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Induction and  
Co-induction 

(co-)inductive definitions and the (co-)inductive 
method

Tarski-Knaster

Theorem

From Tarski-Knaster Thm. Follow both:
- induction proof principle 
- co-induction proof principle

Hence…

F(A) is the set of judgements that can be inferred in one step from the judjments
in  A by using the  rules

A is 

The rules operator has  both 
a least fixed point and a greatest fixed point, which are 
the smallest  closed set and the largest consistent set:

the least F -closed set.

the greatest  F -consistent set.

Inductive and co-inductive interpretation of rules

• If  F(A) ⊆ A then 𝐹ௗ ⊆ 𝐴       --- Induction proof principle

• If A ⊆ F(A) then 𝐴 ⊆  𝐹ௗ --- Co-induction proof principle

Ex. 1 Consider the strings over an alphabet Σ

The largest set S such that

• Consider the relation on elements of S co-inductively defined by the 
rules

(where ≤ is the usual ordering on the alphabet)

• Consider the set S coinductively defined by the following rules (where Σ is an alphabet)

EX.  Prove that     aaaaa⋯ ⩽ baaaa…    (the two strings are infinite)

EX Lists (coinductive method)

Show that the infinite list      s1 = c b c b c …
is in the set coinductively defined by the two rules above, assuming c, b ∈ A

1. Let us try T = {s1} and check that T is consistent with the rules, ie T ⊆ F(T)
2. We strengthen the hypothesis. Take s2 = b c b c b …  

Let us try T = {s_1,s_2},   and check that T ⊆ F(T)

Therefore, {s1,s2} ⊆ gfp F
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Induction and co-induction principle

A set R of rules on yields a monotone operator

More  examples

Convergence (inductive) Convergence (inductive)

Divergence (co-inductive) Divergence (co-inductive)

Ex: What is the smallest predicate consistent with the rules?
𝑇 ⊆ 𝐹 𝑇

𝑇 ⊆ 𝐹 𝑇consistent with

consistent
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EX Let 𝑒ଵ = λx.xx Show that the term 𝑒ଵ𝑒ଵis divergent, using the coinduction proof method.

Take the singleton set T = {  𝑒ଵ𝑒ଵ}. 
We check that T is closed backward under the rules for ⇑.
In fact:

We deduce that  T ⊆ ⇑

EX. use the coinduction proof method to show that if a closed term e does
not converge (that is, there is no e’ with e ⇓ e’) then e ⇑.

Take a term e ∈ T . 
This term cannot be an abstraction, otherwise e ⇓ e would hold. 
Therefore  e = e1 e2.
• Case e1 ∈ T . We can match e against the first of the rules defining ⇑.

• Case e1 converges to λx.e0. Consider thus e0{e2/x}.
If this term is in T , we match e against the second of the rules defining ⇑; 
otherwise e0{e2/x} converges and so also e converges (absurd).

Let T be the set of non-converging terms; we show that it is consistent with 
the rules defining ⇑.

Reasoning on  
equivalence of programs

We will follow notes  (available online) by : 
- Luke Ong (Oxford)
- Roberto Amadio (IRIF)

•Lecture notes by L. Ong: Section 5 (and 6)
•Operational methods in semantics by R. Amadio: 
Chapter 8 (weak reduction strategies) and  9 (simulation).

Equivalence on programs

A notion of equivalence among programs
should be natural and usable. 

• Contextual equivalence is natural 
(but difficult to use)

• It can be characterized  as a certain simulation 
which is easier to reason about. 

Contextual equivalence

We observe the termination of the term placed in a closing context, ie:

Motivating example
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CbN Simulation

(recall that the set of binary relations is a complete lattice under set inclusion.)

≤ௌ is the largest fixed point of the following function   on binary relations

CO-INDUCTIVE DEFINITION

We consider weak call-by-name  𝜆 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠. We write  ⇓    for ⇓

Ex. 2    Simulation

EX 
i. Show that ≤ௌ is a preorder over Λ ie a reflexive and transitive binary relation

ii.  Is the union of two simulations a simulation ?

iii.                                                                                                               Prove it.
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