Abstract rewrite system (ARS) is a set A equipped with binary relation \rightarrow

• The transitive-reflexive closure of a relation is a closure operator, *i.e.* satisfies

 $\rightarrow \subseteq \rightarrow^*, \qquad (\rightarrow^*)^* = \rightarrow^*, \qquad \rightarrow_1 \subseteq \rightarrow_2 \text{ implies } \rightarrow_1^* \subseteq \rightarrow_2^*$

• As a consequence

$$(\rightarrow_1 \cup \rightarrow_2)^* = (\rightarrow_1^* \cup \rightarrow_2^*)^*.$$

- EX1. Prove it!
 - CONFLUENCE

Confluent

Locally confluent

Strongly confluent

	→ 1
1 1	E
* *	1
	1
t_*_y t_=_y t	J

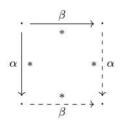
≻ EX. 2

(a) Prove that strongly confluent implies confluent

(b) As a preliminary step, prove: $\leftarrow^* \cdot \rightarrow \subseteq \rightarrow^* \cdot \leftarrow^*$ implies confluence

EX 4. Two relations commute if

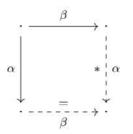
 α and β commute



▶ Lemma (Hindley-Rosen). Let \rightarrow_1 and \rightarrow_2 be relations on the set A. If \rightarrow_1 and \rightarrow_2 are confluent and commute with each other, then

 $\rightarrow_1 \cup \rightarrow_2$ is confluent.

EX. 5 Two relations strongly commute if

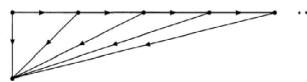


Prove that strong commutation implies commutation

• TERMINATION

- The element s is *R*-weakly normalising (WN) iff s has at least one normal form
- The element s is R- strongly normalising (SN) iff there is no infinite sequence

Consider



- > EX Say which properties hold
- 1. Confluent
- 2. Locally confluent
- 3. Normalizing (weakly normalizing, WN)
- 4. Terminating (strongly normalizing, SN)

≻ EX. 8

Newman's Lemma. Every terminating and locally confluent ARS is confluent.

A second Proof. It suffices to show that every element has unique normal forms

- suppose $B = \{ a \in A \mid \neg UN(a) \} \neq \emptyset$
- let $b \in B$ be minimal element (with respect to \rightarrow)
- $b \rightarrow^! n_1$ and $b \rightarrow^! n_2$ with $n_1 \neq n_2$
- > Conclude by showing that it is impossible (absurd)