Notes and Homework 1 (Abstract Rewriting)

2023-2024

Homework 1

Ex 1. Let (A, \rightarrow) be an ARS.

1. Prove that if (A.) holds then (B.) holds

A. $\forall t \in A: \quad (t_1 \leftarrow t \rightarrow t_2) \text{ implies } (t_1 = t_2 \text{ or } \exists u. t_1 \rightarrow u \leftarrow t_2)$

B. ∀*t* ∈ *A*: if *t has a normal form u* (ie, $t \rightarrow^k u$, for some *k*), then all maximal reduction sequences from *t have the same length*, and all end in the same normal form *u*.

2. If (A.) holds, do *always all* maximal reduction sequences from *t* have the same length?

3. Show that the following property (C.) does not imply (B.)

C. ∀*t* ∈ *A*: $(t_1 \leftarrow t \rightarrow t_2)$ implies $(\exists u. t_1 \rightarrow^= u \leftarrow^= t_2)$

Ex 2. Prove Lemma 1.

NOTES

1 Abstract rewriting system (ARS): the basics

We recall basic definitions.

Basics. An *abstract rewriting system (ARS)* is a pair $\mathcal{A} = (\mathcal{A}, \rightarrow)$ consisting of a set \mathcal{A} and a binary relation \rightarrow on A whose pairs are written $t \rightarrow s$ and called *steps*.

- We denote \rightarrow^* (resp. \rightarrow^-) the transitive-reflexive (resp. reflexive) closure of \rightarrow . We write $t \leftarrow u$ if $u \rightarrow t$ (the reverse relation).
- If $\rightarrow_1, \rightarrow_2$ are binary relations on A then $\rightarrow_1 \rightarrow_2$ denotes their composition, *i.e.* $t \rightarrow_1 \cdot \cdot \cdot \cdot_2 s$ if there exists $u \in \mathcal{A}$ such that $t \rightarrow_1 u \rightarrow_2 s$.
- We write $(A, \{ \rightarrow_1, \rightarrow_2 \})$ to denote the ARS (A, \rightarrow) where \rightarrow = $\rightarrow_1 \cup \rightarrow_2$.
- An element $u \in \mathcal{A}$ is \rightarrow -**normal**, or a \rightarrow -*normal form* if there is no *t* such that $u \rightarrow t$ (we also write $u \nrightarrow$).
- \blacksquare A \rightarrow -sequence (or **reduction sequence**) from *t* is a (possibly infinite) sequence *t,* t_1, t_2, \ldots such that $t_i \to t_{i+1}$, $t \to^* s$ indicates that there is a finite sequence from *t* to *s*.

A \rightarrow -sequence from *t* is *maximal* if it is either infinite or ends in a \rightarrow -normal form.

We freely use the fact that the transitive-reflexive closure of a relation is a closure operator, *i.e.* satisfies

$$
\rightarrow \subseteq \rightarrow^*, \qquad (\rightarrow^*)^* = \rightarrow^*, \qquad \rightarrow_1 \subseteq \rightarrow_2 \text{ implies } \rightarrow_1^* \subseteq \rightarrow_2^*.
$$
 (Closure)

The following property is an immediate consequence:

$$
(\rightarrow_1 \cup \rightarrow_2)^* = (\rightarrow_1^* \cup \rightarrow_2^*)^*.
$$
 (TR)

Local vs Global Properties. An important distinction in rewriting theory is between local and global properties. A property of term *t* is *local* if it is quantified over only *one-step reductions* from *t*; it is *global* if it is quantified over all *rewrite sequences* from *t*. Local properties are easier to test, because the analysis (usually) involves a finite number of cases.

2 Notes and Homework 1 (Abstract Rewriting)

Commutation and Confluence Two relations \rightarrow_1 and \rightarrow_2 on A *commute* if

 $\leftarrow_1^* \cdot \rightarrow_2^* \subseteq \rightarrow_2^* \cdot \leftarrow_1^*.$

A relation \rightarrow on A is confluent if it commutes with itself.

A classic tool to modularize the proof of confluence is Hindley-Rosen lemma.

Confluence of two relations \rightarrow_1 and \rightarrow_2 does not imply confluence of $\rightarrow_1 \cup \rightarrow_2$, however it does if they commute.

