Notes and Homework 1 (Abstract Rewriting)

2023-2024

Homework 1

Ex 1. Let (A, \rightarrow) be an ARS.

1. Prove that if (A.) holds then (B.) holds

A. $\forall t \in A$: $(t_1 \leftarrow t \rightarrow t_2)$ implies $(t_1 = t_2 \text{ or } \exists u. t_1 \rightarrow u \leftarrow t_2)$

B. $\forall t \in A$: if t has a normal form u (ie, $t \to^k u$, for some k), then all maximal reduction sequences from t have the same length, and all end in the same normal form u.

2. If (A.) holds, do always all maximal reduction sequences from t have the same length?

3. Show that the following property (C.) does not imply (B.)

C. $\forall t \in A$: $(t_1 \leftarrow t \rightarrow t_2)$ implies $(\exists u. t_1 \rightarrow u \leftarrow t_2)$

Ex 2. Prove Lemma 1.

NOTES

1 Abstract rewriting system (ARS): the basics

We recall basic definitions.

Basics. An abstract rewriting system (ARS) is a pair $\mathcal{A} = (\mathcal{A}, \rightarrow)$ consisting of a set \mathcal{A} and a binary relation \rightarrow on \mathcal{A} whose pairs are written $t \rightarrow s$ and called *steps*.

- We denote \rightarrow^* (resp. $\rightarrow^=$) the transitive-reflexive (resp. reflexive) closure of \rightarrow . We write $t \leftarrow u$ if $u \rightarrow t$ (the reverse relation).
- If $\rightarrow_1, \rightarrow_2$ are binary relations on \mathcal{A} then $\rightarrow_1 \cdot \rightarrow_2$ denotes their composition, *i.e.* $t \rightarrow_1 \cdot \rightarrow_2 s$ if there exists $u \in \mathcal{A}$ such that $t \rightarrow_1 u \rightarrow_2 s$.
- We write $(\mathcal{A}, \{\rightarrow_1, \rightarrow_2\})$ to denote the ARS $(\mathcal{A}, \rightarrow)$ where $\rightarrow = \rightarrow_1 \cup \rightarrow_2$.
- An element $u \in \mathcal{A}$ is \rightarrow -normal, or a \rightarrow -normal form if there is no t such that $u \rightarrow t$ (we also write $u \not\rightarrow$).
- A \rightarrow -sequence (or reduction sequence) from t is a (possibly infinite) sequence t, t_1, t_2, \ldots such that $t_i \rightarrow t_{i+1}, t \rightarrow^* s$ indicates that there is a finite sequence from t to s.

A \rightarrow -sequence from t is maximal if it is either infinite or ends in a \rightarrow -normal form.

We freely use the fact that the transitive-reflexive closure of a relation is a closure operator, i.e. satisfies

$$\rightarrow \subseteq \rightarrow^*, \quad (\rightarrow^*)^* = \rightarrow^*, \quad \rightarrow_1 \subseteq \rightarrow_2 \text{ implies } \rightarrow_1^* \subseteq \rightarrow_2^*.$$
 (Closure)

The following property is an immediate consequence:

$$(\rightarrow_1 \cup \rightarrow_2)^* = (\rightarrow_1^* \cup \rightarrow_2^*)^*.$$
(**TR**)

Local vs Global Properties. An important distinction in rewriting theory is between local and global properties. A property of term t is *local* if it is quantified over only *one-step* reductions from t; it is global if it is quantified over all rewrite sequences from t. Local properties are easier to test, because the analysis (usually) involves a finite number of cases.

2 Notes and Homework 1 (Abstract Rewriting)

Commutation and Confluence Two relations \rightarrow_1 and \rightarrow_2 on \mathcal{A} commute if

 $\leftarrow_1^* \cdot \rightarrow_2^* \subseteq \rightarrow_2^* \cdot \leftarrow_1^*.$

A relation \rightarrow on \mathcal{A} is confluent if it commutes with itself.

A classic tool to modularize the proof of confluence is Hindley-Rosen lemma.

Confluence of two relations \rightarrow_1 and \rightarrow_2 does not imply confluence of $\rightarrow_1 \cup \rightarrow_2$, however it does if they commute.

