓ v[η′′]

By-name:
e[η[e′/x]] ⇓ v[η′],

(let x = e′ in e)[η]) ⇓ v[η′]

By-value:
e′[η] ⇓ v′[η′] e[η[v′/x]] ⇓ v[η]

(let x = e′ in e)[η] ⇓ v[η]

Table 8.1: Dynamic binding with by-name and by-value evaluation

8.2 Static vs. dynamic binding

The implementation of the reduction of a β-redex such as (λx.M)N is usually decomposed
in two steps.

• The formal parameter x is bound to the argument N . The collection of bindings is
called an environment.

• When the formal parameter x is used in the body of the function M , the argument
bound to it is retrieved from the environment.

This high-level description leaves many design choices unspecified. One basic issue is
what exactly constitutes an ‘argument’. Indeed, in the programming languages jargon, one
speaks of static vs. dynamic binding. This issue already arises in a very simple language of
expressions whose syntax is as follows, where as usual id ::= x || y || · · ·:

e ::= ⊥ || n || id || let id = e in e || quote(e) || unquote(e) (expressions).

Here ⊥ represents a computation that diverges, n is an integer, quote allows to freeze the
evaluation of an expression and unquote to unfreeze it. We denote with Exp the set of
expressions in this language. The collection of values is defined by:

v ::= n || quote(e) (values).

It is possible to encode this simple language in the λ-calculus and reproduce the same phe-
nomena we describe next.

Definition 160 (dynamic environment) A dynamic environment is partial function η :
Id ⇀ Exp with finite domain mapping identifiers to expressions.

Table 8.1 introduces two evaluation relations for this language of expressions with dynamic
binding following either a by-name or a by-value strategy. The basic assertion e[η] ⇓ v[η′] states
that an expression e in an environment η evaluates to a value v in an environment η′. The
first four rules defining the assertion are shared while two distinct rules, one for by-name and
the other for by-value, cover expressions of the shape let x = e′ in e.

In dynamic binding, an environment binds an expression with an identifier. However, in
turn the expression may contain identifiers and their binding with other expressions may be
lost. In static binding, we introduce a more complex object which is called a closure. This
is an expression along with an environment that associates identifiers with closures. This
looks like a circular definition of closure and environment but things can be well-defined in
an inductive style as follows.

Abstract machines 81

v[η] ⇓ v[η]
η(x) ⇓ v[η′]
x[η] ⇓ v[η′]

e[η] ⇓ quote(e′)[η′]
e′[η′] ⇓ v[η′′]

unquote(e)[η] ⇓ v[η′′]

By-name:
e[η[e′[η]/x] ⇓ v[η′]

(let x = e′ in e)[η] ⇓ v[η′]

By-value:
e′[η] ⇓ u[η′′]

e[η[u[η′′]/x]) ⇓ v[η′]
(let x = e′ in e)[η] ⇓ v[η′]

Table 8.2: Static binding with by-name and by-value evaluation

Definition 161 (static environment) The set of environments Env is the smallest set of
partial functions on Id such that if ei ∈ Exp, ηi ∈ Env and fv(ei) ⊆ dom(ηi) for i = 1, . . . , n
(n ≥ 0) then

[e1[η1]/x1, . . . , en[ηn]/xn] ∈ Env .

We denote with ∅ the empty environment.

Definition 162 (closure) A closure is a pair e[η] composed of an expression e ∈ Exp and
an environment η ∈ Env such that fv(e) ⊆ dom(η).

Table 8.2 defines an evaluation relation whose basic assertion is e[η] ⇓ v[η].
We have presented four possible semantics of our language of expressions: dynamic by-

name, dynamic by-value, static by-name, and static by-value. We can deem that two of them
are different if we can a find a closed expression where one produces a value and the other
another value or no value at all.

Proposition 163 The four presented semantics are different.

Proof. The expression e ≡ let x = ⊥ in 3 distinguishes evaluation by-name and by-value in
both static and dynamic binding. Indeed, the evaluation by-name returns a value and the
one by-value does not. Next consider the following expressions and evaluations:

e1 ≡ let x = 3 in e2, e2 ≡ let y = x in e3, e3 ≡ let x = 5 in y .

e1[∅] ⇓ 5[∅] (dynamic, by-name) e1[∅] ⇓ 3[∅] (dynamic, by-value)
e1[∅] ⇓ 3[∅] (static, by-name) e1[∅] ⇓ 3[∅] (static, by-value).

Thus it remains to distinguish dynamic and static binding with a by-value evaluation. To do
this, we rely on the quote, unquote operations and modify the expressions above as follows:

e1 ≡ let x = 3 in e2, e2 ≡ let y = quote(x) in e3, e3 ≡ let x = 5 in unquote(y) .

Now we have: e1[∅] ⇓ 5[∅] with dynamic binding, by-value and e1[∅] ⇓ 3[∅] with static binding,
by-value. 2

The examples in the previous proof show that the correct implementation of λ-calculus
relies on static binding; henceforth dynamic binding will be ignored.

82 Abstract machines

8.3 Environments and closures

We adapt to the call-by-name and call-by-value λ-calculus the notions of environment and
closure we have discussed in the previous section 8.2. To this end, we reuse the notion of
environment modulo the replacement of the expressions (denoted e) by the λ-terms (denoted
M). A closure, denoted with c, c′, . . ., is now a pair composed of a λ-term and an environment
that we shall write as M [η]. A (closure) value, denoted with v, v′, . . ., is a closure whose term
is a λ-abstraction. Table 8.3 describes the evaluation rules for closures according to a call-by-
name and a call-by-value strategy. The first two rules are shared by both strategies. Notice
that the β-rule is now decomposed in a rule where the argument is bound as a closure to the
formal parameter in the environment and a rule where the closure associated with the formal
parameter is retrieved from the environment.

In the presentation of the evaluation relations, at each reduction step, we have to traverse
the evaluation context in order to reach the redex to be reduced. A more efficient approach
consists in storing the traversed evaluation context in a stack and then to push and pop
elements on the stack as needed (cf. small-step reduction rules for Imp in chapter 1). The
form of the stack depends on the reduction strategy. In call-by-name, the evaluation context
is the composition of elementary contexts of the shape []N , where N is a λ-term. Then a
stack representation of the evaluation context is just a list of closures (arguments with their
environment):

s = c1 : . . . : cn (stack for call-by-name).

The reduction relation presented in table 8.4 now operates on pairs (M [η], s) composed of a
closure and a stack. Initially λ-terms are supposed closed and the stack is supposed empty.

A similar approach works for call-by-value. This time an evaluation context can be re-
garded as the composition of elementary contexts of the shape: []N or V []. We code these
elementary contexts as a list as follows:

[]c ≡ r : c (r for right), v[] ≡ l : v (l for left).

Then the stack s has the shape:

s = m1 : c1 : . . .mn : cn where m ∈ {l, r} (stack for call-by-value).

The reduction rules are described in table 8.5.

v ⇓ v
η(x) ⇓ v
x[η] ⇓ v

By-name:
M [η] ⇓n λx.M1[η′]
M1[η′[M ′[η]/x]] ⇓n v

(MM ′)[η] ⇓n v

By-value:
M [η] ⇓v λx.M1[η′] M ′[η] ⇓v v′

M1[η′[v′/x]] ⇓v v
(MM ′)[η] ⇓v v

Table 8.3: Evaluation of closures: call-by-name and call-by-value

Abstract machines 83

(x[η], s) → (η(x), s)
((MM ′)[η], s) → (M [η],M ′[η] : s)
((λx.M)[η], c : s) → (M [η[c/x]], s)

Table 8.4: Abstract machine for call-by-name

(x[η], s) → (η(x), s)
((MM ′)[η], s) → (M [η], r : M ′[η] : s)
(v, r : c : s) → (c, l : v : s)
(v, l : (λx.M)[η] : s) → (M [η[v/x]], s)

Table 8.5: Abstract machine for call-by-value

Exercise 164 Suppose we add to the λ-calculus with call-by-value a certain number of oper-
ators op1, . . . , opm with arity n1, . . . , nm, nj ≥ 0. (1) What are the new evaluation contexts?
(2) How is the abstract machine to be modified?

The rules in the abstract machines described in tables 8.4 and 8.5 form the basis for an
implementation. As usual in the implementation of term rewriting rules, one can avoid the
costly duplication of terms by using pointers. Specifically, in the rule for application one
just needs to duplicate the pointer to the environment rather than the whole environment.
In a machine implementation, variables can be replaced by de Brujin indexes which express
the number of λ’s that one has to traverse in the syntax tree to go from the variable to the
binder. For instance, the λ-term λx.x(λy.xy) is represented by λ.0(λ.10). We can rely on this
notation for closures too. In this case, we regard the environment as a list and let a de Brujin
index express the number of λ’s and elements in the environment that one has to traverse
to go from the variable to the term bound to the variable. For instance, in (λ.20)[c; c′] the
variable 2 refers to the closure c′ while the variable 0 refers to the λ. Using this notation,
e.g., the last rule of Table 8.4 can be written as:

((λ.M)[η], c : s) → (M [c : η], s) .

It is interesting to notice that during the (abstract) machine computation (de Brujin) indexes
are never modified. This simple remark makes manifest that the number of closures in an
environment is bounded by the largest index (plus 1) of the initial λ-term to be reduced.
In practice, the inputs of a functional program have indexes of bounded size and therefore,
in this case, the selection of an element in an environment can be done in constant time.
More generally, assuming that lists have bounded length and that duplicated environments
are shared each step of computation described by the rules in Tables 8.4 and 8.5 can be imple-
mented in costant time, thus justfying the ‘abstract machine’ terminology. Notice however,
that this analysis ignores the hidden cost of garbage collection.

Exercise 165 Implement the abstract machines in Tables 8.4 and 8.5 using De Brujin no-
tation.

84 Abstract machines

Exercise 166 Suppose we add to the call-by-name λ-calculus two monadic operators: C for
control and A for abort. If M is a term then CM and AM are λ-terms. An evaluation
context E is always defined as: E ::= [] || EM , and the reduction of the control and abort
operators is governed by the following rules:

E[CM] → M(λx.AE[x]) , E[AM] → M .

Adapting the rules in Table 8.4, design an abstract machine to execute the terms in this
extended language (a similar exercise can be carried on for call-by-value). Hint: assume an
operator ret which takes a whole stack and retracts it into a closure; then, e.g., the rule for
the control operator can be formulated as: ((CM)[η], s) → (M [η], ret(s)).

8.4 Summary and references

We have focused on two popular weak reduction strategies: call-by-name and call-by-value
and considered alternative and equivalent presentations via evaluation contexts and via (big-
step) evaluation relations. We have highlighted the distinction between static and dynamic
binding and shown that the implementation of the former relies on the notions of closure
and environment. Static binding leads to a correct implementation of the call-by-name and
call-by-value λ-calculus. Further we have shown that evaluation contexts can be implemented
as stacks and that this leads to abstract machines for call-by-name and call-by-value. The
notion of call-by-name and call-by-value evaluation strategy in the λ-calculus is studied in
[Plo75] and an early notion of abstract machine is presented in [Lan64]. de Brujin notation for
λ-terms is introduced in [dB72]. The implementation techniques studied for weak reduction
strategies can be extended to the (non-weak) β-reduction presented in chapter 7 (see, e.g.,
[CHL96]).

Chapter 9

Contextual equivalence and
simulation

We look for a notion of pre-order (and a derived equivalence) among program expressions (not
necessarily full programs). It should be natural and usable. To this end, we introduce first a
notion of contextual pre-order which is natural and then we show that it can be characterized
as a certain simulation which is easier to reason about. The notion of simulation is an example
of co-inductively defined relation. We take the opportunity to put on solid grounds some basic
notions on fixed points of monotonic functions and (co-)inductive definitions.

9.1 Observation pre-order and equivalence

We focus on a (deterministic) call-by-name λ-calculus as presented in chapter 8. However,
the approach applies to programming languages in general (including non-deterministic ones).
We work with the evaluation relation for call-by-name in definition 157 and simply write ⇓
rather than ⇓n since no confusion with call-by-value can arise. Also, in this chapter, all terms
are λ-terms.

We write M ⇓ and say that M converges if ∃V M ⇓ V . Note that for every closed term
M either there is a unique value V to which M evaluates or the evaluation diverges (the
derivation tree is infinite). The situation were the evaluation is stuck cannot arise.

In order to define a pre-order (or an equivalence) among two terms we have to decide
(cf. chapter 1) in which contexts the terms can be placed and which observations can be
performed on the terms once they are placed in the contexts. Our hypotheses are as follows.

• All contexts C such that C[M] and C[N] are closed terms. We insist on closing contexts
because reduction is defined on closed terms.

• We observe the termination of the term placed in a closing context. Observing natural
numbers or booleans would not change the state of affairs.

Definition 167 (contextual pre-order and equivalence) We define the contextual pre-
order on terms as:

M ≤C N if for all closing C (C[M] ⇓ implies C[N] ⇓) .

85

86 Equivalence

Contextual equivalence is derived by defining:

M ≈C N if M ≤C N and N ≤C M .

Thus two terms are deemed ‘equivalent’ if from the point of view of the admitted obser-
vation they are indistinguishable in any closing context.

Exercise 168 Prove the following properties:

1. ≤C is a pre-order (reflexive and transitive).

2. If M ≤C N then for all contexts C (not necessarily closing) C[M] ≤C C[N].

3. λx.λy.x 6≤C λx.λy.y.

4. If n,m are Church numerals (cf. definition 139) with n 6= m then n 6≤C m.

5. Find a pair of terms M,N such that M 6=β N and you expect M ≈C N .

To prove that M 6≤C N it suffices to find a context such that C[M] ⇓ and C[N] 6⇓. On
the other hand, to prove that M ≤C N we have to consider all closing contexts. For instance,
proving (λx.M)N ≤C [N/x]M is not so easy! This motivates the quest for a more practical
proof method based on the notion of simulation which will be discussed in section 9.4.

Exercise 169 Let ≤IO be a relation on closed terms defined by:

M ≤IO N if ∀P closed MP ⇓ implies NP ⇓

Show that ≤IO is a pre-order and that it is not preserved by contexts.

9.2 Fixed points

In this and the following section, we make a pause to state and prove some general facts
on partial orders, monotonic/continuous functions, fixed points, and (co-)inductive defini-
tions. These facts are used all the time when manipulating programming languages, formal
languages, logics,. . . The reader would be well-advised to become acquainted with these con-
cepts. We start by recalling some standard definitions on partial orders (notice that, unlike
in chapter 2, partial orders are supposed to be reflexive).

Definition 170 (partial order) A partial order (L,≤) is a set L equipped with a binary
relation ≤ which is reflexive, anti-symmetric, and transitive.

Definition 171 (upper/lower bounds) Suppose (L,≤) is a partial order and let X ⊆ L
(possibly empty). An element y ∈ L is an upper bound for X if ∀x ∈ X x ≤ y. An element
y ∈ L is the supremum (sup) of X if it is the least upper bound. The notions of lower bound
and infimum (inf) are defined by duality.

Definition 172 (lattice) A lattice is a partial order (L,≤) such that every pair of elements
of L has a sup and an inf. A complete lattice is a partial order (L,≤) such that every subset
of L has a sup (the existence of the inf follows).

Equivalence 87

Exercise 173 Show that: (1) The subsets of a set with the inclusion relation as partial order
form a complete lattice. (2) Every subset of a complete lattice has an inf. (3) Every finite
lattice is complete.

Next we introduce the notion of monotonic, i.e., order-preserving function and consider
the structure of its fixed points in a complete lattice.

Definition 174 (monotonic function) A monotonic function f on a partial order L is a
function respecting the order:

∀x, y (x ≤ y implies f(x) ≤ f(y)) .

We say that x is a fixed point of f if f(x) = x.

Proposition 175 (Tarski) Let f : L → L be a monotonic function on a complete lattice.
Then f has a greatest and a least fixed point expressed by:

sup{x | x ≤ f(x)} and inf {x | f(x) ≤ x} .

Proof. Set z = sup{x | x ≤ f(x)}. If f(y) = y then y ≤ z. Hence it remains to show that z
is a fixed point. First, we show:

z ≤ sup{f(x) | x ≤ f(x)} ≤ f(z) .

Then by monotonicity: f(z) ≤ f(f(z)). And by definition of z, we derive f(z) ≤ z. 2

Exercise 176 Let (N ∪ {∞},≤) be the set of natural numbers with an added maximum
element ∞, 0 < 1 < 2 < . . . <∞. Show that every monotonic function f on this order has a
fixed point.

The following exercises consider two situations which often arise in practice.

Exercise 177 (fixed points on finite lattices) Let (L,≤) be a finite lattice and f : L →
L be a monotonic function. Let ⊥ (>) be the least (greatest) element of L. If x ∈ L then let
fn(x) be the n-time iteration of f on x, where f0(x) = x.

1. Show that there is an n ≥ 0 such that the least fixed point of f equals fn(⊥).

2. State and prove a dual property for the greatest fixed point.

3. Show that these properties fail to hold if one removes the hypothesis that the lattice is
finite.

Exercise 178 (fixed points of continuous functions) A subset X of a partial order is
directed if

∀x, y ∈ X ∃ z ∈ (x ≤ z) and (y ≤ z) .

A function on a complete lattice is continuous if it preserves the sup of directed sets:

f(sup(X)) = sup(f(X)) (if X directed).

88 Equivalence

1. Show that a continuous function is monotonic.

2. Give an example of a function on a complete lattice which is continuous but does not
preserve the sup of a (non-directed) set.

3. Show that the least fixed point of a continuous function f is expressed by:

sup{fn(⊥) | n ≥ 0} .

We can summarize the exercises 177 and 178 as follows. If the the lattice is finite, to
compute the least (greatest) fixed point it suffices to iterate a finite number of times the
monotonic function starting from the least (greatest) element. Otherwise, if the function is
continuous (preserves directed sets), then the least fixed point is the sup of the (countable)
iteration of the function starting from the least element. Similar remarks apply to the greatest
fixed point modulo suitable definitions of the notions of co-directed set and co-continuous
function.

In general, it is possible to build the least or greatest fixed point of a monotonic function
on a complete lattice as an iterative process provided one accepts a transfinite number of
iterations. To do this, we can rely on the notion of ordinal in set theory. Intuitively, ordinals
are obtained by iterating the operations of successor and supremum; the former are called
successor ordinals and the latter limit ordinals:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω, . . . (first few ordinals).

Formally, in set theory, the set X is an ordinal if:

• Z ∈ Y ∈ X implies Z ∈ X.

• All sequences such that X0 3 X1 3 X2 3 · · · are finite.

Notice that if we read X ∈ Y as X < Y the first property corresponds to transitivity and
the second to well-foundation. So an ordinal is a set which is transitive and well-founded
with respect to the ∈-relation. In set theory, the role of 0 is played by the empty set, the
successor of an ordinal set κ is the set {κ}∪κ, and the limit of a sequence of ordinals is their
union. Now given a complete lattice L and a monotonic function f : L → L, we can define
the (transfinite) sequence:

f0 = ⊥ , fκ+1 = f(fκ) , fκ =
∨
κ′<κ fκ′ κ limit ordinal.

This defines an increasing sequence which must reach the least fixed point when the cardinality
of the ordinal κ is greater than the cardinality of the complete lattice L; for otherwise, we
would have a subset of L whose cardinality is greater than L. A dual argument shows that
we can approximate the greatest fixed point starting from the top element of the lattice.

9.3 (Co-)Inductive definitions

We discuss examples of inductive and co-inductive set definitions. Behind these definitions
there is a complete lattice and a monotonic function, and the (co-)inductive set which is
defined is nothing but the least (the greatest) fixed point of the monotonic function.

Equivalence 89

Example 179 (an inductive definition) Let Z be the set of integer numbers and suc and
+ the standard successor and addition operations, respectively. We could define:

The least subset of Z which contains {0, 2} and is closed under the addition oper-
ation.

It is not so obvious that we are indeed defining a set. One has to make sure that the ‘least
set’ does exist. To do this, we explicit a function f : 2Z → 2Z,

f(X) = {0, 2} ∪ {x+ y | x, y ∈ X} ,

such that “X contains the set {0, 2} and X is closed under the addition operation” iff f(X) ⊆
X. Then one remarks that 2Z is a complete lattice and f is monotonic (indeed continuous,
see exercise 178). Hence the least fixed point exists and is expressed by:⋂

{X | f(X) ⊆ X} =
⋃
n≥0

fn(∅) .

Example 180 (another inductive definition) Let R be a binary relation on a set D. The
reflexive and transitive closure R∗ is the least relation that contains the identity relation, the
relation R and such that if (x, y), (y, z) ∈ R∗ then (x, z) ∈ R∗. Let us show that we can
regard R∗ as a least fixed point. As complete lattice, we take the binary relations on the set
D ordered by inclusion. As monotonic function f , we define:

f(S) = IdD ∪R ∪ S ◦ S

where IdD is the identity relation on D and S ◦ S is the (relational) composition of S with
itself.

Example 181 (buggy inductive definition) Monotonicity is a key property. As usual,
let us write (x ≡ y) mod 2 if the integers x, y have the property that (x− y) is a multiple of
2. Suppose we ‘define’ X as the least set of integers such that: (1) 0 ∈ X and (2) if x ∈ X
then ∀ y ∈ X ((x ≡ (y + 1)) mod 2). Unfortunately such a set does not exist. We should
have a set of integers X such that 0 ∈ X and (0 ≡ 1) mod 2.

The notion of co-inductive definition is obtained by dualization. Rather than looking for
the least set such that. . ., we now look for the greatest set such that. . .

Example 182 (co-inductive definition) A typical example of co-inductive definition arises
in the theory of finite automata. Let M = (Q,Σ, q0, F, δ) be a finite deterministic automa-
ton with Q set of states, Σ input alphabet, q0 initial state, F set of accepting states, and
δ : Σ × Q → Q transition function. Consider the function f : 2(Q×Q) → 2(Q×Q) defined by
(q, q′) ∈ f(R) if

1. q ∈ F iff q′ ∈ F .

2. ∀ a ∈ Σ (δ(a, q), δ(a, q′)) ∈ R.

90 Equivalence

It is easy to check that the function f is monotonic on the set of binary relations on Q
ordered by inclusion. The least R such that R = f(R) is simply the empty relation which
is not very interesting. However, the greatest R such that f(R) = R is the relation that
corresponds to state equivalence in finite automata. Indeed, since 2Q×Q is a finite lattice, the
definition gives a way to compute the equivalence on states (see exercise 177). Start with the
full relation Q×Q and iterate the function f till you reach a fixed point.

Co-inductive definitions are quite useful in defining various notions of diverging compu-
tation. We illustrate this point in the following example.

Example 183 (another example of co-inductive definition) Let (S,→) be a set of states
and →⊆ S × S a transition relation. Define D as the greatest subset of S such that if s ∈ D
then: ∃ s′ s→ s′ and s′ ∈ D. We take as complete lattice the parts of S ordered by inclusion.
The monotonic function f associated with the definition is for X ⊆ S:

f(X) = {s ∈ X | ∃ s′ s→ s′} .

To see the definition at work, suppose S = {1, 2, 3, 4} with transitions: 1 → 2, 3, 4, 3 → 1,
4→ 4. The greatest fixed point of f is {1, 3, 4} on the other hand the least fixed point is just
the empty set. Intuitively, the greatest fixed point of f is the collection of elements starting
from which there is an infinite reduction sequence.

To summarize a (co-)inductive definition is well-defined if the associated function is mono-
tonic. In this case, the defined set corresponds to a least (greatest) fixed point of the associated
function.

Exercise 184 Modify example 183 so as to define the collection of elements which are not
normalizing, i.e., there is no reduction sequence leading to an element in normal form (cf.
definition 22).

9.4 Simulation

Simulation is a standard example of co-inductive definition of a binary relation which can be
used to compare programs’ behaviors.

Definition 185 (simulation) We say that a binary relation on closed terms S is a sim-
ulation if whenever (M,N) ∈ S we have: (1) if M ⇓ then N ⇓ and (2) for all P closed
(MP,NP) ∈ S. We shall also use the infix notation M S N for (M,N) ∈ S. We define ≤S
as the largest simulation.

Exercise 186 Show that ≤S is the largest fixed point of the following function on binary
relations:

f(S) = {(M,N) | M ⇓ implies N ⇓ , ∀P closed (MP,NP) ∈ S} .

Definition 187 We extend ≤S to open terms by defining:

M ≤S N if for all closing substitutions σ (σM ≤S σN) .

We also write M =S N if M ≤S N and N ≤S M .

Equivalence 91

To prove that M ≤S N (M,N closed) it suffices to find a relation S which is a simulation
and such that M S N . The following proof contains several examples of this technique.

Proposition 188 The following properties of simulation hold:

1. ≤S is a pre-order (on open terms).

2. If M ≤S N then for any substitution σ (not necessarily closed) σM ≤S σN .

3. If M ⇓ V and N ⇓ V , M,N closed, then M =S N .

4. (λx.M)N =S [N/x]M (M,N can be open).

5. If M ≤C N then M ≤S N (M,N can be open).

Proof. (1) On closed terms ≤S is reflexive and transitive. If M is an open term then
M ≤S M because for every closing substitutions σM ≤S σM . Suppose M ≤S N and
N ≤S P . Given a closing substitution σ for M,P we can always extend it to a closing
substitution σ′ for N . Then we have:

σM ≡ σ′M ≤S σ′N ≤S σ′P ≡ σP .

(2) Suppose M ≤S N and σ is a substitution. To prove σM ≤S σN , we have to check that
for all closing substitution σ′, σ′(σM) ≤S σ′(σN). And this holds because (σ′ ◦σ) is a closing
substitution for M,N .

(3) We check that the following relation on closed terms is a simulation:

S = {(MP1 · · ·Pn, NP1 · · ·Pn) |M ⇓ V,N ⇓ V, n ≥ 0} .

If MP1 · · ·Pn ⇓ then we must have V P1 · · ·Pn ⇓ and therefore NP1 · · ·Pn ⇓.
Also if (MP1 · · ·Pn, NP1 · · ·Pn) ∈ S then for all P closed, (MP1 · · ·PnP,NP1 · · ·PnP) ∈ S.
(4) Both the following relation and its inverse are simulations:

S = {((λx.M)NP1 · · ·Pn, [N/x]MP1 · · ·Pn) | n ≥ 0} .

Thus (λx.M)N =S [N/x]M holds if (λx.M)N is closed. If (λx.M)N is open and σ is a
closing substitution then we observe:

σ(λx.M)N ≡ (λx.σM)σN =S [σN/x]σM ≡ σ([N/x]M) .

(5) First check that ≤C on closed terms is a simulation. Thus ≤C⊆≤S on closed terms.
For open terms, suppose M ≤C N , let x∗ be the list of variables free in M,N , and let σ
be any closing substitution. Then take the closed terms: M ′ ≡ (λx∗.M)σ(x∗) and N ′ ≡
(λx∗.N)σ(x∗). We have M ′ ≤C N ′ and therefore M ′ ≤S N ′. Moreover σM =S M ′ and
σN =S N

′. Therefore: σM ≤S σN . 2

Exercise 189 Prove that:

1. If M 6⇓ and N 6⇓ then M =S N .

2. Let Ωn ≡ λx1.λxn.Ω. Then Ωn <S Ωn+1 (strictly) and, for all M , Ω0 ≤S M .

92 Equivalence

3. Let K∞ ≡ Y K. Then for all M , M ≤S K∞.

4. λx.x 6≤S λx, y.xy (thus η-conversion is unsound).

So it seems easier proving M ≤S N than proving M ≤C N . However, we still need to
prove that ≤S is preserved by contexts. If this property holds, then it is easy to conclude that
the largest simulation coincides with the contextual pre-order.

Proposition 190 Let x be a variable and M,N,P be terms. If M ≤S N then: (1) MP ≤S
NP and (2) λx.M ≤S λx.N .

(1) Because ≤S is a simulation.

(2) Suppose M ≤S N and let σ be a closing substitution for λx.M, λx.N . As usual, suppose
σ commutes with λ up to renaming. Now for all closed P , define σ′ as the substitution that
extends σ so that σ′(x) = P . Then, by hypothesis:

[P/x]σM = σ′M ≤S σ′N = [P/x]σN .

Then we have:
(λx.σM)P =S [P/x]σM ≤S [P/x]σN = (λx.σN)P .

Clearly (λx.σM) ⇓ implies (λx.σN) ⇓. With reference to the function f defined in exercise
186, we have shown (λx.σM) f(≤S) (λx.σN), and we know f(≤S) =≤S . 2

Exercise 191 Let us revise the pre-order considered in exercise 169 by defining a relation
≤IO∗ on closed terms as:

M ≤IO∗ N if for all n ≥ 0, P1, . . . , Pn closed, MP1 · · ·Pn ⇓ implies NP1 · · ·Pn ⇓.

Prove that ≤IO∗ coincides with ≤S.

Unfortunately, it is not so easy to prove that M ≤S N implies PM ≤S PN . The proof
plan is to introduce an auxiliary relation ≤A on open terms, which includes ≤S , is preserved
by contexts, and, with some work, turns out to coincide with ≤S .

Definition 192 (auxiliary simulation relation) The auxiliary relation M ≤A N is de-
fined inductively on M by the following rules:

x ≤S N
x ≤A N

M ≤A M ′ λx.M ′ ≤S N
λx.M ≤A N

M1 ≤A M ′1 M2 ≤A M ′2 M ′1M
′
2 ≤S N

M1M2 ≤A N
.

The definition of the auxiliary relation seems rather mysterious. To have a clue, let us
look at its properties.

Proposition 193 The auxiliary relation ≤A enjoys the following properties:

1. ≤A is reflexive.

2. ≤A ◦ ≤S ⊆ ≤A.

3. ≤S ⊆ ≤A.

Equivalence 93

Proof. (1) By induction on the structure of the term.

(2) Suppose M ≤A N ≤S P and proceed by induction on the proof of M ≤A N .

(3) By the previous property (2), using the fact that ≤A is reflexive. 2

The next proposition introduces the key properties of the auxiliary relation.

Proposition 194 (key properties) Let M,M ′, N,N ′ be terms. Then:

1. If M ≤A M ′ and N ≤A N ′ then [N/x]M ≤A [N ′/x]M ′.

2. If M ≤A M ′ and N ≤A N ′ then MN ≤A M ′N ′.

3. If M ⇓ V and M ≤A N then V ≤A N .

Proof. (1) By induction on the proof of M ≤A M ′. For instance, suppose:

M ≤A M ′′ λy.M ′′ ≤S M ′
λy.M ≤A M ′

.

We have to prove: λy.[N/x]M ≤A [N ′/x]M ′. By inductive hypothesis, we know: [N/x]M ≤A
[N ′/x]M ′′. Also, by substitutivity of ≤S we have:

[N ′/x](λy.M ′′) ≡ λy.[N ′/x]M ′′ ≤S [N ′/x]M ′ .

Hence, by definition of ≤A, we conclude.

(2) Consider the terms Mx and M ′x, with x fresh. From M ≤A M ′ we can derive Mx ≤A
M ′x. Then by property (1) above, we know that:

N ≤A N ′ implies [N/x](Mx) ≡MN ≤A [N ′/x](M ′x) ≡M ′N ′ .

(3) We proceed by induction on M ⇓ V . We detail the main case. Suppose:

M1 ⇓ λx.M ′′1 [M2/x]M ′′1 ⇓ V
M1M2 ⇓ V

M1 ≤A M ′1 M2 ≤A M ′2 M ′1M
′
2 ≤S N

M1M2 ≤A N
.

By induction hypothesis on M1 ⇓ λx.M ′′1 we derive:

λx.M ′′1 ≤A M ′1 . (9.1)

The proof of the property (9.1) above must have the following shape:

M ′′1 ≤A M ′′′1 λx.M ′′′1 ≤S M ′1
λx.M ′′1 ≤A M ′1

. (9.2)

By the substitutivity property (proposition 194.1), we derive:

[M2/x]M ′′1 ≤A [M ′2/x]M ′′′1 . (9.3)

Also by proposition 190, we know that:

[M ′2/x]M ′′′1 =S (λx.M ′′′1)M ′2 ≤S M ′1M ′2(≤S N) . (9.4)

So we have: [M2/x]M ′′1 ⇓ V , [M ′2/x]M ′′1 ≤A N , and by inductive hypothesis, we conclude:
V ≤A N . 2

We can now prove the announced result: the largest simulation coincides with the con-
textual pre-order.

94 Equivalence

Proposition 195 Let M,N be terms. Then:

1. ≤A is a simulation (and therefore ≤A⊆≤S).

2. M ≤A N implies M ≤C N .

Proof. (1) If M ≤A N and M ⇓ V then V ≤A N by proposition 194.3. Since V has the
shape λx.M ′ we must have:

M ′ ≤A M ′′ λx.M ′′ ≤S N
λx.M ′ ≤A N

,

and, by definition of simulation, N ⇓. Also by proposition 194.2, we know that M ≤A N
implies MP ≤A NP .

(2) Suppose M ≤A N and C one hole, closing context. Then C[M] ≤A C[N], and this
implies C[M] ≤S C[N]. So if C[M] ⇓ then C[N] ⇓ too. 2

Exercise 196 We define a notion of contextual pre-order ≤C for the call-by-value λ-calculus
simply by taking definition 167 and considering that the predicate ⇓ corresponds to call-by-
value evaluation. We also say that a (call-by-value) simulation is a binary relation S on
closed λ terms such that whenever (M,N) ∈ S we have: (1) if M ⇓ then N ⇓ and (2) for all
closed values V , (MV,NV) ∈ S. Denote with ≤S the largest simulation. If M,N are terms
(possibly open) say that M ≤S N if for all closing substitutions σ mapping variables to values
σM ≤S σN . Adapt the theory developed in this chapter to prove that the pre-orders ≤C and
≤S coincide.

9.5 Summary and references

The contextual pre-order is a natural compositional way to compare terms and the simulation
pre-order is an effective method to reason on this relation. Simulation is a typical example of
co-inductive definition and corresponds to the greatest fixed point of a monotonic function.
Dually, inductive definitions correspond to the least fixed point of a monotonic function. Such
fixed points are guaranteed to exist for monotonic functions over complete lattices and in many
practical situations they can be effectively computed or at least approximated. The notion
of simulation (and bisimulation, see chapter 24) was introduced in [Par81] in the context of
the semantics of concurrent processes where it is extensively used. The proof that simulation
is preserved by contexts is based on [How96] and it can be extended to a number of other
calculi, including, e.g., the call-by-value λ-calculus (exercise 196).

Chapter 10

Propositional types

The reader is supposed to be familiar with the usage of types in programming languages.
Then, if we regard the λ-calculus as the kernel of a programming language, it is natural
to wonder what kind of types could be associated with λ-terms. For the time being, we
shall focus on a collection of propositional types which include basic types such as integers,
booleans,. . . and functional, product, and sum types. We may also refer to these types as
simple types as opposed to more complex types including quantifications we shall discuss in
chapters 12 and 13.

Definition 197 We define the collection of (functional) propositional types as follows:

A ::= b || tid || (A→ A) ,

where b is a basic type (there can be more) and tid ::= t || s || . . . are type variables.

Definition 198 A type context Γ is a set of pairs {x1 : A1, . . . , xn : An} where all variables
x1, . . . , xn are distinct.

We use Γ, x : A as an abbreviation for Γ ∪ {x : A} where x does not occur in Γ. Also
we abbreviate type context to context whenever no confusion may arise with term contexts.
Table 10.1 presents a first system to assign types to λ-terms. In this formulation, the variable
of a λ-abstraction is decorated with a type as in λx : A.M . As in the usual programming
practice, the type A specifies the type of the parameter of the function. The presented
system is composed of a rule (asmp) to discharge an assumption from the context, a rule
(→I) which introduces a functional type, and a rule (→E) which eliminates a functional
type. This presentation style where the rules associated with the type operators are split into
introduction and elimination rules comes from logic where it is called natural deduction. The
following exercises are a first illustration of the connection between type systems and logic.

Exercise 199 Show that if x1 : A1, . . . , xn : An ` M : B is derivable then (A1 → · · · (An →
B) · · ·) is a tautology of propositional logic where we interpret → as implication and atomic
types as propositional variables. Conclude that there are types A which are not inhabited, i.e.,
there is no (closed) λ-term M such that ∅ `M : A.

Exercise 200 Show that there is no λ-term M such that: ∅ ` M : (b → b) → b. Write
A→ b as ¬A. Show that there are λ-terms N1 and N2 such that:

∅ ` N1 : A→ (¬¬A) , ∅ ` N2 : (¬¬¬A)→ (¬A) .

95

96 Propositional types

On the other hand, there are tautologies which are not inhabited! For instance, consider:
A ≡ ((t→ s)→ t)→ t. Show that there is no λ-term M in normal form such that ∅ `M : A
is derivable. This is enough because later we shall show that all typable λ-terms normalize to
a λ-term of the same type. For another example, show that there is no λ-term M in normal
form such that ∅ ` M : ¬¬t → t is derivable (the intuitionistic/constructive negation is not
involutive!).

Next we review a few alternative presentations of the type system. In Table 10.1, λ-
abstractions are decorated with types. However, we can also consider a presentation where
types are assigned to pure, i.e., type-less, λ-terms. Then one speaks of a presentation in
Curry-style, as opposed to the previous one which is in Church-style. In our case, the only
difference between the two is that the rule (→I) in Curry-style becomes:

Γ, x : A `M : B

Γ ` λx.M : A→ B
.

An important consequence of this change is that now a λ-term may have more than one type.
This makes the type inference problem (see chapters 11 and 12) more interesting and so this
problem is often studied for systems in Curry-style.

Yet another presentation of the type system is possible by labeling every variable with its
type and by dropping the context. This gives the system presented in Table 10.2. Finally, we
may decide to label every λ-term (not just the variables) with its type and in this case we can
drop the type since the type of a λ-term is just the outermost label. The resulting system is
given in Table 10.3.

The previous exercises 199 and 200 suggest that the functional type constructor can be
regarded as a logical implication. It turns out that one may push this connection further
by regarding the product (sum) type constructor as a logical conjunction (disjunction). The
resulting type system in natural deduction style is presented in Table 10.4. Later in chapters
12 and 13, we shall see that this connection can be extended even further to types with
universal and existential quantifications.

Not all term constructors found in a programming language have a logical interpretation.
For instance, Table 10.5 introduces typing rules for a constant zero Z, a successor function
S, and a fixed point combinator Y. While the fixed point combinator allows to define general
recursive functions (see chapter 7) its logical interpretation is problematic. Indeed, with the
rule (Y), every type A is inhabited by the closed λ-term Y (λx : A.x). Thus the typing rule
for Y is definitely incompatible with logic as it leads to inconsistency!

(asmp)
x : A ∈ Γ

Γ ` x : A

(→I)
Γ, x : A `M : B

Γ ` λx : A.M : A→ B
(→E)

Γ `M : A→ B Γ ` N : A

Γ `MN : B

Table 10.1: Assignment of propositional types to λ-terms

Propositional types 97

id ::= x || y || . . .
M ::= idA || λidA.M ||MM

xA : A

M : A→ B N : A

MN : B

M : B

λxA.M : A→ B

Table 10.2: System with type labelled variables

id ::= x || y || . . .
M ::= idA || (λidA.M)A || (MM)A

xA
MA→B NA

(MA→B NA)B
MB

(λxA.MB)(A→B)

Table 10.3: System with type-labelled λ-terms

(×I)
Γ `M1 : A1 Γ `M2 : A2

Γ ` 〈M1,M2〉 : A1 ×A2

(×E,1)
Γ `M : A1 ×A2

Γ ` π1(M) : A1
(×E,2)

Γ `M : A1 ×A2

Γ ` π2(M) : A2

(+I,1)
Γ `M : A1

Γ ` in1
A1+A2(M) : A1 +A2

(+I,2)
Γ `M : A2

Γ ` in2
A1+A2(M) : A1 +A2

(+E)
Γ `M : (A1 +A2) Γ ` Ni : Ai → B i = 1, 2

Γ ` case(M,N1, N2) : B

Table 10.4: Typing rules for product and sum

(Z)
Γ ` Z : nat

(S)
Γ `M : nat

Γ ` SM : nat
(Y)

Γ `M : (A→ A)

Γ ` YM : A

Table 10.5: Non-logical extension of the type system

98 Propositional types

10.1 Subject reduction

If a λ-term is well-typed, then by inspection of the rules we see, e.g., that the λ-term cannot
contain the application of a natural number to a function. However, to get static guarantees
we must make sure that typing is invariant under reduction, i.e., if a λ-term is well-typed
and we reduce it then we still get a well-typed λ-term. To establish this property we note the
following property.

Proposition 201 (substitution) If Γ, x : A `M : B and Γ ` N : A then Γ ` [N/x]M : B.

Proof. By induction on the height of the proof of Γ, x : A ` M : B. For instance, suppose
the root of the proof has the shape:

Γ, x : A, y : B′ `M : B′′

Γ, x : A ` λy.M : (B′ → B′′)
,

with x 6= y. Then by inductive hypothesis, Γ, y : B′ ` [N/x]M : B′′ and conclude by (→I). 2

We can now state the invariance of typing under reduction as follows. Historically, this
property is called subject reduction.

Proposition 202 (subject reduction) If Γ `M : A and M →β N then Γ ` N : A.

Proof. Recall, that M →β N means:

M ≡ C[(λx.M1)M2] N ≡ C[[M2/x]M1] .

To prove subject reduction we proceed by induction on the structure of C. The basic case
follows directly from the substitution lemma. For the inductive case consider in turn the cases
where: (1) C = λy.C ′, (2) C = C ′P , and (3) C = PC ′. 2

In the ‘pure’ λ-calculus, we identify the normal forms with the results of the computation.
In applications, however, one can distinguish two kinds of normal/irreducible forms: those
that correspond to a value and those that correspond to an erroneous configuration like divid-
ing by zero, or applying an integer to another integer. Thus a program, i.e., a closed λ-term,
has three possible outcomes: (1) it returns a value, (2) it reaches an erroneous configuration,
and (3) it diverges (cf. chapter 1). Besides being invariant by reduction, a desirable property
for a type system is that: well-typed programs cannot go wrong, or at least that they go wrong
in some expected way (e.g., division by zero). This property is often called progress, because
in its simple form it requires that if a program is not a value then it can reduce (progress).
The following exercise elaborates on this point.

Exercise 203 (on progress) Suppose we reconsider the non-logical extension of the simply
typed λ-calculus with a basic type nat, constants Z, S, Y, and with the following fixed-point
rule:

C[YM]→ C[M(YM)] .

Let a program be a closed typable λ-term of type nat and let a value be a λ-term of the shape
(S · · · (SZ) · · ·). Show that if P is a program in normal form (cannot reduce) then P is a value.

Propositional types 99

10.2 A normalizing strategy for the simply typed λ-calculus

We describe a normalizing strategy for the simply typed λ-calculus. To this end we introduce
some measures of the complexity of a type and a λ-term.

Definition 204 (type degree) The degree of a type is defined as follows:

δ(t) = 1 , δ(A→ B) = 1 + max (δ(A), δ(B)) .

Definition 205 (redex degree) Let R ≡ (λx : A.M)N be a redex. The degree of the redex,
written δr(R) is the degree of the type associated with the λ-term (λx : A.M).

Definition 206 (term degree) The degree of a λ-term, written δt(M), is 0 if M is in
normal form and the maximum of the degrees of the redexes contained in M otherwise.

Remark 207 A redex R is also a λ-term and we have δr(R) ≤ δt(R).

Proposition 208 (degree and substitution) If x is of type A then

δt([N/x]M) ≤ max (δ(A), δt(M), δt(N)) .

Proof. The redexes in [N/x]M fall in the following categories. (1) The redexes already in
M . (2) The redexes already in N . (3) New redexes arising by the substitution if N ≡ λy.N ′
and M = C[xM ′]. These redexes have degree δ(A). 2

Proposition 209 (degrees and reduction) If M → N then δt(N) ≤ δt(M).

Proof. We apply the previous analysis. 2

We now define a reduction strategy that reduces first an innermost redex of maximal
degree.

Definition 210 (innermost maximal degree strategy) Let M be a λ-term which is not
in normal form. The innermost maximal degree strategy selects a redex R of maximal degree
(δr(R) = δt(M)) and such that all redexes contained in R have lower degree.

Proposition 211 The innermost maximal degree strategy is normalizing.

Proof. Notice that by reducing an innermost maximal degree redex we guarantee that the
reduced λ-term contains strictly less redexes of maximal degree. Then we prove normalization
by taking as measure:

µ(M) = (n,m) ,

with the lexicographic order (from left to right), where n = δt(M) and m is the number of
redexes of maximal degree. If m = 0 then M is in normal form. If m = 1 then the reduced
term has lower degree (first component decreases). If m > 1 then the first component does
not increase (proposition 209) and the second decreases. 2

100 Propositional types

10.3 Termination of the simply typed λ-calculus

A λ-term M is called strongly normalizable if all β-reductions starting from M terminate
(thus strong-normalization is just a synonymous for termination!).

Definition 212 Let SN be the set of strongly normalizable λ-terms.

This set plays a role similar to the set WF for RPO termination (section 4.3). The notion
of size of a λ-term follows definition 116.

Definition 213 (maximal length) If M ∈ SN then the maximal length of a derivation
starting from M is called the reduction depth of M , and is denoted depth(M).

Remark 214 The maximal length is well-defined because the reduction tree of a λ-term is
finitely branching (cf. proposition 42).

In order to show that all simply typed λ-terms are→β-strongly normalizable, the key idea
is to interpret types as subsets of the set SN of strongly normalizing λ-terms.

Definition 215 (type interpretation) The interpretation of a propositional type A is de-
fined as follows:

[[b]] = [[t]] = SN
[[A→ B]] = {M | ∀N ∈ [[A]] (MN ∈ [[B]])} .

Proposition 216 For any type A, the following properties hold:

1. [[A]] ⊆ SN .

2. If Ni ∈ SN for i = 1, . . . , k then xN1 · · ·Nk ∈ [[A]].

3. If [N/x]MM1 · · ·Mk ∈ [[A]] and N ∈ SN then (λx.M)NM1 · · ·Mk ∈ [[A]].

Proof. By induction on A.

Atomic types. (1) By definition. (2) The reductions of xN1 . . . Nk are just an interleaving of
the reductions of N1, . . . Nk. (3) We have:

depth((λx.M)NM1 . . .Mk) ≤ depth(N) + depth([N/x]MM1 . . .Mk) + 1 .

Functional types A→ B. Suppose M ∈ [[A→ B]].

(1) By inductive hypothesis, x ∈ [[A]]. Hence Mx ∈ [[B]] ⊆ SN , by inductive hypothesis. This
entails M ∈ SN .

(2) Take M = xN1 . . . Nk with Ni ∈ SN . Take Nk+1 ∈ [[A]] ⊆ SN . By inductive hypothesis,
xN1 . . . NkNk+1 ∈ [[B]].

(3) If [N/x]MN1 . . . Nk ∈ [[A → B]] then by the interpretation of the functional types we
have:

∀Nk+1 ∈ [[A]] [N/x]MN1 . . . NkNk+1 ∈ [[B]] .

Then by inductive hypothesis on B:

∀Nk+1 ∈ [[A]] (λx.M)NN1 . . . NkNk+1 ∈ [[B]] ,

which is equivalent to (λx.M)NN1 . . . Nk ∈ [[A→ B]]. 2

Propositional types 101

Remark 217 These interpretations of types are called reducibility candidates. These are
sets of of strongly normalizable λ-terms (property 1) which contain at least the variables (and
more) (property 2), and are closed under head expansions (property 3).

We can now state the soundness of the interpretation.

Proposition 218 (soundness) If x1 : A1, . . . , xk : Ak ` M : B (in Curry-style) and Ni ∈
[[Ai]] for i = 1, . . . , k then [N1/x1, . . . , Nk/xk]M ∈ [[B]].

Proof. By induction on the typing proof.

(asmp) Immediate by definition.

(→E) By the interpretation of →.

(→I) Here is what goes on in a simplified case. By inductive hypothesis on x : A ` M : B
we have:

∀N ∈ [[A]] [N/x]M ∈ [[B]].

Then, by the closure under head expansions of the interpretations we derive:

∀N ∈ [[A]] (λx.M)N ∈ [[B]] ,

which is equivalent to (λx : A.M) ∈ [[A→ B]]. 2

The strong normalization property follows as a simple corollary.

Corollary 219 (strong normalization) If a λ-term is typable then it is strongly normal-
izing.

Proof. Suppose x1 : A1, . . . , xk : Ak ` M : B. We know xi ∈ [[Ai]]. By proposition 218
(soundness), M ∈ [[B]] and we know [[B]] ⊆ SN . 2

A rational reconstruction of the proof could go as follows. (1) We decide to interpret
types as sets of strongly normalizing λ-terms and show that ` M : A implies M ∈ [[A]]. (2)
Then the definition 215 of the type interpretation is natural and the properties 1 and 2 of
proposition 216 amount to check that indeed a type interpretation is composed of strongly
normalizing λ-terms and it is not empty. (3) Finally, the need for property 3 of proposition
216 (closure under head expansion) appears in the proof of proposition 218 (soundness, case
(→I)).

Exercise 220 (recursive types) Assume a recursively defined type t satisfying the equa-
tion t = t→ b and suppose we add a rule for typing up to type equality:

Γ `M : A A = B

Γ `M : B
.

Show that in this case the following λ-term (Curry’s fixed point combinator) is typable (e.g.,
in Curry-style):

Y ≡ λf.(λx.f(xx))(λx.f(xx)) .

Are the λ-terms typable in this system terminating?

102 Propositional types

10.4 Summary and references

A minimal property required for a type system is that it is invariant under reduction. Some-
times, it is possible to connect type systems to logic. This is the so called Curry-Howard
correspondence which goes as follows:

λ-calculus proof system

type proposition
λ-term proof

reduction proof normalization

In a natural deduction presentation, an opportunity for a proof normalization arises when
the introduction of an operator is followed by an elimination. For instance, λ-abstraction is
followed by an application, a pairing is followed by a projection, and an injection is followed
by a case selection. The book [GLT89] is a good introduction to the connections between
proof theory and type theory including alternative presentations of the logical systems.

Chapter 11

Type inference for propositional
types

Given a (pure) λ-term M and a context Γ, the type inference problem is the problem of
checking whether there is a type A such that Γ `M : A. Given a (pure) λ-term M , a variant
of the problem is to look for a type A and a context Γ such that Γ `M : A. Connected to the
type inference problem is the problem of actually producing an informative output. Typically,
if a λ-term M is typable, we are interested in a synthetic representation of its types, and if it
is not, we look for an informative error message.

11.1 Reduction of type-inference to unification

We present a polynomial time reduction of the type inference problem for the propositional
type system in Curry style (chapter 10) to the syntactic unification problem (chapter 3). The
existence of a most general unifier for the unification problem leads to the existence of a most
general type for the type inference problem.

Definition 221 A goal is a finite set G of triples (Γ,M,A) where Γ is a context, M a
λ-term, and A a propositional type.

We assume that all bound variables in M are distinct and different from the free ones,
that all free variables occur in the context Γ, and that for every variable x we have a type
variable tx. We define a reduction relation on pairs (G,E). Assuming G = {g} ∪ G′ and
g ≡ (Γ,M,A) /∈ G′, all the rules produce a pair (G′ ∪ Gg, E ∪ Eg) where Gg and Eg are
defined in Table 11.1.

Proposition 222 The reduction specified in Table 11.1 terminates.

g Gg Eg
(Γ, x, A) ∅ {tx = A}

(Γ,M1M2, A) {(Γ,M1, t1 → A), (Γ,M2, t1)} ∅ (t1 fresh)
(Γ, λx.M1, A) {(Γ, x : tx,M1, t)} {A = tx → t} (t fresh)

Table 11.1: Reduction of type inference to unification

103

104 Type inference

Proof. It is enough to notice that every reduction step replaces a triple (Γ,M,A) by a finite
number of triples (Γ′,M ′, A′) where M ′ is structurally smaller than M . 2

We introduce some notation. In the following, we consider substitutions S that act on the
first-order terms built over the signature Σ = {b0,→2}. We define:

S |= E if S unifies E ,
S |= (Γ,M,A) if SΓ `M : S(A) is derivable,
S |= G if ∀ g ∈ G S |= g ,
S |= (G,E) if S |= G and S |= E .

Given a λ-term M0 with free variables x1, . . . , xn, we set the initial pair to (G0, ∅), with
G0 = {(Γ0,M0, t0)}, t0 fresh, and Γ0 = x1 : tx1 , . . . , xn : txn . Next, we state the main
properties of the reduction.

Proposition 223 If (G0, ∅)
∗→ (G,E) then:

1. If S |= (G,E) then SΓ0 `M0 : St0.

2. If Γ `M0 : A then ∃S(S |= (G,E), SΓ0 ⊆ Γ, and A = St0).

Proof. For both properties we proceed by induction on the length of the reduction.

(1) For instance, suppose (1) true for: (G ∪ {(Γ,MN,A)}, E). The rule for application
produces the pair (G′, E) with G′ = G ∪ {(Γ,M, t1 → A), (Γ, N, t1)}. Suppose S |= (G′, E).
This means S |= (G,E), SΓ ` M : S(t1 → A), and SΓ ` N : St1. By (→E), we conclude
SΓ `MN : SA. Thus S |= (G ∪ {(Γ,MN,A)}, E), and by hypothesis SΓ0 `M0 : St0.

(2) For instance, suppose: Γ `M0 : A, S |= (G∪{(Γ′, λx.M,A′)}, E), SΓ0 ⊆ Γ, and A = St0.
This implies: SΓ′ ` λx.M : S(A′), which entails: SΓ′, x : A1 ` M : A2, SA′ = A1 → A2, for
some A1, A2. Suppose we reduce to the pair:

(G ∪ {(Γ′, x : tx,M, t)}, E ∪ {A′ = tx → t}) .

Then take S′ = S[A1/tx, A2/t]. 2

Remark 224 Property (1) entails the soundness of the method. Indeed, suppose from the
initial goal we derive a set of equations E and a substitution S such that S |= E (a unifier).
Then we derive a correct typing SΓ0 ` M0 : St0. On the other hand, property (2) entails
the completeness of the method. Suppose Γ ` M0 : A is a valid typing. Then we can reduce
(Γ0,M0, t0) to (∅, E) and find a unifier S for E such that SΓ0 is contained in Γ and St0 = A.
In particular, if we take the most general unifier S of E and we apply it to t0 we obtain the
most general type: every other type is an instance of St0.

Example 225 The most general type of the λ-term λf.λx.f(f(x)) is (t→ t)→ (t→ t). Note
that strictly speaking the most general type is not unique. For instance, (s → s) → (s → s)
is also a most general type of the λ-term considered.

Remark 226 (graphical presentation) It is possible to give an equivalent ‘graphical’ pre-
sentation of the unification method. (1) Rename bound variables so that they are all distinct
and different from the free ones. (2) Draw the tree associated with the λ-term. (3) Associate

Type inference 105

a distinct type variable with every internal node of the tree. (4) Associate a type variable tx
with a leaf node corresponding to the variable x. (5) For every abstraction node (λx.M t′)t

generate the equation t = tx → t′. (6) For every application node (M t′N t′′)t generate the
equation t′ = t′′ → t.

Exercise 227 Compute, if they exist, the most general types of the following λ-terms:

λx.λy.λz.xz(yz), λx.λy.x(yx), λk.(k(λx.λh.hx)) .

11.2 Reduction of unification to type inference

We discuss a method to reduce any unification problem to a type-inference problem. We also
show that the principal types are exactly the types inhabited by a closed λ-term. We suppose
as usual that K ≡ λx.λy.x.

Proposition 228 The principal type of the λ-term E below is t→ (t→ (s→ s)).

E ≡ λx.λy.λw.Kw(λf.λp.p(fx)(fy)) .

Proof. The fact that f is applied to both x and y forces the equality of the types of x and
y. On the other hand, since the principal type of K is t → s → t, the type of w must be
equal to the type of the result. 2

Proposition 229 Let M1 and M2 be λ-terms with principal types A1 and A2, respectively.
Then the principal type of the λ-term λf.E (fM1)M2, for f /∈ fv(M1M2), is (A1 → A2) →
(s→ s).