 \blacktriangleright **Lemma** (Hindley-Rosen). Let \rightarrow_1 and \rightarrow_2 be relations on the set A. *If* \rightarrow ₁ *and* \rightarrow ₂ *are confluent and commute with each other, then*

 $\rightarrow_1 \cup \rightarrow_2$ *is confluent.*

Local conditions. Commutation is a global condition, which is difficult to test. There are however *easy-to-check* sufficient conditions. One of the most useful such conditions is Hindley's strong commutation :

 $\leftarrow_1 \cdot \rightarrow_2 \subseteq \rightarrow_2^* \cdot \leftarrow_1$ ⁼ (**Strong Commutation**)

▶ **Lemma** (Local test). *Strong commutation implies commutation.*

2 Factorization.

Both *confluence* and *factorization* are forms of commutation.

Let $\mathcal{A} = (A, \{\frac{\rightarrow}{e}, \frac{\rightarrow}{i}\})$ be an ARS.

The relation \rightarrow = $\frac{1}{e}$ \cup \rightarrow satisfies **e-factorization**, written **Fact** $(\frac{1}{e}, \frac{1}{i})$, if

$$
Fact(\overrightarrow{e}, \overrightarrow{ }\): \ \rightarrow^* \subseteq \overrightarrow{e}^* \cdot \overrightarrow{ }\cdot^* \hspace{2.2cm} (Factorization)
$$

The relation \rightarrow **postpones** after \rightarrow , written PP(\rightarrow , \rightarrow), if

$$
PP(\frac{\rightarrow}{e}, \frac{\rightarrow}{i}) : \frac{\rightarrow}{i}^* \cdot \frac{\rightarrow}{e^*}^* \subseteq \frac{\rightarrow}{e^*} \cdot \frac{\rightarrow}{i}^*.
$$
 (Postponent)

Postponement can be formulated in terms of commutation, and viceversa, since clearly \rightarrow postpones after $\frac{1}{e}$) if and only if $(\frac{1}{i}$ commutes with $\frac{1}{e}$). Note that reversing $\frac{1}{i}$ introduce an asymmetry between the two relations. It is an easy result that e-factorization is equivalent to postponement, which is a more convenient way to express it.

Lemma 1. For any two relations $\frac{1}{e}$, $\frac{1}{i}$ the following are equivalent:

- $1. \rightarrow^* \cdot \rightarrow \subseteq \rightarrow^* \cdot \rightarrow^*$ 2. $\rightarrow \cdot \rightarrow^* \subseteq \rightarrow^* \cdot \rightarrow^*$ **3.** Postponement: $\rightarrow^* \cdot \rightarrow^* \subseteq \rightarrow^* \cdot \rightarrow^*$
- 4. Factorization: $(\Rightarrow \cup \rightarrow)$ ^{*} $\subseteq \Rightarrow^* \cdot \rightarrow^*$

 $\text{SP}(\overrightarrow{e}, \overrightarrow{i}) : \overrightarrow{i} \cdot \overrightarrow{e} \subseteq \overrightarrow{e}^* \cdot \overrightarrow{i}$

A local test. Hindley first noted that a local property implies postponement, hence factorization

We say that \rightarrow **strongly postpones** after \rightarrow , if

⁼ (**Strong Postponement**)

Notes and Homework 1 3

▶ Lemma 2 (Local test for postponement). *Strong postponement implies postponement:*

 $\texttt{SP}(\rightarrowright_{\text{e}}, \rightarrow)$ *implies* $\texttt{PP}(\rightarrowrightarrow_{\text{i}} \rightarrow)$ *, and so* $\texttt{Fact}(\rightarrowrightarrow_{\text{e}}, \rightarrow)$ *.*

It is immediate to recognize that the property is exactly the postponement analog of strong commutation; indeed it is the same expression, with $\frac{1}{i} := \leftarrow_1$ and $\frac{1}{e} := \rightarrow_2$.

A characterization. Another property that we shall use freely is the following, which is immediate by the definition of postponement and property **[TR](#page-0-0)**

Property. *Given a relation* \Leftrightarrow *such that* \Leftrightarrow $\overrightarrow{A}^* = \frac{1}{i}$,

$$
\text{PP}(\xrightarrow{e}, \xrightarrow{i}) \text{ if and only if } \text{PP}(\xrightarrow{e}, \xrightarrow{i}).
$$

A well-known use of the above is to instantiate $\frac{\Theta}{\Gamma}$ with a notion of parallel reduction (as in [Takahashi])