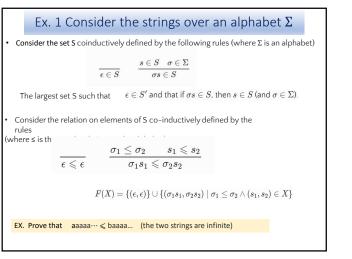
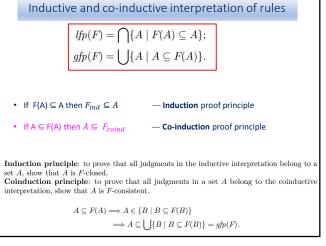
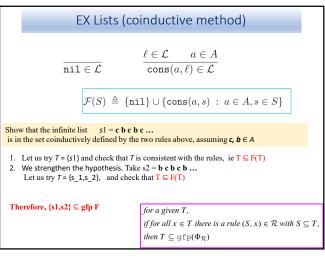


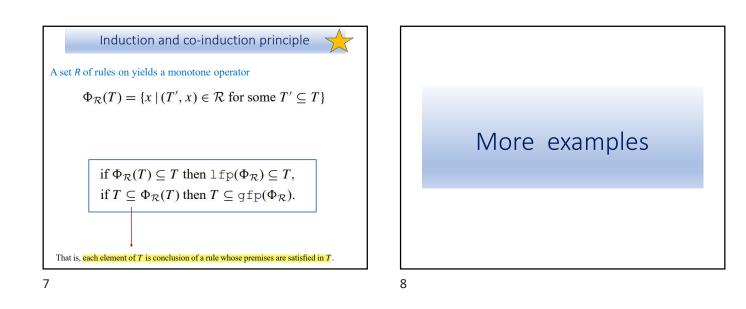
Tarski-Knaster
$\begin{tabular}{c} \hline \textbf{Theorem} & Let \ f: L \rightarrow L \ be \ a \ monotonic \ function \ on \ a \ complete \ lattice \ Then \ f \ has \ a \ greatest \ and \ a \ least \ fixed \ point \ expressed \ by: \end{tabular}$
$\sup\{x\mid x\leq f(x)\}\qquad and\qquad \inf\{x\mid f(x)\leq x\}\ .$
From Tarski-Knaster Thm. Follow both: - induction proof principle - co-induction proof principle
2

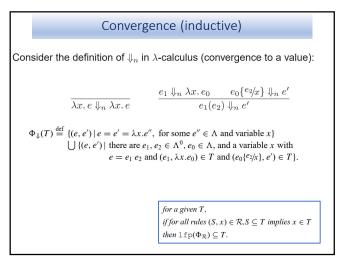
Hence...F(A) is the set of judgements that can be inferred in one step from the judjments
in A by using the rulesA isclosed if $F(A) \subseteq A$
consistent if $A \subseteq F(A)$ The rules operator has both
a least fixed point and a greatest fixed point, which are
the smallest closed set and the largest consistent set: $lfp(F) = \bigcap \{A \mid F(A) \subseteq A\};$
 $gfp(F) = \bigcup \{A \mid A \subseteq F(A)\}.$ the least F -closed set.
the greatest F -closed set.

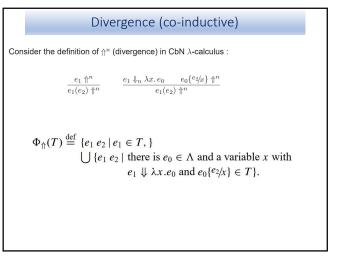


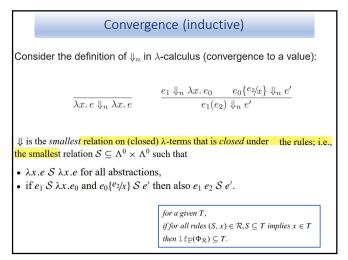


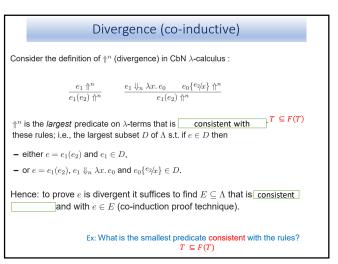


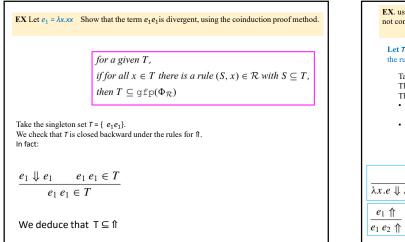




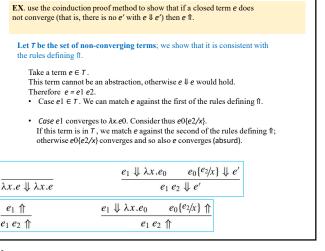




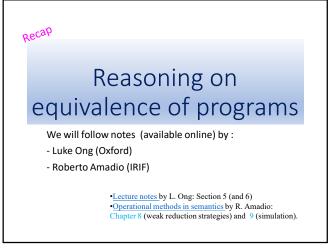




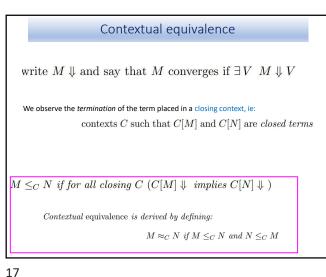
13

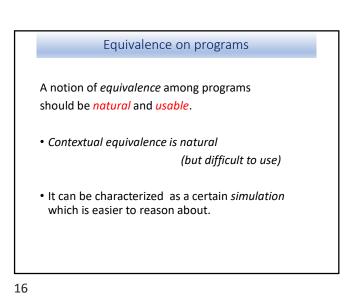


14



15

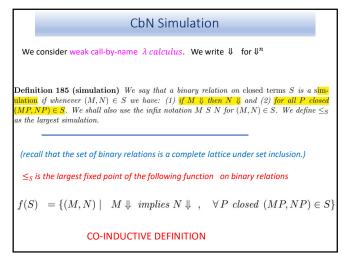




Motivating example

 $one \stackrel{\mathrm{def}}{=} \lambda x.\,\lambda y.\,x\,y$ $two \stackrel{\text{def}}{=} \lambda x. \lambda y. x (x y)$ $succ \stackrel{\text{def}}{=} \lambda n. \lambda x. \lambda y. x (n x y)$

Is it the case that succ one \Downarrow_{v} two holds?



19

To prove that $M \leq_S N$ (M, N closed) it suffices to find a relation S which is a simulation and such that $M \leq_S N$. EX i. Show that \leq_S is a preorder over Λ ie a reflexive and transitive binary relation ii. Is the union of two simulations a simulation ? iii. If $M \Downarrow V$ and $N \Downarrow V$, M, N closed, then $M =_S N$. Prove it.

Ex. 2 Simulation

20