Proof. The function f must apply to the λ-term M1 and based on proposition 228, the type
of the result of f must be equal to the type of M2. 2

Proposition 230 For every type A with (type) variables contained in {t1, . . . , tn} there is a
λ-term MA whose principal type is: t1 → · · · → tn → A→ (s→ s), where s /∈ {t1, . . . , tn}.

Proof. By induction on the structure of A. If A = ti we take:

λx1 . . . xn.λy.Exiy : t1 → · · · → tn → ti → s→ s .

If A = A1 → A2, by inductive hypothesis we have:

MAi : t1 → · · · → tn → Ai → (s→ s) i = 1, 2 .

We define:
MA1→A2 ≡ λx1 . . . xn.λy.λz.KzP .

This λ-term has the expected type provided we can force in the λ-term P the type of y to be
(A1 → A2). We observe that if we write:

Qi ≡MAix1 . . . xnyi .

we force the type of yi to be Ai. Then we can define P as follows:

P ≡ λy1, y2.λp.pQ1Q2(E (yy1)y2) ,

and as expected the type of y is A1 → A2. 2

106 Type inference

Exercise 231 (1) Apply the method to the types t1, t2 and (t1 → t2) relatively to the set of
(type) variables {t1, t2}. (2) Write a program that builds the equivalent of the λ-term MA in
a language of the ML-family and uses the type-inference system to compute its principal type.

Proposition 232 Given two types A and B there is a λ-term UA,B which is typable if and
only if A and B are unifiable.

Proof. We have:

MA : t1 → · · · → tn → A→ s→ s , MB : t1 → · · · → tn → B → s→ s .

We build:

UA,B ≡ λx1 . . . xn.λy1.λy2.λp.pPAPB(Ey1y2) ,
PA ≡MAx1 . . . xny1 ,
PB ≡MBx1 . . . xny2 .

2

Exercise 233 Apply proposition 232 if A = t1 and B = t2 and if A = t1 and B = t1 → t2.

Proposition 234 Every unification problem can be reduced to a type-inference problem.

Proof. We know from exercise 61 that every unification problem reduces to a unification
problem composed of one equation with terms built over a signature with exactly one binary
symbol. We take ‘→’ as binary symbol and using the proposition 232 above we build two
types A and B which are unifiable iff the λ-term UA,B is typable. 2

Proposition 235 For every type A, there is a λ-term F(A→A) whose principal type is (A→
A).

Proof. Let A be a type whose type variables are contained in {t1, . . . , tn}. Let MA be a
λ-term with principal type: t1 → · · · → tn → A → s → s (proposition 230). Then build the
λ-term:

FA→A ≡ λy.Ky(λx1 . . . xn.(MAx1 . . . xny)) .

This λ-term has principal type (A→ A). 2

Proposition 236 Let M be a λ-term with type A (not necessarily its principal type). Then
one can build a closed λ-term N whose principal type is A. Thus the inhabited types are
exactly the principal types.

Proof. By proposition 235, the principal type of FA→A is (A → A). Then the λ-term
FA→AM has principal type A. 2

Type inference 107

11.3 Summary and references

A type inference problem can be (efficiently) reduced to a syntactic unification problem. Then
the existence of a most general unifier is reflected back in the existence of a most general type.
We have also shown that every unification problem reduces to a type inference problem and
that for every inhabited type A it is possible to build a λ-term whose principal type is A.
Notice however that knowing if a type is inhabited is a Pspace-complete problem [Sta79].
The connection between type inference and unification was already pointed out in [Hin69]. By
now, the reduction of a program analysis problem to the solution of a set of constraints has
become a standard technique. For instance, the data flow analyses performed by optimizing
compilers are reduced to systems of monotonic boolean equations.

108 Type inference

Chapter 12

Predicative polymorphic types and
type inference

Consider any standard sorting algorithm sort on lists. Most likely, the sorting algorithm just
depends on a boolean predicate on the elements of the list while the type of the elements of
the list does not really matter. One says that the sorting algorithm is polymorphic in that it
can be applied to data of different, but related, shape. We could type sort as follows:

sort : ∀ t list(t)→ (t→ t→ bool)→ list(t) ,

with the following intuitive meaning: for any type t, given a list of elements of type t, and
a binary predicate on t, the function sort returns a list of elements of type t. Notice that
we are assigning to sort a type which is not quite simple, i.e., propositional, as it contains
a universal quantification over types. In this chapter, we introduce a particular class of
universally quantified types which can be used to type polymorphic functions. We then study
the type inference problem for the type system extended with such types.

12.1 Predicative universal types and polymorphism

The reader is supposed to be familiar with propositional and first-order logic. In the standard
interpretation of propositional logic predicates are boolean values while in first-order logic
they are regarded as relations over some universe. In second order logic, we can quantify over
predicates. For instance, here are some formulae in propositional, first-order, and second-
order logic:

(P ⊃ P) ⊃ (P ⊃ P) (Propositional formula)
∀x (P (x) ⊃ P (S(x))) ⊃ (P (Z) ⊃ ∀x P (x)) (First-order formula)
∀P (P ⊃ P) ⊃ (P ⊃ P) (Second-order formula).

Following the types-as-formulae correspondence outlined in chapter 10, we may consider a
type system where quantification over type variables is allowed. One fundamental question is
whether a type with quantified types should be regarded as an ordinary type, or if it should
be lifted to a superior status. In this chapter, we take the second option. In the logical jargon,
this corresponds to a predicative approach to second-order quantification. We shall not dwell

109

110 Predicative polymorphic types

(asmp)
x : σ ∈ Γ

Γ ` x : σ

(→I)
Γ, x : A `M : B

Γ ` λx.M : A→ B
(→E)

Γ `M : A→ B Γ ` N : A

Γ `MN : B

(∀I)
Γ `M : σ t /∈ ftv(Γ)

Γ `M : ∀t.σ (∀E)
Γ `M : ∀t.σ

Γ `M : [A/t]σ

Table 12.1: Predicative type system (Curry-style)

into foundational issues and just assume a distinction between types without quantification
and types with quantification which will be called henceforth type schema. Thus:

A ≡ (t→ t)→ (t→ t) is a type,
σ ≡ ∀ t (t→ t)→ (t→ t) is a type schema.

The advantage of this approach is that we stay close to propositional types and that in this way
we can generalize the type inference techniques presented in chapter 11. The inconvenience is
that we do not have the full power of second-order quantification. This power will be explored
in chapter 13. The syntax of types, type schemas, and type contexts is specified as follows.

A ::= b || tid || (A→ A) (types)
σ ::= A || ∀tid .σ (type schemas)
Γ ::= id : σ, . . . , id : σ (type contexts).

We stress that ∀t.(t → t) is not a type and ∀t.t → ∀t.t is not a type schema. Table 12.1
presents an extended type system with type schemas. Notice that types schemas can occur
in type contexts and that in the rules (→I) and (→E), we handle types (not type schemas)

Next, we explore the connection between universal (predicative) types and polymorphism.
Sometimes, the same code/function can be applied to different data-types. For instance,
the functional that iterates twice a function D ≡ λf.λx.f(fx), will work equally well on a
function over booleans or over integers. In the context of propositional types, we have already
seen that we can automatically infer for D the most general type:

D : (t→ t)→ (t→ t) .

The reader may be under the impression that this type is good enough to represent the fact
that D will work on any argument of type (A→ A). Almost but not quite. . . Suppose:

F1 : (bool→ bool) , F2 : (int→ int) ,

and consider the λ-term P ≡ let f = D in 〈fF1, fF2〉, where as usual let x = M in N ≡
(λx.N)M and 〈M,N〉 ≡ λz.zMN . The reader may check that the λ-term P has no proposi-
tional type and that the example can be rephrased in the pure λ-calculus without appealing
to the basic types bool and int. A possible way out is to consider that D has a type schema:

σ ≡ ∀t.(t→ t)→ (t→ t) ,

and then to specialize it just before it is applied to F1 and F2. This is almost what we can do
with the predicative type system in Table 12.1. The problem that remains is that we cannot

Predicative polymorphic types 111

(∀I)
Γ `M : σ t /∈ ftv(Γ)

Γ ` λt.M : ∀t.σ (∀E)
Γ `M : ∀t.σ

Γ `MA : [A/t]σ

Table 12.2: Rules (∀I) and (∀E) in Church-style

really type the λ-term (λf.〈fF1, fF2〉)D as expected because σ → · · · is not even a type
schema according to our definitions. One could allow more complex types. . ., but there is a
more conservative solution which consists in taking the let-definition as a primitive and giving
the following typing rule for it:

(let)
Γ, x : σ ` N : A Γ `M : σ

Γ ` let x = M in N : A
.

This is a first formalization (others will follow) of a type system which captures the polymor-
phism available in the ML programming languages.

Example 237 Consider M ≡ λy.let x = λz.z in y(xx) which is not typable in the proposi-
tional type system but has type A ≡ ((t → t) → t′) → t′ in the ML type system. The main
difference is that we assign to the variable x the type schema σ ≡ ∀s.(s → s). Then taking
B ≡ (t→ t)→ t′ we can derive:

y : B, z : s ` z : s

y : B ` λz.z : (s→ s) s /∈ ftv(B)

y : B ` λz.z : σ

On the other hand, one can derive: y : B, x : σ ` (xx) : (t→ t).

The rules (∀I) and (∀E) in Table 12.1 are not syntax-directed. When do we apply them?
One possibility is to ask the programmer to specify when this must be done. This requires an
enriched syntax for λ-terms which includes: (i) the possibility to abstract a λ-term M with
respect to a type variable t, a type abstraction λt.M , and (ii) the possibility to apply a λ-term
M to a type A, a type application MA. The resulting system in Church-style is composed of
the rules (asmp), (→I), (→E), and (let) we have already presented modulo the fact that: (1)
the λ-abstraction is decorated with a type (cf. Table 10.1), and (2) the rules in Table 12.2
replace the homonymous rules in Table 12.1.

Due to the simplicity of the ML system, it is actually possible to foresee the points where
the rules (∀I) and (∀E) need to be applied. This leads to a Curry-style and syntax directed
type system: the shape of the λ-term determines the rule to apply.

Definition 238 (generalisation) Given a pair composed of a context Γ and a type A, its
generalization G(Γ, A) is defined as the type schema that results by quantifying the type vari-
ables which occur in A but do not occur free in Γ.

Example 239 If Γ = x : ∀t.(s→ t) and A = s→ (t→ r) then G(Γ, A) = ∀t.∀r.A.

The idea to define the syntax-directed type system presented in Table 12.3 is to generalize
as much as possible let-variables and then instantiate once the type schema in the context.

112 Predicative polymorphic types

(asmp)
x : ∀t∗.A ∈ Γ

Γ `syn x : [B∗/t∗]A
(let)

Γ, x : G(Γ, B) `syn N : A Γ `syn M : B

Γ `syn let x = M in N : A

(→I)
Γ, x : A `syn M : B

Γ `syn λx.M : A→ B
(→E)

Γ `syn M : A→ B Γ `syn N : A

Γ `syn MN : B

Table 12.3: Predicative type system (Curry-style, syntax directed)

We shall use the entailment symbol `syn when referring to judgments in this system. Unlike
in the type system in Table 12.1, the syntax-directed type system in Table 12.3 can only
assign types to λ-terms (not type schema).

Exercise 240 (running example, continued) Consider again the λ-term:

M ≡ λy.let x = λz.z in y(xx) ,

and check that we can derive: ∅ `syn M : ((t→ t)→ t′)→ t′.

12.2 A type inference algorithm

Building on the syntax directed presentation of the type system, we describe next a type
inference algorithm. We rely on the following notation:

M,N type free λ-terms with let-definitions,
Γ type context with propositional types,
Θ partial function from identifiers to pairs (Γ, A).

The (partial) function PT (M,Θ) tries to infer a principal typing judgment Γ ` M : A for
M . The search is driven by M while Θ keeps track of the type schema assigned to let-bound
variables. We assume: (i) all bound variables are renamed so as to be distinct and different
from the free variables, and (ii) in all subterms let x = N in M we have x ∈ fv(M). Given two
typing judgments Ji ≡ Γi `Mi : Ai, i = 1, 2, we denote by UnifyApl(J1, J2) a triple (S, t, J ′2)
obtained as follows:

1. obtain J ′2 ≡ Γ′2 `M2 : A′2 by renaming the type variables of J2 so that they are disjoint
from those in J1,

2. select a fresh type variable t,

3. build the system of equations:

E = {A1 = A′2 → t} ∪ {A = A′ | x : A ∈ Γ1, x : A′ ∈ Γ′2},

4. compute (if it exists) a most general unifier S of E.

With this notation, the type inference algorithm is presented in Table 12.4.

Exercise 241 (running example, continued) Consider again the λ-term: M ≡ λy.let x =
λz.z in y(xx) and check that PT (M, ∅) = ∅ `M : ((t→ t)→ t′)→ t′.

Predicative polymorphic types 113

PT (M,Θ) = case M

x : case Θ(x)
(Γ, A) : Γ ` x : A

: x : tx ` x : tx

λx.M : let (Γ `M : A) = PT (M,Θ) in
case x : A′ ∈ Γ
true : Γ\(x : A′) ` λx.M : A′ → A

: Γ ` λx.M : t→ A, t fresh

M1M2 : let Ji ≡ (Γi `Mi : Ai) = PT (Mi,Θ) i = 1, 2 in
let (S, t,Γ′

2 `M2 : A′
2) = UnifyApl(J1, J2) in

S(Γ1 ∪ Γ′
2 `M1M2 : t)

let x = M1 in M2 :
let (Γ1 `M1 : A1) = PT (M1,Θ) in
let Θ′ = Θ[(Γ1, A1)/x] in
let (Γ2 `M2 : A2) = PT (M2,Θ

′) in
Γ2 ` let x = M1 in M2 : A2

Table 12.4: Type-inference algorithm

114 Predicative polymorphic types

(asmp)
x : A ∈ Γ

Γ `let x : A
(let)

Γ `let [M/x]N : A Γ `let M : B

Γ `let let x = M in N : A

(→I)
Γ, x : A `let M : B

Γ `let λx.M : A→ B
(→E)

Γ `let M : A→ B Γ `let N : A

Γ `let MN : B

Table 12.5: Propositional typing with let-expansion

12.3 Reduction of stratified polymorphic typing to proposi-
tional typing

We may consider a type system where to type let x = M in N we actually typeM and [N/x]M ,
where by typing we mean propositional typing. This way of proceeding is not particularly
efficient because the let-expansion might take exponential time (see following exercise 243).
However, the interesting point is that the λ-terms typable in this way are exactly those typable
in the original ML system. Therefore we have the following intuitive characterization:

ML typing = Propositional typing + let-expansion.

The type inference algorithm presented in Table 12.4 is a way to keep implicit the let-expansion
(but type renaming still forces a type expansion as we shall see shortly!). Table 12.5 describes
a type system based on let-expansion. We use the entailment symbol `let to distinguish this
system from the previous ones. In the (let) rule, we just check that the substituted term M
is typable with some type B; this check is necessary if x /∈ fv(M).

Exercise 242 (running example) Consider again the λ-term:

M ≡ λy.let x = λz.z in y(xx) ,

and check that we can derive: ∅ `let M : ((t→ t)→ t′)→ t′.

Exercise 243 (let-expansion) Consider a λ-calculus extended with let definitions of the
shape let x = M in N . Let C denote a context with a hole (cf. definition 118) and define the
reduction relation →let as follows:

→let= {(C[let x = N in M] , C[[N/x]M]) | C context,M,N λ-terms , x variable} .

We extend the definition of size of a λ-term |M | (cf. definition 116) with: |let x = M in N | =
1 + |M |+ |N |. We also define the depth d(M) of a λ-term as follows:

d(x) = 1, d(MN) = max (d(M), d(N)),
d(λx.M) = d(M), d(let x = M in N) = d(M) + d(N) .

1. Show that there is a strategy to reduce a λ-term M to a normal form N such that:

|N | ≤ |M |d(M) .

2. Show that the reduction relation →let is locally confluent.

Predicative polymorphic types 115

How hard is it to decide if a λ-term is typable in the ML system? Well, in theory it
is hard but in practice it is easy! The characterization via propositional typing with let
expansion shows that the problem can be solved in exponential time: (1) let-expand the λ-term
(exponential penalty), (2) reduce the propositional type-inference problem to a unification
problem (efficient), and (3) solve the unification problem (efficient).

In fact one can show that any decision problem that runs in exponential time can be
coded as an ML type inference problem. Hence any algorithm (including the symbolic one)
that solves the problem will run in at least exponential time. The good news are that the
complexity is exponential in the let-depth (example next) of the λ-term and that deeply nested
chains of let-definitions do not seem to appear in practice.

Example 244 Here is a way to blow up ML type inference.

P ≡ λx, y, z.zxy : t1 → t2 → (t1 → t2 → t3)→ t3
M1 ≡ λy.Pyy : t1 → (t1 → t1 → t2)→ t2
M2 ≡ λy.M1(M1y) : t1 → (((t1 → t1 → t2)→ t2)→

((t1 → t1 → t2)→ t2)→ t3)→ t3
M3 ≡ λy.M2(M2y) : · · ·

The number of distinct type variables and the size of the principal type (roughly) doubles at
each step so that inferring the principal type of M6 is already problematic.

12.4 Summary and references

Universally quantified types are the types of polymorphic λ-terms. In particular we have
considered a predicative/stratified form of universal quantification (as used in ML). It turns
out that the type inference techniques developed in chapter 11 can be extended to predicative
polymorphism. The complexity of type inference is then exponential in the number of nested
let-definitions. Still the approach works well because these complex definitions do not seem to
arise in practice. The design of a polymorphic type system for ML language is due to [Mil78,
LM82]. The complexity of the type inference problem is characterized in [KTU90, Mai90].
The book [Mit96] contains a detailed analysis of the type inference algorithm described in
Table 12.4.

116 Predicative polymorphic types

Chapter 13

Impredicative polymorphic types

In chapter 12, we have introduced universally quantified types and observed that these types
can be regarded as the types of polymorphic functions. In that context, a universally quanti-
fied type lives in a higher universe of type schemas. In this chapter, we consider an alternative
approach where a universally quantified type is still an ordinary type. Then one speaks of
impredicative types as opposed to the predicative types introduced in chapter 12. In order
to formalize impredicative types we introduce an extension of the propositional type system
presented in chapter 10 known as system F.

A strong point of system F is its expressive power. In particular, we show that the addition
of impredicative universal quantification suffices to represent product, sum, and existential
types. The reader is supposed to be familiar with the usage of product and sum types in
programming. As for existential types, we shall see that they arise naturally when hiding the
representation details of a data type.

We also provide an encoding of inductively defined data structures such as natural num-
bers, lists, and trees, and of the iterative functions definable on them (iterative functions are
related to the primitive recursive functions introduced in chapter 6).

While being quite expressive, system F can still be regarded as a logical system. In
particular, λ-terms typable in system F are strongly normalizing. This is a difficult result
that relies on a generalization of the reducibility candidates technique introduced in chapter
10.

13.1 System F

System F is a logical system obtained from the propositional intuitionistic system (proposi-
tional types as far as we are concerned) by introducing second order quantification. At the
type level, we can quantify over type variables:

A ≡ ∀ t (t→ t) .

At the term level, we can abstract with respect to a type and apply a λ-term to a type. For
instance, we can define a a ‘polymorphic’ identity pid ≡ λt.λx : t.x with the type A above. By
applying pid to the basic type nat , we obtain an identity pid nat of type nat → nat . However,
we may also apply pid to the type A itself to obtain an identity pid A of type (A → A). In
System F, the type quantification in the type A quantifies on all types including A itself. One

117

118 Impredicative types

says that the type system is impredicative, as opposed to the predicative/stratified system we
have considered in chapter 12.

Table 13.1 defines the syntax of types and λ-terms where we denote with ftv(Γ) the
collection of type variables that occur free in types occurring in the (type) context Γ.

Table 13.2 introduces the typing rules in Church-style and the reduction rules of system F.
The novelties with respect to the system for propositional types (Table 10.1) are represented
by the typing rules (∀I) and (∀E) and the (βt)-rule for reducing the application of a type
abstraction to a type. We stress that in this chapter the (β) and (βt) rules, as well as the
following (η) and (ηt) rules, can be applied in any context.

Exercise 245 Show that without the side condition ‘t /∈ ftv(Γ)’ in rule (∀I), one can build a
closed λ-term of type A, for any type A. In other terms, without the side condition the system
is logically inconsistent!

As usual, we can add extensional rules. The (η) and (ηt) reduction rules (applicable in
any context) are the following:

(λx : A.Mx) →M if x /∈ fv(M) (η)
(λt.Mt) →M if t /∈ ftv(M) (ηt) .

We leave it to the reader the check that in system F with the β and βt-rules (and possibly
with the η and ηt rules): (1) typing is preserved by reduction, and (2) reduction is locally
confluent. In section 13.3, we shall prove that typable λ-terms are strongly normalizable; thus
confluence will follow from local confluence.

As a first example of the expressivity of second order quantification, we consider the
representation of product, sum, and existential types in system F. The typing rules and the
reduction rules are introduced in Table 13.3. The reader should be familiar with the rules
for product and sum which have already been introduced in Table 10.4. On the other hand,
the rules for existential types are new and deserve some comments. A λ-term of existential
type ∃t.A is (up to conversion) a pair composed of a type B and a λ-term of type [B/t]A.
Existential types can be used to hide the details of the implementation of a data type and
as such they can be regarded as ‘abstract data types’. For instance, suppose we want to
represent sets of numbers with operations to create the empty set, test membership, insert a
number in the set, and remove a number from the set. Assuming, 1 is the unit type, N is
the type for natural numbers, and B the type for booleans, we could specify the signature of
a set data type as:

A ≡ ∃t.((1→ t)× (N→ t→ B)× (N→ t→ t)× (N→ t→ t)) . (13.1)

tid ::= t || s || . . . (type variables)
A ::= tid || A→ A || ∀tid .A (types)
id ::= x || y || . . . (variables)
M ::= id || λid : A.M ||MM || λtid .M ||MA (λ-terms)
Γ ::= id : A, . . . , id : A (contexts)

Table 13.1: Syntax of system F: types and λ-terms (Church style)

Impredicative types 119

Typing rules

(asmp)
x : A ∈ Γ

Γ ` x : A

(→I)
Γ, x : A `M : B

Γ ` λx : A.M : A→ B
(→E)

Γ `M : A→ B Γ ` N : A

Γ `MN : B

(∀I)
Γ `M : A t /∈ ftv(Γ)

Γ ` λt.M : ∀t.A (∀E)
Γ `M : ∀t.A

Γ `MB : [B/t]A

Reduction rules (in any context)

(λx : A.M)N → [N/x]M (β)
(λt.M)A → [A/t]M (βt)

Table 13.2: Typing (Church-style) and reduction rules in system F

We could then produce a concrete implementation of the data type by instantiating the type
t, say, with the type of the lists of natural numbers along with the implementations of the
operations mentioned above. We stress that the type A above just describes the signature of a
set data type but not its expected behavior. For instance, there is no guarantee that inserting
a number in a set and then removing it produces a set which equals the original one.

Table 13.4 describes an encoding of product, sum, and existential types and λ-terms
in system F. This encoding is quite good, as shown by the following proposition, and it
can be used, e.g., to reduce the strong normalization of the extended system to the strong
normalization of system F.

Proposition 246 Suppose Γ ` M : A in the system F extended with product, sum, and
existential types (table 13.3). Then, the encoding described in Table 13.4 preserves typing and

reduction. Namely, (1) Γ `M : A and (2) if M → N then M
∗→ N .

Proof. (1) First check that the type encoding commutes with substitution. Then proceed
by induction on the proof of Γ `M : A.

(2) First check that the term encoding commutes with substitution. Then proceed by case
analysis on the redex. 2

Exercise 247 Show that for every type context Γ and λ-term M there is at most one type A
such that Γ ` M : A is derivable according to the rules in Tables 13.2 and 13.3, and that in
this case the derivation is unique. What happens if we remove the type labels attached to the
operators in1, in2, and pack?

13.2 Inductive types and iterative functions

Iterative functions are defined on the ground (with no variables), first-order terms over a
signature Σ. The basic idea is to define a function by induction on the structure of a ground
term, hence we have as many cases as function symbols in the signature Σ. Let us consider

120 Impredicative types

Typing rules

Γ `Mi : Ai i = 1, 2

Γ ` 〈M1,M2〉 : A1 ×A2

Γ `M : A1 ×A2

Γ ` π1(M) : A1

Γ `M : A1 ×A2

Γ ` π2(M) : A2

Γ `M : A1

Γ ` inA1+A2
1 (M) : A1 +A2

Γ `M : A2

Γ ` inA1+A2
2 (M) : A1 +A2

Γ `M : A1 +A2 Γ ` Ni : Ai → C i = 1, 2

Γ ` case(M,N1, N2) : C

Γ `M : [B/t]A

Γ ` pack∃t.A(B,M) : ∃t.A
Γ `M : ∃t.A Γ ` N : ∀t.(A→ C) t /∈ ftv(C)

Γ ` unpack(M,N) : C

Reduction rules (in any context)

πi〈M1,M2〉 → Mi i = 1, 2

case(inA+B
i M)N1N2 → NiM i = 1, 2

unpack(pack∃t.A(B,M), N) → NBM

Table 13.3: Product, sum, and existential types

Type encoding

t = t
A→ B = A→ B
∀t.A = ∀t.A
A1 ×A2 = ∀s.(A1 → A2 → s)→ s
A1 +A2 = ∀s.(A1 → s)→ (A2 → s)→ s
∃t.A = ∀s.(∀t.(A→ s))→ s

Term encoding

〈, 〉 = λx1 : A1, x2 : A2.λs.λp : A1 → (A2 → s).px1x2

πi = λp : A1 ×A2.pAi(λx1 : A1, x2 : A2.xi) (i = 1, 2)

inA1+A2
i = λx : Ai.λs.λy1 : A1 → s.λy2 : A2 → s.yix (i = 1, 2)

case = λx : A1 +A2.λs.λy1 : A1 → s, y2 : A2 → s.xsy1y2

pack∃t.A = λt.λx : A.λs.λy : ∀t.A→ s.y t x
unpack = λx : ∃t.A.λy : ∀t.A→ C.xCy

Table 13.4: Representation of product, sum, and existential types in system F

Impredicative types 121

the signature of tally natural numbers Σ = {S1,Z0} and let T = TΣ(∅) be the set of ground
terms. Given g : Tn → T and h : Tn+1 → T the function f : Tn+1 → T is defined by iteration
by the following term rewriting rules:

f(Z, y∗) → g(y∗) , f(S(x), y∗) → h(f(x, y∗), y∗) .

At first sight this is less powerful than primitive recursive definitions because the function h
does not depend directly on x.

However, one can first define pairing and projections and then show that a function f
defined by primitive recursion such as:

f(Z, y∗) → g(y∗) , f(S(x), y∗) → h(f(x, y∗), x, y∗) ,

can also be defined by iteration as follows:

f ′(Z, y∗) → 〈g(y∗),Z〉 ,
f ′(S(x), y∗) → h′(f ′(x, y∗), y∗) ,
h′(x, y∗) → 〈h(π1(x), π2(x), y∗),S(π2(x))〉 .

One checks by induction on x ∈ T that: f ′(x, y∗) = 〈f(x, y∗), x〉, and from f ′ one obtains f
by projection.

Exercise 248 (predecessor, equality) Give a primitive recursive definition of the prede-
cessor function p where p(0) = 0. Then transform the definition into an iterative definition
and derive a λ-term, typable in system F, to compute the predecessor function on Church
numerals (cf. exercise 142). Further, derive a λ-term that checks the equality of two Church
numerals.

Definition 249 (iterative functions) Let Σ be a signature with function symbols (con-
structors) ci, where ar(ci) = ni, for i = 1, . . . , k. Let T = TΣ(∅) be the closed first-order
terms over the signature. The collection of iterative functions is the smallest set such that:

• The functions induced by the constructors and the projection functions are iterative
functions.

• The set is closed under composition, namely if g : Tn → T and hi : Tm → T , for
i = 1, . . . , n, are iterative functions then g(h1, . . . , hn) is an iterative function.

• The set is closed under iteration, namely if hi : Tni+m → T , for i = 1, . . . , k, are
iterative functions then the function f : Tm+1 → T such that:

f(ci(x1, . . . , xni), y
∗) = hi(f(x1, y

∗), . . . , f(xni , y
∗), y∗) (for i = 1, . . . , k) ,

is an iterative function.

Table 13.5 explains how to associate: (1) with a signature Σ a type Σ of system F, (2)
with a constructor of the signature Σ a closed λ-term of system F of the appropriate type,
and (3) with a ground term a over the signature Σ a λ-term of system F a of type Σ.

122 Impredicative types

Σ = {cni
i : T × · · · × T︸ ︷︷ ︸

ni times

→ T | i = 1, . . . , k}

Σ ≡ ∀t.A1 → · · · → Ak → t, where: Ai ≡ t→ · · · → t︸ ︷︷ ︸
ni times

→ t ,

cni
i ≡ λy1 : Σ . . . λyni : Σ. λt.λx1 : A1 . . . λxk : Ak.

xi(y1tx1 · · ·xk) · · · (ynitx1 · · ·xk) : Σ→ · · · → Σ︸ ︷︷ ︸
ni times

→ Σ

a ≡ λt.λx1 : A1 . . . λxk : Ak.[[a]] ,with: [[cni
i (a1, . . . , ani)]] ≡ xi[[a1]] · · · [[ani]] .

Table 13.5: Encoding of signatures, constructors, and ground terms in system F

Example 250 (tally natural numbers) If we apply the coding method to the signature
Σ = {S1,Z0} of tally natural numbers we obtain the type:

Σ ≡ ∀t.(t→ t)→ (t→ t) .

Then we represent the constructors in the signature with the λ-terms:

S ≡ λy : Σ.λt.λx1 : t→ t.λx2 : t.x1(ytx1x2) : Σ→ Σ
Z ≡ λt.λx1 : t→ t.λx2 : t.x2 : Σ .

The term n ≡ SnZ, n ≥ 0, is represented (up to conversion) by the λ-term:

n ≡ λt.λx1 : t→ t.λx2 : t.xn1x2 : Σ ,

which is a typed version of the Church numeral presented in section 7.3. We notice that:

S n → λt.λx1 : t→ t.λx2 : t.x1(n t x1 x2)
∗→ λt.λx1 : t→ t.λx2 : t.x1(xn1 x2) ≡ n+ 1 .

Exercise 251 Make explicit the coding of the following signatures: (1) The signature with
no operation. (2) The signature with two 0-ary operations (the ‘booleans’). (3) The signature
of binary words. (4) The signature of binary trees.

Proposition 252 There is a bijective correspondence between the ground terms over a signa-
ture Σ and the closed λ-terms of system F of the corresponding type Σ modulo βη-conversion.

Proof. Let M be a closed λ-term of system F in β-normal form of type Σ, where Σ is defined
according to the rules in Table 13.5. The existence of the β-normal form will be proved next.
M has to have the shape:

M ≡ λt.λx1 : A1 . . . λxi : Ai.M
′ i ≤ k .

If i < k and M ′ is not a λ-abstraction then M ′ has the shape (· · · (xjM1) · · ·Mh) and so we
can η-expand M ′ without introducing a β-redex. By iterated η-expansions we arrive at a
λ-term in β normal form of the shape:

λt.λx1 : A1 . . . λxk : Ak.M
′′,

where M ′′ has type t, it is in β normal form, and may include free variables x1, . . . , xk. We
note that the types of the variables xi do not contain second order quantifications. We claim
that M ′′ cannot contain a λ-abstraction:

Impredicative types 123

• A λ-abstraction on the left of an application would contradict the hypothesis that M is
in β normal form.

• A λ-abstraction on the right of an application is incompatible with the ‘first order’ types
of the variables Ai.

We have shown that a closed λ-term of type Σ is determined up to βη conversion by a λ-term
M ′′ which is a well-typed combination of the variables xi, for i = 1, . . . , k. Since each variable
corresponds to a constructor of the signature we can conclude that there is a unique ground
term over the signature which corresponds to M ′′. 2

Remark 253 The rule (η) is needed to have a bijection between ground terms of the signature
Σ and closed λ-terms of type Σ. For instance, with reference to example 250 (tally natural
numbers), there are two distinct λ-terms in β-normal form corresponding to the numeral 1,
namely 1 and λt.λx1 : t→ t.x1.

Definition 254 A function f : Tn → T over a signature Σ is representable (with respect to
the proposed coding) if there is a closed λ-term M : Σn → Σ, such that for any vector of
ground terms a∗:

Ma∗ =βη f(a∗) .

Proposition 255 All iterative functions over a signature Σ are representable.

Proof. We proceed by induction on the definition of iterative function. The interesting case
is iteration. Let hi : Tni+mS → TS be iterative functions for i = 1, . . . , k, and the function
f : Tm+1

S → TS be defined by:

f(x∗, ci(y
∗)) = hi(x

∗, f(x∗, y1), . . . , f(x∗, yni)) i = 1, . . . , k , (13.2)

where x∗ ≡ x1, . . . , xm.1 We represent f with the function:

f ≡ λx1 : Σ. . . . λxm : Σ.λx : Σ.xΣ(h1x
∗) · · · (hkx∗) ,

where we know inductively that hi represents hi. Note that iteration is already built into the
representation of the data. We prove by induction on the structure of a ground term a that
for any vector of ground terms b∗, f b∗ a =βη f(b∗, a).

• If a ≡ c0
i then

f b∗ c0
i →∗ c0

iΣ(h1b
∗) · · · (hkb∗)→∗ hib∗ =βη hi(b

∗) ,

where the last step holds by induction hypothesis on hi.

• If a ≡ cni (a1, . . . , an) then:

f(b∗, ci(a1, . . . , an)) = hi(b
∗, f(b∗, a1), . . . , f(b∗, an))

=βη hi b
∗ f(b∗, a1) . . . f(b∗, an) (by induction hypothesis on hi).

1In this proof, it is convenient to write the additional parameters x∗ before the main argument of the
iteration.

124 Impredicative types

On the other hand, we compute:

f b∗ cni (a1, . . . , an)

→ cni (a1, . . . , an)Σ(h1 b
∗) · · · (hk b∗)

→ (hi b
∗)(a1Σ(h1 b

∗) · · · (hk b∗)) · · · (anΣ(h1 b
∗) · · · (hk b∗)) .

Also, by induction hypothesis on a, we have for i = 1, . . . , n:

f(b∗, ai) =βη fb
∗ai

∗→ aiΣ(h1b
∗) · · · (hkb∗)) .

Hence, by combining the computations above, we obtain:

f b∗ cni (a1, . . . , an) =βη hi b
∗ f(b∗, a1) . . . f(b∗, an)

=βη f(b∗, ci(a1, . . . , an)) .

2

Example 256 Suppose T is the set of tally natural numbers and g : T → T and h : T 2 → T .
The iteration it(h, g) of h and g must satisfy:

it(h, g)(Z, y) = g(y)
it(h, g)(S(x), y) = h(it(h, g)(x, y), y)

In the pure λ-calculus, we would define:

it ≡ λh.λg.λx.λy. x (λz.h z y) (g y) .

For Σ ≡ ∀t.(t→ t)→ (t→ t), this is typable as follows:

it ≡ λh : Σ→ (Σ→ Σ).λg : Σ→ Σ.λx : Σ.λy : Σ.
x Σ (λz : Σ.h z y) (g y)

: (Σ→ (Σ→ Σ))→ (Σ→ Σ)→ (Σ→ (Σ→ Σ)) .

Notice that this would not work with a propositional type of the shape (B → B)→ (B → B)!

Example 257 One can also handle the case of signatures which are defined parametrically
with respect to a collection of data. For instance List(D) is the signature of lists whose
elements belong to the set D. This signature is equipped with the constructors:

nil : List(D), cons : D × List(D)→ List(D) .

One can define iterative functions over List(D) and show that these functions can be rep-
resented in system F for a suitable embedding of the closed λ-terms in system F. The sort
List(D) is coded by the type:

∀t.t→ (r → t→ t)→ t ,

where r is a type variable, and generic elements in D are represented by (free) variables of
type r.

Impredicative types 125

13.3 Strong normalization

We now move towards a proof of the announced strong normalization result. The proof
is based on a notion of reducibility candidate which is an abstraction of the notion already
considered for the strong normalization of the propositionally typed λ-calculus (chapter 10)
and recursive path ordering (chapter 4). In order to make notation lighter we shall work with
untyped λ-terms obtained from the erasure of well-typed λ-terms.

Definition 258 (erasure) The (type) erasure function er takes a typed λ-term and returns
an untyped λ-term. It is defined by induction on the structure of the λ-term as follows:

er(x) = x, er(λx : A.M) = λx.er(M), er(MN) = er(M)er(N),
er(λt.M) = er(M), er(MA) = er(M) .

In system F, we distinguish two flavors of β-reduction: the one involving a redex (λx :
A.M)N which we call simply (β) and the one involving a redex (λt.M)A which we call (βt).
Erasing type information we eliminate the reductions (βt). However this does not affect the
strong normalization property as shown in the following.

Proposition 259 (erasure vs. typed) Let M be a well-typed λ-term in system F. Then:

1. If M →β N then er(M)→β er(N).

2. If M →βt N then er(M) ≡ er(N).

3. If M may diverge then er(M) may diverge.

Proof. Properties (1) and (2) are left to the reader. For (3), we observe that sequences of
βt-reductions always terminate as the size of the λ-term shrinks. Hence we can extract an
infinite reduction of er(M) from an infinite reduction of M . 2

We can now address the key issue. Suppose we want to adapt the semantic method already
used in the propositional case. What is the interpretation of A ≡ ∀t.(t→ t)? We have to build
first a universe U of type interpretations where each type interpretation is a set of λ-terms.
Then we could require:

[[A]] = {M | ∀X ∈ U ∀N ∈ X (MN ∈ X)} .

Technically, the type interpretations are the so-called reducibility candidates and are defined
as follows. Let SN be the collection of untyped λ-terms which are strongly normalizable with
respect to the (β) rule. We shall use P,Q, . . . to denote the untyped λ-terms (as opposed to
the typed ones which are denoted with M,N, . . .).

Definition 260 (candidates) A set X of λ-terms is a reducibility candidate if:

1. X ⊆ SN .

2. Qi ∈ SN , i = 1, . . . , n, n ≥ 0 implies xQ1, . . . , Qn ∈ X.

3. [Q/x]PQ1, . . . , Qn ∈ X and Q ∈ SN implies (λx.P)QQ1, . . . , Qn ∈ X.

126 Impredicative types

We denote with RC the collection of reducibility candidates.

Remark 261 We have made into a definition the properties stated in proposition 216 of the
interpretation of propositional types.

Proposition 262 (properties reducibility candidates) The following properties hold.

1. The set SN is a reducibility candidate.

2. If X ∈ RC then X 6= ∅.

3. The collection RC is closed under arbitrary intersections.

4. If X,Y ∈ RC then the following set is a reducibility candidate:

X → Y = {M | ∀N ∈ X (MN ∈ Y)} .

Proof. We abbreviate Q1, . . . , Qn with Q∗. We recall (definition 213) that if P ∈ SN then
depth(P) is the length of its longest reduction.

(1) As in the propositional case, we observe that [Q/x]PQ∗ ∈ SN and Q ∈ SN implies
(λx.P)QQ∗ ∈ SN . This is an induction on depth(P)+depth(Q)+depth(Q1)+· · ·+depth(Qn).

(2) By definition, x ∈ X.

(3) Immediate.

(4) Here we see the use of the ‘saturation’ condition (3) in definition 260. 2

Next we define a type interpretation.

Definition 263 (type interpretation) Let Tvar be the set of type variables. Given a type
environment η : Tvar → RC we interpret types as follows:

[[t]]η = η(t)
[[A→ B]]η = [[A]]η → [[B]]η
[[∀t.A]]η =

⋂
X∈RC [[A]]η[X/t] .

We remark that the interpretations of a functional type and a universal type are well-
defined because of propositions 262(4) and 262(3), respectively. Strong normalization follows
from the soundness of the interpretation which is stated as follows.

Proposition 264 (soundness) Let η be a type environment and x1 : A1, . . . , xn : An `M :
B a derivable judgment. If Pi ∈ [[Ai]]η, for i = 1, . . . , n then

[P1/x1, . . . , Pn/xn]er(M) ∈ [[B]]η .

Proof. We abbreviate [P1/x1, . . . , Pn/xn] with [P ∗/x∗]. We proceed by induction on the
typing proof.

(asmp) follows by definition.

Impredicative types 127

(→I) We have to show:

λx.[P ∗/x∗]er(M) ∈ [[A→ B]]η .

By inductive hypothesis, we know: [P ∗/x∗][P/x]er(M) ∈ [[B]]η, for all P ∈ [[A]]η. We
conclude by using the properties of reducibility candidates.

(→E) By the definition of →.

(∀I) We have to show:

[P ∗/x∗]er(M) ∈
⋂

X∈RC

[[B]]η[X/t] .

By the side condition on the typing rule, we know: [[Ai]]η = [[Ai]]η[X/t], for an arbitrary
X ∈ RC . By inductive hypothesis: [P ∗/x∗]er(M) ∈ [[B]]η[X/t], for an arbitrary X ∈
RC .

(∀E) We have to show:

[P ∗/x∗]er(M) ∈ [[B]]η[[[A]]η/t] .

By inductive hypothesis: [P ∗/x∗]er(M) ∈
⋂
X∈RC [[B]]η[X/t]. Choose X = [[A]]η. 2

Corollary 265 (strong normalization) If Γ ` M : A in system F, then M is strongly
normalizing.

Proof. We note that ∀A, η, x (x ∈ [[A]]η). Then we apply proposition 264 with Pi ≡ xi,
and derive that: er(M) ∈ [[A]]η ⊆ SN . By proposition 259, we conclude that M is strongly
normalizing. 2

Exercise 266 (neutral λ-term) Alternative definitions of reducibility candidates can be
found in the literature; one follows. Say that a λ-term is neutral if it does not start with
a λ-abstraction. Define Red(M) = {M ′ |M →β M

′}. The collection RC ′ is given by the sets
X of strongly normalizing λ-terms satisfying the following conditions:

1. M ∈ X and M →β M
′ implies M ′ ∈ X.

2. M neutral and Red(M) ⊆ X implies M ∈ X.

Carry on the strong normalization proof using the collection RC ′.

13.4 Summary and references

The introduction of second-order quantification preserves the standard properties of the propo-
sitionally typed calculus: subject reduction, strong normalization, confluence . . . while in-
creasing the expressivity in a very significant way as one can encode inductive data types and
iterative functions. There is one catch however: type inference becomes undecidable which
is one reason why ML-like programming languages adopt a weaker/predicative form of poly-
morphism. When extended with first-order quantification, system F is the backbone of a
higher-order constructive logic (the so called calculus of constructions on which the Coq
proof assistant is built [CH88]).

128 Impredicative types

The system F has been introduced by Girard in [Gir71] as a tool for the study of the
cut-elimination procedure in second order Peano arithmetic (PA2). More precisely the nor-
malization of system F implies the termination of the cut-elimination procedure in PA2 (and
thus the consistency of analysis!). By relying on this strong connection between system F
and PA2 it is proven that all functions that can be shown to be total in PA2 are representable
in system F. This is a huge collection of total recursive functions that goes well beyond the
primitive recursive functions. The connections with the notion of type polymorphism (or
type parametricity) arising in programming are noticed in [Rey74] and the relationship be-
tween existential types and abstract data types are pointed out in [MP88]. The results on
the representation of iterative functions are based on [BB85]. The type inference problem for
a Curry-style system F (cf. chapter 12) turns out to be undecidable [Wel99].

Chapter 14

Program transformations

In this chapter, we introduce four program transformations. Each transformation has its own
interest. Moreover, when they are put in pipeline they provide a compilation chain from a
call-by-value λ-calculus to a register transfer level (RTL) language. A RTL language can be
regarded as a machine independent version of assembly code. Functions correspond to assem-
bly level routines and the functions’ bodies correspond to sequences of vectors’ allocations
and vectors’ projections ended by a tail recursive call. The compilation chain is summarized
in the following diagram:

λ
Ccps→ λcps

Cvn→ λcps,vn
Ccc→ λcc,vn

Ch→ λh,vn (14.1)

The source language is a call-by-value, λ-calculus (cf. chapter 8). The first transformation,
called continuation-passing style (CPS), internalizes the notion of evaluation context, the sec-
ond, called value naming, assigns a name to every value, the third, called closure conversion,
internalizes the notion of closure and makes sure functions are closed, i.e., they do not contain
free variables, and the last, called hoisting, transforms a collection of closed nested function
definitions into a collection of possibly open, flat, i.e., without nesting, function definitions.

Since we want to compose these transformations, we make sure the target language of
each transformation coincides with the source of the following one. As a matter of fact, all
the languages are subsets of the initial source language though their evaluation mechanism is
refined along the way. In particular, one moves from an ordinary substitution to a specialized
one where variables can only be replaced by other variables.

The approach to compiler correctness is similar to the one considered for the toy compiler
of section 1.3. One proves that each transformation is correct in the sense that the object
code simulates the source code. Then, by composition, one derives the correctness of the
compilation chain.

14.1 Continuation passing style form

The origin of the CPS transformation goes back to so called double-negation transformations
from classical to intuitionistic/constructive logic. In constructive logic, the formula ¬¬t→ t
is not derivable but the formula ¬¬¬t → ¬t is (cf. exercise 200). Then the idea is to
transform formulae in classical logic to negated formulae in constructive logic so that negation
is involutive on the image of the transformation. For some fixed type variable s, let ¬A =

129

130 Program transformations

(A→ s), and define a transformation of propositional types and type contexts as follows:

t = t , A→ B = A→ ¬¬B , ∅ = ∅ , Γ, x : A = Γ, x : A .

What the transformation shows is that for for every formula A provable in classical logic,
there is a classicaly equivalent formula ¬¬A which is provable in constructive logic. Now
suppose we start with a λ-term of type A, say Γ ` M : A, i.e., with a constructive proof of
A. Can we build a λ-term M such that Γ `M : ¬¬A ? For variables and λ-abstractions, the
typing suggests directly:

x = λk.kx , λx.M = λk.k(λx.M) .

The case for application is a bit more complex, but the reader may easily check that the
following does the job:

MN = λk.M(λm.N(λn.mnk)) .

Moreover, the transformed λ-term simulates the original one as soon it is provided with an
additional argument which represents the initial evaluation context. For instance, the reader
may check that:

((λx.x)y)(λz.z)
∗→β y , (14.2)

where λz.z stands for the initial evaluation context. As a matter of fact, types are useless in
proving the simulation property and they will be omitted in the following formal treatment.
However, as we have seen, types shed light on the CPS transformation and we shall come
back to them in chapter 15. The reader may have noticed that the reduction (14.2) above
performs many ‘useless’ β-reductions. For this reason, as well as for simplifying the proof
strategy, we shall study an optimized version of the CPS transformation.

Table 14.1 introduces the source language: a type-free, left-to-right, call-by-value λ-
calculus. Notice that for technical reasons we include the variables among the values. Also
notice that the calculus is richer than the one studied in chapter 8 in that it includes let-
definitions, polyadic abstraction, and tupling, with the related application and projection
operators. Polyadic abstraction grants a function the right to take several arguments at once
while tupling allows to build vectors of terms. For the sake of readibility, we shall denote
explicitly the polyadic application with the symbol @. We stress that polyadic abstraction
can be simulated by iterated λ-abstraction and tupling can be simulated by iterated pairing.
Still, it is worth to take them as primitive in order to simplify the analysis of the following
program transformations.

Working with polyadic abstraction and tuples, we need a compact notation to represent
sequences of symbols. We shall write X+ (resp. X∗) for a non-empty (possibly empty) finite
sequence X1, . . . , Xn of symbols. By extension, λx+.M stands for λx1 . . . xn.M , [V +/x+]M
stands for [V1/x1, . . . , Vn/xn]M , and let (x = V)+ in M stands for let x1 = V1 in · · · let xn =
Vn in M . By default, a term is a λ-term in the enriched λ-calculus under consideration.

Table 14.2 introduces a fragment of the λ-calculus described in Table 14.1 and a related
CPS transformation. An evaluation context E can be represented as a term λx.E[x]; in a CPS
transformation each function takes its evaluation context, represented as a term, as a fresh
additional parameter. The initial evaluation context is defined relatively to a fresh variable
named ’halt ’.

The syntax of CPS terms is such that in an application all terms are values and this
property is preserved by reduction. A corollary of this syntactic restriction is that the redex

Program transformations 131

Syntax

V ::= id || λid+.M || (V ∗) (values)
M ::= V || @(M,M+) || let id = M in M || (M∗) || πi(M) || (terms)
E ::= [] || @(V ∗, E,M∗) || let id = E in M || (V ∗, E,M∗) || πi(E) (evaluation contexts)

Reduction Rules

E[@(λx1 . . . xn.M, V1, . . . , Vn)] → E[[V1/x1, . . . , Vn/xn]M]
E[let x = V in M] → E[[V/x]M]
E[πi(V1, . . . , Vn)] → E[Vi] (1 ≤ i ≤ n)

Table 14.1: A polyadic, call-by-value, λ-calculus: λ

of a CPS term is always at top level, or in another terms, the evaluation context of a CPS term
is always the trivial context ‘[]′. The reduction rules are essentially those of the λ-calculus
modulo the fact that we optimize the rule for the projection to guarantee that CPS terms
are closed under reduction. For instance, the term let x = π1(V1, V2) in M reduces directly to
[V1/x]M rather than going through the intermediate term let x = V1 in M which, according
to Table 14.2, does not belong to the CPS terms. There is a potential ambiguity concerning
the CPS transformation of tuples of values. We remove it, by assuming that (V1, . . . , Vn) | K
is transformed according to the case for values. But note that if we follow the general case
for tuples we obtain the same result.

Next, we state the properties enjoyed by the presented CPS transformation, which is
‘optimized’ so as to pre-compute many ‘administrative’ reductions. In particular, thanks to
this optimization, we can show that the CPS transformation of a term such as E[@(λx.M, V)]
is a term of the shape @(ψ(λx.M), ψ(V),KE) for a suitable continuation KE depending on
the evaluation context E.

Proposition 267 (CPS simulation) Let M be a term of the λ-calculus. If M → N then

Ccps(M)
∗→ Ccps(N).

Proof. The proof takes the following steps.

1. We show that for all values V , terms M , and continuations K 6= x:

[V/x]M | [ψ(V)/x]K ≡ [ψ(V)/x](M | K) .

We proceed by induction on M .

variable By case analysis: M ≡ x or M ≡ y 6= x.

λz+.M By case analysis on K which is either a variable or a function. We develop the
second case with K ≡ λy.N . We observe:

[V/x](λz+.M) | [ψ(V)/x]K
≡ [λz+, k.([V/x]M | k)/y][ψ(V)/x]N
≡ [λz+, k.[ψ(V)/x](M | k)/y][ψ(V)/x]N
≡ [ψ(V)/x][λz+, k.(M | k)/y]N
≡ [ψ(V)/x]((λz+.M) | K) .

132 Program transformations

@(M0, . . . ,Mn) We apply the inductive hypothesis on M0, . . . ,Mn as follows:

[ψ(V)/x](@(M0, . . . ,Mn) | K)
≡ [ψ(V)/x](M0 | λx0 . . .Mn | λxn.@(x0, . . . , xn,K))
· · ·
≡ [V/x]M0 | λx0 . . . [ψ(V)/x](Mn | λxn.@(x0, . . . , xn,K))
≡ [V/x]M0 | λx0 . . . [V/x]Mn | λxn.@(x0, . . . , xn, [ψ(V)/x]K)
≡ [V/x]@(M0, . . . ,Mn) | [ψ(V)/x]K .

Note that in this case the substitution [ψ(V)/x] may operate on the continuation.
The remaining cases (pairing, projection, let-definition) follow a similar pattern
and are omitted.

2. The evaluation contexts for the λ-calculus described in Table 14.1 can also be specified
‘bottom up’ as follows:

E ::= [] || E[@(V ∗, [],M∗)] || E[let id = [] in M] || E[(V ∗, [],M∗)] || E[πi([])] .

Following this specification, we associate with an evaluation context E a continuation
KE as follows:

K[] = λx.@(halt , x)

KE[@(V ∗,[],M∗)] = λx.M∗ | λy∗.@(ψ(V)∗, x, y∗,KE)

KE[let x=[] in N] = λx.N | KE

KE[(V ∗,[],M∗)] = (λx.M∗ | λy∗.(ψ(V)∗, x, y∗)) | KE

KE[πi([]) = λx.let y = πi(x) in y | KE ,

where M∗ | λx∗.N stands for M0 | λx0 . . .Mn | λxn.N with n ≥ 0.

3. For all terms M and evaluation contexts E,E′ we prove by induction on the evaluation
context E that the following holds:

E[M] | KE′ ≡M | KE′[E] .

For instance, we detail the case where the context has the shape E[@(V ∗, [],M∗)].

E[@(V ∗, [M],M∗)] | KE′

≡ @(V ∗, [M],M∗) | KE′[E] (by inductive hypothesis)

≡M | λx.M∗ | λx∗.@(ψ(V)∗, x, x∗,KE′[E])

≡M | KE′[E[@(V ∗,[],M∗)]] .

4. For all terms M , continuations K,K ′, and variable x /∈ fv(M) we prove by induction
on M and case analysis that the following holds:

[K/x](M | K ′)
{
→M | K ′ if K abstraction,M value,K ′ = x
≡ (M | [K/x]K ′) otherwise.

Program transformations 133

5. Finally, we prove the assertion by case analysis on the reduction rule. We consider the
case for application. Suppose E[@(λx+.M, V +)]→ E[[V +/x+]M]. We have:

E[@(λx+.M, V +)] | K[]

≡ @(λx+.M, V +) | KE

≡ @(λx+, k.M | k, ψ(V)+,KE)
→ [KE/k, ψ(V)+/x+](M | k)
≡ [KE/k]([V +/x+]M | k)
∗→ [V +/x+]M | KE

≡ E[[V +/x+]M] | K[] .

2

We illustrate this result on the following example.

Example 268 (CPS) Let M ≡ @(λx.@(x,@(x, x)), I), where I ≡ λx.x. Then

Ccps(M) ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H) ,

where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x). The term M is simulated by Ccps(M) as
follows:

M → @(I,@(I, I)) → @(I, I) → I
Ccps(M) → @(I ′, I ′, λy.@(I ′, y,H)) →+ @(I ′, I ′, H) →+ @(halt , I ′) .

Exercise 269 Write down a simplified CPS transformation for a monadic call-by-value λ-
calculus without let-definitions and tuples. Then apply the CPS transformation to show that it
is possible to simulate the call-by-value λ-calculus in the call-by-name λ-calculus (cf. chapter
8).

Exercise 270 So called control operators are programming instructions that alter the exe-
cution flow. For instance, consider the continue and break commands of exercise 5 and the
control C and abort A operators of exercise 166. CPS transformations allow to simulate such
operators in a purely functional setting.

1. In chapter 1, we have interpreted a statement of the Imp language as function of type
(State → State). Define an alternative functional interpretation where a command is
regarded as a function of type:

State → (State → State)→ State .

and show that such interpretation can be extended to interpret a command abort which
stops the computation and returns the current state.

2. Define a CPS transformation of the call-by-value λ-calculus extended with the control
operators C and A defined in exercise 166.