▶ Lemma (Hindley-Rosen). Let \rightarrow_1 and \rightarrow_2 be relations on the set A. If \rightarrow_1 and \rightarrow_2 are confluent and commute with each other, then

 $\rightarrow_1 \cup \rightarrow_2$ is confluent.

Local conditions. Commutation is a global condition, which is difficult to test. There are however *easy-to-check* sufficient conditions. One of the most useful such conditions is Hindley's strong commutation :

 $\leftarrow_1 \cdot \rightarrow_2 \subseteq \rightarrow_2^* \cdot \leftarrow_1^=$ (Strong Commutation)

▶ Lemma (Local test). Strong commutation implies commutation.

2 Factorization.

Both *confluence* and *factorization* are forms of commutation.

Let $\mathcal{A} = (A, \{\overrightarrow{e}, \overrightarrow{i}\})$ be an ARS.

• The relation $\rightarrow = \stackrel{\rightarrow}{e} \cup \stackrel{\rightarrow}{\rightarrow}$ satisfies e-factorization, written $Fact(\stackrel{\rightarrow}{e}, \stackrel{\rightarrow}{\rightarrow})$, if

$$\operatorname{Fact}(\overrightarrow{e}, \overrightarrow{i}): \rightarrow^* \subseteq \overrightarrow{e}^* \cdot \overrightarrow{i}^*$$
 (Factorization)

The relation $\rightarrow \text{ postpones after } \rightarrow e$, written $PP(\rightarrow e)$, if

$$PP(\xrightarrow{\epsilon}, \xrightarrow{i}): \xrightarrow{i} \cdot \xrightarrow{\epsilon}^* \subseteq \xrightarrow{\epsilon}^* \cdot \xrightarrow{i}^*.$$
 (Postponement)

Postponement can be formulated in terms of commutation, and viceversa, since clearly $(\xrightarrow{i} postpones after \xrightarrow{e})$ if and only if $(\xleftarrow{i} commutes with \xrightarrow{e})$. Note that reversing \xrightarrow{i} introduce an asymmetry between the two relations. It is an easy result that e-factorization is equivalent to postponement, which is a more convenient way to express it.

▶ Lemma 1. For any two relations \xrightarrow{e} , \xrightarrow{i} the following are equivalent:

- 1. $\overrightarrow{i}^* \cdot \overrightarrow{e} \subseteq \overrightarrow{e}^* \cdot \overrightarrow{i}^*$ 2. $\overrightarrow{i} \cdot \overrightarrow{e}^* \subseteq \overrightarrow{e}^* \cdot \overrightarrow{i}^*$ 3. Postponement: $\overrightarrow{i}^* \cdot \overrightarrow{e}^* \subseteq \overrightarrow{e}^* \cdot \overrightarrow{i}^*$
- 4. Factorization: $(\xrightarrow{e} \cup \xrightarrow{i})^* \subseteq \xrightarrow{e}^* \cdot \xrightarrow{i}^*$

 $SP(\xrightarrow{e}, \xrightarrow{i}): \xrightarrow{i} \cdot \xrightarrow{e} \subseteq \xrightarrow{e}^* \cdot \xrightarrow{i}$

A local test. Hindley first noted that a local property implies postponement, hence factorization

We say that \rightarrow strongly postpones after $\rightarrow e$, if

(Strong Postponement)

▶ Lemma 2 (Local test for postponement). Strong postponement implies postponement:

 $SP(\xrightarrow{e}, \xrightarrow{i}) \text{ implies } PP(\xrightarrow{e}, \xrightarrow{i}), \text{ and so } Fact(\xrightarrow{e}, \xrightarrow{i}).$

It is immediate to recognize that the property is exactly the postponement analog of strong commutation; indeed it is the same expression, with $\xrightarrow{i} := \leftarrow_1$ and $\xrightarrow{e} := \rightarrow_2$.

A characterization. Another property that we shall use freely is the following, which is immediate by the definition of postponement and property **TR**

▶ **Property.** Given a relation \Leftrightarrow such that $\Leftrightarrow^* = \xrightarrow{}_{i}^*$,

$$PP(\xrightarrow{}, \xrightarrow{})$$
 if and only if $PP(\xrightarrow{}, \xrightarrow{})$.

A well-known use of the above is to instantiate \Rightarrow_i with a notion of parallel reduction (as in [Takahashi])