134 Program transformations

Syntax CPS terms

V ::= id || λid+.M || (V ∗) (values)
M ::= @(V, V +) || let id = πi(V) in M (CPS terms)
K ::= id || λid .M (continuations)

Reduction rules

@(λx1 . . . xn.M, V1, . . . , Vn) → [V1/x1, . . . , Vn/xn]M
let x = πi(V1, . . . , Vn) in M → [Vi/x]M 1 ≤ i ≤ n

CPS transformation

ψ(x) = x
ψ(λx+.M) = λx+, k.(M | k)
ψ((V1, . . . , Vn)) = (ψ(V1), . . . , ψ(Vn))

V | k = @(k, ψ(V))
V | (λx.M) = [ψ(V)/x]M
@(M0, . . . ,Mn) | K = M0 | λx0. . . . (Mn | λxn.@(x0, . . . , xn,K))
let x = M1 in M2 | K = M1 | λx.(M2 | K)
(M1, . . . ,Mn) | K = M1 | λx1. . . . (Mn | λxn.(x1, . . . , xn) | K)
πi(M) | K = M | λx.let y = πi(x) in y | K
Ccps(M) = M | λx.@(halt , x), halt fresh variable

Table 14.2: CPS λ-calculus (λcps) and CPS transformation

14.2 Value named form

Table 14.3 introduces a value named λ-calculus in CPS form: λcps,vn . In the ordinary λ-
calculus, the application of a λ-abstraction to an argument (which is a value) may duplicate
the argument as in: @(λx.M, V) → [V/x]M . In the value named λ-calculus, all values are
named and when we apply the name of a λ-abstraction to the name of a value we create a
new copy of the body of the function and replace its formal parameter name with the name
of the argument as in:

let y = V in let f = λx.M in @(f, y) → let y = V in let f = λx.M in [y/x]M .

We also remark that in the value named λ-calculus the evaluation contexts are a sequence
of let definitions associating values to names. Thus, apart for the fact that the values are
not necessarily closed, the evaluation contexts are similar to the environments of abstract
machines for functional languages (cf. chapter 8).

Table 14.4 defines the compilation into value named form along with a readback trans-
formation. The latter is useful to state the simulation property. Indeed, it is not true that if
M → M ′ in λcps then Cvn(M)

∗→ Cvn(M ′) in λcps,vn . For instance, consider M ≡ (λx.xx)I
where I ≡ (λy.y). Then M → II but Cvn(M) does not reduce to Cvn(II) but rather to a
term where the ‘sharing’ of the duplicated value I is explicitly represented.

Example 271 (value named form) Consider the term resulting from the CPS transfor-
mation in example 268:

N ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H)) ,

Program transformations 135

Syntax

V ::= λid+.M || (id∗) (values)
C ::= V || πi(id) (let-bindable terms)
M ::= @(id , id+) || let id = C in M (CPS terms)
E ::= [] || let id = V in E (evaluation contexts)

Reduction Rules

E[@(x, z1, . . . , zn)] → E[[z1/y1, . . . , zn/yn]M] if E(x) = λy1 . . . yn.M
E[let z = πi(x) in M] → E[[yi/z]M]] if E(x) = (y1, . . . , yn), 1 ≤ i ≤ n

where: E(x) =

V if E = E′[let x = V in []]
E′(x) if E = E′[let y = V in []], x 6= y
undefined otherwise

Table 14.3: A value named CPS λ-calculus: λcps,vn

where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x). The corresponding term in value named
form is:

let z1 = λx, k.(let z11 = λy.@(x, y, k) in @(x, x, z11)) in
let z2 = I ′ in
let z3 = H in
@(z1, z2, z3) .

Proposition 272 (vn simulation) Let N be a term in CPS value named form. If R(N) ≡
M and M

α→M ′ then there exists N ′ such that N
α→ N ′ and R(N ′) ≡M ′.

Proof. First we fix some notation. We associate a substitution σE with an evaluation
context E of the λcps,vn -calculus as follows:

σ[] = Id σlet x=V in E = [R(V)/x] ◦ σE .

Then we prove the property by case analysis. We look at the case:

R(N) ≡ @(λy+.M, V +)→ [V +/y+]M .

Then N ≡ E[@(x, x+)], σE(x) ≡ λy+.M , and σE(x+) ≡ V +. Moreover, E ≡ E1[let x =
λy+.M ′ in E2] and σE1(λy+.M ′) ≡ λy+.M . Therefore, N → E[[x+/y+]M ′] ≡ N ′ and we
check that R(N ′) ≡ σE([x+/y+]M ′) ≡ [V +/y+]M . 2

14.3 Closure conversion

The next step is called closure conversion. It consists in providing each functional value with
an additional parameter that accounts for the names free in the body of the function and in
representing functions using closures. Our closure conversion function implements a closure
using a pair whose first component is the code of the transformed function and whose second
component is a tuple containing the values of the free variables.

136 Program transformations

Transformation in value named form (from λcps to λcps,vn)

Cvn(@(x0, . . . , xn)) = @(x0, . . . , xn)
Cvn(@(x∗, V, V ∗)) = Evn(V, y)[Cvn(@(x∗, y, V ∗))] V 6= id , y fresh
Cvn(let x = πi(y) in M) = let x = πi(y) in Cvn(M)
Cvn(let x = πi(V) in M) = Evn(V, y)[let x = πi(y) in Cvn(M)] V 6= id , y fresh
Evn(λx+.M, y) = let y = λx+.Cvn(M) in []
Evn((x∗), y) = let y = (x∗) in []
Evn((x∗, V, V ∗), y) = Evn(V, z)[Evn((x∗, z, V ∗), y)] V 6= id , z fresh

Readback transformation (from λcps,vn to λcps)

R(λx+.M) = λx+.R(M)
R(x∗) = (x∗)
R(@(x, x1, . . . , xn)) = @(x, x1, . . . , xn)
R(let x = πi(y) in M) = let x = πi(y) in R(M)
R(let x = V in M) = [R(V)/x]R(M)

Table 14.4: Transformations in value named CPS form and readback

It will be convenient to write “let (y1, . . . , yn) = x in M” for “let y1 = π1(x) in · · · let yn =
πn(x) in M” and “let x1 = C1 . . . xn = Cn in M” for “let x1 = C1 in . . . let xn = Cn in M”.
The transformation is described in Table 14.5. The output of the transformation is such that
all functional values are closed.

Example 273 (closure conversion) Let M ≡ Cvn(Ccps(λx.y)), namely:

M ≡ let z1 = λx, k.@(k, y) in @(halt , z1) .

Then Ccc(M) is the following term:

let c = λe, x, k.(let (y) = e, (c, e) = k in @(c, e, y)) in
let e = (y), z1 = (c, e), (c, e) = halt in
@(c, e, z1) .

Proposition 274 (CC simulation) Let M be a CPS term in value named form. If M →
M ′ then Ccc(M)

∗→ Ccc(M ′).

Proof. As a first step we check that the closure conversion function commutes with name
substitution:

Ccc([x/y]M) ≡ [x/y]Ccc(M) .

This is a direct induction on the structure of the term M . Then we extend the closure
conversion function to contexts as follows:

Ccc([]) = []
Ccc(let x = (y∗) in E) = let x = (y∗) in Ccc(E)
Ccc(let x = λx+.M in E) = let c = λe, x+.let (z1, . . . , zk) = e in Ccc(M) in

let e = (z1, . . . , zk), x = (c, e) in Ccc(E)
where: fv(λx+.M) = {z1, . . . , zk} .

Program transformations 137

Syntactic restrictions on λcps,vn after closure conversion
All functional values are closed.

Closure Conversion

Ccc(@(x, y+)) = let (c, e) = x in @(c, e, y+)

Ccc(let x = C in M) =

let c = λe, x+.let (z1, . . . , zk) = e in Ccc(N) in
let e = (z1, . . . , zk) in
let x = (c, e) in
Ccc(M) (if C = λx+.N, fv(C) = {z1, . . . , zk})

Ccc(let x = C in M) = let x = C in Ccc(M) (if C not a function)

Table 14.5: Closure conversion on value named CPS terms

We note that for any evaluation context E, Ccc(E) is again an evaluation context, and more-
over for any term M we have:

Ccc(E[M]) ≡ Ccc(E)[Ccc(M)] .

Finally we prove the simulation property by case analysis of the reduction rule being applied.

• Suppose M ≡ E[@(x, y+)] → E[[y+/x+]M] where E(x) = λx+.M and fv(λx+.M) =
{z1, . . . , zk}. Then:

Ccc(E[@(x, y+)]) ≡ Ccc(E)[let (c, e) = x in @(c, e, y+)] ,

with Ccc(E)(x) = (c, e), Ccc(E)(c) = λe, x+.let (z1, . . . , zk) = e in Ccc(M) and Ccc(E)(e) =
(z1, . . . , zk). Therefore:

Ccc(E)[let (c′, e′) = x in @(c′, e′, y+)]
∗→ Ccc(E)[let (z1, . . . , zk) = e in [y+/x+]Ccc(M)]
∗→ Ccc(E)[[y+/x+]Ccc(M)]
≡ Ccc(E)[Ccc([y+/x+]M)] (by substitution commutation)
≡ Ccc(E[[y+/x+]M]) .

• Suppose M ≡ E[let x = πi(y) in M]→ E[[zi/x]M] where E(y) = (z1, . . . , zk), 1 ≤ i ≤ k.
Then:

Ccc(E[let x = πi(y) in M]) ≡ Ccc(E)[let x = πi(y) in Ccc(M)]

with Ccc(E)(y) = (z1, . . . , zk). Therefore:

Ccc(E)[let x = πi(y) in Ccc(M)]
→ Ccc(E)[[zi/x]Ccc(M)]
≡ Ccc(E)[Ccc([zi/x]M)] (by substitution commutation)
≡ Ccc(E[[zi/x]M]) .

2

Exercise 275 Define a closure conversion transformation that applies directly to the source
language rather than to the CPS, value named form.

138 Program transformations

Syntax for λh
Syntactic restrictions on λcps,vn after hoisting

All function definitions are at top level.

C ::= (id∗) || πi(id) (restricted let-bindable terms)
T ::= @(id , id+) || let id = C in T (restricted terms)
P ::= T || let id = λid+.T in P (programs)

Specification of the hoisting transformation

Ch(M) = N if M ; · · ·; N 6;, where:

D ::= [] || let id = C in D || let id = λid+.D in M (hoisting contexts)

(h1) D[let x = C in let y = λz+.T in M] ;
D[let y = λz+.T in let x = C in M] if x /∈ fv(λz+.T)

(h2) D[let x = (λw+.let y = λz+.T in M) in N] ;
D[let y = λz+.T in let x = λw+.M in N] if {w+} ∩ fv(λz+.T) = ∅

Table 14.6: Hoisting transformation

14.4 Hoisting

The last compilation step consists in moving all function definitions at top level. In Table 14.6,
we formalize this compilation step as the iteration of a set of program transformations that
commute with the reduction relation. Denote with λz+.T a function that does not contain
function definitions. The transformations (h1) and (h2) consist in hoisting (moving up) the
definition of a function λz+.T . In transformation (h1), we commute the function definition
with a tuple or a projection definition. This is always possible on the terms resulting from a
closure conversion since in these terms the functions are closed and therefore cannot depend
on a tuple or a projection definition above them. In transformation (h2), we have a function
definition, say f1 which contains a nested function definition, say f2. In this case we extract
f2 putting it at the same level, and above f1. Notice that in doing this f1 is not closed
anymore since it may depend on f2. It can be shown that the rewriting system induced by
the rules (h1) and (h2) applied to the terms resulting from the closure conversion terminates
and is confluent. We omit this rather technical but not difficult development. The proof
that the hoisted program simulates the original one also requires some work because to close
the diagram we need to collapse repeated definitions, which may occur, as illustrated in the
example below. Again, we omit this development.

Example 276 (hoisting transformations and transitions) Let

M ≡ let x1 = λy1.N in @(x1, z) ,

where N ≡ let x2 = λy2.T2 in T1 and y1 /∈ fv(λy2.T2). Then we either reduce and then hoist:

M → let x1 = λy1.N in [z/y1]N
≡ let x1 = λy1.N in let x2 = λy2.T2 in [z/y1]T1

; let x2 = λy2.T2 in let x1 = λy1.T1 in let x2 = λy2.T2 in [z/y1]T1 6;

Program transformations 139

or hoist and then reduce:

M ; let x2 = λy2.T2 in let x1 = λy1.T1 in @(x1, z)
→ let x2 = λy2.T2 in let x1 = λy1.T1 in [z/y1]T1 6;

In the first case, we end up duplicating the definition of x2.

We conclude by sketching an alternative definition of the hoisting transformation. Let h
be a function that takes a term M in CPS, value named form where all functions are closed
and produces a pair (T, F), where T is a term without function definitions as specified in
Table 14.6, and F is a one-hole context composed of a list of function definitions of the shape:

F ::= [] || let id = λid+.T in F .

The definition of the function h is given by induction on M as follows where C is a tuple or
a projection as in Table 14.6:

h(@(x, y+)) = (@(x, y+), [])
h(let x = C in M) = let (T, F) = h(M) in (let x = C in T, F)
h(let x = λy+.M in N) = let (T, F) = h(M), (T ′, F ′) = h(N) in

(T ′, F [let x = λy+.T in F ′]) .

The hoisting transformation of the term M then amounts to compute (T, F) = h(M) and
then build the term F [T] which is a program according to the syntax defined in Table 14.6.

Exercise 277 Apply the hoisting transformation to the terms resulting from the closure con-
version of exercise 275.

14.5 Summary and references

We have studied four program transformations: continuation passing style makes the evalu-
ation context an additional parameter, value naming assigns a name to every value, closure
conversion explicits the notion of closure, and hoisting removes nested function definitions.
By putting these transformations in pipeline it is possible to transform a program written in a
higher-order language such as ML into a system of functions whose body includes operations
to build and project tuples of names and to perform tail-recursive routine calls. Thus we
have an implementation technique for higher-order languages which is alternative to the one
based on the abstract machines presented in chapter 8. A similar compilation chain has been
analyzed in [Chl10] which provides machine certified simulation proofs. A simpler compila-
tion chain arises if we bypass the CPS transformation. In this case, the function calls are
not necessarily tail-recursive and the target code can be described as C code with function
pointers (cf. exercises 275 and 277). An early analysis of the CPS transformation is in [Plo75].
The idea of value-naming transformation is associated with various formalizations of sharing,
see, e.g., [Lau93]. Closure conversion arises naturally when trying to define the interpreter
of a higher-order language in the language itself, see, e.g., [Rey98]. Hoisting appears to be
folklore.

140 Program transformations

Chapter 15

Typing the program
transformations

We describe a typing of the compilation chain described in chapter 14. Specifically, each
λ-calculus of the compilation chain is equipped with a type system which enjoys subject
reduction: if a term has a type then all terms to which it reduces have the same type. Then
the compilation functions are extended to types and are shown to be type preserving: if a
term has a type then its compilation has the corresponding compiled type.

The two main steps in typing the compilation chain concern the CPS and the closure
conversion transformations. The typing of the CPS transformation has already been sketched
in chapter 14 where it has served as a guideline. A basic idea is to type the continuation/the
evaluation context of a term of type A with its negated type ¬A = (A → R), where R
is traditionally taken as the type of ‘results’. In typing closure conversion, one relies on
existential types (cf. chapter 13) to hide the details of the representation of the ‘environment’
of a function, i.e., the tuple of variables occurring free in its body. Thus, to type the (abstract)
assembly code coming from the compilation of propositionally typed programs, we need to
go beyond propositional types.

To represent types we shall follow the notation introduced starting from chapter 10. In
particular, we denote with tid the syntactic category of type variables with generic elements
t, s, . . . and with A the syntactic category of types with generic elements A,B, . . . We write
x∗ : A∗ for a possibly empty sequence x1 : A1, . . . , xn : An, and Γ, x∗ : A∗ for the context
resulting from Γ by adding the sequence x∗ : A∗. Hence the variables in x∗ must not be in
the domain of Γ. If A is a type, we write ftv(A) for the set of type variables occurring free in
it and, by extension, if Γ is a type context then ftv(Γ) is the union of the sets ftv(A) where
A is a type in the codomain of Γ. A typing judgment is typically written as Γ `M : A where
M is some term. We shall write Γ ` M∗ : A∗ for Γ ` M1 : A1, . . . ,Γ ` Mn : An. Similar
conventions apply if we replace the symbol ‘∗′ with the symbol ‘+′ except that in this case
the sequence is assumed not-empty. A type transformation, say T , is lifted to type contexts
by defining T (x1 : A1, . . . xn : An) = x1 : T (A1), . . . , xn : T (An). Whenever we write:

if Γ `S1 M : A then T (Γ) `S2 T (M) : T (A)

what we actually mean is that if the judgment in the hypothesis is derivable in a certain ‘type
system S1’ then the transformed judgment in derivable in the ‘type system S2’. Proofs are
standard and are left as exercises.

141

142 Typing the transformations

Syntax types

A ::= tid || A+ → A || ×(A∗) (types)

Typing rules

x : A ∈ Γ

Γ ` x : A

Γ, x : A ` N : B
Γ `M : A

Γ ` let x = M in N : B

Γ, x+ : A+ `M : B

Γ ` λx+.M : A+ → B

Γ `M : A+ → B
Γ ` N+ : A+

Γ ` @(M,N+) : B

Γ `M∗ : A∗

Γ ` (M∗) : ×(A∗)

Γ `M : ×(A1, . . . , An) 1 ≤ i ≤ n
Γ ` πi(M) : Ai

Restricted syntax CPS types, R type of results

A ::= tid || A+ → R || ×(A∗) (CPS types)

CPS type compilation

Ccps(t) = t
Ccps(×(A∗)) = ×(Ccps(A)∗)
Ccps(A+ → B) = (Ccps(A))+,¬Ccps(B)→ R

where: ¬A ≡ (A→ R)

Table 15.1: Type system for λ and λcps

15.1 Typing the CPS form

Table 15.1 describes the typing rules for the polyadic, call-by-value, λ-calculus defined in
Table 14.1. These rules are a slight generalization of those studied in chapter 10 and they
are preserved by reduction. The typing rules described in Table 15.1 apply to the CPS λ-
calculus too. Table 15.1 describes the restricted syntax of the CPS types and the CPS type
transformation. Then the CPS term transformation defined in Table 14.2 preserves typing in
the following sense.

Proposition 278 (type CPS) If Γ `M : A then Ccps(Γ), halt : ¬Ccps(A) ` Ccps(M) : R.

15.2 Typing value-named closures

Table 15.2 describes the typing rules for the value named calculi with functional, product, and
existential types. Notice that for the sake of brevity, we shall omit the type of a term since
this type is always the type of results R and write Γ `vn M rather than Γ `vn M : R. The
first five typing rules are just a specialization of the corresponding rules in Table 15.1, while
the last two rules allow for the introduction and elimination of existential types. The need for
existential types will be motivated next. For the time being, let us notice that in the proposed

Typing the transformations 143

formalization we rely on the tuple constructor to introduce an existential type and the first
projection to eliminate it. This has the advantage of leaving unchanged the syntax and the
reduction rules of the value named λ-calculus. An alternative presentation (cf. chapter 13)
consists in introducing specific operators to introduce and eliminate existential types denoted
with pack and unpack, respectively. Then one can read (x) as pack(x) and π1(x) as unpack(x)
when x has an existential type. Notice that the rewriting rule which allows to unpack a packed
value is just a special case of the rule for projection. As in the previous system, typing is
preserved by reduction.

Proposition 279 (subject reduction, value named) If M is a term of the λcps,vn-calculus,
Γ `vn M and M → N then Γ `vn N .

Turning to the transformation from CPS to value named CPS form specified in Table 14.4
we notice that it affects the terms but not the types. Therefore we have the following property.

Proposition 280 (type value named) If M is a term of the λcps-calculus and Γ `M : R
then Γ `vn Cvn(M).

Next we discuss the typing of closure conversion via existential types (Table 15.2). We
recall that in closure conversion a function, say λx.M with free variables z1, . . . , zn, becomes
a pair (here we ignore the details of the CPS, value named form):

(λe, x.let (z1, . . . , zn) = e in C(M), (z1, . . . , zn)) (15.1)

whose first component is the function itself, which is closed by taking the environment e as
an additional argument, and the second component is a tuple containg the values of the free
variables. Now consider the functions identity and successor on the natural numbers coded
as follows:

λx.x , let y = 1 in λx.x+ y , (15.2)

with a type, say, N → N. After closure conversion, we obtain the following pairs with the
respective different types:

(λe, x.let () = e in x, ()) : ((1×N)→ N)× 1
(λe, x.let (y) = e in x+ y, (y)) : ((N×N)→ N)×N .

Then take a function such as F : (N→ N)→ N which can operate both on the identity and
the successor function. This is no longer possible after closure conversion if we stick to the
typing outlined above. We can address this issue by abstracting the types of the identity and
successor functions after closure conversion into the following existential type:

∃t.((t×N)→ N)× t . (15.3)

To summarize, an environment is a tuple whose size depends on the number of variables
occurring free in the function. This information should be abstracted in the type; otherwise,
we cannot type functions operating on arguments with environments of different size.

In order to respect our conventions on the introduction and elimination of existential types,
the closure conversion transformation is slightly modified in the way described in Table 15.3.
This modified closure conversion still enjoys the simulation properties stated in proposition
274 and moreover it preserves typing as follows.

144 Typing the transformations

Syntax types

A ::= tid || (A+ → R) || ×(A∗) || ∃tid .A

Typing rules

Γ, x+ : A+ `vn M
Γ `vn λx+.M : A+ → R

x : A+ → R, y+ : A+ ∈ Γ

Γ `vn @(x, y+)

x∗ : A∗ ∈ Γ

Γ `vn (x∗) : ×(A∗)

y : ×(A1, . . . , An) ∈ Γ 1 ≤ i ≤ n
Γ, x : Ai `vn M

Γ `vn let x = πi(y) in M

Γ `vn V : A Γ, x : A `vn M
Γ `vn let x = V in M

x : [B/t]A ∈ Γ

Γ `vn (x) : ∃t.A
y : ∃t.A ∈ Γ Γ, x : A `vn M t /∈ ftv(Γ)

Γ `vn let x = π1(y) in M

Closure conversion type compilation

Ccc(t) = t
Ccc(×(A∗)) = ×(Ccc(A)∗)
Ccc(A+ → R) = ∃t.× ((t, Ccc(A)+ → R), t)
Ccc(∃t.A) = ∃t.Ccc(A)

Table 15.2: Type system for the value named calculi and closure conversion

Ccc(@(x, y+)) =
let x = π1(x) in (← existential elimination)
let (c, e) = x in @(c, e, y+)

Ccc(let x = C in M) =

let c = λe, x+.let (z1, . . . , zk) = e in Ccc(N) in
let e = (z1, . . . , zk) in
let x = (c, e) in
let x = (x) in (← existential introduction)
Ccc(M) (if C = λx+.N, fv(C) = {z1, . . . , zk})

Table 15.3: Modified closure conversion

Typing the transformations 145

Proposition 281 (type closure conversion) If M is a term in λcps,vn and Γ `vn M then
Ccc(Γ) `vn Ccc(M).

The last step in the compilation chain is the hoisting transformation. Similarly to the
transformation in value named form, the hoisting transformation affects the terms but not
the types.

Proposition 282 (type hoisting) If M is a term in λcps,vn , Γ `vn M , and M ; N then
Γ `vn N .

15.3 Typing the compiled code

We can now extend the compilation function to types by defining:

C(A) = Ccc(Ccps(A))

and by composing the previous results we derive the following type preservation property of
the compilation function.

Proposition 283 (type preserving compilation) If M is a term of the λ-calculus and
Γ `M : A then:

C(Γ), halt : ∃t.× (t, C(A)→ R, t) `vn C(M) .

Remark 284 The ‘halt’ variable introduced by the CPS transformation can occur only in a
subterm of the shape @(halt , x) in the intermediate code prior to closure conversion. Then
in the closure conversion transformation, we can set Ccc(@(halt , x)) = @(halt , x), and give to
‘halt ′ a functional rather than an existential type. With this proviso, theorem 283 above can
be restated as follows:

If M is a term of the λ-calculus and Γ `M : A then C(Γ), halt : ¬C(A) `vn C(M).

Example 285 (typing the compiled code) We consider again the compilation of the term
λx.y (cf. example 273) which can be typed, e.g., as follows:

y : t1 ` λx.y : (t2 → t1) .

Its CPS transformation is then typed as:

y : t1, halt : ¬Ccps(t2 → t1) ` @(halt , λx, k.@(k, y)) : R .

The value named transformation does not affect the types:

y : t1, halt : ¬Ccps(t2 → t1) `vn let z1 = λx, k.@(k, y) in @(halt , z1) .

After closure conversion we obtain the following term M :

let c = λe, x, k.let y = π1(e), k = π1(k), c = π1(k), e = π2(k) in @(c, e, y) in
let e = (y), z1 = (c, e), z1 = (z1), halt = π1(halt), c = π1(halt), e = π2(halt) in
@(c, e, z1) ,

146 Typing the transformations

which is typed as follows:

y : t1, halt : ∃t.× (t, C(t2 → t1)→ R, t) `vn M .

In this case no further hoisting transformation applies. If we adopt the optimized compilation
strategy sketched in remark 284 then after closure conversion we obtain the following term
M ′:

let c = λe, x, k.let y = π1(e), k = π1(k), c = π1(k), e = π2(k) in @(c, e, y) in
let e = (y), z1 = (c, e), z1 = (z1), in
@(halt , z1)

which is typed as follows:

y : t1, halt : C(t2 → t1)→ R `vn M ′ .

15.4 Summary and references

We have typed the compilation chain presented in chapter 14 which goes from a higher-order
language to an abstract assembly code. The typing of the CPS transformation builds on the
double negation translations from classical to intuitionistic logic (see, e.g., [TvD88]). The
typing of closure conversion relies on existential types to hide the details of the representation
[MMH96]. The paper [MWCG99] shows that the typing can be extend to the impredicative
polymorphic types of system F (cf. chapter 13).

Chapter 16

Records, variants, and subtyping

Records and variants are common data types found in many programming languages which
allow to aggregate heterogeneous data. Record (variant) types provide a user-friendly alter-
native to product (sum) types where components can be manipulated by labels rather than
by projections (injections).

In this chapter, we start by discussing an extension of the call-by-value, type-free, λ-
calculus with records and a possible encoding of records. We then move on to consider a
typed version of the language. In order to gain in flexibility, we introduce a subtyping rule
for records and study the properties of the derived type system. We conclude by briefly
discussing how the approach with subtyping can be extended to variant types.

16.1 Records

A record is a notation to represent a function with a finite domain over a set of labels.
Formally, we defined labels as follows.

Definition 286 (labels) We denote with L a countable and totally ordered set of labels with
generic elements `, `′, . . .

We rely on the notation:

{`1 = V1, . . . , `n = Vn} , (16.1)

to denote the function that associates with the label `i the value Vi and which is undefined
otherwise. Whenever we write a record we assume that the labels are all distinct: `i 6= `j if
i 6= j. Given a record R, we write R.` for the selection of the value of R on the label `. If `
is not in the domain of definition of the record then we are in an erroneous situation and the
computation is stuck or alternatively an error message is produced.

Table 16.1 describes an extension of the type-free, call-by-value, λ-calculus with records.
In order to have a deterministic evaluation strategy, we assume that records are always written
with labels in growing order and that the evaluation follows this order.

We pause to notice that in principle records could be represented in the pure λ-calculus.
For instance, we could associate with each label a natural number and then associate with
it a Church numeral. Suppose: (i) ` denotes the Church numeral that corresponds to the
label `, (ii) E is a λ-term that decides the equality of two Church numerals (cf. exercise 248),
(iii) C is the λ-term that represents the conditional, (iv) F is a special λ-term to represent

147

148 Subtyping

failure, and (v) we write let x1 = M1, . . . , xn = Mn in N for (λx1, . . . , xn.N)M1 · · ·Mn. Then
we could compile the call-by-value λ-calculus with records into the call-by-value λ-calculus as
follows (simple cases omitted):

C({`1 = M1, . . . , `n = Mn}) = let x1 = C(M1), . . . , xn = C(Mn) in
λl.C(E l `1) x1(· · · (C(E l `n) xn F) · · ·)

C(M.`) = let x = C(M) in (x `) .

Thus a record is compiled into a function taking a label as input and then performing a
sequence of conditionals. Selecting a record’s label just amounts to apply the compilation of
the record to the encoding of the label.

16.2 Subtyping

Next we turn to the issue of typing the extension of the λ-calculus with records. We take
as starting point the type system in Table 10.1 that assigns simple types to λ-terms whose
λ-abstractions are decorated with types (Church style). We extend the syntax of types by
introducing a notion of record type which is a notation for representing a finite function from
labels to types:

A ::= tid || (A→ A) || {` : A, . . . , ` : A} (types).

And then we add two typing rules to introduce and eliminate record types.

Γ `Mi : Ai i = 1, . . . , n

Γ ` {`1 = M1, . . . , `n = Mn} : {`1 : A1, . . . , `n : An}
Γ `M : {`1 : A1, . . . , `n : An}

Γ `M.`i : Ai
.

The extended type system still has the property that in a given type context each λ-term has
at most one type. However, consider the record types:

A = {`1 : A1, `2 : A2} , B = {`1 : A1} .

If we have a value of type A then we could use it in any context that waits for a value of type
B. This simple remark pleads for the introduction of a subtyping relation A ≤ B. Table 16.2
describes a possible definition of the subtyping relation for records and functional types.

Syntax

M ::= id || λid .M ||MM || {` = M, . . . , ` = M} ||M.` (λ-terms)
V ::= λid .M || {` = V, . . . , ` = V } (values)

Call-by-value evaluation contexts and reduction rules

E ::= [] || EM || V E || {(` = V)∗, ` = E, (` = V)∗} || E.`

(λx.M)V → [V/x]M
{. . . , ` = V, . . .}.` → V

Table 16.1: Type-free, call-by-value, λ-calculus with records

Subtyping 149

t ≤ t
A′ ≤ A B ≤ B′
A→ B ≤ A′ → B′

{`′1, . . . , `′m} ⊆ {`1, . . . , `n} A`′i ≤ B`′i i = 1, . . . ,m

{`1 : A`1 , . . . , `n : A`n} ≤ {`′1 : B`′1 , . . . , `
′
m : B`′m}

Table 16.2: Subtyping rules for records

We write ` A ≤ B if the assertion A ≤ B can be derived according to the rules in Table
16.2. There are a couple of intriguing points in the definition of the rules. First, notice that
the rule for functional types is anti-monotonic in the first argument. To get an intuition,
suppose we can use natural numbers where integers are expected: N ≤ Z. Then a function
f of type Z → N can also be used whenever a function of type N → Z is expected. Indeed,
f will be able to handle any natural number since it is built to work on integers and it will
return an integer since it is expected to return a natural number. On the other hand, if g has
type N → N then it cannot be used where a function of type Z → Z is expected as g may
fail to handle a negative integer. Second, the rules are completely syntax directed: for each
pair of types there is at most one rule that applies and in this case there is only one way to
apply it. We have the following properties.

Proposition 287 The subtyping relation defined in Table 16.2 enjoys the following proper-
ties:

1. It is reflexive and transitive.

2. If ` A ≤ B then there is a coercion λ-term CA,B such that ` CA,B : A→ B.

Proof. (1) Reflexivity follows by induction on the structure of the type A. For transitivity,
we build a proof of B ≤ C by induction on the height of the proofs of A ≤ B and B ≤ C and
case analysis on the last rules applied. For instance, suppose we have:

B′ ≤ A′ A′′ ≤ B′′
A′ → A′′ ≤ B′ → B′′

C ′ ≤ B′ B′′ ≤ C ′′
B′ → B′′ ≤ C ′ → C ′′

.

Then by inductive hypothesis we can prove C ′ ≤ A′ and A′′ ≤ C ′′ and we conclude as follows:

C ′ ≤ A′ A′′ ≤ C ′′
A′ → A′′ ≤ C ′ → C ′′

.

(2) We proceed by induction on the proof of A ≤ B. For the basic case, take the identity.

For the functional case, take:

CA′→A′′,B′→B′′ = λf : A′ → A′′.λx : B′.cA′′,B′′(f(cB′,A′x)) .

For the record case, assume:

A = {`1 : A`1 , . . . , `n : A`n} , B = {`′1 : B`′1 , . . . , `
′
m : B`′m} ,

150 Subtyping

and the conditions specified in Table 16.2 are satisfied. Then define:

CA,B = λx : A.{`′1 = CA`′1
,B`′1

(x.`′1), . . . , `′m = CA`′m ,B`′m
(x.`′m)} .

2

Proposition 287 above guarantees that the subtyping relation defined by the rules in Table
16.2 is indeed a pre-order and moreover that whenever A is a subtype of B we can build a
well-typed λ-term of type A→ B that gives us a canonical way to transform a λ-term of type
A into a λ-term of type B.

Next we discuss the integration of the subtying rule to the type system for the λ-calculus
with records. One possibility would be to add the following typing rule while leaving all the
other typing rules unchanged:

Γ `M : A ` A ≤ B
Γ `M : B

. (16.2)

The problem with this approach is that typing is no more directed by the syntax of the λ-term
(we had a similar problem with the rules (∀I) and (∀E) in Table 12.1). However, one can
remark that the only situation where types need to be matched arises in the application of a
λ-term to another one. Hence, we integrate subtyping to the rule for application as follows:

Γ `M : A→ B Γ ` N : A′ ` A′ ≤ A
Γ `MN : B

. (16.3)

Notice that the resulting system maintains the property that each λ-term has at most one
type. Let us write Γ `≤ M : A for a judgment derivable in the resulting type system and let
us write Γ `s≤ M : A for a judgment derivable in the ordinary type system extended with the
subtyping rule (16.2). Then we have the following proposition.

Proposition 288 The following properties hold:

1. If Γ `≤ M : A then Γ `s≤ M : A.

2. If Γ `s≤ M : A then there is a type B such that Γ `≤ M : B and ` B ≤ A.

Proof. (1) Rule (16.3) can be derived from the rule (16.2) and the ordinary rule to type
application.

(2) We proceed by induction on the derivation of Γ `s≤ M : A. We consider some significant
cases.

• Suppose we derive Γ `s≤ M : A from Γ `s≤ M : A′ and ` A′ ≤ A. Then by inductive
hypothesis, we can derive Γ `≤ M : B and ` B ≤ A′. And by transitivity of subtyping
(proposition 287), we conclude ` B ≤ A.

• Suppose we derive Γ `s≤ MN : A from Γ `s≤ M : A′ → A and Γ `s≤ N : A′. Then
by inductive hypothesis, we can derive Γ `≤ M : B1, ` B1 ≤ A′ → A, Γ `≤ N : B2,
and ` B2 ≤ A′. Then we must have B1 ≡ B′1 → B′′1 , ` A′ ≤ B′1, and B′′1 ≤ A. By
transitivity, ` B2 ≤ B′1. Therefore we can derive: Γ `≤ MN : B′′1 and B′′1 ≤ A.

Subtyping 151

• Suppose we derive Γ `s≤ λx : A.M : A→ A′ from Γ, x : A `s≤ M : A′. Then by inductive
hypothesis, we can derive Γ, x : A `s≤ M : B and ` B ≤ A′. Hence Γ `s≤ λx : A.M :
A→ B and ` A→ B ≤ A→ A′. 2

Thus the syntax-directed system assigns to a typable λ-term the least type among the
types assignable to the λ-term in the more liberal system where the subtyping rule can be
freely applied. The statement of the subject reduction property in the syntax-directed system
requires some care because the type of a λ-term may grow after reduction. For instance,
consider the reduction:

M ≡ (λx : {`1 : A1}.x){`1 = V1, `2 = V2} → {`1 = V1, `2 = V2} ≡ N .

Then we may have ∅ `≤ M : {`1 : A1} and ∅ `≤ N : {`1 : A1, `2 : A2}.

Proposition 289 If Γ `≤ M : A and M → N then for some type B, Γ `≤ N : B and
` B ≤ A.

Proof. As a preliminary remark, we show that if Γ, x : A `≤ M : B, Γ `≤ N : A′, and
` A′ ≤ A then Γ `≤ [N/x]M : B′ and ` B′ ≤ B. The preliminary remark is applied
in the analysis of a β-reduction. Suppose Γ `≤ (λx : A.M)N : B. Then we must have
Γ, x : A `≤ M : B, Γ `≤ N : A′, and ` A′ ≤ A. Thus Γ `≤ [N/x]M : B′ and ` B′ ≤ B. 2

The extension of the system with subtyping still guarantees that a well-typed program
cannot go wrong. In particular, it is not possible to select a label ` in a record where the
label is not defined.

Proposition 290 Suppose ∅ `≤ M : A then either M is a value or M → N .

Proof. By induction on the structure of M . Suppose M is not a value. It cannot be a
variable because the type context is empty.

If M ≡ M1M2 then we must have ∅ `≤ M1 : A → B, ∅ `≤ M2 : A′ and ` A′ ≤ A.
By inductive hypothesis, if M1 or M2 are not values then they reduce and so M1M2 reduces
too. On the other hand, if M1 and M2 are both values then M1 must be a λ-abstraction and
therefore M reduces.

If M ≡ M ′.` then we must have ∅ `≤ M ′ : {. . . ` : A . . .}. By inductive hypothesis, if M ′

is not a value then it reduces and so M reduces too. On the other hand, if M ′ is a value then
it must be a record defined on the label ` and therefore M reduces. 2

16.3 Variants

Variants are data structures dual to records just as sums are dual to products. As such, the
subtyping theory developed for records can be easily adapted to variants. As for records, we
start with a set of labels (cf. definition 286). Then a variant is a notation to represent an
element of a finite disjoint sum indexed over labels. A variant value is a λ-term of the shape
[` = V] and the reduction rule for variants is:

case`1,...,`n [` = V]V1 . . . Vn → ViV if ` = `i . (16.4)

To have a deterministic rule, we assume the labels `1, . . . , `n are distinct.

152 Subtyping

We denote a variant type with the notation:

[`1 : A1, . . . , `n : An] . (16.5)

The typing rules for introducing and eliminating variants are as follows:

Γ `M : Ai i ∈ {1, . . . , n}
Γ ` [`i = M] : [`1 : A1, . . . , `n : An]

Γ `M : [`1 : A1, . . . , `n : An] Γ `Mi : Ai → C i = 1, . . . , n

Γ ` case`1,...,`nMM1 . . .Mn : C
.

Notice that we explicitly label the case constructor The subtyping rule for variants is similar
to the one for records but upside down:

{`1, . . . , `n} ⊆ {`′1, . . . , `′m} A`i ≤ B`i i = 1, . . . , n

[`1 : A`1 , . . . , `n : A`n] ≤ [`′1 : B`′1 , . . . , `
′
m : B`′m]

. (16.6)

We leave it as an exercise to adapt the propositions 287, 288, 289, and 290 to variants
and to prove them.

16.4 Summary and references

Records and variants are a user-friendly version of products and disjoint unions. The intro-
duction of record and variant types suggests a notion of subtyping with the following intuition:
if A is a subtype of B then we should be able to use a value of type A whenever a value of type
B is expected. We have shown that the subtyping rule can be added to the type system in
such a way that typing is still syntax-directed and a typable λ-term is assigned the least type
with respect to the sub-typing pre-order. The paper [Car88] is an early reference on the for-
malization of subtyping and its semantics. Elaborations can be found, e.g., in [Mit88, AC93].
The book [Pie02] contains several chapters dedicated to subtyping.

Chapter 17

References

In chapter 1, we have considered an elementary imperative programming language whose
programs can be understood as sequences of commands acting on a global state. In that
context, the state was regarded as an abstraction of the notion of computer memory and was
simply modeled as a function from identifiers to (basic) values.

In this chapter, we reconsider the notion of imperative programming. We replace the state
mentioned above with a notion of heap. A heap can also be regarded as an abstraction of
the notion of computer memory and it is modeled as a function from references to (possibly
complex) values. In turn, references can be regarded as an abstraction of the notion of memory
address. References are first-class values. The value associated with a reference can be read
and modified. Moreover, during the computation, it is possible to generate new references
and associate values with them.

We formalize a higher-order functional language with references which is inspired by the
languages of the ML-family. Technically, we introduce the reduction rules of a type-free, call-
by-value, λ-calculus with references extended with operations to generate, read, and write
references. We then discuss a possible compilation of the λ-calculus with ‘side effects’ on
the heap into an ordinary λ-calculus. The compilation turns each expression into a function
that takes a heap as an argument and returns a pair composed of a new heap and a value.
We conclude the chapter by introducing a propositional type system for the λ-calculus with
references which enjoys a subject-reduction property and by discussing some typing anomalies
which arise with references.

17.1 References and heaps

References can be regarded as an abstraction of memory addresses and a heap as an abstrac-
tion of a computer memory.

Definition 291 (references) We denote with R a countable set of references with generic
elements r, r′, . . . We assume R is equipped with a function N : Pfin(R) → R such that for
all X, finite subset of R, we have N (X) /∈ X.

Definition 292 (heap) A heap h is a function over the set of references R whose domain
of definition is finite.

153

154 References

Syntax

M ::= id || λid .M ||MM || r || ref M ||!M ||M := M || ∗ (λ-terms)
V ::= λid .M || r || ∗ (values)

Call by value evaluation contexts and Reduction rules

E ::= [] || EM || V E || refE ||!E || E := M || V := E

(E[(λx.M)V], h) → ([V/x]M,h)
(E[ref V], h) → (E[r], h[V/r]) if r = N (dom(h))
(E[!r], h) → (E[h(r)], h) if r ∈ dom(h)
(E[r := V], h) → (E[∗], h[V/r]) if r ∈ dom(h)

Table 17.1: A call-by-value λ-calculus with references

We manipulate heaps using the standard notation for functions. Thus if h is a heap, then
dom(h) is its domain of definition, h(r) its image at r, and h[v/r] is an ‘updated’ heap defined
as follows:

h[v/r](r′) =

{
h(r) if r = r′

v otherwise.

Notice that we make no assumption on the nature of the values in a heap and that in particular
a value can be a reference. In Table 17.1, we introduce an extension of the type-free call-by-
value λ-calculus with a notation closely related to the one found in the programming languages
of the ML family: ref M allocates a new reference which is associated with the value of M , !M
reads the value associated with the reference resulting from the evaluation of M , and M := N
writes in the reference resulting from the evaluation of M the value of N . We also introduce a
constant ∗ which is used as the value resulting from the evaluation of an assignment M := N .
Ordinary programs are closed λ-terms where references do not occur. However this property
is not preserved by reduction and for this reason we include references among the λ-terms
and the values of the language. We rely on the following standard abbreviations:

let x = M in N = (λx.M)N
M ;N = (λx.N)M x /∈ fv(N) .

References and heaps can be simulated in the pure λ-calculus. As for records’ labels (cf.
chapter 16), we can use Church numerals to represent references. The operator N can be
implemented by computing the successor of the largest numeral in the set. A heap can then
be represented as a list of pairs composed of a reference and a value. Computing the domain
of a heap amounts to iterate the first projection on the list. Reading a reference r in the heap
means scanning the list till a pair (r, V) is found and updating a reference means building a
new heap where the value corresponding to the reference is suitably modified. Let us assume
λ-terms New to create a new reference, Ext to extend a heap with a new pair, Read to read a
reference, and Write to write a value in the heap. In Table 17.2, we describe the compilation
of the the λ-calculus with references into a λ-calculus with pairing. We also use the following
abbreviation for projections:

let (x, y) = M in N ≡ let z = M, x = π1z, y = π2 z in N .

References 155

C(x) = λh.(h, x)
C(λx.M) = λh.(h, λx.C(M))
C(r) = λh.(h, r)
C(∗) = λh.(h, ∗)
C(MN) = λh.let (h′, x) = C(M)h, (h′′, y) = C(N)h′ in (xy)h′′

C(refM) = λh.let (h′, x) = C(M)h, r = (New h′) in (Ext h′rx, r)
C(!M) = λh.let (h′, r) = C(M)h in (h′,Read h′r)
C(M := N) = λh.let (h′, r) = C(M)h, (h′′, x) = C(N)h′ in (Write h′′rx, ∗)

Table 17.2: Simulating the heap in a functional language

x : A ∈ Γ

Γ; Σ ` x : A

r : A ∈ Σ

Γ; Σ ` r : Ref A

Γ, x : A; Σ `M : B

Γ; Σ ` λx : A.M : A→ B

Γ; Σ `M : A→ B Γ; Σ ` N : A

Γ; Σ `MN : B

Γ; Σ ` ∗ : 1

Γ; Σ `M : A

Γ; Σ ` ref M : Ref A

Γ; Σ `M : Ref A

Γ; Σ `!M : A

Γ; Σ `M : Ref A Γ; Σ ` N : A

Γ; Σ `M := N : 1

Table 17.3: Typing rules for the λ-calculus with references

We denote with r the Church numeral which corresponds to the reference r. A λ-term M of
the λ-calculus with references is compiled into a function which takes a heap h as an argument
and returns a pair composed of the heap h modified according to the side-effects of M and a
value which corresponds to the outcome of the computation of M . There is some similarity
between records (cf. chapter 16) and heaps in that a record is a finite function defined on a
set of labels and a heap is a finite function defined on a set of references. However, references,
unlike labels, can be generated during the computation, are treated as first class-values, and
the value associated with a reference can be updated.

17.2 Typing

We consider the problem of extending the propositional type system discussed in chapter 10,
Table 10.1, to the λ-calculus with references. To type the value ∗ we introduce a basic type
1 whose only value is ∗. Moreover, we introduce a new type constructor Ref. A value of type
Ref A is a reference which can contain values of type A. In order to type a λ-term we have
to make hypotheses on the type of its free variables and of the references that occur in it.
Consequently, we introduce a notion of heap context Σ of the shape r1 : A1, . . . , rn : An. If
r : A ∈ Σ then the reference r is associated with values of type A. Table 17.3 gives the type
system for λ-terms.

Besides λ-terms we need to type heaps too. Consider the λ-term without references:

let x = ref (λz : A.z) in let y = ref (λz : A.!xz) in x := λz : A.!yz . (17.1)

156 References

By reducing it, we can produce the following heap: h0 = [λx : A.(!r2)x/r1, λx : A.(!r1)x/r2].
Notice that the values associated with r1 and r2 depend on r2 and r1 respectively. Thus to
type a heap we have to find a heap context which assigns a type to all the references of the
heap which is coherent with the type of the values associated with the references. Also we
require that all the references in the values of the heap belong to the domain of definition of
the heap. This leads to the following rule for typing a heap with respect to a heap context:

dom(Σ) = dom(h) ∅; Σ ` h(r) : A for r ∈ dom(h)

Σ ` h . (17.2)

We write Γ; Σ ` (M,h) : A if Γ; Σ `M : A and Σ ` h.

Example 293 The heap h0 produced by the λ-term (17.1) above can be typed in the heap
context: Σ = r1 : A→ A, r2 : A→ A.

Proposition 294 The typing system enjoys the following properties:

1. If Γ, x : A; Σ `M : B is derivable and x /∈ fv(M) then Γ; Σ `M : B is derivable.

2. If Γ, x : A; Σ ` M : B and Γ; Σ ` V : A are derivable then Γ; Σ ` [V/x]M : B is
derivable.

Proof. By induction on the proof height. 2

We now discuss the way typing is preserved by reduction. Notice that during reduction
the domain of definition of the heap can grow since the operator ref may dynamically generate
new references. Hence we also need to extend the heap context. We write Σ′ ⊇ Σ if Σ′ is an
extension of Σ. We notice the following weakening property of the heap context.

Proposition 295 If Γ; Σ `M : A is derivable and Σ′ ⊇ Σ then Γ; Σ′ `M : A is derivable.

Then we can state the following subject reduction property (proof left to the reader).

Proposition 296 If Γ; Σ ` (M,h) : A and (M,h)→ (M ′, h′) then there is Σ′ ⊇ Σ such that
Γ; Σ′ ` (M ′, h′) : A.

Exercise 297 Suppose we have ‘abstract types’ R and H and that we can assign the following
types to the heap-manipulating functions, where A can be any type:

New : H → R , Ext : H → R→ A→ H ,
Read : H → R→ A , Write : H → R→ A→ H .

For every propositional type A and type context Γ define a type translation A and context
translation Γ, and show that the compilation function in Table 17.2 is type preserving in the
sense that if Γ; ∅ `M : A according to the rules in Table 17.3 then Γ ` C(M) : H → H ×A.

References 157

17.3 Typing anomalies

As suggested by the λ-term (17.1) above, simply typed λ-terms with references can produce
circular heaps. In fact it is possible to use references to define general recursive functions.
First, let us consider a minimal example of typable and looping computation. Set:

M1 ≡ ref (λx : 1.x) , M2 ≡ let y = M1 in y := (λx : 1.(!y)x) ; (!y) .

Then ` M1 : Ref (1 → 1) and ` M2 : 1 → 1 and there is an infinite reduction starting with
M2∗. We can generalize this idea to define a function f of type A → B which satisfies a
recursive equation f = λx : A.M where M may depend on f . Let λx : A.N be any λ-term of
type A→ B. Then we set:

M1 ≡ ref (λx : A.N) , M2 ≡ let y = M1 in y := (λx : A.[!y/f]M) ; (!y) .

Initially, y is a reference containing a fake function. Then we replace the fake function with
the real function where each call to f is replaced by !y. Then y is a reference which contains
a value which refers to the reference y. This circularity allows to simulate recursion.

Another curious phenomenon arises when we try to mix references and subtyping. Namely,
from A ≤ B we cannot infer Ref A ≤ Ref B (or Ref A ≤ Ref B). The Ref type constructor is
neither monotonic nor anti-monotonic with respect to the subtyping pre-order. In practice,
this means that no proper subtyping is possible on reference types. To see this, suppose
A ≤ B where for instance:

A = {`1 : C, `2 : C} ≤ {`1 : C} = B .

Assume Ref is anti-monotonic and x : Ref B then we should also have x : Ref A and (!x.`2)
will produce an error. On the other hand, if Ref is monotonic and x : Ref A then we should
also have x : Ref B and x := {`1 = V }; !x.`2 will produce an error.

As a third and final typing anomaly, let us notice that the polymorphic generalization (cf.
chapter 12) of a reference may also lead to errors. For instance, consider:

let x = ref (λx.x) in x := (λx.x+ 1); (!x) true . (17.3)

ML-like languages avoid these problems by allowing polymorphic generalization only on val-
ues. For instance, the programming language ocaml accepts:

let x = (λx.x) in x∗;x true , (17.4)

but rejects the dangerous expression (17.3) above as well as the following innocuous one:

let x = (λy.(λx.x))2 in x∗;x true . (17.5)

In practice, most programs seem to meet this restriction.

17.4 Summary and references

Heaps can be regarded as an abstraction of computer memory. We have considered an exten-
sion of the λ-calculus with operations to extend, read, and modify the heap. Expressions in

158 References

this extended λ-calculus may have side effects and can be understood as functions that take
a heap and produce a new heap and a value.

References introduce the possibility to define recursive data structures and functions. This
power comes at a price in that the ideas developed in the purely functional setting cannot be
readily lifted to the λ-calculus with side effects. For instance, termination of typable programs
fails, no proper subtyping is possible on reference types, and polymorphic generalization is
unsound (but in practice it can be fixed [Wri95]).

One may argue that these failures are due to the fact that the usual type systems neglect
side effects completely. To address this issue, so called type and effect systems [LG88] have
been proposed. In these type systems references are abstracted into a finite set of regions
and types become dependent on such regions. In particular, an expression is now expected to
produce both an effect and a value (this is an abstraction of the idea mentioned above where
an expression with side effects is expected to produce a heap and a value). Type and effect
system have been applied to the design of static mechanisms for safe memory deallocation
[TT97]. It has also been shown that a stratified version of the system can guarantee the strong
normalization of the typable λ-terms [Bou10, Ama09].

Chapter 18

Object-oriented languages

The programming paradigms discussed so far are built on the notion of function. Indeed
term rewriting and the λ-calculus can be regarded as formalisms to define first-order and
higher-order functions, respectively and imperative programs can also be regarded as functions
operating over the heap. In this chapter, we discuss the situation for object-oriented programs.
We start with a minimalist object-oriented language which is type-free and without side-
effects. We then gradually enrich this language with side-effects and types to obtain a language
which corresponds to a (tiny) fragment of the Java programming language (of which the reader
is supposed to have a superficial knowledge). We refer to this language as untyped/typed
J. Along the way, we discuss the compilation of untyped J to an extension of the λ-calculus
with records, recursion, and, possibly, references. Thus objects can also be understood as
functions. However, typed object-oriented languages such as Java differ from languages of
the ML family in that they require some degree of type-checking at run time, i.e., type errors
at run-time are possible.

18.1 An object-oriented language

In first approximation, an object is a record (cf. chapter 16) whose labels are traditionally
partitioned into fields and methods. Usually, fields are mapped to (basic) values describing the
internal state of the object while methods are mapped to functions that allow to manipulate
this state. As in records, the ‘dot-notation’ is used to access fields and methods, e.g., if o is
an object and f a field then o.f is the value associated with the field f .

In object-oriented languages such as Java, the creation of objects follows certain patterns
known as class declarations. So objects are classified according to the class declaration that is
used at the moment of their creation. Class declarations are designed so that fields and meth-
ods are suitably initialized when the object is created. Unlike in the λ-calculus with records
of chapter 16, recursion is built into object-oriented languages. First, class declarations may
be mutually recursive, and second there is a special variable this (self is also used sometimes)
which allows to refer to the object itself within, say, the body of one of its methods. For
instance, an object o may consist of a field val which is mapped to an integer and a method
inc which is mapped to the function:

λx.this.val = this.val + x .

Then the effect of invoking o.inc is that of increasing by x the value contained in the val field

159

160 Objects

of the object o.

Class declarations

We reserve C,C ′, D, . . . for class names. Each class name corresponds to a distinct class
declaration. Usually, class declarations are built incrementally. At the very beginning, there
is a class Object without fields and methods. Then whenever we introduce a new class
declaration we say that it extends another class declaration. For instance, one can declare a
class C which extends the class D and includes a field f and a method m as follows:

class C extends D = { (class declaration)
· · ·C′ f · · · (field declarations)
· · ·D′ m (D1 x1, . . . ,Dn xn){ e } · · ·} (method declarations).

We are using here a notation based on Java where we specify the class C′ of the object in the
field f as well as the classes D1, . . . ,Dn of the objects x1, . . . , xn the (function associated with
the) method m is expecting as input and the class D′ of the object it returns as a result.

Expressions

The body of a method is an expression whose syntax is defined as follows:

e ::= id || (variable)
v || (value)
new C(e1, . . . , en) || (object generation)
e.f || (field read)
e.m(e1, . . . , en) || (method invocation)

e.f := e || (field write)
e; e || (sequentialization)

(C)(e) || (casting)

We have split the expressions in 3 groups. The first group is composed of (object) variables,
(object) values (to be defined next), an operator new to generate an object of the class C while
initializing its fields with the values of the expressions e1, . . . , en, and the selection operator
for fields and methods. As already mentioned, among the variables, we reserve the variable
this to refer to the object on which a method is invoked. The second group is optional and
corresponds to an imperative extension of the basic language where fields are modifiable, and
therefore the sequentialization of side effects is relevant. The third group is also optional and
consists of a casting operator. This operator is only relevant if we are interested in a type
system for the language. We anticipate that the role of such a type system is not to avoid
errors (cf. exercise 203) but to localize them in certain points of the computation.

Values

The definition of a value expression depends on whether we are considering the imperative
extension or not. In the imperative extension, we assume all fields are modifiable. To model
field assignment we proceed as in chapter 17. Namely, we assume an infinite set of references

Objects 161

R with elements r, r, . . . and define a heap h as a finite domain partial function mapping
references to values. In this case, a value v has the shape:

v ::= C(r1, . . . , rn) n ≥ 0 (values, imperative case), (18.1)

where C is a class name (the class of the object) and r1, . . . , rn ∈ R are references correspond-
ing to the modifiable fields of the object.

In the non-imperative, say, functional, case, fields are initialized when the object is created
and they are never modified. Then we can just regard values as the closed first-order terms
built over the signature of class names where the arity of a class names is the number of the
class fields:

v ::= C(v, . . . , v) (values, functional case). (18.2)

We pause to remark that to define the reduction rules of the language, it is convenient to
include values in the syntactic category of expressions, however values never appear in a source
program. Incidentally, in chapter 17, we took a similar approach by considering references as
values.

Well-formed programs

A program is composed of a list of class declarations and a distinguished expression where
the computation starts (in Java this distinguished expression would be the body of a main
method). The final value of the distinguished expression can be taken as the output of the
program. As for the input, we shall assume for simplicity that it is coded as part of the
distinguished expression.

As mentioned above, each class declaration extends another class declaration. This induces
a binary relation on class names. We denote with ≤ the reflexive and transitive closure of
this relation and we assume that if C ≤ D and D ≤ C then C = D. Under this hypothesis,
we can represent the subtyping relation as an inheritance tree having as root the Object class.

The feature of declaring a class by extending another one makes programs more com-
pact but requires some verification. A well-formed program must satisfy certain conditions
concerning fields and methods.

1. If C ≤ D then C inherits all the fields of D. It is required that there are no name
conflicts among the fields. Thus, by crossing the inheritance tree towards the root one
must not find two fields with the same name.

2. Also, if C ≤ D then C inherits all the methods of D. However, in this case C may
redefine (in the object-oriented jargon one says override) a method. A constraint that
only concerns the typed version of the language requires that the type of the method
does not change.

It is convenient to introduce a certain number of functions that will be used in formulating
the reduction rules and the typing rules.

• field(C) returns the list f1 : C1, . . . , fn : Cn of the fields accessible by an object of the
class C along with their expected classes. Upon generation, an object of the class C
must receive n arguments so as to initialize its fields. To avoid ambiguities, we assume
an enumeration of the field names and suppose the function field returns the fields in
growing order. In Java, the initialization of the fields is made explicit by defining a
constructor method in the class.

162 Objects

public class Bool extends Object {

public Object ite (Object x, Object y){return new Object();} }

public class True extends Bool{

public Object ite (Object x, Object y){return x;} }

public class False extends Bool{

public Object ite (Object x, Object y){return y;} }

public class Num extends Object {

public Bool iszero (){return new Bool();}

public Num pred(){return new Num();}

public Num succ(){return new Num();} }

public class NotZero extends Num{

public Num pd;

public NotZero(Num x){pd=x;}

public Bool iszero(){return new False();}

public Num pred(){return this.pd;}

public Num succ(){return new NotZero(this);} }

public class Zero extends Num{

public Bool iszero(){return new True();}

public Num pred(){return new Zero();}

public Num succ(){return new NotZero(this);} }

Table 18.1: Some class declarations in J (with Java syntax).

• mbody(m,C) returns the function that corresponds to the method m in the class C.
For instance, if mbody(m,C) = λx1, . . . , xn.e then x1, . . . , xn are the formal parameters
and e is the expression associated with the method, respectively.

• In the typed version of the language, it will also be useful to have a function mtype
such that mtype(m,C) returns the type of the method m of the class C and a predicate
override such that override(m,D,C∗ → C) holds if and only if mtype(m,D) is defined
and it coincides with C∗ → C.

Example 298 In Table 18.1, we consider a list of class declarations which allows to represent
boolean values and natural numbers in unary notation. The examples are written in the
slightly more verbose notation of the Java programming language. As already mentioned,
Java requires a constructor method to build an object in a class with fields. Moreover, Java
distinguishes between private and public declarations while in J all declarations are public.
These are really minor syntactic differences and therefore the typed version of the J language
can be regarded as a subset of Java. Notice that the proposed representation of the conditional
via the method ite is strict (both branches are evaluated); a more realistic fragment of Java
would include a non-strict conditional.

Exercise 299 (programming) With reference to the code in Table 18.1:

1. Enrich the classes for the booleans and natural numbers with a printing method which
prints (a representation of) the object on the standard output using Java’s printing
functions.

2. Enrich the classes for natural numbers with an isequal method that takes a number object
and checks whether it is equal to the one on which the method is invoked.

Objects 163

Call-by-value evaluation contexts

E ::= [] || new C(v∗, E, e∗) || E.f || E.m(e∗) || v.m(v∗, E, e∗) ||
(C)(E) || E.f := e || v.f := E || E; e

Reduction rules

r∗ distinct and {r∗} ∩ dom(h) = ∅
(E[new C(v∗)], h)→ (E[C(r∗)], h[v∗/r∗])

(object generation)

field(C) = f1 : C1, . . . , fn : Cn 1 ≤ i ≤ n
(E[C(r1, . . . , rn).fi], h)→ (E[h(ri)], h)

(field read)

mbody(m,C) = λx1, . . . , xn.e

(E[C(r∗).m(v1, . . . , vn)], h)→ (E[[v1/x1, . . . , vn/xn, C(r∗)/this]e], h)
(method invocation)

field(C) = f1 : C1, . . . , fn : Cn 1 ≤ i ≤ n
(E[C(r1, . . . , rn).fi := v], h)→ (E[Object()], h[v/ri])

(field write)

(E[v; e], h)→ (E[e], h)
(sequentialization)

C ≤ D
(E[(D)(C(r∗))], h)→ (E[C(r∗)], h)

(casting)

Table 18.2: Evaluation contexts and reduction rules for J

3. Define classes to represent lists of pairs of natural numbers (n1,m1) · · · (nk,mk), where
n1, . . . , nk are all distinct, along with methods to: (1) given n, read the number m
associated with it, (2) given n, replace the number associated with it with m, (3) extend
the list with a new pair (n,m), (4) given n, remove from the list the pair (n,m), (5)
print (a representation of) the list on the standard output.

Reduction rules

Table 18.2 introduces the syntactic category of evaluation contexts which correspond to a
call-by-value, left to right reduction strategy and the related reduction rules which are based
on judgments of the shape:

(e, h)→ (e′, h′) (reduction judgment, imperative). (18.3)

At the beginning of the computation we assume that the heap h is empty. Then the
reduction rules maintain the following invariant: for all reachable configurations (e, h), all the
references in e and all the references that appear in a value in the codomain of the heap h are
in the domain of definition of the heap (dom(h)). This guarantees that whenever we look for
a fresh reference it is enough to pick a reference which is not in the domain of definition of the
current heap. Notice that upon invocation of a method on an object, the object replaces the
reserved variable this in the body of the method. Also, the reduction rule for casting consists
of a form of run-time type-check: the computation of a casted object (D)(C(r∗)) may proceed
only if C ≤ D.

164 Objects

field(C) = f1 : C1, . . . , fn : Cn
E[new C(v1, . . . , vn)]→ E[C(v1, . . . , vn)]

(object generation)

field(C) = f1 : C1, . . . , fn : Cn 1 ≤ i ≤ n
E[C(v1, . . . , vn).fi]→ E[vi]

(field read)

mbody(m,C) = λx1, . . . , xn.e

E[C(v∗).m(v1, . . . , vn)]→ E[[v1/x1, . . . , vn/xn, C(v∗)/this]e]
(method invocation)

C ≤ D
E[(D)C(v∗)]→ E[C(v∗)]

(casting)

Table 18.3: Simplified reduction rules for the functional fragment of J

The specification of the functional fragment of J where fields are immutable can be sub-
stantially simplified. Values are now the closed first-order terms built over the signature of
class names (cf. grammar (18.2)). The evaluation contexts and the reduction rules for assign-
ment and sequentialization can be dropped. The remaining rules are based on a judgment of
the shape e→ e′ (we drop the heap) and are specified in Table 18.3.

18.2 Objects as records

We define an encoding of the functional, type free object-oriented language into a call-by-
value λ-calculus extended with records and a fixed point combinator Y (in turn, records and
the fixed point combinator could be encoded in the λ-calculus). As a first step, we assume
each class declaration is completely expanded so that we can associate with each class name
the list of its fields and its methods with the related bodies. So we have a system of class
declarations of the shape (class names are omitted when irrelevant):

class C {f1, . . . , fh,m1 = λx∗1.e1, . . . ,mk = λx∗k.ek} . (18.4)

The methods’ bodies ei may generate objects of other classes and may refer to the object
itself via the variable this. This entails that class generators are mutually recursive and the
variable this is defined via a fixed point combinator.

Following this intuition, we define a compilation function C. We suppose the class names
are enumerated as C1, . . . , Cm and we reserve a fresh variable c and the labels 1, . . . ,m. The
variable c will be defined recursively as a record with labels 1, . . . ,m such that the function
associated with the label i is the generator for the objects of the class Ci. On expressions
(which are not values or casted objects), the compilation function is simply defined as follows:

C(x) = x
C(new Ci(e1, . . . , en)) = (c.i) C(e1) · · · C(en) (c fresh variable)
C(e.f) = C(e).f
C(e.m(e1, . . . , en)) = (C(e).m) C(e1) · · · C(en) .

For each declaration of a class C of the shape (18.4), we define the λ-term NC where y1, . . . , yh

Objects 165

are fresh variables:

RC ≡ {f1 = y1, . . . , fh = yh,m1 = λx∗1.C(e1), . . . ,mk = λx∗k.C(ek)}
NC ≡ λy1, . . . , yh.Y (λthis.RC) .

(18.5)

Intuitively, NC is the generator for objects of the class C. The system of class declarations is
reduced to one fixed point equation:

C ≡ Y (λc.{1 = NC1 , . . . ,m = NCm}) . (18.6)

Finally, a program composed of m class declarations C1, . . . , Cm and an expression e is com-
piled into the λ-term:

let c = C in C(e) . (18.7)

As a concrete example, suppose the program P is composed of 2 class declarations Ci each
with a field fi and a method mi with body λxi.ei, i = 1, 2, and a main expression e. Then
we have:

NC1 ≡ λy1.Y (λthis.{f1 = y1, ,m1 = λx1.C(e1)})
NC2 ≡ λy2.Y (λthis.{f2 = y2, ,m2 = λx2.C(e2)})
C ≡ Y (λc.{1 = NC1 , 2 = NC2})
C(P) ≡ let c = C in C(e) .

Exercise 300 Extend this encoding to the language with mutable fields. In this case, it is
convenient to take as target language a call-by-value λ-calculus with records and references
(cf. chapter 17).

18.3 Typing

We design a type system for the full object-oriented language we have introduced. To this end,
we assume a type context Γ has the shape x1 : C1, . . . , xn : Cn and consider typing judgments
of the shape: Γ ` e : C. A general goal of a type system for an object-oriented language is
to guarantee that every invocation of a field or a method on an object is compatible with
the class to which the object belongs. Let us notice however that an incorrect application of
the casting (downcasting) may compromise this property. For instance, we could write the
expression:

(Bool)((new Object())).ite(new True(), new False())) .

To avoid this situation, we could consider the following rule:

Γ ` e : D D ≤ C
Γ ` (C)(e) : C

.

In this rule, we can cast an object of the class D as an object of the class C only if the class
D extends the class C. This is in agreement with the intuition that objects are records and
that an object of the class D can handle all the invocations addressed to an object of the
class C (cf. subtyping rules for records in chapter 16). However this rule is too constraining.
For instance, it does not allow the typing of the expression:

(Bool)((new True()).ite(new True(), new False())) ,

166 Objects

class C extends Object{

public void m(){return;}}

class D extends Object{

public void m(){return;}}

class Main{

public static void main (String[] args){

D d = new D();

C c = new C();

((C)((Object)(d))).m(); //this types, but rises an exception at run time.

((C)(d)).m(); //this does not type, but it is a reduced of the above!

return; }}

Table 18.4: Typing anomaly in Java

as the result of the method ite belongs to the class Object and Object 6≤ Bool. Then, in Java,
the rule for casting can be formulated as follows:

Γ ` e : D (C ≤ D or D ≤ C)

Γ ` (C)(e) : C
.

In other terms, the casting is forbidden if C and D are incomparable. However, this prop-
erty is not preserved by reduction! Let C,D be two incomparable classes and let e be an
expression of type C. Then the expression (D)((Object)(e)) is well typed, but it reduces to
the expression (D)(e) which is not. By climbing and descending the inheritance tree we can
connect incomparable classes. Table 18.4 gives a concrete example of this phenomenon in
Java.

Because preservation of typing by reduction is a desirable property, we formulate the
typing rule for casting as follows:

Γ ` e : D

Γ ` (C)(e) : C
.

At typing time, we do not try to verify that the value C ′(r∗) resulting form the evaluation of
the expression e is such that C ′ ≤ C. Instead, we delay this verification at running time. If
the condition is not satisfied then reduction is stuck (alternatively, an error message could be
produced).

Table 18.5 specifies the rules to type expressions that do not contain values (as source
programs do). An important point to notice is that the typing rules allow to use an object
of the class C where an object of the class D is expected as long as C is a sub-class of D.
This is a form of subtyping (cf. chapter 16). The rationale is that an object of the sub-class
C will be able to handle all the field and method invocations which could be performed on
an object of the super-class D. Indeed, objects of the class C have all fields of the class D
and may redefine methods of the class D provided their type is unchanged.

Beyond expressions, we also need to check the typing of the class declarations. Suppose a
method m of the class C has the shape:

C0 m(C1 x1, . . . , Cn xn){e} ,

and that the class C extends the class D. Then the following must hold:

Objects 167

x : C ∈ Γ

Γ ` x : C

field(C) = f1 : D1, . . . , fn : Dn
Γ ` ei : Ci, Ci ≤ Di, 1 ≤ i ≤ n

Γ ` new C(e1, . . . , en) : C

Γ ` e : C field(C) = f1 : C1, . . . , fn : Cn
Γ ` e.fi : Ci

Γ ` e : C mtype(m,C) = (C1, . . . , Cn)→ D
Γ ` ei : C′i C′i ≤ Ci 1 ≤ i ≤ n

Γ ` e.m(e1, . . . , en) : D

Γ ` e : D

Γ ` (C)(e) : C

Γ ` e : C field(C) = f1 : C1, . . . , fn : Cn
Γ ` e′ : Di Di ≤ Ci
Γ ` e.fi := e′ : Object

Γ ` e1 : C1 Γ ` e2 : C2

Γ ` e1; e2 : C2

Table 18.5: Typing rules for J program expressions

1. override(m,D, (C1, . . . , Cn)→ C0),

2. x1 : C1, . . . , xn : Cn, this : C ` e : C ′0 and C ′0 ≤ C0.

A class is well typed if all its methods are well typed in the sense above. Finally, a program
is well typed if all its classes are well typed and the distinguished expression is well typed
in the empty type context. For instance, the reader may check that we can type the class
declarations in example 298.

Exercise 301 (more programming) Design a compiler from the Imp language (cf. chap-
ter 1) to the typed J language. We outline a possible strategy.

1. Consider a restricted set of arithmetic expressions and boolean conditions that can be
easily coded in J. For instance, just work with natural numbers in unary notation and
a boolean condition that checks if a number is zero (cf. Table 18.1).

2. Represent variables as unary numbers and implement a state as a finite list of pairs
composed of a variable and a number. A state is compiled into an object of a class State
with methods to read, write, extend, and restrict (cf. exercise 298).

3. Define a class Code with subclasses Skip, Assignment, Conditional,. . . which correspond
to the various ways of composing statements in Imp. It is assumed that each object of
the class Code has a method execute that takes as argument an object of the class State.

4. For all programs P and states s of the Imp language define a compilation into a J
expression e = C(P).execute(C(s)) with the following properties: (1) if the expression e
evaluates to a value v then v is the representation of a state s′ such that (P, s) ⇓ s′. (2)
the evaluation of e never produces an exception or a type error,

As already mentioned, the task of the type system is to localize the type errors around
the application of the casting reduction rule. We formalize this property for the functional

168 Objects

case and leave it to the reader the extension to the imperative case. To formulate the subject
reduction, we add a rule to type (functional) values which is similar to the rule for the new:

field(C) = f1 : D1, . . . , fn : Dn

Γ ` vi : Ci, Ci ≤ Di, 1 ≤ i ≤ n
Γ ` C(v1, . . . , vn) : C

. (18.8)

In order to reason about a method selection we need a substitution property (cf. proposition
289).

Proposition 302 If x1 : C1, . . . , xn : Cn ` e : C, ∅ ` vi : Di, and ` Di ≤ Ci for i = 1, . . . , n
then ∅ ` [v1/x1, . . . , vn/xn]e : C ′ and ` C ′ ≤ C.

We also need to check the usual decomposition property (cf. proposition 154).

Proposition 303 Suppose ∅ ` e : C. Then either e is a value or there is a unique evaluation
context E and redex ∆ such that e ≡ E[∆], ∅ ` ∆ : D for some D. and ∆ has one of the
following shapes: ∆ ::= new C(v∗) || (D)C(v∗) || C(v∗).f || C(v∗).m(v′∗).

We also observe that it is always possible to replace an expression with another expression
with a smaller type.

Proposition 304 if ∅ ` E[e] : C, ∅ ` e : D, ∅ ` e′ : D′, and ` D′ ≤ D then ∅ ` E[e′] : C ′ for
some C ′ such that ` C ′ ≤ C.

We can then state the subject reduction property for the typed J language as follows.

Proposition 305 Given a well-typed functional program in J and a well-typed functional
expression ∅ ` e : C one of the following situations arises:

1. e is a value.

2. e→ e′, ∅ ` e′ : C ′, and ` C ′ ≤ C.

3. e ≡ E[(D)(C(v∗))] and 6` C ≤ D.

Proof. Suppose ∅ ` e : C and e is not a value. Then e has a unique decomposition as E[∆]
and ∅ ` ∆ : D (proposition 303). We proceed by case analysis on the typing of ∆ to show
that either the computation is stuck because of a casting error or it can be reduced to an
expression e′ such that ∅ ` e′ : D′ and we can then conclude by proposition 304. Proposition
302 is needed to handle the case of a method selection. 2

18.4 Summary and references

An object is basically a record and object-oriented languages introduce user friendly mecha-
nisms to define mutually recursive records. Depending on whether fields are modifiable one
can distinguish between functional and imperative object-oriented languages (which are those
mainly used in practice). In typed object-oriented languages, the introduction of a casting op-
erator is necessary in order to have some programming flexibility. In this setting, the goal of a
type system is not to avoid typing errors but to localize them around the usage of the casting
operator. The formalization presented in this chapter builds on the paper [IPW01]. The book
[Mit03] introduces the main design issues in object-oriented programming languages.

Chapter 19

Introduction to concurrency

In computer science, we are used to the idea of regarding a piece of software and/or hardware
as a system, i.e., a compound of interacting and interdependent components with varying
names such as threads or processes that we use as synonymous.

Starting from this chapter, the general goal is to formalize and reason on systems where
several threads/processes compete for the same resources (e.g. write a variable or a channel).
Most of the time, this results into non-deterministic behavior which means that with the same
input the system can move to several (incomparable) states. For instance, the computation
of a circuit may be non-deterministic due to the unpredictable delays in the propagation of
signals. Similarly, the computation of an operating system may be non-deterministic due to
unpredictable delays in managing the accesses to memory. We stress that non-determinism
is both a way of representing our partial knowledge of the system and a method to keep its
specification general. For instance, we may want to prove that a certain algorithm is correct
independently of the scheduling policy or the evaluation strategy chosen.

Some authors distinguish parallel from concurrent systems. The former are a subclass
of the latter that typically exhibit a deterministic behavior. A standard problem in parallel
programming is to decompose the task of computing a (deterministic) function into parallel
sub-tasks that when executed on suitable hardware will hopefully provide a faster result in
terms of throughput and/or latency. We do not develop at all these algorithmic issues.

Besides being non-deterministic, certain concurrent systems may also exhibit a probabilis-
tic behavior. In first approximation, this means that at certain points in the computation the
next state of the system is determined by tossing a coin. The basic idea we stress in chapter
29 is that non-deterministic and probabilistic transitions should be kept separated and that
a computation in a non-deterministic and probabilistic system is described by a transition
relation that relates states to distributions over states.

The concurrent systems we consider can be classified according to two main criteria:

asynchronous vs. synchronous and shared memory vs. message passing.

The first criterion concerns the relative speed of the processes; we mainly focus on asyn-
chronous systems where each process proceeds at its own speed, however we shall see in
chapter 28 that the techniques can be adapted to synchronous/timed systems too, where
computation proceeds in phases or rounds. The second criterion concerns the interaction
mechanism among the processes. In shared memory, processes interact by modifying a shared
area of memory. Synchronization arises by waiting that a certain condition is satisfied (cf.

169

170 Introduction to concurrency

lock/unlock, compare and set, P/V, monitors, synchronized methods,. . .). In message passing,
processes interact by sending/receiving messages on communication channels. Synchroniza-
tion arises when receiving (wait for a message to be there) and possibly when sending (if the
capacity of the channel is exceeded). The order of transmission is not necessarily respected and
various kinds of channels can be considered according to their capacity (bounded/unbounded),
the ordering of the messages, and the number of processes accessing the channel (one-to-one,
one-to-many, many-to-many, . . .).

19.1 A concurrent language with shared memory

To make things concrete, we start looking at a simple instance of an asynchronous and shared
memory model. The recipe is rather straightforward: we select a standard imperative lan-
guage, namely the imperative language Imp considered in chapter 1, and add (i) the possibility
of running several commands in parallel on the same shared memory and (ii) a synchronization
mechanism. Table 19.1 describes the abstract syntax of the language. We have identifiers,
integers, numerical and boolean expressions, and processes. Besides the standard instructions
for assignment, sequentialization, branching, and iteration one can declare and initialize a lo-
cal identifier, start the execution of two processes in parallel, and wait for a boolean condition
to hold and then execute atomically a sequence of assignments. In particular, the process
await true do P is supposed to execute atomically the process P . To stress this, we also ab-
breviate it as atomic(P). In a process var x = n P , the identifier x is bound in P and obeys
the usual rules of renaming. We denote with fv(P) the set of identifiers occurring free in P .

Next we describe the possible executions of such processes relatively to a state of the shared
memory which is described as a total function s : id → Z from identifiers to integers (exactly
as in chapter 1). We recall that expressions and boolean conditions do not produce side-effects.
Their evaluations rules are defined in chapter 1, Table 1.2. Next, we revisit the small-step
reduction rules defined in chapter 1, Table 1.3. Table 19.2 defines the immediate termination
predicate ‘↓’ and gives the small-step rules for process execution where the symmetric rule
for parallel composition is omitted. The reader may verify that if P ↓ then for any state s,
(P, s) cannot reduce. We write (P, s) ⇓ s′ if (P, s)

∗→ (P ′, s′) and P ′ ↓. Notice that unlike for
the sequential fragment Imp, the relation ⇓ is not a partial function.

The small-step reduction rules embody a certain number of design choices. First, we
have assumed that expressions and assignments are executed atomically. This is a (grossly)
simplifying hypothesis. We could refine the level of granularity of the small step semantics to
some extent and thus complicate the reasoning. However, the basic problem we have to face
is that it is difficult to determine the ‘right’ level of granularity. This is due to the fact that

id ::= x || y || · · · (identifiers)
n ::= 0 || 1 || −1 · · · (integers)
e ::= id || n || (e+ e) || · · · (expressions)
b ::= e < e || · · · (boolean expressions)
P ::= skip || id := e || P ;P || if b then P else P || while b do P ||

var x = n P || (P | P) || await b do P (processes)

Table 19.1: An asynchronous, shared memory model: Imp‖.

Introduction to concurrency 171

skip ↓
P ↓

var x = n P ↓
Pi ↓ i = 1, 2

(P1 | P2) ↓

(x := e, s) → (skip, s[v/x]) if (e, s) ⇓ v

(if b then P else P ′, s) → (P, s) if (b, s) ⇓ true
(if b then P else P ′, s) → (P ′, s) if (b, s) ⇓ false

(while b do P, s) → (P ;while b do P, s) if (b, s) ⇓ true
(while b do P, s) → (skip, s) if (b, s) ⇓ false

(P ;P ′, s) → (P ′, s) if P ↓
(P ;P ′, s) → (P ′′;P ′, s′) if (P, s)→ (P ′′, s′)

(var x = n P, s) → (var x = n′ P ′, s′[s(x)/x]) if (P, s[n/x])→ (P ′, s′[n′/x])

(P | P ′, s) → (P ′′ | P ′, s′) if (P, s)→ (P ′′, s′)

(await b do P, s) → (await b do P, s) if (b, s) ⇓ false
(await b do P, s) → (P ′, s′) if (b, s) ⇓ true,

(P, s)
∗→ (P ′, s′), P ′ ↓

Table 19.2: Immediate termination and small-step reduction for Imp‖

there is no general agreement on the abstract memory model that should be presented to the
programmer of a concurrent language with ‘shared memory’. Ideally, the model should be
‘abstract’ while allowing for correct and efficient implementations on a variety of architectures.

Second, we assume that the body of an await always terminates. In practice, we can simply
enforce this condition by requiring that the body contains no while and no await instruction.

Third, a blocked await reduces (busy waiting) which may seem at odd with the usual
idea that a process executing a synchronization condition which is not realized suspends
its execution. We could indeed formalize this idea at the price of distinguishing between
(properly) terminated and deadlocked statements.

Let us consider a few examples that illustrate the expressivity of the language.

Example 306 (P and V) Assuming assignment atomic (as we do), the operations P and
V for manipulating a semaphore s of capacity k can be expressed as follows:

Initially: s := k ,
P (s) = await s > 0 do s := s− 1 ,
V (s) = s := s+ 1 .

In the special case where the initial capacity is 1, the operations P and V are also called
lock and unlock, respectively. By using them, processes can gain exclusive access to a shared
resource, e.g., a process can gain the right to execute without interruption, i.e., atomically, a
sequence of statements.

Example 307 (non-deterministic sum) We want to define a statement:

[b1 → P1 + · · ·+ bn → Pn]

172 Introduction to concurrency

which selects non-deterministically one of the branches (if any) for which the condition bi is
satisfied and starts running Pi. This can be defined as follows assuming x, y /∈ fv(bi → Pi)
for i = 1, . . . , n:

var x = 1 (Q1 | · · · | Qn), where
Qi ≡ var y = 1

await bi do if x = 1 then x := 0 else y := 0 ;
if y = 1 then Pi else skip

Exercise 308 (1) Modify the definition so that once the branch i is selected, the continuation
Pi is run atomically. (2) With the current definition, a statement such as [true→ skip+false→
skip] does not terminate (which is not very satisfying). Adapt the definition to fix this problem.

Exercise 309 Suppose we enrich the Imp‖ language with a spawn operator. The process
spawn P starts the execution of P in parallel and immediately terminates by reducing, say,
to skip. (1) Propose a formal semantics of the Imp‖ language with spawn. (2) Explain why
in general the process (spawn P);Q is not equivalent to (P | Q). (3) Propose a compilation
of the enriched language into the enriched language without parallel composition, i.e., find a
way to simulate parallel composition with spawn.

Example 310 (compare and set) The compare and set (cas) operation can be defined as
follows (this operation is also called compare and swap):

cas(x, e1, e2) = atomic(if (x = e1) then x := e2 else skip) .

We stress that it is essential that the boolean test x = e1 and the assignment x := e2 are
executed atomically. The cas operation can be taken as basic building block to solve more
complex problems in concurrency. For instance, it can be used to solve the so called consensus
problem which can be stated as follows. A collection of parallel processes P1, . . . , Pn each
holding a non-negative integer v1, . . . , vn have to agree on a value which is equal to one of the
values held by the processes. A solution to this problem which treats all processes in the same
way and avoids centralization points goes as follows. Set a variable x with initial value −1
and then let each process Pi run the following procedure:

decide(i) = cas(x, −1, vi); result i := x .

The first process that runs the decide procedure will set x to its value vi ≥ 0 (atomically,
and thus deciding the outcome of the consensus protocol) while the following ones will keep x
unchanged.

19.2 Equivalences: a taste of the design space

We consider the question of building an equivalence on processes on top of the reduction
system. In the sequential framework (cf. chapters 1 and 9), we have already noticed that
an answer to this question depends on a certain number of factors such as the choice of the
observables, the compositionality properties, and the proof methods. With an enlarged range
of choices, these factors play a role in the semantics of concurrent systems too. Moreover,
new factors appear such as the hypotheses on the scheduling policy.

Introduction to concurrency 173

Observables The equivalence should be compatible with a notion of observation of the
processes. If two processes P and P ′ are equivalent and P enjoys a certain observable property
then P ′ should enjoy that property too. For instance, we may wait till the system comes to a
proper termination and then observe its final result. As a second example, we may be informed
that the system has reached a deadlock, i.e., a situation where it has not properly terminated
and it cannot progress. As a third example, we may interact with the system during the
computation and observe its capabilities. We refer to this observable as branching because,
as explained in the following example 313, it amounts to observe the branching structure of
the computation as opposed to its linearization.

Scheduling We may assume certain properties of the scheduler that controls the order in
which parallel processes are executed. For instance, a preemptive scheduler will be allowed
to interrupt the execution of a process at any point which is compatible with the atomicity
assumptions while a cooperative scheduler will wait for the process to yield control or to
suspend on a synchronization condition. Further, schedulers can be classified according to
their ability to execute the various processes in a fair way.

Compositionality If a process P is equivalent to the process P ′ then we should be able
to replace P with P ′ in any (reasonable) process context. In other words, the notion of
equivalence should be preserved by some operators of the language, including at least parallel
composition.

Proof method We should have a practical proof method to check the equivalence of two
processes. Depending on the class of processes we are considering, practical may mean that
the equivalence can be efficiently automated or that the proof has a certain locality property.

We elaborate on the first two points (observables and scheduling hypotheses) in the following
examples; we shall come back to compositionality and proof methods in the following sections.

Example 311 (termination) The following process diverges (or at least does not reach
immediate termination) while producing a sequence f(0), f(f(0)), . . . on the ‘output variable’
y at a ‘rate’ determined by x.

y := 0;
while true do
await x = 0 do (y := f(y);x := 1;)

Should it be considered equivalent to while true do skip (a diverging process)?

Example 312 (deadlock) Consider the following deadlocked process:

var x = 0 await x > 0 do x := x+ 1 .

Should it be considered equivalent to while true do skip (a diverging process, again) or to skip
(an immediately terminated process)?

Example 313 (branching) Consider the following hypothetical controls of a vending ma-
chine:

[b1 → P1; [b2 → P2 + b3 → P3]]
[b1 → P1; [b2 → P2] + b1 → P1; [b3 → P3]]

174 Introduction to concurrency

with the interpretation:

b1 = there is a coin P1 = accept the coin
b2 = there is a second coin P2 = accept the coin and deliver coffee
b3 = water request P3 = deliver water.

Are the two controls equivalent? Well, one may remark that upon accepting the first coin, the
second machine decides non-deterministically whether it is ready to wait for a second coin or
to deliver water which is rather annoying for the user.

Example 314 (cooperative) In preemptive concurrency, a process can be interrupted after
any atomic step. In cooperative concurrency, a process is interrupted only when it has termi-
nated or it is suspended on a waiting statement. For instance, the processes: x := 1;x := x+1
and x := 1;x := 2 are equivalent in a cooperative (and a sequential) context but not in a pre-
emptive one.

Example 315 (weak fairness) Consider the following process:

x := 0; y := 0; ((while x = 0 do y := y + 1) | x := 1) .

If the process terminates then y may contain an arbitrary natural number. This is called
unbounded non-determinism. Moreover, the process is actually guaranteed to terminate if we
assume that every process that is ready to run will eventually get a chance of running. This
assumption is called weak fairness.

Example 316 (strong fairness) A weak fairness hypothesis is not always enough to guar-
antee progress. Consider:

x := 0; y := 0; (while y = 0 do x := 1− x | await x = 1 do y := 1) .

In this example, the first process makes x oscillate between 0 and 1 while the second process
can really progress only when x = 1. A scheduler that gives control to the second process only
when x = 0 will not guarantee termination. Strong fairness is the assumption that in any
infinite execution a process which is infinitely often ‘ready to run’ will indeed run infinitely
often.

19.3 Summary and references

Early work on the semantics of concurrent processes started in the 60’s [Dij65] and was
motivated by synchronization problems in operating systems. The first step in defining the
semantics of a concurrent language amounts to decide which actions can be regarded as atomic.
This is an issue which can be hardly underestimated because there is a tension between
atomicity and efficient implementations. At any rate, once atomicity is fixed a small-step
reduction semantics allows to define precisely the state transformations a concurrent process
can go through. The second step amounts to decide the observable properties of the system
and the execution hypotheses. This step gives rise to a variety of possible equivalences.
Compositionality and the existence of practical proof methods are two basic criteria to assess
them. The article [KR90] surveys the parallelization of algorithms (which we do not cover).

Chapter 20

A compositional trace semantics

We consider the problem of defining and characterizing a compositional equivalence for the
Imp‖ model. For the sequential fragment of the Imp‖ model, the input-output interpretation
provides a satisfying answer (cf. chapter 1), but the extension to the full concurrent Imp‖
language is not straightforward and rises some interesting issues which are discussed in this
and the following chapter.

20.1 Fixing the observables

Following the discussion in section 19.2, a first problem consists in fixing a notion of observable.
Building on the semantics of the sequential Imp language (chapter 1) we shall take the input-
output behavior or, equivalently, the partial correctness assertions (pca), as basic observable.
We warn the reader that while being reasonable, this notion of observable is definitely not
the only possible one for concurrent processes; alternatives will be discussed in the following
chapters. Let P, P ′, . . . be the processes and s, s′, . . . be the memory states introduced in
section 19.1. We adapt to processes the definitions presented in chapter 1.

The IO interpretation (cf. definition 1) of a process P is:

[[P]]IO = {(s, s′) | (P, s) ∗→ (P ′, s′) ↓} .

Also the notion of pca’s validity is extended to processes in the obvious way:

|= {A} P {B} if ∀ s (s |= A and (P, s)
∗→ (P ′, s′) ↓ implies s′ |= B) .

Then the the pca interpretation of a process is:

[[P]]pca = {(A,B) | |= {A} P {B}} .

Adapting proposition 11, we derive:

[[P1]]IO = [[P2]]IO iff [[P1]]pca = [[P2]]pca .

Let us take the input-out behavior (or equivalently the partial correctness assertions) as
basic observable. As usual, a context C is a process with a hole []. E.g.

x := 3; [] | await x = 3 do x := x+ 1 .

175

176 Trace semantics

As already mentioned in chapters 1, 9, and 19 a desirable property of a semantics is that it
is preserved by contexts, that is:

[[P1]] = [[P2]] implies [[C[P1]]] = [[C[P2]]] .

If two processes have the same ‘compositional semantics’ then we can replace one for the other
in any context. Unfortunately, the following example shows that, unlike in the sequential case
(proposition 3), compositionality fails for the IO (and pca) interpretation.

Example 317 (non-compositionality of IO interpretation) The processes P1 ≡ x :=
1;x := x+ 1 and P2 ≡ x := 2 are IO-equivalent. However when they are composed in parallel
with the process P2 we have: [[P1 | P2]]IO 6= [[P2 | P2]]IO.

20.2 Towards compositionality

As a first attempt at fixing the compositionality issue, we try to refine the semantics of
processes. In automata theory, we are used to associate to an automaton the collection of its
execution traces. We follow a similar path by considering the traces of the states crossed by
a terminating execution.

Definition 318 (trace interpretation) The trace interpretation of a process P is defined
as follows:

[[P]]T = {s1 . . . , sn | (P, s1)
∗→ (P2, s2) · · · ∗→ (Pn, sn) ↓} .

Remark 319 The IO semantics is exactly the subset of the trace semantics composed of
words of length 2.

[[P]]IO = {(s, s′) | ss′ ∈ [[P]]T } .

With reference to the previous example 317, it is easy to check that [[P1]]T 6= [[P2]]T . However,
for P3 ≡ x := 1;x := 2 we have:

[[P1]]T = [[P3]]T , [[P1 | P2]]T 6= [[P3 | P2]]T .

So this trace semantics is not compositional either!

While failing to characterize the ‘right equivalence/pre-order’ we can at least define it.

Definition 320 (pre-congruences) A pre-congruence is a pre-order on processes which is
preserved by contexts. We define two pre-congruences relatively to the IO and trace interpre-
tations as follows:

P1 ≤IO P2 if ∀C [[C[P1]]]IO ⊆ [[C[P2]]]IO ,
P1 ≤T P2 if ∀C [[C[P1]]]T ⊆ [[C[P2]]]T .

Exercise 321 Check that ≤IO (≤T) is the largest pre-order (reflexive and transitive) which
refines the IO containment (trace containment) and which is preserved by all contexts.

Somehow surprisingly, once we require preservation by contexts, it does not matter whether
we look at the input-output or at the traces.

Trace semantics 177

Proposition 322 The pre-congruences ≤IO and ≤T coincide.

Proof. ≤T⊆≤IO . By remark 319, we know that [[P1]]T ⊆ [[P2]]T implies [[P1]]IO ⊆ [[P2]]IO.
Then it follows by unfolding the definitions that:

P1 ≤T P2 implies P1 ≤IO P2 .

≤IO⊆≤T . For the other direction, assume by contradiction P1 6≤T P2. This means that for
some context C and trace s1 · · · sn:

s1 · · · sn ∈ [[C[P1]]]T and s1 · · · sn /∈ [[C[P2]]]T .

In particular, this entails, for Q1 ≡ C[P1]: (Q1, s1)
∗→ (Q2

1, s2)
∗→ · · · (Qn1 , sn) ↓. The key step

is the following: we build an observer O that may terminate iff it sees the state going through
s1 · · · sn; the observer reads the state without modifying it. Take X = fv(C[P1]) ∪ fv(C[P2])
and recall the IS predicate from proposition 11:

IS (s,X) =
∧
x∈X

(x = s(x)) .

Then define:
O ≡ await IS (s1, X) do skip;

· · ·
await IS (sn, X) do skip .

We have: (s1, sn) ∈ [[C[P1] | O]]IO. On the other hand we claim that:

(s1, sn) /∈ [[C[P2] | O]]IO ,

because the only way O can terminate is that the state goes through the configurations
s1, . . . , sn and since O does not modify the state this would mean s1 · · · sn ∈ [[C[P2]]]T . 2

Following these preliminary remarks, we can define our goal as follows:

find an interpretation [[]] such that: [[P1]] = [[P2]] iff ∀C [[C[P1]]]IO = [[C[P2]]]IO.

Such an interpretation (if it exists) will be compositional by definition. Sometimes one is
happy with the left to right implication. In this case, the interpretation is called adequate
in that it provides a sufficient criterion to determine the equivalence of two processes. If
moreover the right to left implication holds, then one speaks of a fully adequate (or fully
abstract) interpretation. Notice that this last property can be reformulated as follows:

[[P1]] 6= [[P2]] implies ∃C [[C[P1]]]IO 6= [[C[P2]]]IO .

In words, whenever the interpretations differ we can find a context where the IO behaviors,
i.e., observable behaviors of the processes differ.

178 Trace semantics

20.3 A trace-environment interpretation

To address the compositionality issue, we are guided by the following intuition:

to analyze a process in a concurrent system we have to account for the perturba-
tions induced by the environment (the external world).

In particular, in the framework of a trace semantics, we allow the environment (the external
world) to modify the state after any sequence of transitions.

Definition 323 (trace-environment interpretation) Let P be a process. Its trace-environment
(TE) interpretation is defined as follows:

[[P]]TE = { (s1, s
′
1) · · · (sn, s′n) |

(P, s1)
∗→ (P2, s

′
1)

· · ·
(Pn, sn)

∗→ (Pn+1, s
′
n) ↓} .

Exercise 324 In remark 319, we have observed the equivalence in the trace interpretation of
the processes P1 ≡ x := 1;x := x+ 1 and P2 ≡ x := 1;x := 2. Check that: [[P1]]TE 6= [[P2]]TE.

Remark 325 An equivalent view of the TE-interpretation is to add a labelled rewriting rule
that explicitly accounts for the actions of the environment:

(P, s)
e→ (P, s′)

(20.1)

Thus this labelled rule allows for an arbitrary modification of the state while leaving unchanged
the control of the observed process. Then we define:

[[P]]TE = { s1, s
′
1 · · · sn, s′n |

(P, s1)
∗→ (P2, s

′
1)

e→ (P2, s2)
· · ·
(Pn−1, sn−1)

∗→ (Pn, s
′
n−1)

e→ (Pn, sn)

(Pn, sn)
∗→ (Pn+1, s

′
n) ↓} .

The traces in the sense of definition 318 can be regarded as the trace-environment traces where
si+1 = s′i, for i = 1, . . . , n− 1.

In chapter 21, we shall show that this interpretation is preserved by all the operators of the
language. For the time being we just consider the problematic case of parallel composition.

Proposition 326 The TE-inclusion is preserved by parallel composition.

Proof. First notice the following properties:

(P1 | P2) ↓ implies P1 ↓ and P2 ↓ ,
(P1 | P2, s)→ (P, s′) implies (P1, s)→ (P ′1, s

′) and P ≡ (P ′1 | P2) or
(P2, s)→ (P ′2, s

′) and P ≡ (P1 | P ′2) .

Trace semantics 179

Thus from a reduction such as:

(P | Q, s1)
∗→ (P2 | Q2, s

′
1)

· · ·
(Pn | Qn, sn)

∗→ (Pn+1 | Qn+1, s
′
n) ↓

one can extract a reduction for P where all the reduction steps taken by the other process
are simulated by the environment. As a concrete example, suppose [[P1]]TE ⊆ [[P ′1]]TE and

(P1 | Q1, s1)→ (P2 | Q1, s2)→ (P2 | Q2, s3)→ (P3 | Q2, s4) ↓ .

We can turn this into:

(P1, s1)→ (P2, s2)
e→ (P2, s3)→ (P3, s4) ↓ .

Then (s1, s2)(s3, s4) ∈ [[P1]]TE ⊆ [[P ′1]]TE means:

(P ′1, s1)
∗→ (P ′2, s2)

e→ (P ′2, s3)
∗→ (P ′3, s4) ↓ .

Now put back the Q1 process and let him play the role of the environment:

(P ′1 | Q1, s1)
∗→ (P ′2 | Q1, s2)→ (P ′2 | Q2, s3)

∗→ (P ′3 | Q2, s4) ↓ .

This argument can be generalized. Suppose α = (s1, s
′
1) · · · (sn, s′n), α ∈ [[P1 | Q]]TE , and

[[P1]]TE ⊆ [[P2]]TE . Derive a reduction for P1 which must also belong to P2. Then, by putting
back the thread Q, conclude that α ∈ [[P2 | Q]]TE . 2

Since the TE interpretation refines the IO interpretation, its adequacy will follow by
the announced compositionality property shown in chapter 21. We now address the full
abstraction problem.

Proposition 327 Let P1 and P2 be processes such that [[P1]]TE 6⊆ [[P2]]TE. Then there is a
context C such that [[C[P1]]]IO 6⊆ [[C[P2]]]IO.

Proof. Let α = (s1, s
′
1) · · · (sn, s′n) be a trace-environment sequence such that α ∈ [[P1]]TE

and α /∈ [[P2]]TE . We build an observer process O that in a sense plays the role of the
environment and works as follows:

upon observing s′1 builds s2 and
· · ·
upon observing s′n−1 builds sn and terminates.

Notice that in this case the observer does modify the state. Formally, assume X = fv(P1) ∪
fv(P2). The command that builds a new state is defined as follows:

MAKE s,{x1,...,xn} = x1 := s(x1); · · · ;xn := s(xn) ,

and the observer process O is defined by:

O ≡ O1

Oi ≡ await IS (s′i, X) do MAKE si+1,X ;
· · ·
await IS (s′n−1, X) do MAKE sn,X .

180 Trace semantics

Then take as process context C = [] | O and let Ci = [] | Oi. We have that (s1, s
′
n) ∈ [[C[P1]]]IO

because:
(C[P1], s1)

∗→ (C[P2], s′1)
∗→ (C2[P2], s2)

· · ·
(Pn | skip, sn)

∗→ (P ′n | skip, s′n) ↓

On the other hand, (s1, s
′
n) /∈ [[C[P2]]]IO because O terminates only if it can observe the

states s′i and build atomically the states si+1 for i = 1, . . . , n − 1. And this contradicts the
hypothesis that (s1, s

′
1) · · · (sn, s′n) /∈ [[P2]]TE . 2

20.4 Summary and references

We have described a trace-environment interpretation for the Imp‖ language. The interpre-
tation is compositional and abstract. The key point for compositionality is that we describe
the way both the process and the environment may affect the store (which is what can be
observed). The key point for abstraction is that Imp‖ can simulate the environment’s actions;
the await statement is crucial here. The presentation is based on [Bro96].

Chapter 21

A denotational presentation of the
trace semantics

The trace-environment interpretation introduced in chapter 20 assigns a meaning (or deno-
tation) to a process which is formally a set of finite sequences of pairs of states. In this
chapter, our main task is to show that this meaning can be computed in a compositional way
in the sense that the denotation of a program phrase can be built out of the denotations of
its sub-phrases. Concretely, this amounts to define a domain of interpretation, say D, and a
collection of functions on D that correspond to the operators of the programming language.
For instance, we have to find a function par on D which corresponds to parallel composition
and satisfies:

[[P1 | P2]]TE = [[P1]]TE par [[P2]]TE . (21.1)

21.1 The interpretation domain

We recall that St is the set of states. As a first step, we notice that the interpretation of a
process [[P]]TE belongs to the power-set L = 2(St×St)∗ which when ordered by set-theoretic
inclusion is a complete lattice (cf. chapter 9).

[[P]]TE ∈ L = 2(St×St)∗ . (21.2)

Definition 328 (closed set of traces) We say that X ∈ L is closed if it satisfies the fol-
lowing conditions:

αβ ∈ X
α(s, s)β ∈ X ,

α(s, s′)(s′, s′′)β ∈ X
α(s, s′′)β ∈ X .

These are a kind of reflexivity and transitivity properties which are called stuttering and
mumbling, respectively, in the trace theory jargon. Note that all process interpretations are
closed.

Definition 329 (closure function) The closure function c : L→ L is defined by:

c(X) =
⋂
{Y ∈ L | X ⊆ Y, Y closed} .

181

182 Denotational trace semantics

Thus the function c associates to a set X the least set of closed traces that contains it.
We notice the following properties.

Proposition 330 Let X,Y,Xi vary over L and let c be the closure function. Then:

1. If X ⊆ Y then c(X) ⊆ c(Y).

2. c(c(X)) = c(X) ⊇ X.

3. The union of closed sets is closed.

4. c(
⋃
i∈I Xi) =

⋃
i∈I c(Xi).

Proof. We leave properties 1-3 as exercises and consider property 4, The inclusion from
left to right follows by monotonicity (property 1). For the reverse inclusion, we know from
property 3 that

⋃
i∈I c(Xi) is closed. Thus it suffices to check that:

⋃
i∈I Xi ⊆

⋃
i∈I c(Xi)

which holds since by property 2, Xi ⊆ c(Xi). 2

It follows that (c(L),⊆) is again a complete lattice where the sup are set-theoretic unions.
We take D = c(L) as our domain of interpretation.

21.2 The interpretation

First, we define some standard operations on the domain D which are instrumental to the
interpretation of Imp‖ processes. The reader may recognize definition patterns found in formal
languages.

Skip We define: Skip = c({(s, s) | s ∈ St}) ∈ D. Notice that this is different from the
closure of the empty-set.

Concatenation For X,Y ∈ D let X;Y = c({αβ | α ∈ X,β ∈ Y }) ∈ D. Notice that we need
to close the concatenation of X and Y in the ordinary language-theoretic sense.

Iteration For X ∈ D let:

X0 = Skip ∈ D , Xn+1 = X;Xn ∈ D , X∗ =
⋃
n≥0X

n ∈ D .

By proposition 330(3), there is no need to close the countable union.

Parallel A general shuffle operation | on words can be defined as follows:

ε | α = α | ε = {α} ,
aα | bβ = {aγ | γ ∈ (α | bβ)} ∪ {bγ′ | γ′ ∈ (aα | β)} .

Notice that the shuffle of two words is a set of words which is not necessarily closed.
Then define a parallel operator on X,Y ∈ D as:

X | Y =
⋃

α∈X,β∈Y
c(α | β) .

Exercise 331 (continuity) Show that the concatenation, iteration, and parallel operators
we have defined on the complete lattice (D,⊆) are monotonic and preserve unions (continuity).

Denotational trace semantics 183

We associate a closed set with a boolean condition b (without side effects) as follows:

[[b]] = c({(s, s) | (b, s) ⇓ true}) .

Intuitively, this is the closed set induced by the set of states satisfying the boolean condition.
Then associate a closed set to processes as follows:

[[skip]] = Skip
[[x := e]] = c({(s, s[n/x]) | (e, s) ⇓ n})
[[P ;P ′]] = [[P]]; [[P ′]]
[[if b then P else P ′]] = ([[b]]; [[P]]) ∪ ([[¬b]]; [[P ′]])
[[while b do P]] = ([[b]]; [[P]])∗; [[¬b]]
[[P | P ′]] = [[P]] | [[P ′]]
[[await b do P]] = c({(s, s′) | (s, s) ∈ [[b]], (s, s′) ∈ [[P]]}) .

To force the atomic execution of the body of an await statement, we select the traces of length
1 which correspond to the input-output behaviors (remark 325).

The extension to variable declarations requires some work. Given X ⊆ (St × St)∗, x
variable, n integer, define:

X[x = n] = {(s1, s
′
1) · · · (sn, s′n) ∈ X |

s1(x) = n, si+1(x) = s′i(x), i = 1, . . . , n− 1}

X\x = {(s1[m1/x], s′1[m1/x]) · · · (sn[mn/x], s′n[mn/x]) |
(s1, s

′
1) · · · (sn, s′n) ∈ X, m1, . . . ,mn ∈ Z} .

The operator ()[x = n] fixes the initial value of x to n and makes sure the environment
cannot affect the value of x by forcing si+1(x) = s′i(x). The operator ()\x makes sure that
the internal modifications of x are not observable by the environment (the value of the state
at x is never modified by a process transition). Then define:

[[var x = n P]] = c(([[P]][x = n])\x) .

In words, first we select the traces where the initial value of the variable x is n and the
environment cannot affect x’s value and second we hide to the environment the way x is
manipulated.

This concludes the compositional definition of the interpretation. The reader can check
that this interpretation does indeed follow the pattern outlined in (21.1). Moreover, it turns
out to be equivalent to the operational interpretation.

Proposition 332 (denotational characterisation) For all processes P , [[P]]TE = [[P]] .

Proof. The proof proceeds by induction on the structure of P . As an example, we show:

[[P ;Q]] = [[P ;Q]]TE (21.3)

assuming [[P]] = [[P]]TE and [[Q]] = [[Q]]TE .

[[P ;Q]] ⊆ [[P ;Q]]TE . Suppose:

α = (s1, s
′
1) · · · (sn, s′n) ∈ [[P]] = [[P]]TE

β = (t1, t
′
1) · · · (tm, t′m) ∈ [[Q]] = [[Q]]TE .

184 Denotational trace semantics

We have already observed that the operational interpretation of a program is closed. Then
by the properties of the closure operator (proposition 330), it suffices to show that αβ ∈
[[P ;Q]]TE . Indeed, we have:

(P ;Q, s1)
∗→ (P1;Q, s′1)

· · · ∗→ · · ·
(Pn−1;Q, sn)

∗→ (Pn;Q, s′n)→ (Q, s′n) (where: Pn ↓)
(Q, t1)

∗→ (Q1, t
′
1)

· · · ∗→ · · ·
(Qm−1, tm)

∗→ (Qm, t
′
m) ↓ .

[[P ;Q]] ⊇ [[P ;Q]]TE . Suppose γ ∈ [[P ;Q]]TE is generated as follows:

(P ;Q, s1)
∗→ (P1;Q, s′1)

· · · ∗→ · · ·
(Pn−1;Q, sn)

∗→ (Q1, s
′
n)

(Q1, sn+1)
∗→ (Q2, s

′
n+1)

· · · ∗→ · · ·
(Qm, sn+m)

∗→ (Qm+1, s
′
n+m) ↓ .

By the semantics of concatenation, we must also have the following transitions:

(Pn−1, sn)
∗→ (Pn, s

′′
n) ↓

(Q, s′′n)
∗→ (Q1, s

′
n) .

It follows that:
α = (s1, s

′
1) · · · (sn, s′′n) ∈ [[P]]TE = [[P]] ,

β = (s′′n, s
′
n) · · · (sn+m, s

′
n+m) ∈ [[Q]]TE = [[Q]] .

Then αβ ∈ [[P]]; [[Q]] and by definition of closure (mumbling), γ ∈ [[P ;Q]]. 2

An immediate corollary is that the trace-environment interpretation is preserved by pro-
cess contexts.

Corollary 333 If [[P]]TE = [[P ′]]TE then [[C[P]]]TE = [[C[P ′]]]TE.

Proof. For instance, if [[P]]TE = [[P ′]]TE then by proposition 332, [[P]] = [[P ′]]. Thus, for any
Q: [[P | Q]]TE = [[P | Q]] = [[P ′ | Q]] = [[P ′ | Q]]TE . 2

Another interesting application of the characterization is that it provides an angle to
analyze process equivalence.

Exercise 334 Show that the following processes (in-)equivalences hold in the TE semantics:

skip;P = P , P = P ; skip ,
(P ;P ′);P ′′ = P ; (P ′;P ′′) , P | P ′ = P ′ | P ,

(P | P ′) | P ′′ = P | (P ′ | P ′′) , P | skip = P ,
while true do skip ≤ P , while true do skip = await false do P .

Denotational trace semantics 185

Thus skip is the unit for both sequential and parallel composition. Further, sequential
composition is associative while parallel composition is both associative and commutative.
Finally, the diverging computation is the least element of the interpretation.

Exercise 335 (invalid equivalences) Show that the following equivalences (which hold in
the sequential IO semantics) fail in the TE semantics:

x := y; y := x = x := y , x := y;x := z = x := z (x 6= z) ,
x := y; z := x = x := y; z := y , x := y; z := y = z := y;x := y .

Exercise 336 (await from atomic) In section 19.1, we have regarded atomic(P) as an ab-
breviation for await true do P . Suppose we regard await′ b do P as an abbreviation for:

var x = 1 while x = 1 do (atomic(if b then (P ;x := 0)))

where x is a fresh variable. Show that the following equality holds in the considered semantics:

await b do P = await′ b do P .

Exercise 337 (shuffling of infinite words) Let Σ be an alphabet (a non-empty set) with
generic elements a, b, c, . . . If X is a set let Xω be the set of infinite words on X (countable
and not finite). If α is a word then αω is αα · · · We denote with R,S, . . . relations on D =
Σω×Σω×Σω and write R(α, β, γ) as an abbreviation for (α, β, γ) ∈ R. We say that a relation
R is admissible if:

R(α, β, aγ) implies (α = aα′ and R(α′, β, γ)) or
(β = aβ′ and R(α, β′, γ)) .

We define:
S0 = D,
Sn+1 = {(α, β, aγ) | (α = aα′ and Sn(α′, β, γ)) or

(β = aβ′ and Sn(α, β′, γ)) } ,
Sω = ∩n<ωSn .

Problems: (1) Show that there is a largest admissible relation that we denote with Shuffle.
(2) Prove or disprove: Shuffle = Sω. (3) Prove or disprove: (i) Shuffle(aω, bω, (ab)ω). (ii)
Shuffle((ab)ω, aω, (abb)ω). (iii) Shuffle(aω, bω, aω).

Exercise 338 (fair schedules and associativity) A k-schedule is a vector (f1, . . . , fk) of
k functions on the natural numbers N such that:

• for j = 1, . . . , k and n ∈ N: fj(n) < fj(n+ 1) (the functions are strictly growing).

• for i, j ∈ {1, . . . , k} and i 6= j: im(fi) ∩ im(fj) = ∅ (the ranges of the functions are
disjoint).

• ∪j=1,...,kim(fj) = N (the union of the ranges covers the natural numbers).

Let Σ be a non-empty set with generic elements a, b, c, . . . and let Σω be the (countably)
infinite words over Σ with generic elements α, β, If α ∈ Σω and i ∈ N then α[i] denotes

186 Denotational trace semantics

the character at position i of the word where we start counting from 0. For instance, if
α = ababab · · · then α[3] = b.

If (f1, . . . , fk) is a k-schedule and αi ∈ Σω for i = 1, . . . , k then M [f1, . . . , fk](α1, . . . , αk)
is a word whose value at position i ∈ N is defined as follows:

M [f1, . . . , fk](α1, . . . , αk)[i] = αj [f
−1
j (i)] if i ∈ im(fj)

where f−1
j (i) denotes the (unique!) number that the function fj maps to i.

1. Suppose α = aω and β = bω. (i) Assuming f1(i) = 2 · i and f2(i) = 2 · i + 1,
compute M [f1, f2](α, β). (ii) Is there a 2-schedule (f, g) such that M [f, g](α, β) =
(aab)ω = aabaabaab · · ·? (iii) Is there a 2-schedule (f, g) such that M [f, g](α, β) =
abω = abbbbb · · ·?

2. Suppose (f1, f2) and (g1, g2) are two 2-schedules. Show that there is a 3-schedule
(h1, h2, h3) such that for all words αi, i = 1, 2, 3 we have:

M [g1, g2](M [f1, f2](α1, α2), α3) = M [h1, h2, h3](α1, α2, α3).

3. Now suppose (h1, h2, h3) is a 3-schedule. Define two 2-schedules (f1, f2) and (g1, g2)
such that for all words αi, i = 1, 2, 3 we have:

M [g1, g2](M [f1, f2](α1, α2), α3) = M [h1, h2, h3](α1, α2, α3) .

4. We define a binary merge operation M that associates a set of words to two words as
follows:

M(α, β) = {M [f, g](α, β) | (f, g) is a 2-schedule} .

We then extend the operation to sets of words by defining for X,Y ⊆ Σω:

M(X,Y) =
⋃

α∈X,β∈Y
M(α, β) .

Show that this merge operation is associative, i.e., for all sets of words Xi ⊆ Σω, i =
1, 2, 3:

M(M(X1, X2), X3) = M(X1,M(X2, X3)) .

21.3 Summary and references

The trace-environment interpretation can be organized in a denotational style where the
meaning of a program (process) is computed by composition of the meaning of its sub-
programs. This makes manifest the compositionality of the interpretation. We refer the
reader to [Bro96] for a variation over the presented semantics which takes into account fair-
ness constraints. This requires working over infinite traces; exercises 337 and 338 go in this
direction by defining shuffling operations on infinite words.

Chapter 22

Implementing atomicity

The operational Imp‖ model assumes the possibility of executing atomically a process. A
simple implementation strategy could consist in having a global lock variable that must be
acquired by a process before turning into ‘atomic mode’ and is released upon termination
(cf. example 306). Such a strategy is intuitively inefficient because it limits the degree
of parallelism of the computation. This intuition can be supported by a simple numerical
argument known as Amdahl’s law. For instance, the law entails that if 10% of a task has
to be executed sequentially while the remaining 90% can be executed in parallel then by
allocating 10 processors to the task we can expect a speed up of at most (roughly) 5, i.e.,
by multiplying the cost of the hardware by 10 we can only divide the computation time by 5
(which is rather disappointing).

In the following we discuss some process transformations that aim at reducing the amount
of computation that has to be executed atomically. This should be regarded both as an
opportunity to have a glimpse at some basic implementation strategies and as a case study
where we practice the operational model.

22.1 An optimistic strategy

In an optimistic implementation strategy of an atomic transaction mechanism we run the steps
of the transaction concurrently with those of other parallel processes hoping that they will not
affect the variables relevant to the transaction. If they do then we start again the transaction.
Intuitively, such an approach works well if the chances that two atomic transactions try to
modify the same variables at about the same time are low.

In more detail, the transformation can be described as follows. Given a process P , we
can statically determine an over-approximation of the visible variables that P may read or
write during its execution. For instance, this can correspond to the set fv(P) of variables
occurring free in P . For each variable x let us assume we dispose of fresh variables xr and
xl. The super-script r and l stand for read and local, respectively, for reasons that we explain
next. Let us write x∗ for the list of distinct variables in fv(P) and let us denote with x∗r
and x∗l the corresponding lists of fresh variables. Rather than running P atomically we run
non-atomically a modified process P ′ = [x∗l /x

∗]P where each read/write operation to the
variables x∗ is replaced by a reference to the fresh local variables x∗l which are initialized with
the values of x∗. Before running P , we also save the initial value of the variables x∗ in the
fresh local variables x∗r . If and when we are done with the execution of P ′ we check atomically

187

188 Atomicity

that the current value of x∗ equals that of x∗r . If this is the case, in the same atomic step we
write x∗l in x∗ and we conclude successfully the transaction, otherwise we try again. Notice
that it may happen that the variables x∗ are modified during the computation above. All
that matters is that the value of x∗ is the same as the value of x∗r just before writing in x∗

the variables x∗l .

The transformation can be described formally by a function Co (o for optimistic) on
Imp‖ processes. The key case concerns the await and it is defined as follows assuming
fv(await b do P) = {x1, . . . , xn}, x∗ = x1, . . . , xn, and using vectorial notations such as x∗ :=
v∗ and x∗r = x∗ as an abbreviation for x1 := v1; · · · ;xn := vn and xr,1 = x1 ∧ · · · ∧ xr,n = xn,
respectively. We also assume that the variables c, x∗r , x

∗
l do not appear free in await b do P

and that P does not contain await statements.

Co(await b do P) = var c = 1, x∗r = 0∗, x∗l = 0∗

while c = 1 do
(x∗r := x∗;
x∗l := x∗r ;
if [x∗l /x

∗]b then
([x∗l /x

∗]P ;
atomic(if x∗r = x∗ then x∗ := x∗l ; c := 0;))) .

There are a number of possible variations on this schema. For instance, one can distinguish
the variables which are read from those that are written. In another direction, instead of com-
puting an over-approximation of the collection of variables which are affected by the atomic
statement, we could determine this set at run time. Also, it should be noticed that in the
translation above the computation of the process [x∗l /x

∗]Co(P) may operate on unexpected
states which in more complex programming settings may lead to exceptions or diverging
computations. Certain implementations of atomic transactions ensure that the program al-
ways operates over consistent states, i.e., states which could actually arise in the reference
semantics. The following exercise elaborates on this point.

Exercise 339 Suppose the Imp‖ language is extended with a command abort which stops the
computation and returns the current state (such command was discussed in exercise 270).
Extend the optimistic compilation function so that it handles abort commands.

22.2 A pessimistic strategy

A more pessimistic (or conservative) implementation strategy for atomic transactions consists
in gaining control of all the resources relevant to the atomic process before running it. For
instance, suppose we associate a lock variable `x with every (shared) variable x. Recall that
a lock variable is simply a variable that is supposed to be used as a semaphore of capacity 1
(see example 306).

As in the optimistic strategy, given a process P we can statically determine an over-
approximation of the variables the process P may read or write during its execution. Let
us denote these variables with x1, . . . , xn. Then an implementation of atomic(P) consists
in a process that acquires the locks for x1, . . . , xn, then runs P , and eventually releases the
locks for x1, . . . , xn. Such an implementation scheme is known as two phase locking: the
first phase is the one where the process acquires the locks and the second the one where it

Atomicity 189

releases them. This locking scheme can be refined by distinguishing between reading and
writing accesses. Indeed a write access must be exclusive but a read access can be shared by
an arbitrary number of processes. The function Cp formalizes this pessimistic transformation
on Imp‖ processes. The key cases concern the variable declaration and the atomic statement:

Cp(var x = v in P) = var x = v, `x = 1 in Cp(P)
Cp(atomic(P)) = lock(`x1); · · · ; lock(`xn);P ; unlock(`x1); · · · ; unlock(`xn) .

It should be noticed that parallel processes running a two phase locking protocol may end up
in a deadlock. For instance, suppose P1 tries to acquire the locks for x1 and x2 while P2 tries
to acquire the locks for x2 and x1. We can arrive at a deadlocked configuration where P1

has acquired the lock for x1 and P2 the lock for x2. In general, one can represent a deadlock
associated with locks as a circular waiting situation where all parallel processes which are not
properly terminated are waiting to acquire a lock which is currently held by another process.

An approach to deadlock resolution consists in introducing a monitor process that at ap-
propriate times detects circular waiting and breaks the circle by aborting one of the processes.
This means that the selected process must release all the acquired locks and start again.

Rather than taking action after the deadlock has happened, another approach consists in
preventing it. One basic approach that works if the locks can be totally ordered consists in
acquiring the locks in growing order. A more general approach not requiring a total order
consists in introducing an information on the age of the atomic transactions. For instance,
the so called wait-die scheme works as follows. If an older transaction tries to acquire a lock
held by a younger transaction then it waits the lock is released, while if a younger transaction
tries to acquire a lock held by an older one then it must release all the acquired locks and
start again (while keeping its age).

Exercise 340 Suppose the age of a transaction is a positive natural number. Write pseudo-
code for an acquire function that takes as input a list of locks and an age and tries to acquire
the locks following the wait-die strategy sketched above.

22.3 A formal analysis of the optimistic strategy

We conclude this section by sketching a formal analysis of the optimistic strategy. With
reference to the trace-environment interpretation defined in section 20.3, one would like to
show that for any Imp‖ process P , we have [[P]]TE = [[Co(P)]]TE . We shall approach this
problem through the notion of simulation which we have already met in chapter 9. Recall
that ↓ is a predicate on programs that defines immediate termination and → is a binary
relation that defines the small-step reduction of Imp‖. As usual, we denote with

∗→ the
reflexive and transitive closure of →.

Definition 341 A binary relation R on Imp‖ programs is a weak simulation if whenever
P R Q the following holds for any state s:

• if P ↓ then (Q, s)
∗→ (Q′, s) and Q′ ↓.

• if (P, s)→ (P ′, s′) then ∃Q′ ((Q, s)
∗→ (Q′, s′) and P ′ R Q′).

We denote with ≤ the union of all weak simulations. The reader may check that this is
again a weak simulation. Also we notice the following properties.

190 Atomicity

Proposition 342 Let P,Q be Imp‖ processes. Then:

(1) If P ≤ Q then [[P]]TE ⊆ [[Q]]TE.

(2) The reverse implication does not hold.

(3) If P ≤ Q then for any program R we have that (P | R) ≤ (Q | R).

(4) If P ≤ Q then for any variable x and integer value n we have that var x = n P ≤ var x =
n Q.

Proof. (1) Suppose P ≤ Q and α ∈ [[P]]TE . We proceed by induction on the length of the
trace α to show that α ∈ Q.

α = (s1, s
′
1) This means (P, s1)

∗→ (P2, s
′
1) and P2 ↓. Then by repeatedly applying the second

condition defining a simulation we have:

(Q, s)
∗→ (Q2, s

′
1) and P2 ≤ Q2 .

Also by the first condition (Q2, s
′
1)
∗→ (Q′2, s

′
1) and Q′2 ↓. Thus

(Q, s)
∗→ (Q′2, s

′
1) ↓

which means α ∈ [[Q]]TE .

α = (s1, s
′
1)α′, α′ 6= ε This means (P, s1)

∗→ (P2, s
′
1) and α′ ∈ [[P2]]TE . Then

(Q, s1)
∗→ (Q2, s

′
1) and P2 ≤ Q2 .

By inductive hypothesis, α′ ∈ [[Q2]]TE . It follows α ∈ [[Q]]TE .

(2) Recall that a non-deterministic sum can be defined in Imp‖. Then we consider:

P ≡ (a = 0)→ a := 1; [(b = 0)→ b := 1 + (c = 0)→ c := 1]
Q ≡ [(a = 0)→ a := 1; [(b = 0)→ b := 1] + (a = 0)→ a := 1; [(c = 0)→ c := 1]] .

It is intended that only the first assignment after the test-for-zero is executed atomically.
Thus for instance:

(P, [0/a]s)→→ ([(b = 0)→ b := 1 + (c = 0)→ c := 1], [1/a]s)

Moreover notice that:

([(b = 0)→ b := 1 + (c = 0)→ c := 1], [0/b, 0/c]s)→ (P ′, [1/b, 0/c]s), (P ′′, [0/b, 1/c]s) ,

where P ′, P ′′ ↓. On the other hand, Q cannot simulate the first step of P . If it takes the first
branch it cannot modify c and if it takes the second it cannot modify b. Another possibility is
to notice that in the trace-environment semantics all looping programs are interpreted as the
empty set while the weak simulation semantics may distinguish two looping programs such
as P = while true do x := 1 and Q = while true do skip. Indeed, we have P 6≤ Q: the move
(P, [0/x]s)→ (P, [1/x]s) cannot be matched by Q.

(3) We show that the following relation R is a weak simulation:

R =≤ ∪{(P | R,Q | R) | P ≤ Q,R program} .

Suppose P ≤ Q and (P | R, s)→ (P ′ | R′, s′). We analyze the two possible cases:

Atomicity 191

(P, s)→ (P ′, s′), R′ = R Then (Q, s)
∗→ (Q′, s′) and P ′ ≤ Q′. So ((Q | R), s)

∗→ ((Q′ | R), s′)
and (P ′ | R) R (Q′ | R).

(R, s)→ (R′, s′), P ′ = P Then ((Q | R), s)→ ((Q | R′), s′) and (P | R′) R (Q | R′).

(4) We show that the following relation R is a weak simulation:

R =≤ ∪{(var x = n P, var x = n Q | P ≤ Q,n ∈ Z}

Suppose P ≤ Q and (var x = n P, s) → (var x = m P ′, s′[s(x)/x]) because (P, s[n/x]) →
(P ′, s′[m/x]). Then (Q, s[n/x])

∗→ (Q′, s′[m/x]) and P ′ ≤ Q′. Thus (var x = n Q, s)
∗→

(var x = m Q′, s′[s(x)/x]) and (var x = m P ′) R (var x = m Q′). 2

Exercise 343 Show that if Pi ≤ Qi for i = 1, 2 then P1;P2 ≤ Q1;Q2.

Proof techniques for simulation (and bisimulation) are developed in the more abstract
setting of labelled transition systems in chapter 24. For the time being, we recall from
chapter 9 that to show that P ≤ Q it suffices to exhibit a relation R which contains the pair
(P,Q) and which is a weak simulation. As an application of this technique, let us show the
following.

Proposition 344 Let P be a Imp‖ process then P ≤ Co(P).

Proof. We consider the relation:

R = {(P, Co(P)) | P Imp‖ process} ∪ {(P,Q) | P ↓, Q ↓} .

We have to check that whenever (P,Q) ∈ R then the two conditions specified in the definition
341 above hold. For the first condition, we check that if P ↓ then Co(P) ↓ by induction on the
definition of immediate termination. For the second condition, we proceed by induction on the
reduction (P, s)→ (P ′, s′) according to the rules specified in table 19.2 of chapter 19. The only

interesting case is when P ≡ await b do P1, (b, s) ⇓ true and (P1, s)
∗→ (P ′, s′) with P ′ ↓. First,

we need a lemma that relates the reductions of (P1, s) to those of ([x∗l /x
∗]P1, s[s(x)∗/x∗l]).

Then one exhibits a sequence of reductions such that (Co(P), s)
∗→ (Q, s′) and Q′ ↓. Now

in general it is not true that Q ≡ Co(P ′), and this is precisely the reason we enlarged the
definition of R to include all the pairs of immediately terminated processes. 2

It follows from propositions 342 and 344 that [[P]]TE ⊆ [[Co(P)]]TE . For the sake of
simplicity, we discuss the reverse inclusion in a simplified case and leave the generalization to
the reader.

Proposition 345 Suppose P ≡ await b do P1 is a Imp‖ process and P1 does not contain
parallel composition, while and await statements. Then Co(P) ≤ P .

Proof. For any state s, the reduction of (P1, s) is deterministic and terminates. We write

(P1, s) ⇓ s′ if (P1, s)
∗→ (skip, s′). We also write P ⇓ if for all states s, all reductions starting

from (P, s) terminate and do not modify the state s.

Preliminary remark. For all states s, s′ if (Co(P), s)
∗→ (P ′, s′) then P ′ ≡ var c = n P ′′ and

n ∈ {0, 1}. Moreover:

192 Atomicity

• If n = 1 then s′ = s.

• If n = 0 then P ′ ⇓, (b, s) ⇓ true, and (P1, s) ⇓ s′.

To show this, we notice that a residual of (Co(P), s) sets to 0 the variable c if and only if:

1. The boolean condition [x∗l /x
∗]b evaluates to true. Notice that when this happens the

contents of x∗l and x∗r are identical.

2. The boolean condition x∗r = x∗ in the atomic statement evaluates to true.

This means that when c is set to 0, we know that the current state s is such that (b, s) ⇓ true
and (P1, s) ⇓ s′. As long as the two conditions above are not satisfied a residual of Co(P) has
the shape:

var c = 1 · · · ; while c = 1 · · ·

and cannot modify the visible state. Next, we define a relation R = R1 ∪R2 as follows:

R1 = {(Q,P) | ∃ s (Co(P), s)
∗→ (var c = 1 P ′, s)}

R2 = {(Q, skip) | ∃ s, s′ (Co(P), s)
∗→ (var c = 0 P ′, s′)}

We conclude by checking that the relation R is a simulation. For R1 we use Property 1. As
long as the reduction does not affect c, there is no modification of the visible state and no
immediate termination. So we can just simulate by doing nothing. As soon as the transition
set c to 0 we simulate by reducing atomically P . For R2, it suffices to check that:

{(Q, skip) | Q ⇓}

is a simulation. 2

22.4 Summary and references

Atomicity is a major issue in concurrency theory starting from early work on the implementa-
tion of atomic transactions in databases [Pap79, BHG87, LMWF94]. Later, related concepts
have been developed in the framework of concurrent programming. In particular, let us men-
tion the notion of concurrent object and linearizability [HW90] and the related results that
classify the synchronization power of various concurrent objects [Her91] (see also chapter 32).
Nowadays, the various strategies to implement atomicity we have discussed are applied to
standard programming languages (C++, Java, Haskell, ML,. . .). In particular, the work on
so called hardware/software transactional memories [HM93, ST95] is mainly concerned with
the problem of finding an efficient implementation of the atomic operator. Amdahl’s law is
presented in [Amd67]. An early and quite readable description of the optimistic strategy in
the framework of database systems can be found in [KR81].

Chapter 23

Rely-guarantee reasoning

We have seen in chapter 20 that the semantics of concurrent processes calls for new techniques.
Not surprisingly, a similar and related phenomenon arises in the specification of concurrent
processes. In chapter 1, we have introduced the notion of partial correctness assertion (pca).
Table 1.4 gives the rules to reason on a sequential fragment of the Imp‖ language. These
rules are sound (proposition 1.4) and can be inverted (proposition 9) thus providing a syntax-
directed method to reduce a pca to an ordinary logical statement. Is it possible to extend
these results to the Imp‖ language?

23.1 Rely-guarantee assertions

We recall and extend some of the notation introduced in section 1.2 to reason on pca. We
associate with a program P the input-output relation on states:

(s, s′) ∈ [[P]]IO if (P, s) ⇓ s′ .

For example, in the case P is an assignment x := e, we have:

[[P]]IO = {(s, s[v/x]) | (e, s) ⇓ v} ,

which turns out to be (the graph of) a total function.
In the assertions, we identify a boolean predicate b with the set of states that satisfy it,

thus b stands for {s | s |= b}. We denote the set of states with St , unary relations on St with
A,B, . . . and binary relations on St with R,G, To manipulate relations on states, we use
the following notation:

Id = {(s, s) | s ∈ St} (identity relation)
Top = {(s, s′) | s, s′ ∈ St} (top relation)
A;R = {s′ | ∃ s s ∈ A and (s, s′) ∈ R} (image)
R;A = {s | ∃ s′ s′ ∈ A and (s, s′) ∈ R} (pre-image)
R;R′ = {(s, s′′) | ∃ s′ (s, s′) ∈ R and (s′, s′′) ∈ R′} (composition).

As usual, if R is a relation then R∗ is its reflexive and transitive closure.
As mentioned above, the generation of the logical conditions follows the structure of the

program (proposition 9). One would like to follow this pattern for the concurrent programs
of the Imp‖ language too. The following exercise suggests we can handle local variables.

193

194 Rely-guarantee assertions

Exercise 346 (rule for local variables) We write:

A[n/x] = {s[n/x] | s ∈ A} ,
s =X s′ if ∀x ∈ X s(x) = s′(x) ,
x /∈ fv(B) if ∀ s (s ∈ B, s ={x}c s

′ ⊃ s′ ∈ B) ,

∃x.B = {s | ∃ s′ ∈ B s ={x}c s
′} .

Then we formulate the rule for local variables as follows:

{A[n/x]} P {∃x.B} x /∈ fv(B)

{A} var x = n P {B} .

Show that the rule is sound and that it can be inverted modulo α-renaming of the bound
variable provided {y | y ∈ fv(B)} is finite (which is always the case if the set B is defined by
a formula).

Then let us turn to parallel composition, which is the core of the matter, and let us try
to formulate a rule of the shape:

{Ai} Pi {Bi} i = 1, 2

{f(A1, A2)} P1 | P2 {g(B1, B2)} ,

where f and g are two ways of combining predicates. Take: P1 ≡ x := 1;x := x + 1 and
P2 ≡ x := 2. We already know from example 317 that:

[[P1]]pca = [[P2]]pca and [[P1 | P2]]pca 6= [[P2 | P2]]pca .

In particular, this means that any derivation that would end with a proof of the shape:

{A1} P2 {B1} {A2} P2 {B2}
{true} P2 | P2 {x ≤ 2} ,

where |= g(B1, B2) ⊆ {s | s(x) ≤ 2} could be turned into a derivation of the triple {true} P1 |
P2 {x ≤ 2} which is obviously not valid! An early approach to this problem goes back to
Owicki and Gries. Their rule has the shape:

{A1} P1 {B1} {A2} P2 {B2}
{A1 ∩A2} P1 | P2 {B1 ∩B2}

(23.1)

provided the proofs of the premises do not ‘interfere’. Having to look at the internal structure
of processes is not very satisfying and it is clearly at odd with one basic principle of module
composition: to compose proofs (modules) one should just know what is proved (the interface)
without depending on the details of the proof (the implementation). A way to tackle these
limitations is to consider a richer specification language whose judgments have the shape:

P : (A,R,G,B) (23.2)

where: (1) A and B are a pre-condition and a post-condition, respectively as in Floyd-
Hoare rules, hence sets of states, (2) R is a relation on states that describes the environment
transitions that are admitted (thus R is part of the pre-conditions), and (3) G is relation
on states that describes the program transitions that are guaranteed (thus G is part of the

Rely-guarantee assertions 195

post-condition). We refer to assertions of the shape (23.2) as rely-guarantee assertions, or rga
for short. To define their validity, we recall from chapter20 that Imp‖ programs may perform
the following labelled transitions:

(P, s)
p→ (P ′, s′) (program transition, cf. Table 19.2)

(P, s)
e→ (P, s′) (environment transition, cf. rule (20.1)).

Definition 347 (computation) A computation of a program P is a (finite or infinite)
sequence:

(P, s0)
λ0→ (P1, s1)

λ1→ (P2, s2)
λ2→ · · · (23.3)

where si are states and λi ∈ {p, e}.

Definition 348 (validity rely-guarantee) The rely-guarantee assertion P : (A,R,G,B)
is valid if for all computations of P of the shape (23.3) such that the following pre-condition
holds:

s0 ∈ A ∧ ∀ i (λi = e ⊃ (si, si+1) ∈ R) ,

it follows that the following post-condition holds:

∀ i (Pi ↓⊃ si ∈ B) ∧ (λi = p ⊃ (si, si+1) ∈ G) .

Thus the pre-condition concerns the initial configuration and all transitions performed
by the environment (including those after termination) while the post-condition concerns the
final configurations (if any) and all the transitions performed by the program.

Exercise 349 The validity of a given pca is equivalent to the validity of a derived rga. Specif-
ically, show that the pca {A} P {B} is valid iff the rga P : (A, Id ,Top, B) is valid.

Remark 350 Rga’s can discriminate programs which are trace-environment equivalent. For
instance, consider the programs loop ≡ while true do skip and P ≡ x := 0; loop. We know
that [[loop]]TE = [[P]]TE, since all the diverging computations receive the empty interpretation.
On the other hand, the rga (true, Id , Id , false) is satisfied by loop but not by P because the
assignment x := 0 does not respect the guarantee condition Id.

Definition 351 (stability) Let A be a unary relation and R a binary relation on some set.
Then we write S(A,R) if s ∈ A and (s, s′) ∈ R implies s′ ∈ A and say that A is stable with
respect to R.

Proposition 352 Let A,B be unary relations and R be a binary relation. Then:

1. S(A,R) iff A;R∗ ⊆ A.

2. A;R∗ ⊆ B iff ∃A′ (A′ ⊇ A,S(A′, R), A′ ⊆ B).

Table 23.1 provides a collection of rules to derive valid rely-guarantee assertions, with
the proviso that the guarantee relation G in the conclusion of the rules contains the identity
relation Id . Without this hypothesis, the rules are unsound. For instance, one can derive
skip; skip : (true,Top, ∅, true) from skip : (true,Top, ∅, true).

196 Rely-guarantee assertions

A ⊆ A′ R ⊆ R′
B′ ⊆ B G′ ⊆ G
P : (A′, R′, G′, B′)

P : (A,R,G,B)

P : (A,R,G,C)
Q : (C,R,G,B)

P ;Q : (A,R,G,B)

P : (A ∩ b,R,G,B)
Q : (A ∩ ¬b,R,G,B)

if b then P else Q : (A,R,G,B)

A ⊆ B S(A,R)

skip : (A,R,G,B)

S(A,R) S(B,R)
A; [[x := e]]IO ⊆ B

[[x := e]]IO ⊆ G
x := e : (A,R,G,B)

S(A,R) S(B,R)
(A ∩ ¬b) ⊆ B

P : (A ∩ b,R,G,A)

while b do P : (A,R,G,B)

S(A,R) S(B,R)
b; [[P]]IO ⊆ G

P : (A ∩ b, Id ,Top, B)

await b do P : (A,R,G,B)

(R ∪G1) ⊆ R2 (R ∪G2) ⊆ R1

(G1 ∪G2) ⊆ G (B1 ∩B2) ⊆ B
P : (A,R1, G1, B1)
Q : (A,R2, G2, B2)

P | Q : (A,R,G,B)

.

Table 23.1: Rely-guarantee rules for Imp‖

Proposition 353 (soundness rga rules) The rely-guarantee assertions derivable in the sys-
tem in Table 23.1 are valid.

Proof. We present the argument for the rule for parallel composition. A computation of
the shape:

(P | Q, s0)
λ0→ (P1 | Q1, s1)

λ1→ · · ·

can be turned into a computation of P where the moves played by Q are actually attributed
to the environment:

(P, s0)
λ′0→ (P1, s1)

λ′1→ · · · (23.4)

with λ′i = e if λi = e or λi = p and the ith move is due to Q, and λ′i = p otherwise. By a
symmetric argument, we derive a computation for Q too:

(Q, s0)
λ′′0→ (Q1, s1)

λ′′1→ · · · (23.5)

We claim that:
λ′i = p implies (si, si+1) ∈ G1

λ′′i = p implies (si, si+1) ∈ G2 .

We reason by contradiction and take j to be least natural number where the property above
fails. For instance, suppose: λ′j = p and (sj , sj+1) /∈ G1. Now for a transition λ′i with i < j
we have 3 cases: either λ′i = p and (si, si+1) ∈ G1, or λi = e, λ′i = e and (si, si+1) ∈ R,
or λi = p, λ′′i = p and (si, si+1) ∈ G2 because i < j. In particular, if λ′i = e we have that
(si, si+1) ∈ R ∪G2 ⊆ R1. Then the following computation of P :

(P, s0)
λ′0→ · · · (Pj , sj)

p→ (Pj+1, sj+1)

Rely-guarantee assertions 197

contradicts the hypothesis P : (A,R1, G1, B). It follows that if λi = p then (si, si+1) ∈
G1∪G2 ⊆ G. Finally, we notice that (Pi | Qi) ↓ entails Pi ↓ and Qi ↓. Thus si ∈ B1∩B2 ⊆ B.
2

Exercise 354 Prove the pca {x = 0} x := 1;x := x + 1 | x := 2 {x ∈ {2, 3}} using the
rely-guarantee system.

Unfortunately, the move from pca’s to rga’s is not quite sufficient to reason about con-
current programs. For instance, it is problematic to prove simple assertions such as:

{x = 0} x := x+ 1 | x := x+ 1 {x = 2} . (23.6)

The problem is that in the rule for parallel composition we need to abstract the possible
state transformations of the parallel processes into a relation on states. In doing this, we lose
information. For instance, we can record the fact that the variable x can be incremented by
one, but we lose the information that this state transition can occur at most once. Further,
in slightly more complicated programs such as x := x + 1;x := x + 2, one loses information
on the order of the state transformations too.

A ‘solution’ which goes back to the Owicki-Gries system is to allow for an instrumentation
of the program. This means enriching the program with auxiliary variables and assignments
which allow to record (essential parts of) the history of the computation without affecting
it. The ‘auxiliary variable’ rule states that if we can prove a rely-guarantee assertion of the
instrumented program then we can transfer this property to the original program where the
instrumentation is removed. For instance, with reference to the pca (23.6) above we can
prove:

{x = 0, p = 0, q = 0} atomic(x := x+ 1; p := 1) | atomic(x := x+ 1; q := 1) {x = 2} (23.7)

and then derive the desired pca (23.6) by erasing the auxiliary variables p and q along with
the related assignments and atomic statements. In practice, one can insert program counters
in all processes and describe exactly in the assertions the way the computation progresses.

It turns out that when adding an auxiliary variable rule, it is possible to invert the rules
presented in Table 23.1 along the spirit of proposition 9. However, as for the non-interference
rule (23.1), this is not very satisfying and really points to a weakness of the specification
language. A more powerful and flexible approach consists in building a full fledged modal
logic that allows to describe the transitions of the program and the environment. Examples of
such modal logics are discussed later in chapter 25 in the more abstract framework of labelled
transition systems.

23.2 A coarse grained concurrent garbage collector

We suppose the reader is familiar with the idea that a program may need to allocate memory
at run time and that such memory should be collected and reused whenever possible so that
the program can carry on its execution within certain given memory bounds.

In general, it is hard to predict when a memory block becomes useless to the rest of the
computation and can be collected. One approach to this issue consists in designing a specific
program called garbage collector which periodically analyzes the state of the memory and
collects the blocks which are useless. Specifically, the memory is modelled as a directed graph

198 Rely-guarantee assertions

with a collection of root nodes which are the entry points of the program to the memory. All
nodes which are not accessible from the roots are considered as garbage and can be collected.
Thus, at least from a logical point of view, the activity of the garbage collector can be
decomposed in two phases: a marking phase where the accessible nodes are determined and
a collecting phase where the inaccessible nodes become again available for future usage. In
practice, it is convenient to relax a bit this specification. Namely, one determines an over-
approximation of the accessible nodes and consequently one collects a subset of the inaccessible
ones.

Going towards a formalization, let us assume a fixed set of nodes N and a fixed subset of
roots Roots ⊆ N . We also use E ⊆ N × N to denote the collection of directed edges which
varies over time. For any given collection of edges E, we have a collection of nodes which are
accessible from the roots: Acc(E) = Roots;E∗.

The activity of the program, henceforth called Mutator, on the memory graph can be
summarized as follows: it selects two accessible nodes i, j and redirects an outgoing edge of
the first node, say (i, k), towards j. In other terms, the edge (i, k) is replaced by the edge
(i, j), where i, j, k are not necessarily distinct. The fundamental property which is guaranteed
by the Mutator is that the collection of accessible nodes can only decrease. Thus if we denote
with E and E′ the collection of edges before and after a Mutator’s action we have that:

Acc(E′) ⊆ Acc(E) . (23.8)

This representation of the Mutator seems very simple but it is actually reasonable provided
we assume that among the root nodes there is: (i) a special node called nil without outgoing
edges and (ii) a special node called fl (free list) that points to the list of free nodes that can
be used to allocate memory. With these hypotheses, expected operations of the Mutator such
as setting a pointer to nil or redirecting a pointer towards a newly allocated node, fall within
the scope of the model.

The activity of the garbage collector is a bit more complex. The task of the marking phase
is to determine a set M ⊆ N which over-approximates the collection of reachable nodes. A
natural way to approach the task is to compute iteratively the least fixed point of the function
associating to a set of nodes M the set of nodes Roots ∪M ;E. This can be expressed in an
imperative programming notation as follows:

Marker ≡ M := ∅; M1 := Roots;
while M1 6⊆M do
(M := (M ∪M1); M1 := (M ;E);)

The Marker program satisfies the pca:

{true} Marker {(Roots ⊆M) ∧ (M ;E ⊆M)} . (23.9)

It follows by induction that: Acc(E) ⊆ M . Once the marking phase is completed, the
collecting phase consists in inserting all the nodes which are not in the set M in the free list
pointed by fl.

Our goal in the following is to reason on the properties of the Mutator and Marker when
they are run in parallel. The property we want to check is that once the Marker terminates the
set M is indeed an over-approximation of the set Acc(E). In order to express the specification
we introduce an auxiliary variable done which is initially set to false and becomes true when
Marker terminates.

Rely-guarantee assertions 199

Formally, we regard a memory state s of our parallel program as a function from the
variables E, M , M1, done to the appropriate value domains. When defining a relation R on
memory states we say that a variable x is stable if (s, s′) ∈ R implies s(x) = s′(x). We will
also say that Acc(E) decreases if (s, s′) ∈ R implies Acc(s(E)) ⊇ Acc(s′(E)). We define:

Marker ′ ≡ (done := false; Marker ; done := true) .

Then we want to show that:

Mutator | Marker ′ : (∅, ∅, G, true) (23.10)

where G = G1 ∪G2 and:

G1 = {(s, s′) |M,M1, done stable,Acc(E) decreasing}
G2 = {(s, s′) | E stable,

s(done) = true implies (Acc(s(E)) ⊆ s(M), M ,M1 , done stable} .

By the rule for parallel composition in Table 23.1, the assertion (23.10) is reduced to:

(1) Mutator : (∅, R1, G1, true)
(2) Marker ′ : (∅, R2, G2, true)
(3) R1 = {(s, s′) | E stable}
(4) R2 = G1 .

The related inclusions are easily checked.

Exercise 355 Apply the rules in Table 23.1 to deduce the property (2) above.

Having outlined a formal analysis of the garbage collector, let us reconsider our description
of the Marker to notice that we are assuming that the computation of the set M ;E of nodes
reachable in one step from the set M is performed atomically. This is a potentially long
operation and one would like to split it in smaller pieces. The difficulty that arises in this
case is that while visiting the nodes in M the set E may be modified by the Mutator in a non-
monotonic way. For instance, we can have Roots = {i, j} and the collection of edges oscillating
between E1 = {(i, k)} and E2 = {(j, k)}. If the Marker visits i (j) while the collection of
edges is E2 (E1, respectively) then it will never notice that the node k is accessible! For this
reason, it is usually assumed that in finer grained concurrent garbage collectors the mutator
must help the marker. At our abstract level, that could mean that the mutator is also allowed
to add elements to the set M .

23.3 Summary and references

Rely-guarantee assertions to reason about concurrent programs are based on both unary and
binary relations on states. The latter describe the transitions of the environment we can
rely upon and the transitions of the program that are guaranteed. Owicki-Gries system is
presented in [OG76]. Rely-guarantee assertions for reasoning about Imp‖ programs were put
forward in [Jon83] and then developed by Stirling [Sti88]. The presentation above is close to
[Nie03] which in turn is based on [XdRH97].

200 Rely-guarantee assertions

The compact modeling of the garbage collector is introduced in [DLM+78]. More refined
solutions to the concurrent garbage collection problem are described and analyzed, e.g., in
[DLM+78, Gri77, BA84, vdS87]. The number of proof obligations to be checked for fine
grained garbage collectors becomes quickly overwhelming and a machine-assisted proof is
instrumental to raise the confidence in the proposed solution. Examples of such developments
can be found in [NE00, DG94]. Also it seems useful to cast the problem of concurrent garbage
collection in the more general framework of lock-free concurrent data structures [HM92] which
is discussed in chapter 32.

Chapter 24

Labelled transition systems and
bisimulation

So far we have considered a rather concrete model of concurrent computation, namely parallel
imperative programs with shared variables. To analyze the design spectrum which is available
in the semantics of concurrency, it is convenient to move to a more abstract framework where
systems perform some set of actions. Such a system is called labelled transition system (lts).
Concretely, an action could consist in changing the contents of a shared variable or sending a
message. In this chapter, we formalize the notion of (bi-)simulation over a lts, consider a way
to abstract away internal computation steps (weak (bi-)simulation), and present some proof
techniques for (bi-)simulation.

24.1 Labelled transition systems

A labelled transition system (lts) can be regarded as an automaton where we do not specify
the set of initial and final states.

Definition 356 (labelled transition system) A labelled transition system is a ternary
relation → such that →⊆ S ×Act × S , S is a set of states, and Act is a set of actions. We
also write s

α→ s′ for (s, α, s′) ∈→.

Remark 357 In section 19.1, we have presented a transition system for the Imp‖ language.
It is possible to regard this system as a lts by taking the set of states S as the collection of
Imp‖ processes and Act as the collection of pairs of memory states (not to be confused with the
states of the lts we are defining). Then we would write (P, (s, s′), Q) ∈→ if (P, s) → (Q, s′)
according to the rules in Table 19.2.

Inspired by definition 318 of trace for Imp‖ processes, we introduce a notion of trace and
trace equivalence on lts.

Definition 358 (traces) We define the set of traces of a state s in a lts as:

tr(s) = {α1 · · ·αn | s
α1→ · · · αn→} .

We say that two states s and t are trace equivalent if tr(s) = tr(t).

201

202 LTS and bisimulation

There are a few points to be noticed concerning the definition 358 above. First, it neglects
termination since this notion is not even present in the definition 356 of lts (but a termination
predicate on states could be added). And since termination is neglected, the set of traces is
closed under prefex. Second, there is no notion of closure of the traces under reflexivity and
transitivity. This point is treated later in section 24.3 once the notion of internal action is
introduced. Third, the environment seems to play no role in the behavior of the lts and the
related definition of trace equivalence. We shall see in chapter 26 that it is possible to enrich
lts with a notion of synchronization and parallel composition and then prove that the notion
of trace equivalence in definition 358 is indeed preserved by parallel composition.

24.2 Bisimulation

In chapter 19, we have motivated the interest of accounting for the branching behavior of a
system (example 313 of the vending machine). The notion of (bi-)simulation is a very popular
approach to this issue. We have already met this notion in chapter 9 in the framework of
the λ-calculus and in chapter 22 in the framework of the Imp‖ concurrent language. Next, we
reconsider this notion in the setting of labelled transition systems. The proposed definition
ignores certain observables such as termination and deadlock. However, it is quite possible to
enrich the notion of lts with predicates that represent termination and/or deadlock and then
to formulate a notion of (bi-)simulation which depends on these predicates.

Definition 359 (bisimulation) Let →⊆ S × Act × S be a labelled transition system. A
binary relation R on S is a simulation if:

s R t, s
α→ s′

∃ t′ t α→ t′, s′ R t′
. (24.1)

Moreover we say that R is a bisimulation if:

s R t, t
α→ t′

∃ s′ s α→ s′, s′ R t′
. (24.2)

Remark 360 In definition 359 as well as in the following ones there is an implicit universal
quantification on the states which are not existentially quantified.

Proposition 361 (on bisimulation) The following properties hold for the collection of bisim-
ulations over a labelled transitions system:

1. The empty and identity relations are bisimulations.

2. The collection of bisimulations is closed under inverse, composition, and arbitrary unions.

3. There is a greatest bisimulation which is defined as the union of all bisimulations and
that we represent with ∼ (some authors call it bisimilarity).

4. Bisimulations are not closed under (finite) intersection.

Proof. Properties (1-3) follow by a simple unravelling of the definitions. For property (4),
consider the lts 1

a→ 2, 1
a→ 3, x

a→ y, x
a→ z and the relations R1 = {(1, x), (2, y), (3, z)},

R2 = {(1, x), (2, z), (3, y)}. 2

LTS and bisimulation 203

Exercise 362 (on simulation) Show that the properties above are true of simulations too
but for closure under inverse. Further, denote with ≤ the greatest simulation. Find a lts with
states s, t such that s ≤ t, t ≤ s, and s 6∼ t.

Exercise 363 (trace vs. simulation) For s, t states of a lts show that s ≤ t implies tr(s) ⊆
tr(t), while the converse may fail.

Remark 364 (alternative definition of bisimulation) Sometimes a bisimulation is de-
fined as a symmetric relation R such that:

s R t, s
α→ s′

∃ t′ t α→ t′, s′ R t′
.

The advantage of this definition is that one can omit the second condition (24.2). The in-
convenience is that by forcing a bisimulation to be symmetric we make it larger than really
needed. However, notice that given a bisimulation R one can always derive a symmetric
relation which is a bisimulation by taking R∪R−1.

Let →⊆ S × Act × S be a labelled transition system. Notice that L = 2S×S is a complete
lattice with respect to inclusion (cf. definition 172). Bisimulation can be characterized as the
greatest fixed point of a certain monotonic function F on binary relations which we introduce
below.

Definition 365 (function F) We define F : L→ L as:

F(R) = {(s, t) | s
α→ s′ implies ∃ t′ t α→ t′ and s′ R t′ and

t
α→ t′ implies ∃ s′ s α→ s′ and s′ R t′} .

The following properties of the function F are easily checked (cf. proposition 175).

Proposition 366 The following properties hold:

1. R is a bisimulation iff R ⊆ F(R).

2. F is monotonic on L.

3. The greatest bisimulation ∼ is the greatest fixed point of F .

Remark 367 (transfinite definition of bisimulation) The bisimulation ∼ being the great-
est fixed point of the monotonic function F , it can be approximated from above as follows
(cf. chapter 9):

∼κ+1 = F(∼κ) , ∼κ =
⋂
κ′<κ ∼κ′ (κ limit ordinal).

Thus to show s 6∼ t it suffices to find an ordinal κ such that s 6∼κ t.

Definition 368 (image finite lts) A lts →⊆ S ×Act × S is image finite if for all P, α the
set {s′ | s α→ s′} is finite.

For finite (image finite) lts the greatest fixed point is reached in a finite (countable) number
of iterations.

204 LTS and bisimulation

Proposition 369 (bisimulation for (image) finite lts) The following properties hold:

1. If the support S of the lts is finite then there is a natural number n such that the greatest
bisimulation coincides with ∼n.

2. If the lts is image finite then the greatest bisimulation coincides with ∼ω, i.e., on image
finite lts F is co-continuous (preserves intersections).

Proof. For the first property, see exercise 177. For the second property, suppose s ∼ω t and
s
α→ s′. Then:

∀n ∃ tn t
α→ tn and s′ ∼n tn .

Since the set {t′ | t α→ t′} is finite there must be a t′ in this set such that {n | tn = t′} is
infinite.1 Thus there is an infinite sequence n1 < n2 < n3 < · · · such that s′ ∼nj tnj = t′.
Then for any n we can find a nj ≥ n such that s′ ∼nj t′; and this entails s′ ∼n t′. Hence
s′ ∼ω t′. 2

We conclude this section by introducing a notation to denote lts which will be extended
in chapter 26 to a full language of processes known as CCS . The notation is generated by
the following grammar:

P ::= 0 || α.P || P + P α ∈ Act (24.3)

Here 0 denotes the empty lts, also called nil, α.P is the lts denoted by P prefixed by the
transition α, and P +Q is the non-deterministic sum of the lts denoted by P and Q. In this
notation, the states’ identities are immaterial; what matters of a state is not its name but
the actions it can do. Using this notation, the lts version of the vending machines in example
313 can be represented as follows:

a.(b.0 + c.0) vs. a.b.0 + a.c.0 ,

Notice that identifying the two machines amounts to distribute the prefix over the non-
deterministic sum. We use the following abbreviations: b for b.0, bn for b.b.0 (b prefixed
n times), and bω for the infinite lts b.b. · · ·. If I is a (possibly infinite) set then Σi∈IPi denotes
the non-deterministic sum of the lts denoted by Pi. We apply the notation in the following
exercise.

Exercise 370 (non-bisimilar lts) Consider the lts Pi, Qi defined as follows:

P0 = b.0 Q0 = c.0
Pi+1 = a.(Pi +Qi) Qi+1 = a.Pi + a.Qi .

1. Show that for all i natural number: (i) Pi ∼i Pi +Qi ∼i Qi, (ii) Pi 6∼i+1 Pi +Qi 6∼i+1

Qi 6∼i+1 Pi.

2. Show that: (i) ∀ i ≤ n bn ∼i bω, (ii) Σi≥0b
i + bω ∼ω Σi≥0b

i, (iii) ∀ i bi 6∼ω bω, (iv)
Σi≥0b

i + bω 6∼ω+1 Σi≥0b
i.

1This is a version of the so called pigeonhole principle which states that if infinitely many pigeons are put
in finitely many boxes then at least one box must contain infinitely many pigeons.

LTS and bisimulation 205

24.3 Weak transitions

Certain computation steps should not be directly observable. For instance, in sequential
programs usually one is just interested in the input-output behavior and not in the way
the output is computed. To model this situation in lts, we enrich the collection of actions
with a distinct internal action τ . For instance, τω is a diverging system which never inter-
acts with the environment. As another example, we could regard a system such as a.τ.b.0
equivalent to a.b.0. Though the internal action is not directly observable, it may make a
difference. For instance, consider the lts a.0 + b.0 and τ.a.0 + τ.b.0 with the interpretation:
a = ‘accepts to deliver coffee’ and b = ‘accepts to deliver tea’. The second system decides
‘internally’ whether to deliver coffee or tea while the first will take a decision that may be
controlled by the environment.

Given a lts with τ transitions, we derive a related lts with the same states but where
an observable transition may be preceded and followed by an arbitrary number of internal
transitions (think of ε transitions in automata theory).

Definition 371 (derived weak lts) Let a lts→⊆ S×(Act∪{τ})×S be given where τ /∈ Act
is a distinct internal action. We derive from this lts another weak lts⇒ ⊆ S×(Act∪{τ})×S
where:

α⇒ =

{
(
τ→)∗ if α = τ

(
τ→)∗(

α→)(
τ→)∗ otherwise.

Remark 372 When working with weak transitions, lts tend to be image infinite, and therefore
proposition 368 cannot be applied.

The notion of bisimulation for lts with internal actions is simply the standard notion of
bisimulation on the derived weak lts.

Definition 373 (weak bisimulation) Let →⊆ S × (Act ∪ {τ})× S be a lts with a distinct
internal action τ . A binary relation R on S is a weak bisimulation if it is a bisimulation with
respect to the weak transition system ⇒. We denote with ≈ the largest weak bisimulation.

The following definition of weak bisimulation is the one which is used in practice.

Definition 374 (one step weak bisimulation) A relation R is a one step weak bisimu-
lation if:

s R t s
α→ s′

∃ t′ t α⇒ t′, s′ R t′
,

s R t t
α→ t′

∃ s′ s α⇒ s′, s′ R t′
.

Proposition 375 A relation R on a lts is a weak bisimulation iff it is a one step weak
bisimulation.

Proof. By diagram chasing. 2

Henceforth we just speak of weak bisimulation and use the more convenient definition.

Definition 376 (weak up to strong) We say that a relation R on a lts is a weak bisim-
ulation up to strong bisimulation if:

s R t, s
α→ s′

∃ t′ t α⇒ t′, s′ ∼ R ∼ t′
,

s R t, t
α→ t′

∃ s′ s α⇒ s′, s′ ∼ R ∼ t′
.

Exercise 377 Show that if R is a weak bisimulation up to strong bisimulation then R ⊆≈.

206 LTS and bisimulation

24.4 Proof techniques for bisimulation

The standard method to prove s ∼ t is to exhibit a relation R such that s R t and R ⊆ F(R),
where F is as in definition 365. Exercise 377 suggests that it is possible to refine this proof
technique by exhibiting a relation R which is a bisimulation up to a relation ‘with suitable
properties’. In the following, we provide a rather general treatment of what ‘with suitable
properties’ means. First, some preliminary remarks. Let (L,≤) be a complete lattice and
f : L → L be a monotonic function on L. The function f induces a transitive relation <f
which refines ≤:

x <f y if x ≤ y and x ≤ f(y) .

Notice that <f is anti-symmetric but not necessarily reflexive. In the case we are interested
in, L is the power-set 2S×S , f is F , and R is a bisimulation iff R <F R.

Definition 378 We say that a function h : L→ L preserves <f if:

x <f y implies h(x) <f h(y) .

Exercise 379 Show that the set of functions preserving the order <f is closed under com-
position and supremum.

Proposition 380 (key property) Let (L,≤) be a complete lattice, f : L → L be a mono-
tonic function (with greatest fixed point gfp(f)), and h : L → L be a function that preserves
<f . Then:

x ≤ f(h(x)) implies x ≤ gfp(f) .

Proof. Given x, we build a bigger element y such that y ≤ f(y). To this end, we define a
sequence x0 = x, xn+1 = xn ∨ h(xn). Let y =

∨
n≥0 xn; obviously xn ≤ xn+1 and x ≤ y. We

show that xn <f xn+1, by induction on n.

n = 0 x0 = x ≤ f(h(x)) ≤ f(x ∨ h(x)), since x ≤ f(h(x)) by hypothesis and f is monotonic.

n > 0 We have to show:

xn = xn−1 ∨ h(xn−1) ≤ f(xn ∨ h(xn)) = f(xn+1) .

Since f is monotonic, we have f(xn) ∨ f(h(xn)) ≤ f(xn ∨ h(xn)). By inductive hy-
pothesis, we know xn−1 ≤ f(xn). Moreover, since h preserves <f , we have h(xn−1) ≤
f(h(xn)).

Finally, we remark that y ≤ f(y), as:

y =
∨
n≥0

xn ≤
∨
n≥0

f(xn+1) ≤ f(
∨
n≥1

xn) = f(y) .

Since y ≤ f(y) implies y ≤ gfp(f), we conclude x ≤ gfp(f). 2

Exercise 381 (when h is a closure) We say that a function h on a lattice L is a closure
if id ≤ h = h ◦ h. Show that if h is a closure then y = h(x) in the previous construction.

In our application scenario, this means that to prove that s and t are bisimilar it suffices
to find: (1) a function H that preserves <F and (2) a relation R such that R ⊆ F(H(R)).

LTS and bisimulation 207

Exercise 382 Let H(R) =∼ ◦R◦ ∼. Check that H preserves <F .

We introduce a notion of weak bisimulation up to expansion which is often used in appli-
cations.

Definition 383 (expansion) A binary relation R on a lts is an expansion if:

s R t, s
α→ s′

∃ t′ t α⇒ t′ s′ R t′
,

s R t t
α→ t′

∃ s′ s′ R t′ and (s
α→ s′ or (α = τ, s′ = s))

.

We denote with � be the largest expansion and with � its inverse. Also we read s � t as s
expands to t.

Note that an expansion is a hybrid object which is weak on the left and almost strong on
the right. The intuition is that the state on the right is a kind of implementation of the one
on the left, i.e., the state on the right may take more internal steps to perform the ‘same
task’.

Exercise 384 (weak bisimulation up to expansion) Define: H(R) = � ◦R◦ �. Let F
be the monotonic function induced by the definition of (one step) weak bisimulation. Show
that:

1. s ∼ t implies strictly s � t (and s � t).

2. � ∪ � implies strictly ≈.

3. H preserves <F . And explicit the condition that needs to be checked to ensure that a
relation R is a weak bisimulation up to expansion.

The following exercise highlights two possible pitfalls in the usage of up-to techniques.

Exercise 385 (pitfalls) Define: H′(R) = ≈ ◦R◦ ≈ and H′′(R) = � ◦R◦ �. As in the
previous exercise, let F be the monotonic function induced by the definition of (one step) weak
bisimulation. Show that:

1. H′ does not preserve <F . Suggestion: consider R = {(τ.a, 0)} and check that R ⊆
F(H′(R)) while obviously R 6⊆≈.

2. H′′ does not preserve <F , by an argument similar to the one used for H′.

24.5 Summary and references

The notion of labelled transition system provides an abstract setting to explore the variety
of possible semantics of concurrent systems. In particular, we have developed the notion of
bisimulation which corresponds to the greatest fixed point of a certain monotonic function on
lts. Bisimulation is a natural notion and Park [Par81] seems the first to have used it in the
semantics of programming languages. In order to abstract the internal behavior of a system,
we have introduced the notion of internal action and the related notions of weak transition
and weak bisimulation. Finally, we have discussed an up to proof technique which allows to
reduce the size of the relation to be exhibited to show that two lts are bisimilar.

208 LTS and bisimulation

Chapter 25

Modal logics

In chapter 23, we have considered partial correctness and rely-guarantee assertions as means
to specify the behaviour of concurrent processes and in doing this we have faced some problems
due to the limited expressive power of the specification language. In this chapter, we take a
bold step in that for a given notion of equivalence on lts we aim at a specification language
which captures exactly the equivalence. The presented languages build on the notion of
(propositional) modal logic which is an extension of usual logic with modalities that qualify
the validity of the assertions: possibly true, necessarily true,. . . In particular, we introduce a
diamond modality indexed over the actions of the lts and stipulate:

s |= 〈α〉A if ∃ s′ s α→ s′ and s′ |= A ,

which is read as follows: a state s satisfies the formula 〈α〉A if there is a state s′ such
that s

α→ s′ and s′ satisifies A. It turns out that the full infinitary specifications generated
by this extension characterize bisimulation, while restricted versions correspond to coarser
equivalences such as simulation or trace equivalences.

In practice, one needs finite means to describe ‘infinitary’ specifications. An elegant way
to achieve this, is to define (monotonic) formulae by least and greatest fixed points (in the
spirit of proposition 175). The resulting modal language is called the µ-calculus. For finite
state lts, we present a simple algorithm to decide whether a state satisfies a formula of the
µ-calculus.

25.1 Modal logics vs. equivalences

We introduce a modal logic which consists of a classical propositional logic enriched with a
so called diamond modality describing the ability to perform an action.

Definition 386 (formulae) The collection of formulae of a propositional modal logic is de-
fined as:

A ::=
∧
i∈I

Ai || ¬A || 〈α〉A α ∈ Act (25.1)

where the set I can also be empty or infinite. By convention, we write true for
∧
∅ and [α]A

for ¬〈α〉¬A.

209

210 Modal logics

Definition 387 (formulae satisfaction) We define when a state in a lts satisfies a for-
mula, written s |= A, as follows:

s |=
∧
i∈I Ai if ∀ i ∈ I s |= Ai

s |= ¬A if s 6|= A

s |= 〈α〉A if ∃ s′ s α→ s′ and s′ |= A .

We also write:
[[A]] = {s | s |= A} (formula interpretation)
[[s]] = {A | s |= A} (state interpretation)
s ∼L s′ if [[s]] = [[s′]] (logical equivalence) .

Exercise 388 (on modal formulae) Spell out what it means to satisfy [α]A. Find a for-
mula showing that a.(b.0 + c.0) 6∼L a.b.0 + a.c.0.

It is easily checked that two bisimilar states are logically equivalent.

Proposition 389 Let s, s′ be states in a lts. If s ∼ s′ then s ∼L s′.

To show the converse of proposition 389, we introduce the (possibly infinite) so called
characteristic formulae.

Definition 390 (characteristic formula) Given a state s in a lts and an ordinal κ the
characteristic formula Cκ(s) is defined as follows:

Cκ+1(s) =
∧
s
α→s′ 〈α〉C

κ(s′) ∧∧
α∈Act [α](

∨
s
α→s′ C

κ(s′))

Cκ(s) =
∧
κ′<κC

κ′(s) (κ limit ordinal).

(25.2)

Proposition 391 For any state s and ordinal κ:

1. |= s : Cκ(s).

2. |= s′ : Cκ(s) iff s ∼κ s′, where ∼κ is the approximation of bisimulation defined in remark
367.

Proof. To prove a property for all ordinals one relies on the principle of transfinite induction.
Namely one shows that if a property is true of all ordinals less than κ then it is true of κ. 2

Exercise 392 Suppose that the set of actions Act is finite. Then show for image finite lts
the following property: if two processes are not bisimilar then there is a finite formula that
distinguishes them.

Given that full modal logic characterizes bisimulation, one may look for fragments of the
logic that characterize coarser equivalences. We consider the cases of trace (definition 358)
and simulation equivalence (definition 359).

Modal logics 211

Proposition 393 (trace equivalence) The modal formulae A of the following shape char-
acterize trace equivalence:

A ::= B || C ||
∧
i∈I

Ai ,

where: B ::= true || 〈α〉B and C ::= false || [α]C .

Proof. One defines the characteristic formula as follows:

C(s) =
∧

α1···αn∈tr(s)

〈α1〉 · · · 〈αn〉true ∧
∧

α1···αn /∈tr(s)

[α1] · · · [αn]false .

2

Proposition 394 (simulation equivalence) The modal formulae A of the following shape
characterize simulation equivalence:

A ::=
∧
i∈I

Ai || 〈α〉A .

Proof. We build the formula Cκ(s) taking the left hand side of the formula (25.2) that
works for bisimulation. Then (1) |= s : Cκ(s) and (2) |= s′ : Cκ(s) iff s ≤κ s′, where ≤κ is
the approximation of simulation. One shows that s ≤ s′ and |= s : A implies |= s′ : A. On
the other hand if s and s′ are logically equivalent then |= s′ : C(s) and |= s : C(s′). Therefore
s ≤ s′ and s′ ≤ s. 2

25.2 A modal logic with fixed points: the µ-calculus

In the presented modal language, to express, e.g., that a process can do infinitely many actions
α we need an infinite formula. It is possible to increase the expressive power of formulae while
keeping the syntax finite. An elegant extension known as µ-calculus consists in adding to the
logical formulae least fixed points. Then the syntax of modal formulae given in definition 386
is revisited as follows.

Definition 395 (formulae with fixed points) The modal formulae with fixed points have
the following syntax:

id ::= x || y || . . . (formula identifiers)
A ::=

∧
i∈I Ai || ¬A || 〈α〉A || id || µid .A (formulae).

In a formula µx.A the identifier x is bound in A by the least fixed point operator µ.
Also we assume that each free occurrence of x in A is positive, i.e., under an even number
of negations. This positivity condition is essential to show that the function induced by the
formula is monotonic and therefore has a least (and a greatest) fixed point (cf. exercise 396
below).

Since a formula may contain free identifiers, its interpretation is given relatively to an
assignment ρ : id → 2S as follows:

[[
∧
i∈I Ai]]ρ =

⋂
i∈I [[Ai]]ρ

[[¬A]]ρ = ([[A]]ρ)c

[[〈α〉A]]ρ = {s | s α→ s′ and s′ ∈ [[A]]ρ}
[[x]]ρ = ρ(x)
[[µx.A]]ρ =

⋂
{X ⊆ S | [[A]]ρ[X/x] ⊆ X} .

212 Modal logics

Of course, if A is a closed formula its interpretation does not depend on the assignment and
we can write s |= A if s ∈ [[A]]ρ, for some ρ.

Exercise 396 (positivity) Check that for all well-formed formulae A, identifier x, and as-
signments ρ, the function X 7→ [[A]]ρ[X/x] is monotonic on 2S. Conclude that the semantics
of a formula µx.A does indeed correspond to a least fixed point.

An intuitive way to understand the meaning of a formula µx.A is to unfold it as an
infinite disjunction

∨
κA

κ where: Aκ+1 = [Aκ/x]A and Aκ =
∨
κ′<κA

κ′ for κ limit ordinal.
This viewpoint is based on the iterated definition of the least fixed point mentioned in chapter
9.

Greatest fixed points are derived by duality from least fixed points by defining:

νx.A = ¬µx.¬([¬x/x]A) .

For instance: νx.〈α〉x = ¬µx.¬〈α〉¬x.

Exercise 397 (greatest fixed points) Check that the interpretation of ν does indeed cor-
respond to a greatest fixed point, namely:

[[νx.A]]ρ =
⋃
{X ⊆ S | X ⊆ [[A]]ρ[X/x]} .

We have seen that disjunction and greatest fixed points can be derived from conjunction,
least fixed points, and negation. An alternative approach consists in dropping negation and
taking conjunction, disjunction, µ and ν operators as primitive. This way we have to deal
with an additional operator but we can drop the positivity condition on the fixed points since
conjunction and disjunction are guaranteed to induce monotonic functions.

Exercise 398 (deriving negation) Show that the negation operator can be defined (on
closed formulas). Hint: Consider the following equations:

¬〈α〉A = [α]¬A, ¬[α]A = 〈α〉¬A, ¬µx.A = νx.¬A, ¬νx.A = µx.¬A .

It turns out that for finite lts, the modal logic with fixed points can express the charac-
teristic formula of a state by a finite formula.

Proposition 399 Let s be a state in a finite lts. Then there is a closed finite characteristic
formula C(s) involving only greatest fixed points such that for any state s′, |= s′ : C(s) iff
s ∼ s′.

Proof. For every state s introduce a propositional variable xs and an equation based on the
characteristic formula in definition 390:

xs =
∧
s
α→s′ 〈α〉xs′ ∧

∧
α∈Act [α](

∨
s
α→s′ xs′)

Then the general idea is to take the greatest fixed point of this system of equations and project
on the component which corresponds to the state s. 2

Another interesting property of the µ-calculus on finite lts is that the model-checking
problem is decidable. We spend the rest of the section to present a proof of this fact that
relies on the following elementary property of fixed points.

Modal logics 213

Proposition 400 (reduction) Let f be a monotonic function over 2S and s ∈ S be a state.
Consider the following monotonic functions over 2S: (f ∪ s)(x) = f(x)∪ {s} and (f\s)(x) =
f(x)\{x}. Also if g is a monotonic function denote by ν(g) and µ(g) its greatest and least
fixed point. Then:

1. s ∈ ν(f) iff s ∈ f(ν(f ∪ s)).

2. s ∈ µ(f) iff s ∈ f(µ(f\s)).

3. s ∈ ν(f ∪ s).

4. s /∈ ν(f\s).

Proof. (1) Suppose s ∈ ν(f). Then:

f(ν(f)) ∪ {s} = ν(f) ∪ {s} = ν(f) .

By definition of ν(f ∪ s) this implies ν(f) ⊆ ν(f ∪ s). By monotonicity, ν(f) = f(ν(f)) ⊆
f(ν(f ∪ s)), and therefore s ∈ f(ν(f ∪ s)). On the other hand, suppose s ∈ f(ν(f ∪ s)). It
follows:

ν(f ∪ s) = f(ν(f ∪ s)) ∪ {s} = f(ν(f ∪ s)) .

By definition of ν(f) this implies ν(f ∪ s) ≤ ν(f). By monotonicity, f(ν(f ∪ s)) ≤ f(ν(f)) =
ν(f), and therefore s ∈ ν(f).

(2) Prove by a dual argument: s /∈ µ(f) iff s /∈ f(µ(f\s)).

(3− 4) Immediate by unfolding the fixed point. 2

This proposition suggests a strategy to unfold recursive formulae. The starting idea is
to tag each fixed point with a set of states. Then properties (1-2) of proposition 400 when
read from left to right suggest to record in the tag the states that are crossed when unfolding
a fixed point while properties (3-4) of proposition 400 provide the halting conditions. To
formalize this idea, we begin by introducing the syntax of tagged formulae.

Definition 401 (formulae with tagged fixed points) The modal formulae with tagged
fixed points have the following syntax:

id ::= x || y || . . . (formula identifiers)
T ::= {s1, . . . , sn} (tags, finite sets of states)
A ::=

∧
i∈I Ai ||

∨
i∈I Ai || 〈α〉A || [α]A || id || µid : T.A || νid : T.A (tagged formulae).

The interpretation of tagged fixed points is as follows while the interpretation of the logical
and modal operators is left unchanged:

[[µx : T.A]]ρ =
⋂
{X ⊆ S | ([[A]]ρ[X/x])\T ⊆ X} ,

[[νx : T.A]]ρ =
⋃
{X ⊆ S | X ⊆ ([[A]]ρ[X/x]) ∪ T} .

Based on this interpretation and proposition 400, we introduce in Table 25.1 the collection of
rules to model-check states against finite formulae of the µ-calculus.

Proposition 402 (soundness) Let A be a closed formula of the modal, tagged µ-calculus.
If we can derive the assertion s : A according to the rules in Table 25.1 then s ∈ [[A]].

214 Modal logics

s : A s : B

s : A ∧B

s : A

s : A ∨B
s : B

s : A ∨B

s′ : A

s : 〈α〉A for some s
α→ s′

s′ : A

s : [α]A
whenever s

α→ s′′

s /∈ T s : [µx : T ∪ {s}.A/x]A

s : µx : T.A

s /∈ T s : [νx : T ∪ {s}.A/x]A

s : νx : T.A

s ∈ T
s : νx : T.A

Table 25.1: A model checker for the µ-calculus

Proof. By induction on the height of the proof, relying on the reduction proposition 400 for
the rules that fold the fixed points. 2

Proving completeness of the method for finite state lts amounts to prove the termination
of the unfolding process. Suppose we look at the rules in Table 25.1 bottom up. All rules
but those that unfold fixed points either entail termination or shrink the size of the formula
to be proved. Hence any infinite backward development must include an infinite number of
applications of the rules unfolding fixed points. Now we remark that these rules add new
elements to the tags. Since T ⊆ S and S is finite, we might conjecture that this process
eventually terminates. We prove this property in two steps. First, we present a simple
rewriting system whose termination proof exposes the kernel of the combinatorial problem.
Second, we show termination of the bottom up proof development by exhibiting a reduction
preserving translation from judgments to terms of the simple rewriting system.

Definition 403 We define a collection of σ-terms as follows where n is a natural number:

id ::= x || y || · · · (identifiers)
θ ::= id || 1 || θ ∗ θ || •θ || σnid .θ (σ-terms)

Definition 404 A term θ can be reduced according to the following rules where the rules can
be applied at top level only:

σn+1x.θ → [σnx.θ/x]θ, •θ → θ, θ ∗ θ′ → θ, θ ∗ θ′ → θ′ .

Proposition 405 The rewriting system defined in 404 terminates.

Proof. Let WF be the collection of terminating σ-terms. If θ ∈WF let d(θ) be the length
of the longest reduction sequence (this is well defined because the reduction tree is finitely
branching). We want to prove:

θ, θ′ ∈WF implies [θ′/x]θ ∈WF . (25.3)

Modal logics 215

We prove (25.3) by induction on d(θ). The only interesting case is when θ has the shape
σn+1y.θ. Then we observe:

[θ′/x](σn+1y.θ) ≡ σn+1y.[θ′/x]θ → [σny.[θ′/x]θ/y]([θ′/x]θ) ≡ [θ′/x][σny.θ/y]θ .

We note that (σn+1y.θ) → [σny.θ/y]θ ∈ WF . Hence, we can apply the inductive hypothesis
on d([σny.θ/y]θ), and we conclude that [θ′/x][σny.θ/y]θ ∈WF .

Next we prove that all σ-terms terminate. We proceed by induction on a relation � which
is the least transitive relation such that:

σn+1x.θ � σnx.θ , σn+1x.θ � θ , •θ � θ , θ ∗ θ′ � θ , θ ∗ θ′ � θ′ .

Clearly � is a well founded relation. Again the only interesting case is when the term
has the shape σyn+1.θ. By the inductive hypothesis σyn.θ ∈ WF , θ ∈ WF , and by (25.3)
[σyn.θ/y]θ ∈WF . 2

Definition 406 Given a finite lts with a set of states S, we associate a σ-term to a modal
formula as follows, where n =]S + 1:

〈x〉 = x , 〈A ∧B〉 = 〈A〉 ∗ 〈B〉 , 〈A ∨B〉 = 〈A〉 ∗ 〈B〉 ,
〈〈α〉A〉 = •〈A〉 , 〈[α]A〉 = •〈A〉 , 〈µx : T.A〉 = σx(n−]T).〈A〉 ,
〈νx : T.A〉 = σx(n−]T).〈A〉 .

Suppose s′ : A′ is a premise of s : A in the proof development. We show 〈A〉 → 〈A′〉 by
inspection of the proof rules. The only interesting case is when we unfold a fixed point. Since
in the translation we have picked n =]S+ 1 bigger than]T we can compute, e.g., in the case
of the least fixed point:

〈µx : T.A〉 = σx(n−]T).〈A〉 → [σx(n−]T−1).〈A〉/x]〈A〉 = 〈[µx : T ∪ {s}.A/X]A〉 .

Proposition 407 The model checker is complete on finite structures.

Proof. We show by induction on A that |= s : A iff a proof rule applies. We can bound the
depth of a path in a bottom up proof development. Hence, if |= s : A by developing the proof
bottom up we eventually obtain a proof of s : A. 2

25.3 Summary and references

We have described a family of modal logical languages which can be used to characterize
bisimulation as well as coarser equivalences. We have also presented a few basic results on a
fixed point extension of modal logic known as µ-calculus. The µ-calculus is a kind of basic
modal logical language to which more user-friendly logical languages can be compiled. It
was introduced by Kozen [Koz83], following previous work by V. Pratt. The simple proof
of decidability of the model checking problem for finite lts we have presented is based on
[Win89]. The model-checking problem for the µ-calculus is known to be in NP∩co-NP (like
the graph isomorphism problem). Upper bounds on the time complexity are polynomial in
the size of the lts and exponential in the so called alternation depth of the formula. This is
a measure that counts the number of alternations of nested greatest and least fixed points.
It is also known [Bra96, Len96] that bounding the alternation depth limits the expressivity
of the logic, i.e., the hierarchy of formulae obtained by measuring the alternation depth is
strict. The basic theory of the µ-calculus is developed systematically in [AN01].

216 Modal logics

Chapter 26

Labelled transition systems with
synchronization

One can make the basic model of labelled transition systems a bit more interesting by adding
some parallelism and synchronization mechanisms. One elegant way to provide a synchro-
nization mechanism is to introduce a notion of co-action and suppose that synchronization
happens when a process can perform an action and another parallel process can perform the
corresponding co-action. Thus, given a set A, take the set of actions to be:

Act = {a, a | a ∈ A} ∪ {τ} . (26.1)

It is convenient to extend the co-action definition to the whole set Act by assuming:

τ = τ , a = a .

CCS (Calculus of Communicating Systems) is a minimal set of operators to represent such
labelled transition systems enriched with the co-action mechanism; we introduce this formal-
ism and discuss two ways to define its bisimulation semantics which turn out to be equivalent.
CCS is a simple model of concurrent systems and we shall build on it to discuss the notions of
deterministic (chapter 27), timed (chapter 28), and probabilistic concurrent system (chapter
29). We shall also consider an extension of CCS , known as π-calculus (chapter 30), that
allows for a rather direct embedding of higher-order functional programs.

26.1 CCS

Actions in CCS are defined according to the equation (26.1) above. Besides the nil, prefix
and non-deterministic choice operators introduced in chapter 24, CCS includes operators to
declare a local action (cf. local variable in Imp‖), to put processes in parallel, and to define
recursive behaviors:

P ::= 0 || α.P || (P + P) || (P | P) || νa P || A(a∗)

where α ∈ Act and A,B, . . . are process identifiers. An action name is free if it is not in the
scope of a local action declaration (a ν). We write a∗ for a possibly empty list of action names
a1, . . . , an. Similarly, νa∗ P stands for νa1 · · · νan P , and [b∗/a∗] for [b1/a1, . . . , bn/an]. It
is assumed that each process identifier A is defined by a unique equation A(b∗) = P where

217

218 CCS

the free names in P are contained in the set of parameters {b∗}. For instance, A could be a
process identifier defined by the equation:

A(a, b) = a.νc (A(a, c) | b.A(c, b)) . (26.2)

Here the set of variables occurring free in a.νc (A(a, c) | b.A(c, b)) is {a, b} which happens to
be included (actually equal) to the set of parameters of the process identifier A. Also notice
that an action name, say b, may appear in a prefix as such or in its dual form b.

Moving towards semantics, the main design decision consists in regarding a, b, . . . as chan-
nel names on which parallel processes synchronize. More precisely, a synchronization may
only happen when a process is ready to perform an action and another parallel process is
ready to perform its dual action as, e.g., in the process (a.P | a.Q). Following the synchro-
nization, the process moves to (P | Q). CCS is an asynchronous model of concurrency where
interaction is possible through rendez-vous synchronization on pure channels. A rendez-vous
channel is a channel of null capacity where the sender must always wait for a receiver. A
channel is pure if no message value is exchanged; all that matters is the synchronization.

An important consequence of assuming a synchronization by rendez-vous is to offer a better
control on the role of the environment. In the Imp‖ model, the environment can modify the
(visible part of the) state and these modifications may affect the future computation of the
process. In CCS , the only way the environment may affect the computation of the process is
to perform an action which is dual to an action that the process is ready to perform.

Starting from this intuition, we follow two paths to define a compositional semantics of
CCS . The first path consists in associating a labelled transition system with each CCS
process. Then the equivalences on lts defined in the previous chapter 24, apply to CCS
processes too and lead to a compositional semantics. The second path consists in looking at
CCS as a (rudimentary) programming language and define its possible reductions similarly
to what we have done for the Imp‖ language in chapter 19. Then what needs to be done is to
fix a notion of observable and to derive a notion of compositional equivalence. We work with
the notion of (weak) bisimulation introduced in chapter 24 and in the end, we show that the
two paths outlined above actually lead to the same compositional equivalence.

As a concrete example illustrating the difference between the two approaches, consider
the CCS process P ≡ (a.0 | a.0). In the first approach, we have to consider the labelled
transitions:

P
a→ (0 | a.0)

a→ (0 | 0) , P
a→ (a.0 | 0)

a→ (0 | 0) , P
τ→ (0 | 0) .

While in the second, we just have have the reduction:

P → (0 | 0) .

We shall see that the τ transitions correspond to the reductions while the other labelled
transitions correspond to interactions with the environment.

26.2 Labelled transition system for CCS

Table 26.1 describes a lts for CCS processes where the symmetric rules for | and + are omitted.

CCS 219

α.P
α→ P

P
α→ P ′ α /∈ {a, a}
νa P

α→ νa P ′

P
α→ P ′

P | Q α→ P ′ | Q
P

a→ P ′ Q
a→ Q′

(P | Q)
τ→ (P ′ | Q′)

P
α→ P ′′

P + P ′
α→ P ′′

B(a∗) = P [b∗/a∗]P
α→ P ′

B(b∗)
α→ P ′

Table 26.1: Lts for CCS (symmetric rules omitted)

Exercise 408 (labelled transitions) Check that:

νb (a.P | P ′) | νc a.Q τ→ νb (P | P ′) | νc Q .

Example 409 (an unbounded buffer in CCS) In CCS, the communication is by rendez-
vous (or handshake, or synchronous). What if we want channels with buffers? One approach
is to enrich the model. Another approach is to show that buffers can be expressed in CCS.
An unbounded buffer taking inputs on a and producing outputs on b can be written as (up to
renaming, this is the same as equation (26.2)):

Buf (a, b) = a.νc (Buf (a, c) | b.Buf (c, b)) .

We write more suggestively a 7→ b for Buf (a, b), assuming a 6= b. We would like to show that
a 7→ b works indeed as an unbounded buffer. Let cn = c . . . c.0, n times, n ≥ 0. We should
have:

P (n) = νa (an | a 7→ b) ‘equivalent to’ b
n

An interesting exercise because P (n) has a non trivial dynamics. For the time being we just
analyze some of the labelled transitions of P (n).

• For n = 0, P (n) cannot reduce.

• For n > 0, we need to generalize a bit the form of the process P (n). Let Q(n,m) be a
process of the form:

Q(n,m) = νa, c1, . . . , cm (an | a 7→ c1 | · · · | cm 7→ b) ,

for m ≥ 0. Note that P (n) = Q(n, 0) and Q(0, k) cannot reduce for any k. Moreover,
the message can traverse the whole chain so that:

Q(n,m)
b⇒ Q(n− 1, 2m+ 1) .

Thus:

P (n)
b⇒ · · · b⇒ Q(0, 2n − 1) ‘equivalent to’ 0 ,

where we recall that:
b⇒= (

τ→)∗
b→ (

τ→)∗.

Note that there are plenty of reductions we did not consider! Yet, in chapter 27 we shall
be able to conclude that this analysis suffices to derive that P (n) is ‘equivalent to’ b

n
.

220 CCS

We can regard CCS as a labelled transition system where states are processes. We say
that P and Q are strongly bisimilar (written P ∼ Q) if they are bisimilar with respect to the
lts we have just defined. We say that they are weakly bisimilar (written P ≈ Q) if they are
bisimilar with respect to the derived lts

α⇒ where internal actions are ‘abstracted’. Obviously
P ∼ Q implies P ≈ Q. Next, we consider the issue of compositionality.

Definition 410 (CCS context) A context C is a process with a hole [] (here and in the
following we omit the symmetric cases when listing contexts):

C ::= [] || α.C || C + P || C | P || νa C .

Proposition 411 If P ∼ Q then C[P] ∼ C[Q].

Proof. We apply the standard technique which amounts to define a relationR which includes
the processes of interest and show that it is a bisimulation.

Prefix R = {(α.P1, α.P2) | P1 ∼ P2}∪ ∼
Sum R = {(P1 +Q,P2 +Q) | P1 ∼ P2}∪ ∼
Parallel R = {(P1 | Q,P2 | Q) | P1 ∼ P2}∪ ∼
Restriction R = {(νa P1, νa P2) | P1 ∼ P2}∪ ∼ .

2

Remark 412 In general, the non-deterministic sum does not preserve weak bisimulation as:

τ.a ≈ a but τ.a+ b 6≈ a+ b .

However a guarded version of the non-deterministic sum has this property. Denote with
D the following contexts:

D ::= [] || α.D || α′.D + P || (D | P) || νa D α′ 6= τ .

Proposition 413 If P ≈ Q then D[P] ≈ D[Q].

Proof. Similar to the strong case. 2

Remark 414 (on unguarded sum) There are two viewpoints on the non-preservation of
weak-bisimulation by the sum:

1. One should take the largest congruence which refines ≈. Then, e.g., we should distin-
guish τ.a from a.

2. In most applications one just needs a guarded sum and so it is enough to have a notion
of equivalence which is preserved by guarded sums.

The second viewpoint tends to prevail at least in formalisms like Imp‖ (chapter 19) or the π-
calculus (chapter 30) where a guarded form of sum is easily derived from parallel composition.

CCS 221

Exercise 415 (sequentialization in CCS) We consider a fragment of CCS (we drop sum
and recursive definitions) extended with an operator ‘;’ for process sequentialization. Thus
the process syntax is as follows:

P ::= 0 || α.P || (P | P) || P ;P || νa P α ∈ {a, a | a ∈ A} ∪ {τ} . (26.3)

The labelled transition system for CCS is extended with the following rules for process se-
quentialization:

P
α→ P ′

P ;Q
α→ P ′;Q

P ↓ Q
α→ Q′

P ;Q
α→ Q′

Here the predicate ↓ denotes proper termination and it is defined as the least set of processes
such that:1

0 ↓
P ↓ Q ↓
(P | Q) ↓

P ↓ Q ↓
(P ;Q) ↓

P ↓
νa P ↓ .

If P is a process in the extended language (26.3) and c is a name not occurring in P then
[[P]]c is a CCS process (without process sequentialization) defined as follows:

[[0]]c = c.0
[[α.P]]c = α.[[P]]c
[[P1 | P2]]c = νc1, c2 (([[P1]]c1 | [[P2]]c2) | c1.c2.c.0) (c1, c2 /∈ fv(P1) ∪ fv(P2) ∪ {c})
[[P1;P2]]c = νc′ ([[P1]]c′ | c′.[[P2]]c) (c′ /∈ fv(P1) ∪ fv(P2) ∪ {c})
[[νa P]]c = νa [[P]]c (c 6= a)

(1) Show that if P ↓ then [[P]]c
c⇒ Q and Q ∼ 0, where ∼ is the largest strong bisimulation.

(2) Define the notion of weak simulation up to strong bisimulation and show that this is a
sound technique to prove weak simulation. (3) Show that for all processes P , P is weakly
simulated by [[P]]c up to strong bisimulation.

Exercise 416 (bisimulation up-to context) We introduce a notion of bisimulation up to
the contexts. For simplicity let us assume: D ::= [] || α.D || (D | P) || νa D. Suppose:

H(R) = {(P ′, Q′) | ∃D P ′ ≡ D[P], P R Q,D[Q] ≡ Q′} .

Let F be the monotonic function associated with (one step) weak bisimulation.

1. Analyze the one-step transitions of a process D[P] as a function of the transitions of P
and D[0].

2. Show that H preserves <F .

3. Explicit the associated notion of bisimulation up to context.

Exercise 417 (prime factorization) Let A be a set of actions with generic elements a, b, . . .
and let P denote a process in the following fragment of CCS:

P ::= 0 || a.P || (P + P) || (P | P) a ∈ A .

1This is related to (but slightly different from) the immediate termination predicate introduced for the
language Imp‖ (chapter 19).

222 CCS

Notice that there is no notion of co-action and therefore no possibility of synchronization
among parallel processes. In this exercise when we speak of a process, we refer to a process in
this fragment. We define the size of a process, say |P |, by induction on the structure of P as
follows:

|0| = 0 , |a.P | = 1 + |P | , |P +Q| = max (|P |, |Q|) , |P | Q| = |P |+ |Q| .

We say that a process P is irreducible if P ∼ P1 | P2 implies that P1 ∼ 0 or P2 ∼ 0 and we
say that P is prime if P is irreducible and moreover P 6∼ 0. Prove the following assertions.

1. If P
a→ Q then |P | > |Q|.

2. If P ∼ Q then |P | = |Q| (but the converse fails).

3. For all processes P,Q,R the following properties hold:

• If (P | R) ∼ (Q | R) then P ∼ Q (this is a kind of cancellation property).

• If (P | R) ∼ (Q | R′) and R
a→ R′ then there exists Q′ such that Q

a→ Q′ and
P ∼ Q′.

4. Every process P such that P 6∼ 0 can be expressed up to strong bisimulation as the
parallel composition of prime processes.

5. Every process P such that P 6∼ 0 has a unique decomposition as the parallel composition
of prime processes. Unicity here has to be understood in the same sense as the unicity
of the prime factorization of a natural number.

26.3 A reduction semantics for CCS

We want to define a reduction semantics for CCS . A technical problem is that in the syntax,
the synchronizing processes can be far away as in: νb (a.P | P ′) | νc a.Q. In the lts pre-
sented in Table 26.1 we have tackled this problem by keeping track of the potential transitions
of every sub-process. An alternative approach consists in introducing a notion of structural
equivalence on processes which is strong enough to bring two synchronizing processes in con-
tiguous positions and weak enough to identify only processes that are intuitively equivalent.
In particular in the following, we assume a structural equivalence ≡ which is the least congru-
ence which (i) includes renaming, (ii) such that | is associative and commutative, (iii) such
that + is associative, commutative and idempotent, and (iv):

νa (P | Q) ≡ νa P | Q if a /∈ fv(Q)
A(b∗) ≡ [b∗/a∗]P if A(a∗) = P .

An evaluation context E is defined by:

E ::= [] || νa E || E | P (evaluation contexts). (26.4)

Then the reduction relation is

P → Q if P ≡ E[a.P ′ +Q′ | a.P ′′ +Q′′] and Q ≡ E[P ′ | P ′′]
P → Q if P ≡ E[τ.P +Q′] and Q ≡ E[P] .

CCS 223

Exercise 418 (reduction up to structural equivalence) Check that:

νb (a.P | P ′) | νc a.Q→ νb (P | P ′) | νc Q .

Internal transitions and reductions can be related as follows (proofs left to the reader).

Proposition 419 Let P be a CCS process.

1. If P
τ→ P ′ then P → P ′.

2. If P → P ′ then P
τ→ P ′′ and P ′ ≡ P ′′.

The next step is to introduce some candidates for the notion of basic observable. We write:

P ↓ a if the process P is ‘ready to perform’ a visible communication action on channel a.

This is called a strong commitment (or barb). It is a simple exercise to define ↓ by induction
on the structure of P . One may also distinguish the polarity of the communication (input or
output).

Following the notation adopted for weak transitions, we denote with ⇒ the reflexive and
transitive closure of the reduction relation → (elsewhere in these lecture notes the notation
∗→ is used). Then we derive a notion of weak commitment by writing:

P ⇓ a if P ⇒ Q and Q ↓ a .

We also have the following strong and weak commitment predicates which abstract the channel
on which the process commits:

P ↓∃ if ∃ a P ↓ a ,
P ⇓∃ if ∃ a P ⇓ a .

Finally, we introduce the following strong and weak predicates to observe termination:

P ↓ if P 6→ ,
P ⇓ if ∃P ′ P ⇒ P ′ and P ′ ↓ .

Definition 420 (static contexts) We define the static contexts as the contexts of the fol-
lowing shape:

C ::= [] || (C | P) || νa C .

Intuitively, they are called static because they persist after a transition (unlike a prefix or
a sum). It is generally held that a useful equivalence should be preserved at least by static
contexts. Incidentally, in the simple case considered, static contexts coincide with evaluation
contexts. Next we introduce a notion of compositional equivalence which is based on the
notion of bisimulation.

Definition 421 (contextual bisimulation) A binary relation R on processes is a strong
contextual bisimulation if whenever P R Q the following conditions hold (and reciprocally for
Q):

(cxt) For all static contexts C, C[P] R C[Q].

224 CCS

(red) If P → P ′ then for some Q′, Q→ Q′ and P ′ R Q′.

(cmt) If P ↓ a then Q ↓ a.

For the weak version replace → by ⇒ and ↓ by ⇓. For the one-step weak version the re-
placement only takes place on the right of the implication. Denote with ∼C (≈C) the largest
contextual (weak) bisimulation.

Informally, we can say that a contextual bisimulation is a relation that is preserved by
static contexts and by reduction, and that is compatible with commitments. If we drop the
preservation by static contexts we obtain the following notion.

Definition 422 (barbed bisimulation) A binary relation R on processes is a strong barbed
bisimulation if whenever P R Q the following conditions hold (and reciprocally for Q):

(red) If P → P ′ then for some Q′, Q→ Q′ and P ′ R Q′.

(cmt) If P ↓ a then Q ↓ a.

We denote with ∼BB the largest such equivalence, and with ≈BB its weak variant.

Barbed bisimulation distinguishes less processes than contextual bisimulation and it is not
preserved by parallel composition.

Exercise 423 (on barbed bisimulation) In the framework of CCS, show that barbed bisim-
ulation is not preserved by parallel composition.

Because preservation by the operators of the language is essential for compositional rea-
soning, the notion of barbed bisimulation can be refined as follows.

Definition 424 (barbed equivalence) We say that two processes are barbed equivalent if
put in any static context they are barbed bisimilar. We denote such equivalence with ∼BE.
The weak variant based on weak barbed bisimulation is denoted with ≈BE.

Then the comparison of contextual bisimulation and barbed equivalence arises as an ob-
vious question.

Exercise 425 (on barbed equivalence) Show that if two processes are contextually bisim-
ilar then they are barbed equivalent.

The converse can be quite tricky to prove. The characterization of labelled bisimulation
we are aiming at is more direct/natural when working with contextual bisimulation than with
barbed equivalence.

Exercise 426 (variations on commitment) Show that we get an equivalent notion of con-
textual bisimulation if the condition [cmt] is replaced by: P ⇓∃ implies Q ⇓∃. On the other
hand, show that we get an incomparable notion of contextual bisimulation if the condition
[cmt] is replaced by: P ⇓ implies Q ⇓.

CCS 225

The labelled bisimulation introduced in section 26.2 is an example of contextual bisimu-
lation.

Proposition 427 The largest labelled bisimulation is a contextual bisimulation (both in the
strong and weak case).

Proof. Denote with ∼ (≈) the labelled (weak) bisimulation. It has been proved that ∼ and
≈ are preserved by static contexts. Incidentally, note that an arbitrary labelled bisimulation
does not need to be saturated by static contexts. Moreover the conditions [red] and [commit]
of contextual bisimulation are particular cases of the bisimulation game in the labelled case. 2

The previous proposition shows that every labelled bisimulation is contained in contextual
bisimulation. The converse is given by the following.

Proposition 428 The largest contextual bisimulation ∼C (or ≈C in the weak case) is a
labelled (weak) bisimulation.

Proof. We consider directly the weak case. An internal choice2 in CCS can be defined as
follows:

P ⊕Q = νa (a.P | a.Q | a) = τ.P + τ.Q .

If P ≈C Q and P
τ⇒ P ′ then Q

τ⇒ Q′ and P ′ ≈C Q′, by condition [red] of contextual
bisimulation.

So suppose P
a⇒ P ′. Let o1, o2 be two distinct fresh names (not in P and Q) and define

the static context:

C = [] | a.(o1 ⊕ (o2 ⊕ 0)) .

By hypothesis, C[P] ≈C C[Q]. Clearly, C[P]
τ⇒ P ′ | (o2 ⊕ 0) and again by hypothesis

(condition [red]) C[Q]
τ⇒ Q′′ and P ′′ ≡ P ′ | (o2 ⊕ 0) ≈C Q′′.

Now we argue that Q′′ must be of the shape Q′ | (o2 ⊕ 0) where Q
a⇒ Q′. The case

Q′′ = C[Q′] and Q
τ⇒ Q′ is impossible because P ′′ ⇓ o2 entails Q′ ⇓ o2, and the latter entails

Q′ ⇓ o1 which cannot be matched by P ′′. The cases Q
a⇒ Q′ and Q′′ = Q′ | R′ where

R′ ∈ {o1 ⊕ (o2 ⊕ 0), o1, o2, 0} are also impossible for similar reasons. Thus we must have
Q′′ = Q′ | (o2 ⊕ 0) and P ′ | (o2 ⊕ 0) ≈C Q′′.

It is easy to argue that since P ′ | (o2 ⊕ 0)
τ⇒ P ′ | 0 we must have Q′ | (o2 ⊕ 0)

τ⇒ Q1 | 0
and Q1 | 0 ≈C P ′ | 0. Thus Q

a⇒ Q1 and P ′ ≡ (P ′ | 0) ≈C (Q1 | 0) ≡ Q1. Strictly speaking,
we use an up to technique. 2

Exercise 429 Do the previous proof in the strong case. Can you simplify the context C in
this case? Show that (weak) labelled bisimulation is a (weak) barbed bisimulation. Show that
(weak) labelled bisimulation is a (weak) barbed equivalence.

2It is called internal because the environment has no way of controlling it; by opposition, a choice such as
a.P + b.Q is called external.

226 CCS

26.4 Value-passing CCS

As already mentioned, in CCS communication is pure synchronization. We now consider an
extension where values can be sent along channels. In the following, values are just basic
atomic objects such as booleans or integers which can be tested for equality:

v ::= v0 || v1 || v2 . . . (values)

In chapter 30, we shall consider the more complex case where the values are actually channels.
Let Val be the set of values. Then the collection of actions given by equation (26.1) is revised
as follows:

Act = {av, av | a ∈ A, v ∈ Val} ∪ {τ} (actions with value passing) (26.5)

Input and output actions are now pairs composed of a channel name and a value. To write
value-passing CCS processes, we need a notion of variable ranging over values which stands
for the value read upon communication.

id ::= x || y || . . . (variables)

We also need a notion of term which is either a value or a variable (we call this term by
analogy with first-order logic):

t ::= v || id (term)

Then the syntax of CCS value-passing processes is as follows:

P ::= 0 || a(id).P || at.P || [t = t]P, P || (P + P) || (P | P) || νa P || A(a∗)

where a(x).P is the process that receives a value v on the channel a and becomes [v/x]P ,
av.P is the process that sends v on a and becomes P , and [v = v′]P,Q is the process that
compares the values v and v′ and runs P if they are equal and Q otherwise.

The reduction semantics for CCS is easily extended to value passing CCS . Omitting the
details concerning the evaluation context and the structural equivalence, the synchronization
rule with exchange of values is:

av.P | a(x).Q→ P | [v/x]Q ,

and we add the usual rules for the conditional (cf. chapter 19):

[v = v]P,Q→ P [v = v′]P,Q→ Q (v 6= v′) .

Notice that the resulting reduction semantics is supposed to operate on terms without free
value variables. As a matter of fact, reducing processes with free variables would be a form
of symbolic execution and requires carrying along with the process a set of constraints which
describe the possible values of its free variables.

The labelled semantics of CCS with value passing rises some subtle issues concerning the
treatment of the input prefix. Consider a process a(x).P . The action structure we have given
above in equation (26.5) suggests a rule of the shape:

a(x).P
av→ [v/x]P

(early binding) . (26.6)

CCS 227

However, by changing a little bit the action structure (26.5), we could also think of a rule
that maps a process to a function from values to processes:

a(x).P
a→ λx.P

(late binding) . (26.7)

This in turn requires defining an obvious notion of bisimulation on functions: two functions
λx.P and λx.Q from values to processes are bisimilar if for all values v ∈ Val , [v/x]P and
[v/x]Q are bisimilar (cf. chapter 9). The first rule is called early binding and formalizes a
situation where the communication channel and the value received are selected at the same
time. By opposition, the second rule is called late binding. It turns out that the late binding
approach leads to a labelled bisimulations which is more discriminating than the one based
on early binding. For instance, consider the processes:

P ≡ a(x).([x = v0]b.0, 0 + [x = v1]c.0, 0) ,

Q ≡ a(x).[x = v0]b.0, 0 + a(x).[x = v1]c.0, 0 .

The processes P and Q are ‘early-binding bisimilar’ but not ‘late-binding bisimilar’. Specif-
ically, by a late-binding input the process P goes to a function that cannot be matched by
Q. In this case, the comparison with contextual bisimulation suggests that the early binding
semantics is the ‘right’ one.

We conclude this quick review of value passing CCS by mentioning that at the price of
an infinitary syntax, it is quite simple to reduce it to ordinary CCS . This is similar in spirit
to transformations from predicate logic to propositional logic where universal and existential
quantifications are replaced by infinitary conjunctions and disjunctions, respectively. In our
case, the basic idea is to replace the input of a value by the non-deterministic sum of infinitely
many inputs:

[[a(x).P]] = Σv∈Valav.[[[v/x]P]] . (26.8)

Incidentally, for a finite and small set of values this gives an effective way of programming
value passing in basic CCS .

26.5 Summary and references

Labelled bisimulation requires: labels, labelled transitions, and labelled bisimulation. The
choice of the labels and the rules of the bisimulation game may be hard to justify. On the
other hand, contextual bisimulation requires reduction, static contexts, and commitments.
This approach is more natural but it may be harder to prove that two processes are contextual
bisimilar. For CCS , labelled bisimulation coincides with contextual bisimulation. In general
this kind of result is a guideline when we are confronted to more complicated models (such
as the π-calculus in chapter 30).

CCS is a model of message passing based on redez-vous communication among two pro-
cesses. Another popular interaction mechanism consists in allowing several parallel processes
to synchronize on the same label. This mechanism does not scale so well when we want to
add more structure to the actions as, e.g., in value passing synchronization.

CCS has been introduced by Milner in [Mil80]; a revised presentation is in [Mil95]. The
reduction semantics of concurrent systems is put forward in [BB92]. The notion of contextual
bisimulation is studied by [HY95]. The earlier definition of barbed equivalence can be found
in [MS92]. Exercise 417 is based on [MM93].

228 CCS

Chapter 27

Determinacy and confluence

In automata theory, one can consider various definitions of determinism. For instance, in the
framework of finite automata, consider the following ones.

1. There is no word w that admits two computation paths in the graph such that one leads
to an accepting state and the other to a non-accepting state.

2. Each reachable configuration admits at most one successor.

3. For each state, either there is exactly one outgoing transition labelled with ε, or all
outgoing transitions are labelled with distinct symbols of the input alphabet.

Thus one can go from ‘extensional’ conditions (intuitive but hard to verify) to ‘syntac-
tic’ conditions (verifiable but not as general). In the following, we propose a definition of
deterministic lts and show that all the equivalences included between trace equivalence and
bisimulation collapse on such systems. We also introduce a notion of confluence on labelled
transition systems. This is a stronger property than determinism which allows for a restricted
form of parallel composition and for the representation of deterministic models of parallel com-
putation such as Kahn networks. Finally, we consider reactive systems, i.e., systems which
enjoy a kind of generalized termination property. It turns out that for such system, it is
enough to check a local form of confluence.

27.1 Determinism in lts

In the first place, it is useful to recall why non-determinism is needed. First, it arises naturally
in race conditions where two ‘clients’ request the same service such as:

νa (a.P1 | a.P2 | a) .

Second, it is a tool for general specification and portability. It is often the case that we do
not want to commit on a particular behavior. For instance, consider:

νa, b (τ.a.b.c | a.b.d | b) .

Depending on the compilation, the design of the virtual machine, the processors timing,. . .
we might always run d rather than c (or the other way around).

229

230 Determinacy

On the other hand, deterministic systems are easier to test, debug, and possibly prove
correct. Notice that often the implementation seems ‘deterministic’ because the scheduler de-
terminizes the program’s behavior. However this kind of determinism is not portable: running
the program in another environment may produce different results.

We now move towards a definition of determinacy. Here are some reasonable requirements:

• If P and P ′ are ‘equivalent’ then one is determinate if and only if the other is.

• If we run an ‘experiment’ twice we always get the same ‘result’.

• If P is determinate and we run an experiment then the residual of P after the experiment
should still be determinate.

If we place ourselves in the context of a simple model such as CCS , we can interpret
equivalent as weak bisimilar and experiment as a finite sequence of labelled transitions.

More formally, let us denote with L the set of visible actions and co-actions with generic
elements `, `′, . . . and let us denote with Act = L∪{τ} the set of actions, with generic elements
α, β, . . . Let s ∈ L∗ denote a finite word over L. Then:

P
ε⇒ P ′ if P

τ⇒ P ′

P
`1...`n⇒ P ′, n ≥ 1 if P

`1⇒ · · · `n⇒ P ′ .

If P
s⇒ Q we say that Q is a derivative of P . As usual we write |s| for the length of the word

s.

Definition 430 A process P is determinate if for any s ∈ L∗, if P
s⇒ Pi for i = 1, 2 then

P1 ≈ P2.

Remark 431 This definition relies on the notion of labelled transition system. Indeed, the

transition P
`→ P ′, ` represents a minimal interaction with the environment and P ′ is the

residual after the interaction.

Exercise 432 Are the following CCS processes determinate? (1) a.(b+ c). (2) a.b+ ac. (3)
a+ a.τ . (4) a+ τ.a. (5) a+ τ .

Proposition 433 The following properties hold:

1. If P is determinate and P
α→ P ′ then P ′ is determinate.

2. If P is determinate and P ≈ P ′ then P ′ is determinate.

Proof. Like most of the following proofs, the argument is by diagram chasing.

1. Suppose P
α→ P ′ and P ′

s⇒ Pi for i = 1, 2.

• If α = τ then P
s⇒ Pi for i = 1, 2. Hence P1 ≈ P2.

• If α = ` then P
`·s⇒ Pi for i = 1, 2. Hence P1 ≈ P2.

2. Suppose P ≈ P ′ and P ′
s⇒ P ′i for i = 1, 2.

Determinacy 231

• By definition of weak bisimulation: P
s⇒ Pi and Pi ≈ P ′i , for i = 1, 2.

• Since P is determinate, we have P1 ≈ P2.

• Therefore, we conclude by transitivity of ≈: P ′1 ≈ P1 ≈ P2 ≈ P ′2. 2

Definition 434 (τ-inertness) We say that a process P is τ -inert if for all its derivatives
Q, if Q

τ⇒ Q′ then Q ≈ Q′.

Proposition 435 If a process is determinate then it is τ -inert.

Proof. Suppose P
s⇒ Q and Q

τ⇒ Q′. Then P
s⇒ Q and P

s⇒ Q′. Thus by determinacy,
Q ≈ Q′. 2

Next we introduce a weak version of the notion of trace equivalence for lts presented in
definition 358.

Definition 436 (traces) We define the traces of a process P as:

tr(P) = {s ∈ L∗ | P s⇒ ·} ,

and say that two processes P,Q are trace equivalent if tr(P) = tr(Q).

Notice that the traces of a process form a non-empty, prefix-closed set of finite words over
L.

Exercise 437 Are the following equations valid for trace equivalence and/or weak bisimula-
tion?

a+ τ = a, α.(P +Q) = α.P + α.Q, (P +Q) | R = P | R+Q | R, P = τ.P .

Exercise 438 (compositionality of trace semantics) Show that if P,Q,R are CCS pro-
cesses and tr(P) = tr(Q) then tr(P | R) = tr(Q | R).

The following result entails that on deterministic processes most equivalences (trace,
simulation-induced equivalence, bisimulation,. . .) collapse.

Proposition 439 Let P,Q be processes.

1. If P ≈ Q then tr(P) = tr(Q).

2. Moreover, if P,Q are determinate then tr(P) = tr(Q) implies P ≈ Q.

Proof. (1) Suppose P ≈ Q and P
s⇒ ·. Then Q

s⇒ · by induction on |s| using the properties
of weak bisimulation.

(2) Suppose P,Q determinate and tr(P) = tr(Q). We show that:

{(P,Q) | tr(P) = tr(Q)}

is a bisimulation.

232 Determinacy

• If P
τ→ P ′ then P ≈ P ′ by determinacy. Thus taking Q

τ⇒ Q we have:

P ′ ≈ P tr(P) = tr(Q) .

By (1), we conclude: tr(P ′) = tr(P) = tr(Q).

• If P
`→ P ′ then we note that:

tr(P) = {ε} ∪ {`} · tr(P ′) ∪
⋃

` 6=`′,P `′⇒P ′′

{`′} · tr(P ′′) .

This is because all the processes P ′ such that P
`⇒ P ′ are bisimilar, hence trace equiv-

alent. A similar reasoning applies to tr(Q). Thus there must be a Q′ such that Q
`⇒ Q′

and tr(P ′) = tr(Q′). 2

Example 440 (the unbounded buffer reconsidered) Recall the unbounded buffer in ex-
ample 409:

Buf (a, b) = a.νc (Buf (a, c) | b.Buf (c, b))
P (n) = νa (an | Buf (a, b))

One can show that these processes are deterministic. In fact one can show that they actually
enjoy a stronger property known as confluence which is introduced next in section 27.2.

27.2 Confluence in lts

We introduce a notion of confluence that strengthens determinacy and is preserved by some
form of communication (parallel composition + restriction). For instance,

νa ((a+ b) | a)

will be rejected because a+ b is not confluent (while being deterministic).
The notion of confluence we consider is reminiscent of confluence in rewriting systems

(cf. definition 23). By analogy, one calls confluence the related theory in process calculi but
bear in mind that: (1) confluence is relative to a labelled transition system and (2) we close
diagrams up to equivalence.

Before introducing formally the notion of confluence for lts we need to define a notion of
action difference.

Definition 441 (action difference) Suppose α, β ∈ Act. Their action difference α\β is
defined as:

α\β =

{
α if α 6= β
τ otherwise.

We can generalize the notion of action difference to sequences of visible actions r, s ∈ L∗.
To compute the difference r\s of r by s we scan r from left to right deleting each label which
occurs in s taking into account the multiplicities (cf. difference of multi-sets). We abuse
notation by writing ` /∈ s to mean that ` does not occur in the word s.

(ε\s) = ε

(`r\s) =

{
` · (r\s) if ` /∈ s
r\(s1 · s2) if s = s1`s2, ` /∈ s1 .

For instance: aba\ca = ba and ca\aba = c.

Determinacy 233

Exercise 442 Let r, s, t ∈ L∗. Show that:

1. (rs)\(rt) = s\t.

2. r\(st) = (r\s)\t.

3. (rs)\t = (r\t)(s\(t\r)).

We now introduce a notion of confluent process.

Definition 443 (confluence) A process P is confluent if for every derivative Q of P we
have:

Q
α⇒ Q1 Q

β⇒ Q2

∃Q′1, Q′2 (Q1
β\α⇒ Q′1, Q2

α\β⇒ Q′2, and Q′1 ≈ Q′2)
[conf 0] (27.1)

The condition in definition 443 is labelled as [conf 0] to distinguish it from two more
equivalent conditions that we state below and that are labelled [conf 1] and [conf 2].

• A process P is confluent 1 if if for every derivative Q of P we have:

Q
α→ Q1 Q

β⇒ Q2

∃Q′1, Q′2 (Q1
β\α⇒ Q′1, Q2

α\β⇒ Q′2, and Q′1 ≈ Q′2)
[conf 1] (27.2)

• A process P is confluent 2 if for all r, s ∈ L∗ we have:

P
r⇒ P1 P

s⇒ P2

∃P ′1, P ′2 (P1
s\r⇒ P ′1, P2

r\s⇒ P ′2, and P ′1 ≈ P ′2)
[conf 2] (27.3)

Remark 444 In conditions [conf 0] and [conf 1] if α = β then we close the diagram with τ
actions only.

A first sanity check is to verify that the confluent processes are invariant under transitions
and equivalence (cf. proposition 433).

Proposition 445 The following properties hold:

1. If P is confluent and P
α→ P ′ then P ′ is confluent.

2. If P is confluent and P ≈ P ′ then P ′ is confluent.

Proof. (1) If Q is a derivative of P ′ then it is also a derivative of P .

(2) It is enough to apply the fact that:

(P ≈ P ′ and P
α⇒ P1) implies ∃P ′1 (P ′

α⇒ P ′1 and P1 ≈ P ′1)

and the transitivity of ≈. 2

Confluence implies τ -inertness, and from this we can show that it implies determinacy
too.

234 Determinacy

Proposition 446 Suppose P is confluent. Then P is: (1) τ -inert and (2) determinate.

Proof. First a reminder. A relation R is a weak bisimulation up to ≈ if:

P R Q P
α⇒ P ′

∃Q′ Q α⇒ Q′ and P ′(≈ ◦R◦ ≈)Q′

(and symmetrically for Q). It is important that we work with the weak moves on both sides,
otherwise the relation R is not guaranteed to be contained in ≈ (cf. exercise 384). Now we
move to the proof.

1. We want to show that P
τ⇒ Q implies P ≈ Q. We show that:

R = {(P,Q) | P τ⇒ Q}

is a weak bisimulation up to ≈. It is clear that whatever Q does, P can do too with
some extra moves. In the other direction, suppose, e.g., P

α⇒ P1 with α 6= τ (case α = τ
left as exercise). By [conf 0], Q

α⇒ Q1, P1
τ⇒ P2, and Q1 ≈ P2. That is: P1(R◦ ≈)Q1.

2. We want to show that if P is confluent then it is determinate. Suppose P
s⇒ Pi for

i = 1, 2 and s ∈ L∗. We proceed by induction on |s|. If |s| = 0 and P
τ⇒ Pi for i = 1, 2

then by τ -inertness P1 ≈ P ≈ P2. For the inductive case, suppose P
`⇒ P ′i

r⇒ Pi for
i = 1, 2. By confluence and τ -inertness, we derive that P ′1 ≈ P ′2. By weak bisimulation,

P ′2
r⇒ P ′′2 and P ′′2 ≈ P1. By inductive hypothesis, P2 ≈ P ′′2 . Thus P2 ≈ P ′′2 ≈ P1 as

required. 2

Exercise 447 We have seen that confluence implies determinacy which implies τ -inertness.
Give examples that show that these implications cannot be reversed.

We now turn to the confluence 1 definition which is ‘asymmetric’ in that the move from
Q to Q1 just concerns a single action.

Proposition 448 (conf 1) A process P is confluent iff for every derivative Q of P , it sat-
isfies condition [conf 1].

Proof. The diagrams of [conf 1] are a particular case of [conf 0]. Thus we just have to show
that the diagrams of [conf 1] suffice to complete the diagrams of [conf 0].

We may proceed by induction on the length of the transition Q
α⇒ Q1. For instance,

suppose α 6= β, β 6= τ , and:

Q
τ→ Q1

α⇒ Q2 , Q
β⇒ Q3 .

Then we derive:

Q1
β⇒ Q4 Q3

τ⇒ Q5 Q4 ≈ Q5 (by [conf 1])

Q2
β⇒ Q6 Q4

α⇒ Q7 Q4 ≈ Q7 (by inductive hypothesis)

Q5
α⇒ Q8 Q7 ≈ Q8 (from Q4 ≈ Q5 and Q4

α⇒ Q7).

Therefore: Q2
β⇒ Q6, Q3

α⇒ Q8, and Q6 ≈ Q8 as required. 2

Determinacy 235

Exercise 449 Consider another case of the proof. For instance, when Q
α→ Q1

τ⇒ Q2.

We turn to condition [conf 2].

Proposition 450 (conf 2) A process P is confluent iff it satisfies [conf 2].

Proof. (⇐) It suffices to check that if P has property [conf 2] then its derivatives have it
too.

• Suppose P
t⇒ Q for t ∈ L∗.

• Suppose further Q
r⇒ Q1 and Q

s⇒ Q2.

• By composing diagrams and applying [conf 2] we get:

Q1
(ts\tr)⇒ Q′1 Q2

(tr\ts)⇒ Q′2 Q′1 ≈ Q′2 .

• By exercise 442, ts\tr = s\r and tr\ts = r\s. Then we derive:

Q1
(s\r)⇒ Q′1 Q2

(r\s)⇒ Q′2 Q′1 ≈ Q′2 .

(⇒) We proceed in three steps.

1. By induction on |s| we show that:

P
τ⇒ P1 P

s⇒ P2

∃P ′1, P ′2 P1
s⇒ P ′1, P2

τ⇒ P ′2, and P ′1 ≈ P ′2
.

2. Then, again by induction on |s|, we show that:

P
`⇒ P1 P

s⇒ P2

∃P ′1, P ′2 P1
s\`⇒ P ′1, P2

`\s⇒ P ′2, and P ′1 ≈ P ′2
.

3. Finally we prove the commutation of diagram [conf 2] by induction on |r| when P
r⇒ P1.

2

Exercise 451 Complete the proof.

Next, we return to the issue of building confluent (and therefore determinate) processes.

Proposition 452 (building confluent processes) If P,Q are confluent processes then so
are: (1) 0, α.P , (2) νa P , and (3) σP where σ is an injective substitution on the free names
of P .

Proof. Routine analysis of transitions (cf. similar statement for determinacy). 2

Remark 453 (on sum) In general, a+ b is determinate but it is not confluent for a 6= b.

236 Determinacy

Definition 454 (sorting) Let P be a process. We define its sorting L(P) as the set:

{` ∈ L | ∃ s ∈ L∗ P s⇒ Q
`→ ·} .

Exercise 455 With reference to exercise 440, show that L(a 7→ b) = {a, b}.

Definition 456 (restricted composition) A restricted composition is a process of the shape:
νa1, . . . , an (P | Q) where:

1. P and Q do not share visible actions: L(P) ∩ L(Q) = ∅.

2. P and Q may interact only on the restricted names:

L(P) ∩ L(Q) ⊆ {a1, . . . , an} ∪ {a1, . . . , an} .

Proposition 457 Confluence is preserved by restricted composition.

Proof. We abbreviate νa1, . . . , an (P | Q) as νa∗ (P | Q). First we observe that any
derivative of νa∗ (P | Q) will have the shape νa∗ (P ′ | Q′) where P ′ is a derivative of P and
Q′ is a derivative of Q.

Since sorting is preserved by transitions, the two conditions on sorting in definition 454
will be satisfied. Therefore, it is enough to show that the diagrams in [conf 1] commute for
processes of the shape R = νa∗ (P | Q) under the given hypotheses.

We consider one case. Suppose: R
`→ νa∗ (P1 | Q) because P

`→ P1. Also assume:

R
`⇒ νa∗ (P2 | Q2) because P

s`r⇒ P2 and Q
s·r⇒ Q2 with s · r ∈ {a∗, a∗}∗ and ` /∈ {a∗, a∗}.

Since P is confluent we have:

P
`→ P1 P

s`r⇒ P2

∃P ′1, P ′2 P1
sr⇒ P ′1, P2

τ⇒ P ′2, and P ′1 ≈ P ′2
.

Then we have:
νa∗ (P1 | Q)

τ⇒ νa∗ (P ′1 | Q2) ≈ νa∗ (P ′2 | Q2) ,

thus closing the diagram (note that we use the congruence properties of ≈). 2

Exercise 458 Consider other cases of the proof, for instance:

νa (P | Q)
τ→ νa (P | Q) as P

a→ P1, Q
a→ Q1 ,

νa (P | Q)
τ⇒ νa (P2 | Q2) as P

s→ P2, Q
s⇒ Q2 .

27.3 Kahn networks

Kahn networks are a deterministic model of parallel computation where communication is
point-to-point, i.e., for every channel there is at most one sender and one receiver, and
channels are order preserving buffers of unbounded capacity, i.e., sending is non blocking and
the order of emission is preserved at the reception.

In this model, each (sequential) process may:

1. perform arbitrary sequential deterministic computation,

Determinacy 237

2. insert a message in a buffer,

3. receive a message from a buffer. If the buffer is empty then the process must suspend,

However, a process cannot try to receive a message from several channels at once. In a
nutshell Kahn’s approach to the semantics of such systems is as follows. First, we regard the
unbounded buffers as finite or infinite words over some data domain and second, we model
the nodes of the network as functions over words. Kahn observes that the associated system
of equations has a least fixed point which defines the semantics of the whole system.

Kahn networks are an important (practical) case where parallelism and determinism co-
exist without producing race conditions. For instance, they are frequently used in the signal
processing community. Our modest goal is to formalize Kahn networks as a fragment of
CCS and to apply the developed theory to show that the fragment is confluent and therefore
deterministic.

We will work with a ‘data domain’ that contains just one element. The generalization
to arbitrary data domains is not difficult, but we would need to formalize determinacy and
confluence in the framework of an extended CCS where messages carry values (as, e.g., in
the value passing CCS described in chapter 26). First, let us conclude the analysis of the
unbounded buffers in CCS .

Exercise 459 With reference to exercises 409, 440, and 455:

1. Check that the process a 7→ b falls in the class of confluent processes defined in propo-
sition 457. In particular:

L(a 7→ c) ∩ L(b.c 7→ b) = ∅ , L(a 7→ c) ∩ L(b.c 7→ b) ⊆ {c, c} .

2. Derive from proposition 439 that to prove P (n) = νa (an | a 7→ b) ≈ b
n

it is enough to
check:

tr(b
n
) = {ε, b, bb, . . . , bn} . (27.4)

3. Prove property (27.4).

We define a class of CCS processes sufficient to represent Kahn networks.

Definition 460 (restricted processes) Let KP be the least set of processes such that 0 ∈
KP and if P,Q ∈ KP and α is an action then:

1. α.P ∈ KP,

2. A(b∗) ∈ KP provided the names b∗ are all distinct and A is defined by an equation
A(a∗) = P and P ∈ KP.

3. νa∗ (P | Q) ∈ KP provided L(P) ∩ L(Q) = ∅ and L(P) ∩ L(Q) ⊆ {a∗, a∗},

Exercise 461 Check that a 7→ b is a KP process and that Kahn processes are confluent.

238 Determinacy

Example 462 Suppose we have a Kahn network with three nodes, and the following ports
and behaviors where we use ! for output and ? for input.

Node Ports Behaviors

1 ?a, ?b, ?c, !d, !e, !f A1 =?a.!d.!e.?b.?c.!f.A1

2 !b, ?d A2 =?d.!b.A2

3 !c, ?e A3 =?e.!c.A3 .

The corresponding CCS system relies on the equations for the buffer process plus:

A1(a, b, c, d, e, f) = a.d.e.b.c.f .A1(a, b, c, d, e, f)

A2(b, d) = d.b.A2(b, d)
A3(c, e) = e.c.A3(c, e) .

The sorting is easily derived:

L(A1(a, b, c, d, e, f) = {a, b, c, d, e, f}
L(A2(b, d)) = {b, d}
L(A3(c, e)) = {c, e} .

To build the system, we have to introduce a buffer before every input channel. Thus the
initial configuration is:

νa′, b, b′, c, c′, d, d′, e, e′

(a 7→ a′ | b 7→ b′ | c 7→ c′ | d 7→ d′ | e 7→ e′ |
A1(a′, b′, c′, d, e, f) | A2(b, d′) | A3(c, e′))

It is easily checked that the resulting process belongs to the class KP.

To summarize, to build confluent processes we can use: (i) nil and input prefix, (ii)
restricted composition, (iii) injective recursive calls, and (iv) recursive equations A(a∗) = P ,
where P is built according to the rules above. This class of processes is enough to represent
Kahn networks. Notice that, via recursion, we can also represent Kahn networks with a
dynamically changing number of nodes (see example 409).

27.4 Reactivity and local confluence in lts

We know that a terminating and locally confluent rewriting system is confluent (proposition
47). We present a suitable generalization of this result to confluent lts. First we need to
generalize the notion of termination.

Definition 463 (reactivity) Let P be a process. We say that it is terminating (or strongly
normalizing) if there is no infinite sequence:

P
τ→ P1

τ→ · · ·

and that it is reactive (or fully terminating) if all its derivatives are terminating.

Definition 464 (local confluence) Let P be a process. We say that it is locally confluent
if for all its derivatives Q:

Q
α→ Q1 Q

β→ Q2

∃Q′1, Q′2 (Q1
β\α⇒ Q′1, Q2

α\β⇒ Q′2, and Q′1 ≈ Q′2)
.

Determinacy 239

Exercise 465 Consider again the process:

A(a, b) = a.νc (A(a, c) | b.A(c, b)) .

Is the process A(a, b) reactive? Consider the cases a 6= b and a = b.

Exercise 466 Consider the process: A = a.b+τ.(a.c+τ.A). Check whether A is: (1) τ -inert,
(2) locally confluent, (3) terminating, (4) reactive, (5) determinate, and (6) confluent.

Suppose P is a reactive process and let W be the set of its derivatives. For Q,Q′ ∈ W
write Q > Q′ if Q rewrites to Q′ by a positive number of τ -actions. Then (W,>) is a well
founded set.

Proposition 467 If a process is reactive and locally confluent then it is confluent.

Proof. Let B be the relation
τ→ ∪(

τ→)−1∪ ≈ (restricted to W) and B∗ its reflexive and
transitive closure. Note that B∗ is symmetric too. We take the following steps.

1. For every derivative Q of P it holds:

Q
τ⇒ Q1, Q

α⇒ Q2

∃Q3 (Q1
α⇒ Q3 and Q2B

∗Q3)
.

2. The relation B∗ is a weak-bisimulation.

3. The process P is τ -inert.

4. The process P is confluent.

Note that B∗ is a binary relation on W (the derivatives of P).

Step 1 The argument is by induction (cf. proposition 30) on the well founded order (W,>).

• If Q = Q1 then the statement holds trivially.

• So assume Q
τ→ Q3

τ⇒ Q1 and consider 2 cases.

1. If Q
τ→ Q4

α⇒ Q2.

– By local confluence, Q3
τ⇒ Q5, Q4

τ⇒ Q6, and Q5 ≈ Q6.

– By inductive hypothesis, Q6
α⇒ Q7 and Q2B

∗Q7.

– By definition of bisimulation, Q5
α⇒ Q8 and Q7 ≈ Q8.

– By inductive hypothesis, Q1
α⇒ Q9 and Q8B

∗Q9.

So Q2B
∗Q7 ≈ Q8B

∗Q9, and by definition of B, Q2B
∗Q9.

2. If Q
α→ Q4

τ⇒ Q2 with α 6= τ .

– By local confluence, Q3
α⇒ Q5, Q4

τ⇒ Q6, Q5 ≈ Q6.

– By inductive hypothesis, Q1
α⇒ Q7 and Q5B

∗Q7.

So Q2
τ⇐ Q4

τ⇒ Q6 ≈ Q5B
∗Q7. Hence Q2B

∗Q7.

240 Determinacy

Step 2 The relation B∗ is a weak-bisimulation.

Suppose Q0BQ1 · · ·BQnBQn+1 and Q0
α⇒ Q′0. Proceed by induction on n and case

analysis on QnBQn+1. By inductive hypothesis, we know that Qn
α⇒ Q′n and Q′0B

∗Q′n.

1. If Qn ≈ Qn+1 then Qn+1
α⇒ Q′n+1 and Q′n ≈ Q′n+1. So Q′0B

∗Q′n ≈ Q′n+1 and we use
B∗◦ ≈⊆ B∗.

2. If Qn
τ← Qn+1 then Qn+1

α⇒ Q′n.

3. If Qn
τ→ Qn+1 then by Step (1), Qn+1

α⇒ Q′n+1 and Q′nB
∗Q′n+1.

So Q′0B
∗Q′nB

∗Q′n+1 and we use B∗ ◦B∗ ⊆ B∗.

Step 3 The process P is τ -inert.

By definition,
τ→⊆ B∗ and by Step (2), B∗ ⊆≈.

Step 4 The process P is confluent.

By induction on the well-founded order W . We distinguish two cases.

1. Suppose Q
α→ Q3

τ⇒ Q1 and Q
β→ Q4

τ⇒ Q2, with α, β 6= τ .

• By local confluence, Q3
β\α⇒ Q5, Q4

α\β⇒ Q6, and Q5 ≈ Q6.

• By Step (3), Q4 ≈ Q2, and by weak bisimulation, Q2
α\β⇒ Q8, Q6 ≈ Q8.

• By Step (3), Q3 ≈ Q1, and by weak bisimulation, Q1
β\α⇒ Q7, Q5 ≈ Q7.

So we have Q8 ≈ Q6 ≈ Q5 ≈ Q7 as required.

2. Suppose Q
τ→ Q3

α⇒ Q1 and Q
β⇒ Q2.

• By Step (3), Q ≈ Q3, and by weak bisimulation, Q3
β⇒ Q5, Q2 ≈ Q5.

• By inductive hypothesis, Q1
β\α⇒ Q6, Q5

α\β⇒ Q7, and Q6 ≈ Q7.

• By weak bisimulation, Q2
α\β⇒ Q4 and Q4 ≈ Q7.

So Q4 ≈ Q7 ≈ Q6 as required. 2

Exercise 468 Suppose P is a CCS process that is reactive and such that for every derivative
Q of P we have:

Q
τ→ Q1 Q

τ→ Q2

Q1 ≈ Q2
.

Show that this implies that for every derivative Q of P we have:

Q
τ⇒ Q1 Q

τ⇒ Q2

∃Q′1, Q′2 (Q1
τ⇒ Q′1, Q2

τ⇒ Q′2, and Q′1 ≈ Q′2)
.

Determinacy 241

27.5 Summary and references

A process is determinate if it always reacts in the same way to the stimuli coming from the
environment. Confluence is a stronger property than determinacy that is preserved by a
restricted form of parallel composition. Following [Mil95][chapter 11], we have presented 3
alternative characterizations of confluence. We have seen that a restricted form of parallel
composition preserves confluence and as a case study we have shown that this fragment of
CCS is enough to represent Kahn networks [Kah74]. Synchronous data flow languages such
as Lustre [CPHP87] can be regarded as a refinement of this model where buffers have size
0. A rather complete study of the notion of confluence in the more general framework of the
π-calculus is in [PW97], which builds on previous work on confluence for CCS with value
passing. Reactivity is a form of hereditary termination. A process is reactive if it terminates
after any sequence of interactions with the environment. The presented generalization of
Newman’s proposition 47 is described in [GS96].

242 Determinacy

Chapter 28

Synchronous/Timed models

As mentioned in chapter 19, one important classification criterion in concurrent systems is the
relative speed of the processes. In particular, in chapter 19 we have contrasted asynchronous
and synchronous systems. So far we have considered models (Imp‖, CCS) where processes
are asynchronous, i.e., proceed at independent speeds. In particular, processes can only
synchronize through an await statement or an input/output communication. In the following
we are going to discuss an enrichment of the CCS model where processes are synchronous
(or timed). In first approximation, in a synchronous concurrent system all processes proceed
in lockstep (at the same speed). In other words, the computation is regulated by a notion of
instant (or round, or phase, or pulse,. . .).

Though synchronous circuits are typical examples of synchronous systems, one should not
conclude that synchronous systems are hardware. Notions of synchrony are quite useful in the
design of software systems too. The programming of many problems in a distributed setting
can be ‘simplified’ or even ‘made possible’ by a synchronous assumption. Examples include:
leader election, minimum spanning tree, and consensus in the presence of failures. In general,
the notion of synchrony is a useful logical concept that can make programming easier.

The formalization of a synchronous model depends on the way the notion of instant
is considered. One possibility is to assume that at each instant each (sequential) process
performs a locally defined amount of work. For instance, a popular definition found in books
on distributed algorithms requires that at each instant each process (1) writes in the output
communication channels, (2) reads the contents of the input communication channels, and
(3) computes its next state. However, a less constrained viewpoint is possible which consists
in assuming that at each instant, each process performs an arbitrary (but hopefully finite)
number of actions. The instant ends when each process has either terminated its task for the
current instant or it is suspended waiting for events that cannot arise. This is the viewpoint
taken by synchronous languages such as Esterel and we shall describe next its formalization
in the framework of CCS . The reader should keep in mind that we select CCS because of its
simplicity but that the approach can be easily ported to other models of concurrent systems.

28.1 Timed CCS

We discuss the definition of a synchronous/timed model on top of CCS . Following the termi-
nology in the literature, we call this model timed CCS (TCCS). As usual, we write α, α′, . . .
for the CCS actions and we reserve `, `′, . . . for the CCS actions but the τ action. We denote

243

244 Time

P 6 τ→ ·
(P . Q)

tick→ Q 0
tick→ 0

`.P
tick→ `.P

Pi
tick→ P ′i i = 1, 2 (P1 | P2) 6 τ→ ·

(P1 | P2)
tick→ (P ′1 | P ′2)

Pi
tick→ P ′i i = 1, 2

(P1 + P2)
tick→ (P ′1 + P ′2)

P
tick→ P ′

νa P
tick→ νa P ′

Table 28.1: Labelled transition system for the tick action

with µ, µ′, . . . the TCCS actions. They are obtained by extending the CCS actions (chapter
26) with a new tick action which represents the move to the following instant:

µ ::= α || tick (TCCS actions).

We also extend the syntax of CCS processes with a new operator ‘else-next’ which allows to
program processes which are time dependent and are able to react to the absence of an event.
Intuitively, the process (P . Q) tries to run P in the current instant and if it cannot it runs
Q in the following.

P ::= · · · || (P . P) (TCCS processes).

The labelled transition system for TCCS includes the usual rules for the α actions (Table
26.1) plus:

P
α→ P ′

(P . Q)
α→ P ′

(a rule for else-next).

Moreover, we introduce in Table 28.1 special rules for the tick action describing the passage
of time. The intuition is the following:

A process can tick if and only if it cannot perform τ actions.

Incidentally, this is in perfect agreement with the usual feeling that we do not see time passing
when we have something to do!

Exercise 469 (on formalising tick actions) Check that P
tick→ · if and only if P 6 τ→ · The

lts in Table 28.1 uses the negative condition P 6 τ→ ·. Show that this condition can be formalized
in a positive way by defining a formal system to derive judgments of the shape P ↓ L where

L is a set of observable actions and P ↓ L if and only if P 6 τ→ · and L = {` | P `→ ·}.

The following exercise identifies two important choices in the design of TCCS .

Exercise 470 (continuations of tick action) We say that P is a ‘CCS process’ if it does
not contain the else next operator. Show that:

1. If P
tick→ Q1 and P

tick→ Q2 then Q1 = Q2. So the passage of time is deterministic.

2. If P is a CCS process and P
tick→ Q then P = Q. So CCS processes are insensitive to

the passage of time.

Time 245

Exercise 471 (programming a switch) Let tick .P = (0.P) and tick n.P = tick · · · tick .P ,
n times.

1. Program a light switch Switch(press, off , on, brighter) that behaves as follows:

• Initially the switch is off.

• If the switch is off and it is pressed then the light turns on.

• If the switch is pressed again in the following 2 instants then the light becomes
brighter while if it is pressed at a later instant it turns off again.

• If the light is brighter and the switch is pressed then it becomes off.

2. Program a fast user Fast(press) that presses the switch every 2 instants and a slow user
Slow(press) that presses the switch every 4 instants.

3. Consider the systems:

νpress (Switch(press, off , on, brighter) | Fast(press))
νpress (Switch(press, off , on, brighter) | Slow(press))

and determine when the light is going to be off, on, and bright.

Definition 472 The notion of weak transition is extended to the tick action by defining:

tick⇒ =
τ⇒ ◦ tick→ ◦ τ⇒ (weak tick action) .

Then we denote with ≈tick the related largest weak bisimulation.

Exercise 473 (bisimulation for TCCS) Show that ≈tick is preserved by parallel composi-
tion. Also show that ((P1 . P2) . P3) ≈tick (P1 . P3). Thus the nesting of else-next operators
on the left is useless!

Exercise 474 (more on congruence of ≈tick) Suppose P1 ≈tick P1 and Q1 ≈tick Q2.
Prove or give a counterexample to the following equivalences.

1. P1 +Q1 ≈tick P2 +Q2.

2. ((`.P1) . Q1) ≈tick ((`.P2) . Q2).

3. (P1 . Q1) ≈tick (P2 . Q2).

We have identified the CCS processes with the TCCS processes that do not contain an
else-next operator. A natural question is whether the equivalences we have on CCS are still
valid when the CCS processes are placed in a timed environment. A basic observation is
that a diverging computation does not allow time to pass. Thus if we denote with Ω the
diverging process τ.τ.τ · · · we have 0 6≈tick Ω while in the ordinary (termination insensitive)
bisimulation for CCS we have 0 ≈ Ω. The situation is more pleasant for reactive processes
cf. chapter 27).

Proposition 475 (CCS vs. TCCS) Suppose P,Q are CCS processes.

246 Time

1. P ≈tick Q implies P ≈ Q.

2. If moreover, P,Q are reactive then P ≈ Q implies P ≈tick Q.

Proof. (1) TCCS bisimulation is stronger than CCS bisimulation and α-derivatives of CCS
are again CCS processes.

(2) First notice that for a CCS process being reactive w.r.t. CCS actions is the same as
being reactive w.r.t. TCCS actions. For α actions, the condition P ≈ Q suffices. Otherwise,

suppose P
tick⇒ P ′. By exercises 469 and 470(2), this means P

τ⇒ P ′
tick→ P ′. By definition of

CCS bisimulation, Q
τ⇒ Q1, P ′ ≈ Q1. By reactivity, Q1

τ⇒ Q′
tick→ . Again by definition of

CCS bisimulation, P ′ ≈ Q′, Hence Q
tick⇒ Q′ and P ′ ≈ Q′. 2

Exercise 476 (termination sensitive bisimulation) Rather than restricting the atten-
tion to reactive processes, another possibility is to consider a bisimulation for CCS which
is sensitive to termination. We write P ↓ if P 6 τ→ · and P ⇓ if P

τ⇒ Q and Q ↓. Show that on
CCS processes the bisimulation ≈tick can be characterized as the largest relation R which is
a weak labelled bisimulation (in the usual CCS sense) and such that if P R Q and P ↓ then
Q ⇓.

28.2 A deterministic calculus based on signals

As a case study, we consider a variant of the TCCS model where processes interact through
signals (rather than channels). A signal is either emitted or not. Once it is emitted it persists
during the instant and it is reset at the end of it. Thus the collection of emitted signals grows
monotonically during each instant.

The presented calculus is named SL (synchronous language). We describe it as a fragment
of timed CCS where we write s, s′, . . . for signal names. The syntax of SL processes is as
follows:

P ::= 0 || s.P, P || (emit s) || (P | P) || νs P || A(s∗) (SL processes).

The newly introduced operators can be understood in terms of those of TCCS as follows:

s.P,Q = (s.P . Q)
(emit s) = (s.Emit(s) . 0)

where: Emit(s) = (s.Emit(s) . 0) .

Notice that in SL there is no sum and no prefix for emission (cf. asynchronous π-calculus,
chapter 30). The input is a specialized form of the input prefix and the else-next operator.
The derived synchronization rule is:

(emit s) | s.P,Q τ→ τ→ (emit s) | P .

The second τ transition is just recursion unfolding and we will ignore it in the following.
Notice that:

(emit s) | s.P1, Q1 | s.P2, Q2
τ⇒ (emit s) | P1 | P2 .

The tick action can be expressed as:

tick .P = νs s.0, P s /∈ fv(P) .

Time 247

A persistent input (as in TCCS) is expressed as:

await s.P = A(s∗), where: A(s∗) = s.P,A(s∗), fv(P) ∪ {s} = {s∗} .

Exercise 477 Re-program in SL the light switch seen in exercise 471. Compare the solution
with the one based on TCCS.

The SL calculus enjoys a strong form of confluence where one can close the diagram in at
most one step and up to α-renaming.

Proposition 478 (strong confluence) For all SL programs P the following holds:

P
τ→ P1 P

τ→ P2

P1 ≡ P2 or ∃Q (P1
τ→ Q,P2

τ→ Q)

Proof. Internal reductions are due either to unfolding or to synchronization. The only
possibility for a superposition of the redexes is:

(emit s) | s.P1, Q1 | s.P2, Q2 .

And we exploit the fact that emission is persistent. 2

The bisimulation ≈tick developed for TCCS can be applied to SL too. However, because
of the restricted form of SL processes, one can expect additional equations to hold. For
instance:

s.(emit s), 0 should be ‘equivalent’ to 0 . (28.1)

A similar phenomenon arises with asynchronous communication in the π-calculus (cf. chapter
30). More generally, because SL is deterministic (cf. proposition 478) one can expect a collapse
of the bisimulation and trace semantics (cf. proposition 439).

Exercise 479 (on SL equivalence) Check that the equation (28.1) does not hold in the
TCCS embedding. Also, prove or disprove the following equivalences:

1. s.(s.P,Q), Q ≈tick s.P,Q.

2. (emit s) | s.P,Q ≈tick (emit s) | P .

28.3 Summary and references

Time, in the sense we have described it here, is derived from the notion of computation and
as such it is a logical notion rather than a concept we attach on top of the computational
model. Time passes when no computation is possible. Moving from an asynchronous to a
synchronous model means enriching the language with the possibility to react to the absence
of computation, i.e., to the passage of time. The distinction between synchronous and asyn-
chronous models is standard in the analysis of distributed algorithms (see, e.g., [Lyn96]). In
the framework of process calculi, a notion of ‘timed’ CCS is introduced in [Yi91]. This calcu-
lus has a tick(x) operator that describes the passage of x time units where x is a non-negative
real. A kind of else next operator is proposed in [NS94]. A so called testing semantics of a

248 Time

process calculus very close to the one presented here is given in [HR95]. However, it seems
fair to say that all these works generalize to CCS ideas that were presented for the Esterel
programming language [BC84, BG92]. Two basic differences in the Esterel approach are that
processes interact through signals and that the resulting calculus is deterministic.

Another important difference is that in the Esterel model it is actually possible to react
immediately (rather than at the end of the instant) to the absence of a signal. This requires
some semantic care, to avoid writing paradoxical programs such as s.0, (emit s) which are
supposed to emit s when s is not there (cf. stabilization problems in the design of synchronous
circuits). It also requires some clever compilation techniques to determine whether a signal is
not emitted. In fact these techniques (so far!) are specific to finite state models.

The SL model [BdS96] we have described is a relaxation of the Esterel model where
the absence of a signal can only be detected at the end of the instant. If we forget about
name generation, then the SL model essentially defines a kind of monotonic Mealy machine.
Monotonic in the sense that output signals can only depend positively on input signals (within
the same instant). The monotonicity restriction allows to avoid the paradoxical programs as
monotonic boolean equations do have a least fixed point! The SL model has a natural and
efficient implementation model that works well for general programs (not just finite state
machines). The model has been adapted to several programming environments (C [Bou91],
Scheme [SBS04], ML [MP05]) and it has been used to program significant applications.

The Esterel/TCCS/SL models described here actually follow an earlier attempt at de-
scribing synchronous/timed systems in the framework of CCS known as SCCS/Meije model
[Mil83, AB84]. The basic idea of these models is that the actions of the system live in an
abelian (commutative) group freely generated from a collection of basic actions. At each
instant, each (sequential) process must perform exactly one action and the observable re-
sult of the computation is the group composition of the actions performed by each process.
This gives rise to a model with pleasant algebraic properties but whose implementation and
generalization to a full scale programming languages appear to be problematic.

Finally, let us mention timed automata as another popular formalism for describing ‘timed’
systems [AD94]. This is an enrichment of finite state automata with timing constraints which
still enjoys decidable model-checking properties. This is more a specification language for
finite control systems than a programming language.

Chapter 29

Probability and non-determinism

We discuss the modelling of systems which exhibit both non-deterministic and probabilistic
behaviors. We focus on three basic ideas. First, we should not confuse non-deterministic and
probabilistic choice. Second, because of probabilistic choice, we need to lift relations on states
(such as bisimulations) to relations on distributions. Third, again because of probabilistic
choice, we need to revisit the notion of weak transition so as to formalize the notion that the
system can evolve from one state to another with probability 1. In the following, these ideas
are formalized in the framework of CCS , but the reader should keep in mind that the notion of
probabilistic computation is an ‘orthogonal’ feature that can be added to a variety of models
of concurrent systems (a similar consideration holds for the notion of synchronous/timed
computation).

29.1 Preliminaries

Probabilities arise in several areas of system design and analysis. For instance, one may
want to analyze programs or protocols that toss coins at some point in the computation,
e.g., the probability that a test for number primality returns the correct answer. In another
direction, one may want to evaluate the reliability of a system given some probability of
failure of its components. And yet in another direction, one may be interested in evaluating
the performance of a system in terms of, say, the average waiting time of its users.

As already mentioned, in concurrent systems, non-determinism arises to account for race
conditions and also as a specification device. It is then natural to lift methods for (determin-
istic) probabilistic systems to non-deterministic ones.

To fix the ideas, we define some standard notions. Let S be a countable set of states. A
(discrete) distribution on the states S is a function ∆ : S → [0, 1] such that Σs∈S∆(s) = 1.
We denote with Dist(S) the collection of distributions on S. If S′ ⊆ S we denote with ∆[S′]
the sum Σs′∈S′∆(s′). It is a well known fact that the value of the sum does not depend on the
enumeration of the states. We may represent a distribution as a formal sum Σi∈I [pi]si where
Σi∈Ipi = 1. The binary version is also written as s1 +p s2 which stands for [p]s1 + [1− p]s2.
The unary version is shortened to s which stands for [1]s.

The notion of discrete time Markov chain is standard in probability theory. It is based
on: (i) a discrete notion of time t = 0, 1, 2, . . . and (ii) a transition ‘matrix’:

P : S → Dist(S) (Markov chain), (29.1)

249

250 Probability

where p(s)(s′) is the probability that the system being at state s at time t moves into state
s′ at time t+ 1 (for any t). This is a beautiful theory connecting linear algebra to probability
theory.

The notion of Markov decision process is an elaboration on Markov chains popularized in
the 50’s. We add to a Markov chain a countable set of actions Act and redefine the transition
matrix as a partial function:

P : (S ×Act) ⇀ Dist(S) (Markov decision process), (29.2)

where P (s, a)(s′) is the probability of moving from s to s′ given that the decision to perform
action a has been taken. Possibly, we may consider a reward functionR : (S×Act)→ (S → R)
too, where R(s, a)(s′) is the reward the decision maker gets if being in s and taking the decision
a the system moves into s′. A typical problem in this area is to determine a policy for the
decision maker that maximizes some cumulative function of the rewards.

Following the introduction of labelled transition systems, it is natural to consider a related
notion of probabilistic lts. The key point is that being in state s and taking the action a the
system may end up in different distributions of states. We now have a transition relation:

→ ⊆ S ×Act ×Dist(S) (Probabilistic lts). (29.3)

If all the distributions are trivial (Dirac) then we are back to labelled transition systems (cf.
definition 356). If for a given state and action there is at most one distribution then we are
back to Markov Decision Processes.

29.2 Probabilistic CCS

We discuss how the process calculus framework CCS adapts to the move from lts to proba-
bilistic lts. In particular we look at:

1. The definition of strong bisimulation on probabilistic lts.

2. How to associate a probabilistic lts with a Probabilistic CCS , namely a CCS enriched
with a probabilistic choice operator.

Our first problem is to find a way of lifting a relation on states to a relation on distributions.
Let R ⊆ S × S be an equivalence relation on states and let [s]R denote the equivalence class
of s and S/R the set of equivalence classes.

Definition 480 (lumping equivalence) We lift R to an equivalence relation D(R) on
Dist(S) as follows:

∆ D(R) ∆′ if ∀ s ∈ S ∆[[s]R] = ∆′[[s]R] .

Thus two distributions are equivalent with respect to R if they are the same modulo the
equivalence induced by R. This is also called lumping equivalence in Markov processes liter-
ature (lumping=aggregate). We can then introduce a notion of bisimulation for probabilistic
lts.

Probability 251

Definition 481 (probabilistic bisimulation) Let (S,Act ,→) be a probabilistic lts. An
equivalence relation R over S is a bisimulation if s R s′ and s

α→ ∆ implies:

∃∆′ s′
α→ ∆′ and ∆ D(R) ∆′ .

We denote with ∼P the largest bisimulation.1

Example 482 (bisimilar states) The following states A and A′ are bisimilar:

A = in.([0.8]B + [0.2]C) A′ = in.([0.8]B + [0.1]D + [0.1]E)
B = out .[1]A D = err .[1]A
C = err .[1]A E = err .[1]A .

We may represent this system as a bipartite graph where Nodes = States ∪ Distributions.
The edges from States to Distributions are labelled with (CCS) actions and the labels in the
other direction with probabilities.

Example 483 (non-bisimilar states) The following states A and A′ are not bisimilar.

A = in.∆1 + in.∆2 ∆1 = (B +0.9 C)
∆2 = (B +0.5 C)

B = out .[1]A
C = err .[1]A
A′ = in.∆1 + in.∆2 + in.∆3 ∆3 = (B +0.7 C) .

Moreover, one may argue that ∆3 is a convex combination of ∆1 and ∆2. Indeed taking
λ = 0.5:

∆3 = λ ·∆1 + (1− λ) ·∆2 .

There exists a more relaxed definition of bisimulation that takes this into account.

Example 484 (communication protocol) We introduce some TCCS notation (cf. chap-
ter 28):

a.P .n Q = a.P . (a.P . · · · (a.P . Q) · · ·) .
We model a communication medium that may lose messages (but acknowledgments are never
lost):

S = send .S′ (sender)
S′ = in.(ack .S .2 S

′)
M = in.(M +0.1 tick .(out.M) (medium)

R = out .rec.ack .R (receiver) .

The medium transmits at most 1 message/instant and whenever the message is lost 2 instants
pass without any message being transmitted.

Exercise 485 (vending machine) Here is an unreliable vending machine with slow and
fast users where we write P for [1]P .

VM = coin.(VM +0.1 VM ′)

VM ′ = ((tea.VM + coffee.VM) .VM)
SlowU = coin.tick .tea.0
FastU = coin.tea.0 .

Consider (VM | SlowU) and (VM | FastU). Who may get the tea?

1 For the sake of simplicity, we assume the relations under consideration are equivalence relations. However,
it is possible to develop a notion of probabilistic bisimulation without this assumption.

252 Probability

Rules

Σi∈Iαi.∆i
αi→ ∆i

P
a→ ∆ P ′

a→ ∆′

(P | P ′) τ→ (∆ | ∆′)

P
α→ ∆

(P | P ′) α→ ∆ | [1]P ′
P

α→ ∆ a, a 6= α

νa P
α→ νa ∆

[b∗/a∗]P
α→ ∆

A(b∗)
α→ ∆

if A(a∗) = P .

Notation for distributions

νa Σi∈I [pi]Pi ≡ Σi∈I [pi]νa Pi

Σi∈I [pi]Pi | Σj∈J [qj]Qj ≡ Σ(i,j)∈I×J [pi · qj](Pi | Qj) .

Table 29.1: Probabilistic lts for PCCS

We refine the definition of CCS to account for probabilistic computation. To this end, we
distinguish processes (states) and (formal) distributions:

P ::= 0 || Σi∈Iαi.∆i || (P | P) || νa P || A(a∗) (processes)

∆ ::= Σi∈I [pi]Pi (distributions)

Table 29.1 presents the rules for the probabilistic lts. They are quite similar to those for CCS
(cf. Table 26.1) modulo the introduction of a suitable notation for distributions.

Exercise 486 Apply the rules to derive: a.(P1 +0.5 P1) | P3
a→ (P1 | P3) +0.5 (P2 | P3).

29.3 Measuring transitions

We discuss the problem of defining a notion of weak transition in a probabilistic setting.
Consider the following probabilistic lts:

P0 = τ.(P0 +0.5 P1) , P1 = a.[1]0 . (29.4)

It seems reasonable to regard P0 as equivalent to P1 in that we expect P0 to end up in P1, but
the notion of weak transition as transitive closure is not quite adequate. Indeed, by a finite
iteration of τ moves we can only reach a distribution of the shape P0 +p P1, where p = 1/2n.
It is only to the ‘limit’ that the process P0 reaches the process P1. Notice that a similar
issue arises when observing the termination of a (deterministic) probabilistic program. In
this case, we do not want to distinguish between a program that terminates and a program
that terminates with probability 1. For the sake of simplicity, we shall work with Markov
decision processes, i.e., we assume:

P : (S ×Act) ⇀ Dist(S) .

We shall comment at the end of the section on the generalization to probabilistic lts.

Probability 253

We assume the reader has been exposed to a course in discrete probability and we just
recall a few elementary definitions and facts. A σ-algebra is a triple (Ω,A, P) where Ω is
a set, A ⊆ 2Ω is a non-empty set of events (subsets of Ω) which is closed under countable
unions and complement, and P : A → [0, 1] is a function that assigns a probability to each
event so that P (Ω) = 1 and P (

⋃
i∈NAi) = Σi∈NP (Ai) if the events Ai are pairwise disjoint.

If Ω is finite or countable, it is often possible to define a function P : Ω → [0, 1] such
that Σω∈ΩP (ω) = 1. Then we can take the set of events as the parts of Ω, i.e., A = 2Ω, and
extend P to A by defining for A ∈ A:

P (A) = Σω∈AP (ω) .

However, this approach is not always viable. One important and famous example concerns the
interval [0, 1] of real numbers. In this case, it is possible to show that there is no reasonable
probability measure on 2[0,1] (the subsets of the real interval [0, 1]). On the other hand,
assuming 0 ≤ a ≤ b ≤ 1, we expect the probability of the interval [a, b] to be (b − a). We
can then build the least σ-algebra which includes the intervals (this is also called the Borel
algebra). It turns out that we can rely on this construction to build a σ-algebra over the
possible executions of a Markov decision process.

Definition 487 An execution of a Markov decision process P : S × Act ⇀ Dist(S) is a
sequence:

σ = s0
a1→ s1

a2→ · · · an→ sn (29.5)

such that P (si, ai+1) is defined and P (si, ai+1)(si+1) > 0 for i = 0, . . . , n− 1.

We define trace(σ) = a1 · · · an, first(σ) = s0, and last(σ) = sn. Let Ex (s) be the collection
of executions σ such that first(σ) = s. We write σ ≤ σ′ if σ is a prefix of σ′ and denote with
↑ σ the cone generated by σ, i.e., the collection of executions with prefix σ:

↑ σ = {σ′ | σ ≤ σ′} . (29.6)

Then we build the least σ-algebra on Ex (s) which includes the cones ↑ σ for σ ∈ Ex (s). If σ
is an execution with the shape (29.5) above, we let the probability of the generated cone to
be:

P (↑ σ) = Πi=0,...,n−1P (si, ai+1)(si+1) .

Let Act∗ be the set of finite words over Act . If A ⊆ Act∗ and C ⊆ S then we define the set
of executions, starting in s, going through C, while producing a trace in A:

Ex (s,A,C) =
⋃
{↑ σ | σ ∈ Ex (s), last(σ) ∈ C, trace(σ) ∈ A} .

Since Ex (s,A,C) is a countable union of cones this set is an event in the least (Borel) σ-algebra
defined above and its probability is defined.

Exercise 488 Let N∗ be the set of finite words over the natural numbers with generic ele-
ments w,w′, Denote with ↑ w = {w′ | w ≤ w′} the cone generated by w. Let pi = 1/2i+1

and notice that Σi=0,...,∞pi = 1. For w = i1 · · · in ∈ N∗, define the probability of the generated
cone as:

P (↑ w) = pi1 · · · pin .
Also define a segment [w,w′] as the (finite) set {w′′ | w ≤ w′′ ≤ w′}. Show that the events
of the least σ-algebra generated by the the cones consist of countable disjoint unions of cones
and segments and that the probability of a segment is 0.

254 Probability

Before defining a notion of weak bisimulation, it is convenient to characterize the notion
of (strong) bisimulation introduced in definition 481.

Proposition 489 An equivalence relation R on the states S of a Markov decision process
P : S × Act ⇀ Dist(S) is a bisimulation if and only if the following holds: for all s, s′ ∈ S,
α ∈ Act, and C ∈ S/R if (s, s′) ∈ R then

P (Ex (s, {α}, C)) = P (Ex (s′, {α}, C)) .

Proof. If P (s, α) is undefined then the set of executions is empty and the probability is 0.
Otherwise, notice that P (Ex (s, {α}, [s′′]R)) = ∆([s′′]R) where ∆ = P (s, α). 2

The notion of weak bisimulation then amounts to replace the singleton set {α} with the
sets corresponding to the regular expressions τ∗ and τ∗ατ∗, for α 6= τ ; in the definition
below, we shall actually abuse notation by denoting these sets by the corresponding regular
expressions.

Definition 490 An equivalence relation R on the states S of a Markov decision process
P : S × Act ⇀ Dist(S) is a bisimulation if for all states s, s′ ∈ S, word α ∈ Act ∪ {ε}, and
equivalence class C ∈ S/R if (s, s′) ∈ R then

P (Ex (s, τ∗ατ∗, C)) = P (Ex (s′, τ∗ατ∗, C)) .

Example 491 The probabilistic lts (29.4) can be regarded as a Markov decision process with
transitions s0

τ→ s0 +1/2 s1 and s1
a→ [1]s2. Let us check that the system goes from state s0 to

state s2 with probability 1 while producing a trace whose only observable action is a:

P (Ex (s0, τ
∗aτ∗, {s2})) = 1 .

To this end, consider the executions: σn = s0
τ→ · · · τ→ s0

τ→ s1
a→ s2, where the state s0 is

repeated n ≥ 1 times. Notice that ↑ σn∩ ↑ σm = ∅ if n 6= m. Thus:

P (
⋃
n≥1

↑ σn) = Σn≥1P (↑ σn) = Σn≥1
1

2n
= 1 .

The definition of a σ-algebra on executions can be extended to probabilistic lts by intro-
ducing a notion of scheduler (or adversary). A scheduler is a function that associates with
every execution the next non-deterministic move. The idea is then to measure executions
relatively to a given scheduler.

29.4 Summary and references

Probabilistic lts are labelled relations from processes to distributions on processes. Taking
this approach one distinguishes between non-deterministic and probabilistic choice. A first
key construction consists in lifting a relation on processes to a relation on distributions (the
notion of strong bisimulation is derived). A second key construction concerns the introduction
of a σ-algebra on the collection of possible executions. This leads to a framework where we
can measure the probability of a weak transition and thus define a suitable notion of weak
bisimulation.

Probability 255

Vitali [Vit05] shows that certain subsets of the real line are not measurable. Rabin [Rab63]
introduces a notion of probabilistic automata as a generalization of finite deterministic au-
tomata. The notion of Markov decision problem has been developed around 1950 (the book
[Put94] is a standard reference). The notion of probabilistic lts has been put forward in
[Var85] under the name of concurrent Markov chains in the framework of model-checking and
it has been later revisited by [HJ90] in the framework of TCCS . The notion of bisimulation
is introduced for Markov Decision Processes in [LS89] while the weaker notion of ‘convex’
bisimulation for probabilistic lts is introduced in [SL95]. The book [Pan09] covers the situa-
tion where distributions are on continuous state spaces and requires a non-trivial amount of
measure theory.

256 Probability

Chapter 30

π-calculus

CCS provides a basic model of communication and concurrency while ignoring the mechanisms
of procedural and data abstraction which are at the heart of sequential programming (in this
respect, CCS is close to Turing machines). We can contrast CCS with a basic model of
sequential programming such as the (typed) λ-calculus. A basic question is: how can we
integrate the λ-calculus and CCS?

One standard approach, supported both by theory and by practice, is to take the λ-
calculus as the backbone of the programming language and to add on top a few features for
communication and concurrency. The resulting language provides a comfortable program-
ming environment but one may question whether this is the simplest model one can hope for
(Ockham’s razor). It turns out that the superposition of the concepts of function and process
leads to some redundancy and that it is possible to reduce to simpler languages such as the
π-calculus.

There are two main ways to look at the π-calculus. On one hand, it can be regarded
as an extension of CCS where channels exchange values that are themselves channel names.
As such it inherits from CCS a relatively simple and tractable theory including labelled
transition systems and bisimulation proof methods. This viewpoint is developed below. On
the other hand, it can be regarded as a concurrent extension of one of the intermediate
functional languages studied in the chapter 14 on the compilation of functional languages.
As such it has an expressive power comparable (up to some encoding!) to the one of modern
programming languages. This viewpoint is elaborated in chapter 31.

30.1 A π-calculus and its reduction semantics

The basic idea is that the π-calculus is an extension of value passing CCS where processes
exchange channel names as in:

(x(y).P | νz xz.Q)
τ→ νz ([z/y]P | Q) .

Quoting the authors who introduced the π-calculus:

It will appear as though we reduce all concurrent computation to something like
a cocktail party, in which the only purpose of communication is to transmit (or
to receive) a name which will admit further communications.

257

258 π-calculus

The abstract syntax of a possible π-calculus is defined as follows.

id ::= x || y || . . . (names)

P ::= 0 || id(id).P || idid .P || (P | P) || νid P || [id = id]P ||!(id(id).P) (processes).

The informal semantics is as follows: 0 does nothing, x(y).P waits for a name z on the channel
x and then becomes [z/y]P , xy.P sends y on the channel x and becomes P , (P | Q) runs
P and Q in parallel, νx P creates the new name x and runs P , [x = y]P compares x and
y and becomes P if they are equal (otherwise it is stuck), !(x(y).P) waits for a name z on
the channel x and then becomes [z/y]P |!(x(y).P) (thus the operator ‘!′ replicates an input
and allows to generate infinite recursive behaviors). In processes, the formal parameter of an
input and the ν bind names. We define fv(P) as the set of names occurring free in a process
P . As usual, bound names can be renamed according to the rules of α-conversion.

Remark 492 (definable operators) In the presented version of the π-calculus, we have
dropped two operators which are present in CCS: non-deterministic choice and recursive
definitions. The reason is that, up to some restrictions, both can be encoded in the presented
calculus. The encoding of non-deterministic choice is related to the one we have already
considered in example 307. The encoding of recursive definitions amounts to replace, say,
letrec A(x) = P in Q by νA (!(A(x).P ′) | Q′) where P ′ and Q′ are obtained from P and Q,
respectively, by replacing each (tail) recursive call, say A(y), with a message Ay.

Remark 493 (name renaming and substitution) The names of the π-calculus can be
split in two categories: those on which we can just perform α-renaming and those on which
we can perform both α-renaming and general (non-injective) substitutions. In particular,
names bound by the ν operator fall in the first category while names bound by the (replicated)
input operator fall in the second one. It makes sense to regard the first category of names as
constants and the second one as variables, and indeed some authors distinguish two syntactic
categories and add a third one which is the union of the first two.

If we start with a process whose free names are constants then this property is preserved
by reduction and all substitutions replace a variable by a constant. This is true of the labelled
transitions described in the following section 30.2 too, assuming that all the actions are built
out of constant names. A consequence of this remark is that it is possible to suppose that the
reduction rules and the labelled transitions are given on processes where all free names are
constants. This is in line with the usual practice in operational semantics where the reduction
rules are defined on ‘closed’ programs (as, e.g., in chapter 8).

In order to define a compositional semantics for the π-calculus we follow the approach
presented for CCS in chapter 26 which amounts to define a contextual bisimulation and a
labelled bisimulation and show that they coincide. However, because the notion of label for
the π-calculus is not obvious, this time we shall start with contextual bisimulation. Table 30.1
defines the static contexts, a structural equivalence, and the reduction rules for the π-calculus.
The related notions of commitment and contextual (weak) bisimulation are inherited directly
from CCS (section 26.3).

Exercise 494 Reduce the processes νy xy.P | x(z).Q and νy xy.P | x(z).(y(w).Q).

π-calculus 259

Syntax

C ::= [] || C | P || νx C (static contexts)

Structural equivalence

P1 | (P2 | P3) ≡ (P1 | P2) | P3 (associativity)
P1 | P2 ≡ P2 | P1 (commutativity)

νx P1 | P2 ≡ νx (P1 | P2) x /∈ fv(P2) (extrusion)

Reduction

xy.P1 | x(z).P2 → P1 | [y/z]P2 xy.P1 |!(x(z).P2)→ (P1 | [y/z]P2) |!(x(z).P2)

[x = x]P → P

P ≡ C[P ′] P ′ → Q′ C[Q′] ≡ Q
P → Q

Table 30.1: Reductions for the π-calculus

30.2 A lts for the π-calculus

We now consider the problem of defining a labelled transition system for the π-calculus. This
is a rather technical exercise. As a first step, we distinguish four types of actions:

Action α Example

τ xy.P | x(z).Q
τ→ P | [y/z]Q

input xz x(y).P
xz→ [z/y]P

output xy xy.P
xy→ P

bound output x(y) νy xy.P
x(y)→ P

We remark that the first three cases would arise naturally in an extension of CCS with
ground values too (section 26.4). The real novelty is the bound output case. Note that an
effect of the bound output action is to free the restricted name y. The bound output action
carries a bound name and one has to be careful to avoid conflicts. Here are some typical
situations.

νy x(y).P The name which is input must not conflict with the fresh one.
νy xy.P The name which is output should become free.

νy xy.P | x(z).Q The scope of νy should extend to Q.
νy xy.P | x(z).(y(w).Q) The fresh y and the one on the recipient side are distinct.

We fix some conventions concerning free and bound names in actions. (1) All occurrences
of a name in an action are free except y in a bound output action x(y). (2) Define fv(α) (bv(α))
as the set of names occurring free (bound) in the action α. (3) Let n(α) = fv(α) ∪ bv(α).

Based on this, Table 30.2 defines a labelled transition system for the π-calculus. Rules
apply up to α-renaming and symmetric rules are omitted.

Exercise 495 (on the lts) Apply the definition to compute the labelled transitions of the
processes discussed above.

260 π-calculus

x(y).P
xz→ [z/y]P xy.P

xy→ P

P
α→ P ′ x /∈ n(α)

νx P
α→ νx P ′

P
yx→ P ′ x 6= y

νx P
y(x)→ P ′

P
xy→ P ′ Q

xy→ Q′

P | Q τ→ P ′ | Q′
P

xy→ P ′ Q
x(y)→ Q′ y /∈ fv(P)

P | Q τ→ νy (P ′ | Q′)

P
α→ P ′ bv(α) ∩ fv(Q) = ∅

P | Q α→ P ′ | Q
x(y).P

α→ P ′

!(x(y).P)
α→ P ′ |!(x(y).P)

[x = x]P
τ→ P

Table 30.2: A lts for the π-calculus

Exercise 496 (τ-transitions vs. reduction) In Table 30.1, we have defined a reduction
relation → on the π-calculus. Show that reduction and τ -transitions are the same up to
structural equivalence. Namely:

1. If P → Q then P
τ→ Q′ and Q ≡ Q′.

2. If P
τ→ Q then P → Q′ and Q ≡ Q′.

For instance, consider: (νy xy.P1 | P2) | x(z).P3.

The next step is to define a notion of bisimulation on the labelled transition system. This
is not completely obvious. Suppose we want to show that P and Q are ‘labelled’ bisimilar.

Further, suppose P
x(y)→ P ′ makes a bound output. What is the condition on Q? We note that

bisimilar processes may have different sets of free names. For instance, suppose P ≡ νy xy.P ′

and Q ≡ νy xy.Q′ | R, with y ∈ fv(R). Then the transition P
x(y)→ · cannot be matched

(literally) by Q because y is free in Q. This leads to the following definition.

Definition 497 (labelled bisimulation) A binary relation R on processes is a strong la-
belled bisimulation if:

P R Q, P
α→ Q, bv(α) ∩ fv(Q) = ∅

∃Q′ Q α→ Q′ P ′ R Q′
.

and, as usual, a symmetric condition holds for Q. For the weak case, we replace
α→ by

α⇒.
We denote with ∼L (≈L) the largest strong (weak) labelled bisimulation.

Proposition 498 Strong (weak) labelled bisimulation is preserved by static contexts.

Proof. We want to show that strong (weak) labelled bisimulation is preserved by static
contexts. Let us abbreviate with νy∗ a possibly empty list νy1, . . . , νyn. We define a binary
relation:

R = {(νy∗ P | R, νy∗ Q | R) | P ∼L Q} .

π-calculus 261

We show that R is a labelled bisimulation. First let us see what goes wrong with the relation
one would define for CCS :

R′ = {(P | R,Q | R) | P ∼L Q} .

We can have P | R τ→ νy P ′ | R′ because P
x(y)→ P ′ and R

xy→ R′. Then we just have
Q | R τ→ νy Q′ | R′ and P ′ is bisimilar to Q′ . . .

Let us look again at this case when working with the larger relation R. Suppose νy∗ P |
R

τ→ νy νy∗ P ′ | R′ because P
x(y)→ P ′ and R

xy→ R′. Then Q
x(y)→ Q′ and P ′ ∼L Q′. Therefore

νy∗ Q | R τ→ νy νy∗ Q′ | R′ and now:

νy νy∗ P ′ | R′ R νy νy∗ Q′ | R′ .

It is actually possible to develop a little bit of ‘bisimulation-up-to-context’ techniques (cf.
exercise 416) to get rid once and for all of these technicalities. 2

Exercise 499 Complete the proof that labelled bisimulation is preserved by static contexts.
Then generalize the proof to the weak case.

Since labelled bisimulation is preserved by static contexts, we can easily conclude that the
largest labelled bisimulation is a contextual bisimulation. We are then left to show that the
largest contextual bisimulation is a labelled bisimulation.

Proposition 500 Contextual bisimulation is a labelled bisimulation.

Proof. With reference to the proof for CCS (chapter 26), the static contexts we have to
build are now slightly more elaborate.

Action Static Context

xy [] | xy.o1 ⊕ (o2 ⊕ 0)
xy [] | x(z).[z = y](o1 ⊕ (o2 ⊕ 0))
x(y) [] | x(z).([z = y1]w1 | · · · | [z = yk]wk | (o1 ⊕ (o2 ⊕ 0)))

where y1, . . . , yk are the free names of the pair of processes under consideration and w1, . . . , wk,
o1, o2 are fresh names. 2

Exercise 501 Complete the proof that the largest contextual bisimulation is a labelled bisim-
ulation.

Remark 502 (input prefix) Strictly speaking, the contextual/labelled bisimulation we have
studied is not preserved by the input prefix in the sense that it is not true that P ∼ Q implies
x(y).P ∼ x(y).Q. For instance, take P ≡ [z = y]νwzw.0 and Q ≡ 0. The point is that our
semantics compares processes by (implicitly) assuming that all free names are ‘constants’ in
the sense of remark 493. However, the comparison of processes with ‘variable’ names (like
y in the example above) can be reduced to the problem of comparing processes with constant
names by considering all possible substitutions of the variable name. While in principle this
leads to infinitely many cases, a little analysis shows that it is enough to substitute all names
which are free in the processes under consideration plus a fresh one.

More sophisticated analyses are possible by defining labelled transition systems which per-
form a symbolic execution of processes. However, these technical developments appear to be of
limited interest as they are rarely used in applications. Moreover, there are interesting frag-
ments of the π-calculus where they become useless because the obvious notion of bisimulation
we have considered is actually preserved by the input prefix.

262 π-calculus

30.3 Variations

We have considered a particular variety of the π-calculus with the aim of having a relatively
simple labelled transition system and labelled bisimulation. However, a number of variations
are possible. We mention a few and discuss their impact on the characterization of labelled
bisimulation as contextual bisimulation.

Polyadic channels This is an extension where several names can be transmitted at once.
We shall see in chapter 31 that this extension is quite natural when looking at the π-calculus
as an intermediate language. The extension calls for some form of typing to guarantee that in
a synchronization the sender and the receiver agree on the number of names to be exchanged
(cf. Table 31.6). Moreover, in the formalization of the labelled transition system, the structure
of the actions is a bit more complicated as several names can be extruded as the result of a
communication. The syntax of the actions becomes:

α ::= τ || x(y1, . . . , yn) || νz1, . . . , zm x(y1, . . . , yn)

with the requirement for the output that z1, . . . , zm is a (possibly empty) subsequence of
y1, . . . , yn composed of distinct names.

Asynchronous communication This is actually a restriction that requires that an output
action cannot prefix another action. Again we shall see that this restriction is suggested by
looking at the π-calculus as an intermediate language. From a semantic viewpoint, this
restriction entails that an input action is not directly observable and calls for a modification
of the bisimulation condition, or equivalently, for a modification of the labelled transition
system. In the adapted semantics, one can show, e.g., that the processes x(y).xy and 0 are
weakly bisimilar.

Other restrictions We may consider restricted communication patterns. For instance, in
the context of asynchronous communication we may make the additional assumption that
each name has a unique receiver. Then in a process P ≡!(x(y).P) | xz the output on the x
channel is not observable from the environment because the capability of receiving on x is
attributed to the process P itself. In another direction, we may want to drop the operation
for name comparison. Then, modulo some additional hypotheses, it may be impossible to
distinguish two names y and z. For instance, imagine y and z are two names for the same
service and that the only way the observer can use y and z is to send a message on them. In
this case, a theory of bisimulation will have to consider names modulo an equivalence relation.

30.4 Summary and references

The π-calculus is an extension of CCS where processes exchange channel names. As in CCS ,
it is possible to define the notions of contextual and labelled bisimulation and show that they
coincide. In particular, this comes as a justification of the definition of the labelled bisim-
ulation which is quite technical. The π-calculus is introduced by Milner et al. in [MPW92]
following earlier work in [EN86]. The books [Hen07, SW01] explore its theory. The en-
coding of non-deterministic choice is studied in [Nes00] while the notion of bisimulation for
asynchronous communication is analyzed in [ACS98].

Chapter 31

Processes vs. functions

We develop the view that the π-calculus is a concurrent extension of an intermediate language
used in the compilation of languages of the ML family. In chapter 14, we have seen that a
standard polyadic, call-by-value, λ-calculus can be put in CPS (continuation passing style),
value named form. It turns out that, modulo a simple change of notation, this language
corresponds to a deterministic and sequential fragment of the π-calculus. From chapter 15,
we know that the CPS and value named transformations are type preserving. Thus modulo
the change of notation, the π-calculus inherits the propositional typing discipline of the λ-
calculus. As a second step, we consider an extension of the restricted π-calculus, called λj-
calculus, which allows to express recursive, parallel, and concurrent behaviors and to which
the ordinary π-calculus can be compiled. To summarize, we have the following diagram:

λ
Ccps→ λcps

Cvn→ λcps,vn
∼= πrestricted ⊂ λj

[[]]← π ,

which is read from left to right as follows. The call-by-value λ-calculus is put in CPS form
(λcps) and then in CPS value named form (λcps,vn). This is equivalent to a restricted form
of π-calculus (πrestricted). When this restricted π-calculus is extended with recursive defini-
tions, parallel composition, and a form of join definition, it becomes sufficiently expressive to
represent the ordinary π-calculus.

31.1 From λ to π notation

Table 31.1 recalls the value named λ-calculus in CPS form introduced in chapter 14. In this
λ-calculus, all values are named and when we apply the name of a λ-abstraction to the name
of a value we create a new copy of the body of the function and replace its formal parameter
name with the name of the argument as in:

let y = V in let f = λx.M in @(f, y) → let y = V in let f = λx.M in [y/x]M .

We also recall that in the value named λ-calculus the evaluation contexts are sequences of let
definitions associating values to names. We can move from λ to π with a simple change of
notation which is summarized in Table 31.2.

Example 503 (compilation and reduction simulation) The following example illustrates
the compilation of a λ-term and how the compiled term simulates the original one.

263

264 Processes vs. functions

I = λx.x, I ′ = λx, k.@(k, x), I(z) =!z(x, k).@(k, x),
K = λx.@(halt , x), K(k) =!k(x).@(halt , x)

λ @(I, y) → y

λcps @(I ′, y,K) → @(K, y)
→ @(halt , y)

λcps,vn let z = I ′ in let k = K in @(z, y, k) → let z = I ′ in let k = K in @(k, y)
→ let z = I ′ in let k = K in @(halt , y)

π νz (I(z) | νk (K(k) | z(y, k))) → νz (I(z) | νk (K(k) | ky))

→ νz (I(z) | νk (K(k) | halt y))

We stress that the π-terms obtained from the compilation are highly constrained; the
following section 31.2 discusses the restrictions and some possible relaxations.

We can lift the correspondence between λ and π terms to types. In chapter 15, we have
shown that the CPS and value named transformations preserve (propositional) types. Modulo
the change of notation presented above, this provides a propositional type system for the π-
calculus. We recall that tid is the syntactic category of type variables with generic elements
t, s, . . ., and A is the syntactic category of types with generic elements A,B, . . . A type context
is written x1 : A1, . . . , xn : An with the usual conventions. We also write x∗ : A∗ for a possibly
empty sequence x1 : A1, . . . , xn : An, and Γ, x∗ : A∗ for the context resulting from Γ by adding
the sequence x∗ : A∗. Table 31.3 recalls the typing rules for the CPS, value named calculus
and presentes the very same rules formulated in the π-notation. For the sake of brevity, we
shall omit the type of a term since this type is always the type of results R and write Γ `vn M
rather than Γ `vn M : R. A type of the form A+ → R corresponds to a channel type Ch(A+)
in π-calculus notation. As expected, one can show that typing in this system is preserved by
reduction.

31.2 Adding concurrency

The typed λcps,vn -calculus which is the target of the compilation chain is restricted in several
ways. We show how these restrictions can be relaxed to obtain a calculus which can represent

Syntax

V ::= λid+.M (values)
M ::= @(id , id+) || let id = V in M (CPS terms)
E ::= [] || let id = V in E (evaluation contexts)

Reduction Rule

E[@(x, z1, . . . , zn)] → E[[z1/y1, . . . , zn/yn]M] if E(x) = λy1, . . . , yn.M

where: E(x) =

V if E = E′[let x = V in []]
E′(x) if E = E′[let y = V in []], x 6= y
undefined otherwise.

Table 31.1: A value named, CPS λ-calculus: λcps,vn

Processes vs. functions 265

λ-interpretation λ-syntax π-syntax π-interpretation

function application @(x, y+) xy+ calling a service
function definition let x = λy+.M in N νx (!x(y+).M | N) service definition

Table 31.2: Changing notation from λ to π

Typing rules with λ notation

A ::= tid || (A+ → R) (types)

Γ, y : A+ → R `vn N Γ, x+ : A+ `vn M
Γ `vn let y = λx+.M in N

x : A+ → R, y+ : A+ ∈ Γ

Γ `vn @(x, y+)

Typing rules with π notation

A ::= tid || Ch(A+) (types)

Γ, y : Ch(A+) `π N Γ, x+ : A+ `π M
Γ `π νy (!y(x+).M | N)

x : Ch(A+), y+ : A+ ∈ Γ

Γ `π xy+

Table 31.3: Isomorphic type systems in λ and π notation

the computations of the π-calculus in a rather direct way. The restrictions and the related
relaxations concern the possibility of: (1) defining processes by general recursion, (2) running
processes in parallel, and (3) having a concurrent access to a resource. The first two relaxations
are rather standard while the third one lends itself to some discussion.

General recursion It is easily shown that in the typed λcps,vn -calculus all computations
terminate; this is a consequence of the termination of the corresponding typed λ-calculus. To
allow for infinite computations we introduce recursive definitions, that is in let x = M in N
we allow M to depend recursively on x. For instance, we can write a non-terminating term
let x = λy.@(x, y) in @(x, z).

Parallelism The computations in the λcps,vn -calculus are essentially sequential since at
any moment there is at most one function call which is active. To allow for some parallelism
we allow for function calls to be put in parallel as in @(x, y+) | @(z, w+). We notice that
while the resulting calculus allows for parallel computations it fails to represent concurrent
computations (cf. discussion in chapter 19). The reason is that two parallel calls to the same
function such as:

let x = λy.M in @(x, z) | @(x,w)

can be executed in an arbitrary order without affecting the overall behavior of the process.
In other terms, the reductions of the calculus are (strongly) confluent (yet another example
of parallel and deterministic system, cf. chapters 27 and 28).

Concurrency There are several possibilities to introduce concurrent behaviors in the cal-
culus; we consider 3 of them. One possibility is to introduce a mechanism to define a function

266 Processes vs. functions

which can be called at most once. Then two parallel calls to such a function would be con-
current as in:

letonce x = λy.M in @(x, z) | @(x,w) .

Here the first call that reaches the definition consumes it and the following ones are stuck.
Another possibility is to associate multiple definitions to the same name. This situation is
dual to the previous one in that the definitions rather than the calls are concurrent as in:

letmlt x = λy.M1 or x = λy.M2 in @(x, z) .

Here the first definition that captures the call is executed and the remaining ones are stuck.
A third and final possibility consists in introducing and joining two names in a definition
which is written as:

letjoin (x, y) in M .

As usual in a definition, we assume the names x and y are bound in M . The effect of joining
the names x and y is that any function transmitted on x can be applied to any argument
transmitted on y. In first approximation, the reduction rule for a joined definition is:

letjoin (x, y) in E[@(x, z) | @(y, w)]→ letjoin (x, y) in E[@(z, w)] .

Thus a joined definition allows for a three-way synchronization among two function calls and
a definition. In turn, this synchronization mechanism allows to simulate a situation where
several threads compete to access the same communication channel. An advantage of this
approach with respect to those sketched above is that the calculus keeps a standard definition
mechanism where each name introduced is defined once and for all. At the same time, this
relatively modest extension suffices to express the other more elaborate extensions sketched
above.

The λj-calculus

In Table 31.4, we define the λcps,vn -calculus extended with recursive definitions, parallel calls,
and join definitions. For the sake of brevity we call the resulting calculus the λj-calculus. The
λj-calculus includes a notion of structural equivalence (cf. section 26.3) which is defined by a
collection of equations presented in Table 31.4. These equations allow to commute definitions
and parallel composition and can be applied in any context. Relying on these equations
it is always possible to transform a term into a list of definitions followed by the parallel
composition of function calls. Optionally, one can add equations to remove useless definitions
such as let x = V in M ≡ M if x /∈ fv(M) and equations to commute let/letjoin definitions
under suitable conditions on the occurrences of the defined variables. The fact that we look at
terms up to structural equivalence, allows to simplify the definition of the evaluation contexts
and the reduction rules. Finally, notice that at the bottom of Table 31.4, the rules for visiting
the evaluation context are adapted to letjoin definitions.

Example 504 A closed term nil that cannot reduce can be defined as follows:

nil ≡ letjoin (x, y) in @(x, y) . (31.1)

A letonce definition can be represented as follows:

letonce x = λz+.M in N ≡ E[@(y, x′) | N] (31.2)

Processes vs. functions 267

Syntax

V ::= λid+.M (values)
M ::= let id = V in M || letjoin (id , id) in M || (M |M) || @(id , id+) (terms)
E ::= let id = V in E || letjoin (id , id) in E || (E |M) || [] (evaluation contexts)

Structural equivalence

Parallel composition is associative and commutative and assuming x, x′ /∈ fv(N) we have:

let x = V in M | N ≡ let x = V in (M | N) letjoin (x, x′) in M | N ≡ letjoin (x, x′) in (M | N)

Reduction Rules

E[@(x, z1, . . . , zn)] → E[[z1/y1, . . . , zn/yn]M] if E(x) = λy1, . . . , yn.M

E[@(x, y) | @(x′, z+)] → E[@(y, z+)] if E(x, x′) = join

E(x) =

V if E = E′[let x = V in []]
E′(x) if E = E′[let y = V in []] or E = E′[letjoin (y, y′) in []] and x 6= y, y′

E′(x) if E = E′[[] |M]
undefined otherwise

E(x, x′) =

join if E = E′[letjoin (x, x′) in []]
E′(x, x′) if E = E′[let y = V in []] or E = E′[letjoin (y, y′) in []] and {x, x′} ∩ {y, y′} = ∅
E′(x, x′) if E = E′[[] |M]
undefined otherwise.

Table 31.4: The value named CPS λ-calculus with join: λj

268 Processes vs. functions

[[0]] = nil
[[xy.P]] = letonce k = λ .[[P]] in @(x↑, y↓, y↑, k)
[[x(y).P]] = letonce k = λy↓, y↑, k

′.([[P]] | @(k′,)) in @(x↓, k)
[[!x(y).P]] = let k = λy↓, y↑, k

′.([[P]] | @(k′,) | @(x↓, k)) in @(x↓, k)
[[P | Q]] = [[P]] | [[Q]]
[[νx P]] = letjoin (x↓, x↑) in [[P]]

Table 31.5: Encoding of the π-calculus in λj

where: E = let x′ = λz+.M in letjoin (y, x) in []. Assuming N ≡ @(x,w+), we have the
following reductions:

E[@(y, x′) | @(x,w+)] → E[@(x′, w+)] → E[[w+/z+]M] .

Since the call @(y, x′) is not regenerated and the name y remains local, further invocations of
x will be stuck. Thus if we define: letzero x = λz+.M in N = E[N], we have:

letonce x = λz+.M in @(x,w+)
∗→ letzero x = λz+.M in [w+/z+]M .

A letmlt definition can be defined as follows:

letmlt x = λy+.M1 or x = λy+.M2 in N = E[@(x′, x1) | @(x′, x2) | N] (31.3)

where E = letjoin (x′, x) in let x1 = λy+.(M1 | @(x′, x1)) in let x2 = λy+.(M2 | @(x′, x2)) in [].
Assuming that N ≡ @(x,w+) and that the selected function definition is the first one, we have
the following reductions:

E[@(x′, x1) | @(x′, x2) | @(x,w+)] → E[@(x1, w
+) | @(x′, x2)]

→ E[[w+/y+]M1 | @(x′, x1) | @(x′, x2)] .

Notice that each call to xi regenerates a call @(x′, xi) and that this requires a recursive defi-
nition of xi where the body of the function associated to xi depends on xi itself.

Encoding of the (monadic) π-calculus in the λj-calculus

Table 31.5 presents an encoding of the monadic π-calculus described in chapter 30 (without
name equality) into the λj-calculus. The encoding assumes that for each name x in the term
of the π-calculus to be encoded we reserve a pair of names x↓, x↑ in the λj-calculus. The
intuition is that an input on x is transformed into a call to the name x↓ while an output on x
becomes a call to the name x↑. Then the names x↓, x↑ are joined so that a reduction in λj is
possible whenever there is at least one call to x↓ and one call to x↑. Not surprisingly, recursive
definitions are needed in the encoding of the replicated input. In the translation of the output
we use as a dummy variable, i.e., a variable which is not used in the body of the function.
Correspondingly, in the translation of the input we use the notation @(k′,) for a call to k′

with a dummy argument. By convention, we define @(k′,) ≡ letjoin (x, x′) in @(k′, x′).

Example 505 The following reduction in the π-calculus:

R ≡ νx (x(y).P | xz.Q)→ νx ([z/y]P | Q) ,

Processes vs. functions 269

Syntax types and type contexts

A ::= tid || Ch(A+) (types)
Γ ::= id : A, . . . , id : A (type contexts)

Typing rules for the polyadic π-calculus

Γ `π 0

x : Ch(A+), y+ : A+ ∈ Γ Γ `π P
Γ `π xy+.P

x : Ch(A+) ∈ Γ Γ, y+ : A+ `π P
Γ `π x(y+).P

x : Ch(A+) ∈ Γ Γ, y+ : A+ `π P
Γ `π!(x(y+).P)

Γ `π P Γ `π Q
Γ `π P | Q

Γ, x : Ch(A+) `π P
Γ `π νx P

Typing rules for the λj-calculus

Γ, x : Ch(A+) `j N Γ, x : Ch(A+), y+ : A+ `j M
Γ `j let x = λy+.M in N

Γ, x : Ch(Ch(A+)), y : Ch(A+) `j M
Γ `j letjoin (x, y) in M

x : Ch(A+), y+ : A+ ∈ Γ

Γ `j @(x, y+)

Γ `j M Γ `j N
Γ `j M | N

Table 31.6: Typing rules for the (polyadic) π-calculus and the λj-calculus

is simulated as follows by the λj-term E[T] ≡ [[R]] where:

E = letjoin (x↓, x↑) in letonce k = λy↓, y↑, k
′.([[P]] | @(k′,)) in letonce k′ = λ .[[Q]] in []

E′ = letjoin (x↓, x↑) in letzero k = λy↓, y↑, k
′.([[P]] | @(k′,)) in letonce k′ = λ .[[Q]] in []

E′′ = letjoin (x↓, x↑) in letzero k = λy↓, y↑, k
′.([[P]] | @(k′,)) in letzero k′ = λ .[[Q]] in []

T = @(x↓, k) | @(x↑, z↓, z↑, k
′)

E[T]→ E[@(k, z↓, z↑, k
′)]→ E′[[z↓/y↓, z↑/y↑][[P]] | @(k′,)]→ E′′[[z↓/y↓, z↑/y↑][[P]] | [[Q]]] .

Typing the encoding

The type system for the λcps,vn -calculus presented in Table 15.2 can be easily adapted to
the π-calculus and the λj-calculus. Following the notation in Table 31.3, we write the type
A+ → R as Ch(A+). Then Table 31.6 spells out the syntax and typing rules for the polyadic
π-calculus and the λj-calculus. To accommodate recursive definitions, we allow the name
introduced by a let definition to occur in the body of the associated function. The rules for
the monadic π-calculus are just a special case where the channel type constructor is always
applied to exactly one type.

Exercise 506 Determine the derived typing rules for the terms nil (31.1), letonce (31.2), and
letmlt (31.3).

We can extend to types the translation from the monadic π-calculus to the λj-calculus. We
use D = Ch(t) as the type of the dummy argument in @(k′,). Then we define a translation

270 Processes vs. functions

on types and type contexts as follows:

[[t]] = t ,
[[Ch(A)]] = Ch(Ch([[A]]), [[A]],Ch(D)) ,
[[Γ, x : A]] = [[Γ]], x↓ : Ch([[A]]), x↑ : [[A]] .

And we can formulate the following type preservation property whose proof is left to the
reader.

Proposition 507 If P is a term of the monadic π-calculus and Γ `π P then [[Γ]] `j [[P]].

This exercise can be continued by establishing a kind of barbed bisimulation (cf. definition
422) between a (typed) π-calculus process and its translation in the λj-calculus.

31.3 Summary and references

The π-calculus can be regarded as a concurrent relaxation of a functional language in CPS,
value named form. This fact explains its ability to encode a variety of features of high-level
programming languages. Milner in [Mil92] is the first to discuss a translation from the λ-
calculus to the π-calculus. Since then a variety of translations have appeared in the literature.
The notion of multiple synchonization is commonly found in Petri nets (see, e.g., [Reu90]). In
the framework of the π-calculus, the notion of join definition is put forward in [FG96]. This
work contains a more elaborate definition mechanism than the one we have described here
and it sketches a number of sophisticated encodings.

Chapter 32

Concurrent objects

In this chapter, we reconsider shared memory concurrency. The Imp‖ model introduced in
chapter 19 has a pedagogical value in that it allows to illustrate many interesting problems
that arise in concurrency in a relatively simple setting. On the negative side, it is clear
that its modelling power is rather limited. First, it does not support the introduction of data
structures such as lists, queues, trees, graphs, . . . and the related operations on them. Second,
the memory model does not allow for the dynamic allocation, manipulation, and possibly
disposal of memory locations which is typical of imperative programming. (Incidentally,
these considerations are similar to those motivating the move from CCS to the π-calculus.)

Research on concurrent programming in the shared memory model has focused on the
issue of programming data structures that allow for concurrent access, i.e., for the concurrent
execution of several operations on the data structure, while providing an observable behavior
which is ‘equivalent’ to that of a data structure where the execution of the operations is
sequential, i.e., each operation is run from the beginning to the end without interference from
the other operations. In a certain technical setting, this property is called linearizability and
because the technical setting corresponds roughly to that of a Java-like concurrent object-
oriented programming language one speaks of concurrent and sequential objects rather than
concurrent and sequential data structures, respectively. Also, the operations of the data
structures correspond to the methods of the object.

An important result in this field is the existence of universal constructions that transform
any ‘sequential’ object into a ‘concurrent’ one without introducing locks. Instead of locks,
one relies on relatively simple atomic operations such as compare and set (cf. example 310).
Such concurrent data structures are called lock-free. Because of the absence of locks such
data structures guarantee a form of collective progress, i.e., there is a guarantee that some
operations will be completed while others may be delayed indefinitely. In fact one can go
one step further and produce wait-free data structures where each operation is guaranteed
to terminate in a bounded number of steps. Unfortunately, such universal transformations
tend to be rather inefficient and research has focused on both ways to have more efficient
constructions in some special cases and on ways to relax the correctness conditions so as to
allow for some efficient implementation techniques. Our goal in this chapter is to discuss
these issues in a (fragment of a) state of the art programming language (Java) and to hint to
their formalization. We build on chapter 18 and the reader is supposed to have a superficial
knowledge of the Java programming language.

271

272 Concurrent objects

public class PingPong extends Thread {

private String word;

public PingPong(String w){word = w;} //constructor

public void run(){for (;;){System.out.print(word+" ");}} //redefine run

public static void main (String[] args){

(new PingPong("ping")).start();

(new PingPong("pong")).start();} }

Table 32.1: Creating threads in Java

public class WrongCounter {

private long value = 0;

public long getValue() { return value; }

public void increment() {value=value+1; return; } }

Table 32.2: A wrong counter

32.1 Review of concurrent programming in Java

We review a few basic notions of concurrent programming in Java and provide a few examples
of concurrent objects.

We start by describing a basic method to create threads (processes) in Java. Java has
a predefined class Thread which in turn has predefined methods start and run. By invoking
start on a Thread object, we invoke the run method on it and return immediately. By default
the run method does nothing; so to have some interesting behavior one needs to create a class
which extends the Thread class and redefines the run method. As an example, in Table 32.1 we
define a class PingPong which extends the Thread class and redefines the run method. What
the redefined run method does is to print the String value which constitutes the internal state
of a PingPong object. The main method creates two PingPong objects, one writing “ping”
and the other writing “pong” and starts them in parallel.

Threads running in parallel may share a common object. For instance, suppose the shared
object is a counter with methods getValue to read the contents of the counter and increment
to increment by one its contents. Table 32.2 gives a preliminary (and wrong!) description of
a counter class.

Suppose two threads invoke once the increment method on an object of the WrongCounter
class. Reading a value from memory, incrementing it, and storing the result back into memory
is not an atomic operation in Java. As a result, it is quite possible that the final value of
the counter is 1 rather than 2. In fact, the Java specification does not even guarantee that
reading or writing a long variable is an atomic operation. Indeed, a long variable can be
stored in two consecutive memory words and the access to such two words does not need to
be atomic. In principle, it could happen that by reading a long variable we get a value which
is a ‘mix’ of values written by concurrent threads.

A simple way to solve these issues is to specify that all the methods of the counter are
synchronized as in Table 32.3. A thread that invokes a synchronized method on an object
implicitly acquires a lock that guarantees exclusive access to the state of the object and
releases the lock upon returning from the method. Other threads invoking a synchronized
method on the same object at the same time will be delayed. This is a reformulation of
an older synchronization mechanism in concurrent programming known as monitor. This

Concurrent objects 273

public class SyncCounter {

private long value = 0;

public synchronized long getValue() {return value;}

public synchronized void increment() {value=value+1; return;} }

Table 32.3: A synchronized counter

public class CASCounter {

private AtomicInteger value= new AtomicInteger(0);

public int getValue(){return value.get();}

public void increment(){

int v;

do { v = value.get(); }

while (!value.compareAndSet(v, v + 1));

return;} }

Table 32.4: A counter with compareAndSet

approach obviously guarantees linearizability but it can be inefficient.

An alternative approach consists in reducing the granularity of the operations to that
of compareAndSet operations. In Java, compareAndSet is actually a method which can be
invoked on an object of a special ‘Atomic’ class and which returns true if the comparison is
successful and false otherwise. This implementation of the counter is described in Table 32.4
which relies on a AtomicInteger class.

Notice that this time the implementation of the increment method is significantly different.
First the value of the counter is read and incremented and then atomically the current value of
the counter is compared to the value read and if they are equal then the counter is incremented.
In case of contention, this solution relies on busy waiting while the previous one relies on a
context switch. 1

Table 32.5 presents an implementation of a concurrent stack object using compareAndSet
which is known as Treiber’s algorithm. The implementation of the push and pop method
follows the approach we have already presented for the increment method. First the methods
do some speculative work on the side and then they make it visible with a compareAndSet
method provided no interference has occurred so far. In this example, we work on objects of
the AtomicReference class and the stack is implemented as a linked list of objects of the Node
class.

It should be noticed that compareAndSet can only manage a single pointer atomically.
More complex operations such as inserting an element in a queue represented as a linked list,
may require the (virtual) update of more pointers at once. In this case more sophisticated
programming techniques are needed.

1The general wisdom is that if the probability of contention is low then busy waiting may be more efficient
than context switch. In case of significant contention, exponential back-off is a general strategy to improve a
busy waiting solution which is used, e.g., to handle collisions in the Ethernet protocol. In our case, it consists
in introducing a delay after each iteration of the while loop. The delay is chosen randomly from an interval
which increases exponentially with the number of iterations.

274 Concurrent objects

public class Node{

int value;

Node next;

public Node(int v){value=v; next=this;} } // Node constructor

public class CASStack {

AtomicReference<Node> head = new AtomicReference<Node>();

public void push(int v) {

Node oldHead;

Node newHead = new Node(v);

do {oldHead = head.get();

newHead.next = oldHead;

} while (!head.compareAndSet(oldHead, newHead));}

public int pop() {

Node oldHead;

Node newHead;

do {oldHead = head.get();

if (oldHead == null) return -1; // -1 default value for empty stack

newHead = oldHead.next;

} while (!head.compareAndSet(oldHead,newHead));

return oldHead.value;}}

Table 32.5: A stack with compareAndSet

32.2 A specification of a fragment of concurrent Java

We introduce the syntax, reduction rules, and typing rules of a tiny imperative and concurrent
object-oriented language (called cJ) which is an extension of the (imperative) J language
formalized in chapter 18.

We recall that an object value is composed of the name of a class and a list of references
which correspond to the object’s fields. A class is a declaration where we specify how to build
and manipulate the objects of the class. In particular, we specify the fields of each object and
the methods that allow their manipulation.

As usual, we assume a class Object without fields and methods. Every other class decla-
ration extends a previously defined class and, in particular, we assume a class Thread which
extends the Object class with a method start with no arguments and returning an object of
the Object class. The effect of invoking the start method on an object of the Thread class is
to spawn in parallel the invocation of the run method on the object (if any). In this chapter
we assume all fields are modifiable (we stick to the imperative version of the language) and
denote with R an infinite set of references (cf. chapter 18) with elements r, r′, . . . A reference
is a pointer to an object. The value v of an object has the shape: C(r1, . . . , rn), for n ≥ 0,
where C is the name of the class to which the object belongs and r1, . . . , rn are the references
associated with the modifiable fields of the object. A heap memory h is a partial function
with finite domain from references to values.

Table 32.6 defines the syntactic category of expressions for cJ. As usual (cf. chapter 18),
to define the reduction rules, it is convenient to include values in the syntactic category of ex-
pressions. However, it is intended that expressions in a source program do not contain values.
As in chapter 18, a program is composed of a list of class declarations and a distinguished
expression where the computation starts. The final value of the distinguished expression can
be taken as the output of the program. Among the variables, we reserve this to refer to the
object on which a method is invoked. Also, we reserve the names start and run for methods of

Concurrent objects 275

e ::= id || (variable)
v || (value)
new C(e1, . . . , en) || (object generation)
e.f || (field read)
e.m(e1, . . . , en) || (method invocation)
(C)(e) || (casting)
e.f := e || (field write)
e; e || (sequentialization)
atomic(e) (atomicity)

Table 32.6: Expressions in cJ

objects of the Thread class. A well-formed program must satisfy certain conditions concerning
fields and methods which are specified in chapter 18.

In order to define the reduction rules, it is convenient to introduce the syntactic category
of sequential evaluation contexts which correspond to a call-by-value, left to right reduction
strategy and which are defined as follows:

E ::= [] || new C(v∗, E, e∗) || E.f || E.m(e∗) || v.m(v∗, E, e∗) ||
(C)(E) || E.f := e || v.f := E || E; e (evaluation contexts)

(32.1)
Along with the notion of evaluation context, we introduce a notion of redex, namely an
expression which (up to some type checks) is ready to reduce.

∆ ::= new C(v∗) || v.f || v.m(v∗) || (D)(v) || v.f := v || v; e || atomic(e) (redexes) (32.2)

The reduction of an expression involving the start method may produce the spawn of an
expression to be evaluated in parallel. Consequently, we consider a judgment of the shape:

(e, h)
µ→ (e′, h′)

where µ is a (possibly empty) finite multi-set of expressions of the shape v.run(). Equivalently,
µ can be regarded as a finite sequence of expressions where the order is irrelevant. As usual,

we denote with ∅ the empty multi-set and moreover we write → as an abbreviation for
∅→.

Table 32.7 introduces the rules for reducing expressions and configurations (the last two rules).
The first 8 rules are driven by the shape of the redexes specified in grammar (32.2). In the
rule for atomic, we write:

(e1, h1)
µ

→∗ (en, hn) for (e1, h1)
µ1→ · · · µn−1→ (en, hn) and µ = µ1 ∪ · · · ∪ µn−1 .

The rule for an atomic expression may spawn several threads, but their actual reduction may
only start once the evaluation of the atomic expression is completed. Also note that in the
proposed semantics atomic(v)→ v. The following rule allows to cross an evaluation context.
The last two rules, explain how to reduce a configuration which is a triple (e, µ, h) composed of
a main expression, a multi-set of secondary expressions (initially empty), and a heap (initially
empty too). This amounts to select non-deterministically one of the expressions and reduce
it according to the rules above.

Recall that at the beginning of the computation we can assume that the multi-set of
expressions µ contains no references and that the heap h is empty. Then the reduction rules

276 Concurrent objects

r∗ distinct and {r∗} ∩ dom(h) = ∅
(new C(v∗), h)→ (C(r∗), h[v∗/r∗])

(object generation)

field(C) = f1 : C1, . . . , fn : Cn 1 ≤ i ≤ n
(C(r1, . . . , rn).fi, h)→ (h(ri), h)

(field read)

mbody(m,C) = λx1 · · ·xn.e
(C(r∗).m(v1, . . . , vn), h)→ ([v1/x1, . . . , vn/xn, C(r∗)/this]e, h)

(method invocation)

C ≤ Thread

(C(r∗).start(), h)
C(r∗).run()→ (Object(), h)

(start invocation)

C ≤ D
((D)(C(r∗)), h)→ (C(r∗), h)

(casting)

field(C) = f1 : C1, . . . , fn : Cn 1 ≤ i ≤ n
(C(r1, . . . , rn).fi := v, h)→ (Object(), h[v/ri])

(field write)

(v; e, h)→ (e, h)
(sequentialization)

(e, h)
µ

→∗ (v, h′)

(atomic(e), h)
µ→ (v, h′)

(atomicity)

(e, h)
µ→ (e′, h′)

(E[e], h)
µ→ (E[e′], h′)

(evaluation context)

(e, h)
µ′→ (e′, h′)

(e, µ, h)→ (e′, µ ∪ µ′, h′)
(main expression)

(e′, h)
µ′→ (e′′, h′)

(e, {|e′|} ∪ µ, h)→ (e, {|e′′|} ∪ µ ∪ µ′, h′)
(secondary expression)

Table 32.7: Small step reduction rules for cJ

are supposed to maintain the following invariant: for all reachable configurations (e, µ, h), all
the references in e, µ and all the references that appear in a value in the codomain of the
heap h are in the domain of definition of the heap (dom(h)). This guarantees that whenever
we look for a fresh reference it is enough to pick a reference which is not in the domain of
definition of the current heap.

Following the discussion in chapter 18 (notably on the typing of casting), we present a
type system for cJ. As usual, a type environment Γ has the shape x1 : C1, . . . , xn : Cn and
we consider typing judgments of the shape: Γ ` e : C. Table 32.8 specifies the rules to
type expressions that do not contain values or references (as source programs do). The rules
governing the typing of class declarations and programs are those specified for the sequential
fragment J in chapter 18. The typed language, but for the atomic operator, can be regarded
as a fragment of the Java programming language. General, but not very efficient, methods
to compile the atomic operator have been proposed. The basic idea is to follow an optimistic
strategy such as the one described in chapter 22. Unlike in the Imp‖ language however, in cJ,

Concurrent objects 277

x : C ∈ Γ

Γ ` x : C

field(C) = f1 : D1, . . . , fn : Dn
Γ ` ei : Ci, Ci ≤ Di, 1 ≤ i ≤ n

Γ ` new C(e1, . . . , en) : C

Γ ` e : C field(C) = f1 : C1, . . . , fn : Cn
Γ ` e.fi : Ci

Γ ` e : C mtype(m,C) = (C1, . . . , Cn)→ D
Γ ` ei : C′i C′i ≤ Ci 1 ≤ i ≤ n

Γ ` e.m(e1, . . . , en) : D

Γ ` e : C C ≤ Thread

Γ ` e.start() : Object

Γ ` e : D

Γ ` (C)(e) : C

Γ ` e : C field(C) = f1 : C1, . . . , fn : Cn
Γ ` e′ : Di Di ≤ Ci
Γ ` e.fi := e′ : Object

Γ ` e1 : C1 Γ ` e2 : C2

Γ ` e1; e2 : C2

Γ ` e : C

Γ ` atomic(e) : C

Table 32.8: Typing rules for cJ program expressions

and more generally in Java, it is not possible to determine statically the collection of object’s
fields which will be affected by the atomic transaction. In first approximation, the atomic
execution of an expression e is compiled into a speculative execution of the expression e which
maintains a list of object’s fields which are read and/or written along with their updated
values. At the end of the speculative execution, if certain coherence conditions are met, the
computation is committed, and otherwise the computation is re-started.

Exercise 508 Building on proposition 305, formulate and prove a subject reduction property
for the typed cJ language.

32.3 Summary and references

We have reviewed some basic notions of concurrent programming in Java and formalized
the reduction and typing rules of a tiny fragment of it. Java’s synchronization builds on
the notion of monitor which was described in [Hoa74, Han75]. The notion of linearizability is
introduced in [HW90]. In a nutshell, linearizability means that the execution of the body of the
methods of the concurrent object looks atomic. The introduction of a universal construction
to transform any ‘sequential’ object into a ‘concurrent’ one without introducing locks is due
to [Her91]. The book [HS08] is a good survey of the state of the art in this area.

Building a comprehensive model and proof methodology for concurrent object-oriented
languages is the subject of ongoing research and seems to require the combination of insights
coming from different directions. We mention a few of them. The original work on lineariz-
ability is described in a rather ad hoc model. Recent work, see, e.g., [FORY10] connects this
notion with that of observational refinement. Also proofs of linearizability can be quite com-
plex and research is active on developing proof methods and on mechanizing them. A problem
related to linearizability is that of finding general and efficient ways of compiling the atomic
execution of a sequence of statements (see, e.g., [DSS06] for a proposal). The work on so
called separation logic [Rey02] has focused on developing scalable methods to reason in some

278 Concurrent objects

kind of Hoare logic on programs with pointers. However most of the work has been devoted
to a simple model which roughly corresponds to the Imp model extended with operators to
allocate, modify, and dispose memory locations (cf. chapter 23). Much remains to be done
to port the approach to object oriented and/or concurrent programs as it is witnessed by
the rather undisciplined proliferation of ‘separation logics’. The whole enterprise of (object-
oriented) concurrent programming with shared memory is on shaky foundations because it
may rely on optimistic or plainly wrong hypotheses on the memory model. For instance, see
[MPA05] for a tentative definition of a realistic Java memory model and [SVN+13] for the
implications on compilers’ correctness.

Bibliography

[AB84] Didier Austry and Gérard Boudol. Algèbre de processus et synchronisation. Theor. Comput. Sci.,
30:91–131, 1984.

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program. Lang.
Syst., 15(4):575–631, 1993.

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda Calculi. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

[ACS98] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asyn-
chronous pi-calculus. Theor. Comput. Sci., 195(2):291–324, 1998.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994.

[Ama09] Roberto M. Amadio. On stratified regions. In APLAS, Springer LNCS 5904, pages 210–225,
2009.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In American Federation of Information Processing Societies, Spring Joint Computing
Conference, pages 483–485, 1967.

[AN01] André Arnold and Damian Niwinski. Rudiments of µ-calculus, volume 146 of Studies in logic and
the foundations of mathematics. North Holland, 2001.

[BA84] Mordechai Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Trans. Program. Lang.
Syst., 6(3):333–344, 1984.

[Bar84] Hendrik Pieter Barendregt. The lambda calculus; its syntax and semantics. North-Holland, 1984.

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed lambda-programs on
term algebras. Theor. Comput. Sci., 39:135–154, 1985.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theor. Comput. Sci.,
96(1):217–248, 1992.

[BC84] Gérard Berry and Laurent Cosserat. The ESTEREL synchronous programming language and its
mathematical semantics. In Seminar on Concurrency, Springer LNCS 197, pages 389–448, 1984.

[BC92] Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of the
polytime functions. Computational Complexity, 2:97–110, 1992.

[BdS96] Frédéric Boussinot and Robert de Simone. The SL synchronous language. IEEE Trans. Software
Eng., 22(4):256–266, 1996.

[BG92] Gérard Berry and Georges Gonthier. The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, , and Nathan Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

[BN99] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1999.

[Bou91] Frédéric Boussinot. Reactive C: An extension of C to program reactive systems. Softw., Pract.
Exper., 21(4):401–428, 1991.

[Bou10] Gérard Boudol. Typing termination in a higher-order concurrent imperative language. Inf. Com-
put., 208(6):716–736, 2010.

279

280 Bibliography

[Bra96] Julian C. Bradfield. The modal mu-calculus alternation hierarchy is strict. In CONCUR, Springer
LNCS 1119, pages 233–246, 1996.

[Bro96] Stephen D. Brookes. Full abstraction for a shared-variable parallel language. Inf. Comput.,
127(2):145–163, 1996.

[Car88] Luca Cardelli. A semantics of multiple inheritance. Inf. Comput., 76(2/3):138–164, 1988.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput., 76(2/3):95–
120, 1988.

[CHL96] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of weak and
strong calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996.

[Chl10] Adam Chlipala. A verified compiler for an impure functional language. In ACM POPL, pages
93–106, 2010.

[Chl13] Adam Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduction to the
Coq Proof Assistant. MIT Press, 2013.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68, 1940.

[Cob64] Alan Cobham. The intrinsic computational difficulty of functions. In Proc. of the 1964 Interna-
tional Congress for Logic, Methodology, and the Philosophy of Science, Y. Bar-Hillel ed., pages
24–30. North Holland, 1964.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declarative language
for programming synchronous systems. In ACM POPL, pages 178–188, 1987.

[dB72] Nicolaas G. de Brujin. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to Church-Rosser theorem. Indagationes Mathematicae,
75(5):381–392, 1972.

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–301,
1982.

[DG94] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for multiprocessor
systems. In ACM POPL, pages 70–83, 1994.

[Dij65] Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Commun. ACM,
8(9):569, 1965.

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, Alain J. Martin, Carel S. Scholten, and Elisabeth F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperation. Commun. ACM, 21(11):966–
975, 1978.

[DSS06] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC, Springer LNCS 4167,
pages 194–208, 2006.

[EN86] Uffe Engberg and Mogens Nielsen. A calculus of communicating systems with label passing.
Technical report, DAIMI PB 208, University Aarhus, 1986.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus. In ACM POPL,
pages 372–385, 1996.

[Flo67] Robert W. Floyd. Assigning meaning to programs. In Proc. Symp. on Applied Maths, volume 19,
pages 19–32. American Math. Soc., 1967.

[FORY10] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concur-
rent objects. Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

[Gir71] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse et son application à
l’élimination des coupures dans l’analyse et la théorie des types. Proc. of the Second Scandinavian
Logic Symposium, 63:63–92, 1971.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1989.

[Gri77] David Gries. An exercise in proving parallel programs correct. Commun. ACM, 20(12):921–930,
1977.

[GS96] Jan Friso Groote and M. P. A. Sellink. Confluence for process verification. Theor. Comput. Sci.,
170(1-2):47–81, 1996.

Bibliography 281

[Gun92] Carl Gunter. Semantics of programming languages. MIT Press, 1992.

[Han75] Per Brinch Hansen. The programming language Concurrent Pascal. IEEE Trans. Software Eng.,
1(2):199–207, 1975.

[Hen07] Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991.

[Hig52] Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Math-
ematical Society, 2(7):326336, 1952.

[Hin69] Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:2960, 1969.

[HJ90] Hans Hansson and Bengt Jonsson. A calculus for communicating systems with time and proba-
bilities. In IEEE Real-Time Systems Symposium, pages 278–287, 1990.

[HM92] Maurice Herlihy and J. Eliot B. Moss. Lock-free garbage collection for multiprocessors. IEEE
Trans. Parallel Distrib. Syst., 3(3):304–311, 1992.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-free
data structures. In ACM-ISCA, pages 289–300, 1993.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Commun. ACM, 17(10):549–
557, 1974.

[How96] Douglas J. Howe. Proving congruence of bisimulation in functional programming languages. Inf.
Comput., 124(2):103–112, 1996.

[HR95] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Inf. Comput.,
117(2):221–239, 1995.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[HY95] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. Theor. Comput. Sci.,
151(2):437–486, 1995.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[Jon83] Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[K2̈6] Dés König. Sur les correspondances multivoques des ensembles. Fundamenta Mathematicae,
8:114–134, 1926.

[Kah74] Gilles Kahn. The semantics of simple language for parallel programming. In IFIP Congress, pages
471–475, 1974.

[KB70] Donald Knuth and Peter Bendix. Simple word problems in universal algebra. In Universal
Algerbras, J. Leech (ed.), pages 263–297. Pergamon Press, 1970.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354, 1983.

[KR81] Hsiang-Tsung Kung and John T. Robinson. On optimistic methods for concurrency control. ACM
Trans. Database Syst., 6(2):213–226, 1981.

[KR90] Richard Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory machines. In
Handbook of theoretical computer science: algorithms and complexity, vol. A, J. van Leeuven (ed.).
Elsevier, 1990.

[Kru60] Joseph Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions
of the American Mathematical Society, 95(2):210–225, 1960.

[KTU90] Assaf Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is dexptime-complete. In CAAP,
volume 431 of Springer LNCS, page 206220, 1990.

282 Bibliography

[Lan64] Peter Landin. The mechanical evaluation of expressions. The Computer Journal (British Com-
puter Society), 6(4):308–320, 1964.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In ACM POPL, pages 144–154, 1993.

[Len96] Giacomo Lenzi. A hierarchy theorem for the µ-calculus. In ICALP, Springer LNCS 1099, pages
87–97, 1996.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In ACM POPL, pages 42–54, 2006.

[Ler09] Xavier Leroy. Mechanized semantics, with applications to program proof and compiler verification.
Technical report, Marktoberdorf Summer School, 2009.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In ACM POPL, pages
47–57, 1988.

[LM82] Damas Luis and Robin Milner. Principal type-schemes for functional programs. In ACM POPL,
pages 207–212, 1982.

[LMWF94] Nancy Lynch, Michael Merritt, William Weil, and Alan Fekete. Atomic transactions. Morgan
Kaufmann Publishers Inc., 1994.

[LS89] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. In ACM
POPL, pages 344–352, 1989.

[Lyn96] Nancy Lynch. Distributed algorithms. Morgan Kaufmann Publishers Inc., 1996.

[Mai90] Harry Mairson. Deciding ML typability is complete for deterministic exponential time. In ACM
POPL, pages 382–401, 1990.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Science, 17:348–374, 1978.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci., 25:267–310, 1983.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–
141, 1992.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall International, 1995.

[Mit88] John C. Mitchell. Polymorphic type inference and containment. Inf. Comput., 76(2/3):211–249,
1988.

[Mit96] John C. Mitchell. Foundations for programming languages. MIT Press, 1996.

[Mit03] John C. Mitchell. Concepts in programming languages. Cambridge University Press, 2003.

[MM93] Robin Milner and Faron Moller. Unique decomposition of processes. Theor. Comput. Sci.,
107(2):357–363, 1993.

[MMH96] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure conversion. In
ACM POPL, pages 271–283, 1996.

[MP67] John McCarthy and James Painter. Correctness of a compiler for arithmetic expressions, vol-
ume 19 of Mathematical aspects of computer science, Symposia in Applied Mathematics. North
Holland, 1967.

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Trans.
Program. Lang. Syst., 10(3):470–502, 1988.

[MP05] Louis Mandel and Marc Pouzet. ReactiveML: a reactive extension to ML. In ACM PPDP, pages
82–93, 2005.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In ACM POPL,
pages 378–391, 2005.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf. Comput.,
100(1):1–40, 1992.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In ICALP, pages 685–695, 1992.

Bibliography 283

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT Press, 1990.

[MWCG99] Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.

[NE00] Leonor Prensa Nieto and Javier Esparza. Verifying single and multi-mutator garbage collectors
with Owicki-Gries in Isabelle/HOL. In Mathematical Foundations of Computer Science, Springer
LNCS 1893, pages 619–628, 2000.

[Nes00] Uwe Nestmann. What is a “good” encoding of guarded choice? Inf. Comput., 156(1-2):287–319,
2000.

[New42] Maxwell Newman. On theories with a combinatorial definition of equivalence. Annals of Mathe-
matics, 43(2):223–243, 1942.

[Nie03] Leonor Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In ESOP, Springer LNCS
2618, pages 348–362, 2003.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL. Springer, 2014.

[NS94] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, ATP: theory and application.
Inf. Comput., 114(1):131–178, 1994.

[NW63] Crispin Nash-Williams. On well-quasi-ordering finite trees. Proc. Of the Cambridge Phil. Soc.,
59(04):833–883, 1963.

[OG76] Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta
Inf., 6:319–340, 1976.

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial College Press, 2009.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–
653, 1979.

[Par81] David Park. Concurrency and automata on infinite sequences. In Conference in Theoretical
Computer Science, pages 167–183. Springer-Verlag, 1981.

[PCG+15] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu,
Vilhelm Sjoberg, and Brent Yorgey. Software Foundations. Electronic textbook, 2015.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,
60-61:17–139, 2004. First appeared in 1981.

[Put94] Martin L. Puterman. Markov decision process. Discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

[PW97] Anna Philippou and David Walker. On confluence in the pi-calculus. In ICALP, Springer LNCS
1256, pages 314–324, 1997.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.

[Reu90] Christophe Reutenauer. The mathematics of Petri nets. Prentice Hall, 1990.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, Proceedings
Colloque sur la Programmation, pages 408–423, 1974.

[Rey98] John C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-
Order and Symbolic Computation, 11(4):363–397, 1998. First appeared in 1972.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS), pages 55–74, 2002.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[Ros84] Harvey Rose. Subrecursion. Functions and hierarchies, volume 9 of Oxford logic guides. Oxford
University Press, 1984.

[RS83] Neil Robertson and Paul Seymour. Graph minors I. Excluding a forest. Journal of Combinatorial
Theory, Series B, 35(1):3961, 1983.

284 Bibliography

[SBS04] Manuel Serrano, Frédéric Boussinot, and Bernard P. Serpette. Scheme fair threads. In ACM
PPDP, pages 203–214, 2004.

[SL95] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes. Nord.
J. Comput., 2(2):250–273, 1995.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In ACM PODC, pages 204–213,
1995.

[Sta79] Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theor. Comput.
Sci., 9:67–72, 1979.

[Sti88] Colin Stirling. A generalization of Owicki-Gries’s Hoare logic for a concurrent while language.
Theor. Comput. Sci., 58:347–359, 1988.

[SVN+13] Jaroslav Sevćık, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter
Sewell. Compcerttso: A verified compiler for relaxed-memory concurrency. J. ACM, 60(3):22,
2013.

[SW01] Davide Sangiorgi and David Walker. The pi-calculus: a theory of mobile processes. Cambridge
University Press, 2001.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf. Comput.,
132(2):109–176, 1997.

[TvD88] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics. An introduction.
Volume I. North-Holland, 1988.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In IEEE
FOCS, pages 327–338, 1985.

[vdS87] Jan L. A. van de Snepscheut. Algorithms for on-the-fly garbage collection, revisited. Inf. Process.
Lett., 24(4):211–216, 1987.

[Vit05] Giuseppe Vitali. Sul problema della misura dei gruppi di punti di una retta. Tipografia Gamberini
et Parmeggiani, 1905.

[vR01] Femke van Raamsdonk. On termination of higher-order rewriting. In Rewriting Techniques and
Applications, Springer LNCS 2051, pages 261–275, 2001.

[Wel99] Joe B. Wells. Typability and type checking in system F are equivalent and undecidable. Ann.
Pure Appl. Logic, 98(1-3):111–156, 1999.

[Win89] Glynn Winskel. A note on model checking the modal nu-calculus. In ICALP, Springer LNCS
372, pages 761–772, 1989.

[Win93] Glynn Winskel. The formal semantics of programming languages. MIT Press, 1993.

[Wri95] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8(4):343–
355, 1995.

[XdRH97] Qiwen Xu, Willem P. de Roever, and Jifeng He. The rely-guarantee method for verifying shared
variable concurrent programs. Formal Asp. Comput., 9(2):149–174, 1997.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems. In ICALP, Springer LNCS
510, pages 217–228, 1991.

Index

SL, syntax, 246
α-conversion, 69
β-conversion, 69
β-reduction, parallel, 70
β-rule, 69
cJ, reduction rules, 276
cJ, typing rules, 277
CCS , context, 220
CCS , lts, 218
CCS , probabilistic, 252
CCS , static context, 223
CCS , syntax, 217
CCS , value passing, 226
η-rule, 71
η-rule, confluence, 72
Imp language, 13
Imp, big-step reduction rules, 15
Imp, compilation, 22
Imp, context, 16
Imp, language, 14
Imp, small-step reduction rules, 15
λ-calculus with join definition, 266
λ-calculus with references, typing, 155
λ-calculus, CPS form, 134
λ-calculus, hoisted form, 138
λ-calculus, type-free, 67
λ-calculus, value named form, 135
λ-calculus, with records, 148
λ-calculus, with references, 154
λ-term, neutral, 127
λ-term, predecessor, 121
λj-calculus, 267
λj-calculus, typing rules, 269
µ-calculus, model-checker, 213
Imp‖, reduction, 170
Imp‖, reduction rules, 171
Imp‖, syntax, 170
Imp‖, trace interpretation, 176
Imp‖, trace-environment interpretation, 178
PCCS , lts, 252
PCCS , syntax, 252
π-calculus, encoding, 268
π-calculus, labelled bisimulation, 260
π-calculus, lts, 259, 260
π-calculus, reduction, 258
π-calculus, syntax, 258
π-calculus, typing, 269
J reduction rules, 163

σ-algebra, 253
τ -inertness, 231
TCCS , lts, 244
TCCS , syntax, 244
tick action, 244

abstract machine, call-by-name, 83
abstract machine, call-by-value, 83
abstraction, combinatory logic, 75
Ackermann, 46
action difference, 232
Amdahl’s law, 187

barbed equivalence, 224
binding, early, 226
binding, late, 227
binding, static or dynamic, 80
bisimulation, 202
bisimulation, barbed, 224
bisimulation, contextual, 223
bisimulation, up-to context, 221

call-by-name, 78
call-by-value, 78
characteristic formula, 210
Church, 76
Church numerals, 73
Church-Rosser property, 28
closed set of traces, 181
closure, 81
closure conversion, 137
Cobham, 63
combinatory logic, 75
commitment, 223
confluence, 28
confluence of lts, 233
confluence, β-reduction, 71
confluence, λ-calculus, 70
context, λ-calculus, 68
contextual pre-order, call-by-name λ-calculus, 85
continuation passing style, 134
cooperative concurrency, 174
critical pair, 53
Curry, 76
Curry-Howard correspondence, 102

de Brujin indexes, 83
deadlock, example, 173

285

286 Index

degree, λ-term, 99
degree, redex, 99
degree, type, 99
determinate process, 230
Dickson, 49

environment, dynamic, 80
environment, static, 81
evaluation context, 78
expansion, 207

fairness, strong, 174
fairness, weak, 174
fixed point, Curry, 69
fixed point, Turing, 69
fixed points monotonic functions, 87
Floyd-Hoare rules, 18
Floyd-Hoare rules, inversion, 19
Floyd-Hoare rules, soundness, 18
function F , 203
function representation, λ-calculus, 73

Girard, 128

head normal form, 73
heap, 153
heap simulation, 155
Higman, 51
Hilbert, 43
hoisting, 138
homeomorphic embedding, 49
Howe, 92

image finite lts, 203
induction principle, 29
infimum, 86
IO interpretation, 16

König lemma, 31
Kahn networks, 237
Kozen, 215
Kruskal, 50

label, records, 147
labelled transition system, 201
lattice, 86
lattice, complete, 86
local confluence, 32
local confluence, in lts, 238
lower bound, 86
lumping equivalence, 250

Markov chain, 249
Markov decision process, 250
Matiyasevich, 43
Milner, 227, 262
minimization, 73
modal logic with fixed points, 211

modal logic with tagged fixed points, 213
modal logic, satisfaction, 210
modal logic, syntax, 209
monotonic function, 87
multi-set, 31

Newman, 32
non-deterministic sum, 171

order, lexicographic, 30
order, multi-set, 31
order, product, 30
ordinals, 88

Park, 207
partial correctness assertion, 18
partial correctness assertion, interpretation, 20
partial order, 29, 86
partial recursive functions, 73
Petri nets, 270
predicative type system, Church-style, 111
predicative type system, Curry style, 110
primitive recursive function, 60
probabilistic bisimulation, 251
propositional types, interpretation, 100

reactive process, 238
recursive path-order, 44
reducibility candidate, 125
reduction order, 41
reduction, maximal degree, 99
references, 153
rely-guarantee assertion, 194, 195
rely-guarantee rules, 195, 196
restricted parallel composition, 236
rewriting system, 27
rewriting system, normalizing, 28
rewriting system, terminating, 27
Robinson, 39

Schönfinkel, 76
simplification order, 45
simulation, λ-calculus, 90
size, λ-term, 68
sorting in CCS , 236
stability, 195
strong normalization, 100
strong normalization, propositional types, 100
strong normalization, system F, 127
substitution, λ-calculus, 68
subtyping rules, 149
supremum, 86

Tarski, 52, 87
term rewriting system, 34
term substitution, 33
termination, interpretation method, 41
trace equivalence on lts, 231

Index 287

traces in a lts, 201
type assignment, Church-style, 96
type assignment, non-logical rules, 97
type assignment, product and sum, 97
type assignment, with type labelled variables, 97
type assignment, with type-labelled λ-terms, 97
type context, 95
type erasure, 125
type inference, predicative polymorphic types, 113
type inference, propositional types, 103
type-assignment, Curry-style, 96
types, propositional, 95

unification algorithm, 38
upper bound, 86

value named form, 136
value, λ-calculus, 77
vending machine, 174
virtual machine, reduction rules, 21

weak β-reduction, 77
weak bisimulation, 205
weak bisimulation, one step, 205
weak lts, 205
weak probabilistic bisimulation, 254
weak up to strong bisimulation, 205
well partial order, 49
well-founded order, 29

	Preface
	Notation
	Introduction to operational semantics
	A simple imperative language
	Partial correctness assertions
	A toy compiler
	Summary and references

	Rewriting systems
	Basic properties
	Termination and well-founded orders
	Lifting well-foundation
	Termination and local confluence
	Term rewriting systems
	Summary and references

	Syntactic unification
	A basic unification algorithm
	Properties of the algorithm
	Summary and references

	Termination of term rewriting systems
	Interpretation method
	Recursive path order
	Recursive path order is well-founded
	Simplification orders are well-founded
	Summary and references

	Confluence and completion of term rewriting systems
	Confluence of terminating term rewriting systems
	Completion of term rewriting systems
	Summary and references

	Term rewriting systems as functional programs
	A class of term rewriting systems
	Primitive recursion
	Functional programs computing in polynomial time
	Summary and references

	-calculus
	Syntax
	Confluence
	Programming
	Combinatory logic
	Summary and references

	Weak reduction strategies, closures, and abstract machines
	Weak reduction strategies
	Static vs. dynamic binding
	Environments and closures
	Summary and references

	Contextual equivalence and simulation
	Observation pre-order and equivalence
	Fixed points
	(Co-)Inductive definitions
	Simulation
	Summary and references

	Propositional types
	Subject reduction
	A normalizing strategy for the simply typed -calculus
	Termination of the simply typed -calculus
	Summary and references

	Type inference for propositional types
	Reduction of type-inference to unification
	Reduction of unification to type inference
	Summary and references

	Predicative polymorphic types and type inference
	Predicative universal types and polymorphism
	A type inference algorithm
	Reduction of stratified polymorphic typing to propositional typing
	Summary and references

	Impredicative polymorphic types
	System F
	Inductive types and iterative functions
	Strong normalization
	Summary and references

	Program transformations
	Continuation passing style form
	Value named form
	Closure conversion
	Hoisting
	Summary and references

	Typing the program transformations
	Typing the CPS form
	Typing value-named closures
	Typing the compiled code
	Summary and references

	Records, variants, and subtyping
	Records
	Subtyping
	Variants
	Summary and references

	References
	References and heaps
	Typing
	Typing anomalies
	Summary and references

	Object-oriented languages
	An object-oriented language
	Objects as records
	Typing
	Summary and references

	Introduction to concurrency
	A concurrent language with shared memory
	Equivalences: a taste of the design space
	Summary and references

	A compositional trace semantics
	Fixing the observables
	Towards compositionality
	A trace-environment interpretation
	Summary and references

	A denotational presentation of the trace semantics
	The interpretation domain
	The interpretation
	Summary and references

	Implementing atomicity
	An optimistic strategy
	A pessimistic strategy
	A formal analysis of the optimistic strategy
	Summary and references

	Rely-guarantee reasoning
	Rely-guarantee assertions
	A coarse grained concurrent garbage collector
	Summary and references

	Labelled transition systems and bisimulation
	Labelled transition systems
	Bisimulation
	Weak transitions
	Proof techniques for bisimulation
	Summary and references

	Modal logics
	Modal logics vs. equivalences
	A modal logic with fixed points: the -calculus
	Summary and references

	Labelled transition systems with synchronization
	CCS
	Labelled transition system for CCS
	A reduction semantics for CCS
	Value-passing CCS
	Summary and references

	Determinacy and confluence
	Determinism in lts
	Confluence in lts
	Kahn networks
	Reactivity and local confluence in lts
	Summary and references

	Synchronous/Timed models
	Timed CCS
	A deterministic calculus based on signals
	Summary and references

	Probability and non-determinism
	Preliminaries
	Probabilistic CCS
	Measuring transitions
	Summary and references

	-calculus
	A -calculus and its reduction semantics
	A lts for the -calculus
	Variations
	Summary and references

	Processes vs. functions
	From to notation
	Adding concurrency
	Summary and references

	Concurrent objects
	Review of concurrent programming in Java
	A specification of a fragment of concurrent Java
	Summary and references

	Bibliography
	Index

