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Reasoning on  
equivalence of programs

We will follow notes  (available online) by : 
- Luke Ong (Oxford)
- Roberto Amadio (IRIF)

•Lecture notes by L. Ong: Section 5 (and 6)
•Operational methods in semantics by R. Amadio: 
Chapter 8 (weak reduction strategies) and  9 (simulation).

Equivalence on programs

A notion of equivalence among programs
should be natural and usable. 

• Contextual equivalence is natural.

• It can be characterized  as a certain simulation 
which is easier to reason about. 

Contextual equivalence

We observe the termination of the term placed in a closing context, ie:

Motivating example:
1+1 = 2 ?

1. Are the terms  succ one and two contextually equivalent?

2. Does the following statement make sense?

Is it the case that 𝑠𝑢𝑐𝑐 𝑜𝑛𝑒 ⇓ 𝑡𝑤𝑜 holds? (in weak CbV?)

Bisimulation
where the idea comes from?

The Reference:

Robin Milner, Communication and Concurrency, 
Prentice Hall, 1989.

when two machines have the same behaviour? 

Intuitively : 
• when we do something with one machine, we must be able to do the same with the other 
• the same is again true, on the two states that the machines evolve to.
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Idea: observing the behaviour of a function Simulation

Simulation

(using that the set of binary relations is a complete lattice under set inclusion:)

≤ௌ is the largest fixed point of the following function   on binary relations

This is a CO-INDUCTIVE DEFINITION

Induction and  
Co-induction 

we make a pause to understand 

(co-)inductive definitions and the (co-)inductive method

7 8

9 10

11 12



15/02/2024

3

Inductively generated sets
• To define a set S “inductively”, we need 
• Basis: Specify one or more elements that are in S. 
• Induction Rule: Give one or more rules telling how to 

construct a new element from an existing element in S. 
• Closure:  no other elements are in S. 

Example:  the following rules inductively define which subset of Z ?
• Basis:    3 ∈ S 
• Induction rule:   

• inductive definition of S = {3,7,11,15,19,23,…}
• Without  closure requirement, lots of sets would satisfy this def. 

For example, Z works since 3∈Z and x+4∈Z. 

x ∈ S     &     x ∈ Z
------------------------

x+4 ∈ S 

Termination (inductive def.)

Normal form

The smallest set of elements in S that is closed under these rules; 
i.e., the smallest subset 𝑇 ⊆ 𝑆 such that:

- All normal forms are in T
- if there is a step P →P’ for some P’ ∈ T , then also P ∈ T .

Non-termination (co-inductive def.)

The largest subset D ⊆ 𝑆 such that if P ∈ D then there is P’ ∈ D such that P → P’ 

In which sense rules  define a set?

Ex Question: Is true that F is monotone?

S set of judgments

In which sense F defines a set?

desirable properties of the set A ⊆ S defined by F:

The set A is 

- closed : no new judgments can be inferred from A

- consistent all judgments that cannot be inferred  from A are not in A.

In which sense F defines a set?

desirable properties of the set A ⊆ S defined by F:

• If both hold, A is a fixed point

• Does F actually have a fixed point?

• Is the fixed point unique? 
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Non-termination (co-inductive def.)

Start with the set S of all elements. Then  repeatedly remove  P from the set if P has 
no reduction step.

The largest subset D ⊆ 𝑆 such that if P ∈ D then there is P’ ∈ D such that P → P’ 

ie, each element in the closure is the conclusion of a rule whose
premises also belongs to the closure.

Simple example (on a finite set)

Simple Finitary Example                       (

suppose S = {1, 2, 3, 4} with :

• 1 -> 2 1-> 3 1-> 4
• 3 -> 1
• 4 -> 4. 

The operator f has  both a least fixed point and a greatest fixed point, which 
are the smallest  closed set and the largest consistent set.
What are they?

Some more examples

Lists over alphabet A
Consider the rules

• Is there a smaller set closed under   these rules? Is finite?

• Is there a larger set consistent with these rules?

Lists over alphabet A
Consider the rules

The set (inductively)  generated by these rules, 
i.e., the smallest set closed  under these rules: 
finite lists

Lists over alphabet A
Consider the rules

What is the largest set consistent with these rules ? 

i.e. the largest 𝐴 ⊆ 𝐹 𝐴   
“all element  that cannot be inferred  from A are not in A" 
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Induction, co-induction,
and fixed points

Co-induction is not (just) black magic

Slides by Giovanni Bernardi (stages possibles!)

memo

Inf (S) = greatest lower bound

Sup (S) = least upper bound

Lattices Complete Lattices

A monotonic function f on a partial order L is a
function respecting the order:

Fixed points
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Tarski-Knaster

Theorem
induction

What we proved? 

Given a set of rule, ie pairs (B, x), where 
x ∈ U  is the conclusion of the rule and B ⊆ U is the set of its premises

The operator F is defined by
F(A) = {x ∈ U | ∃B ⊆ A such that (B, x) is a rule instance}

F(A) is the set of judgements that can be inferred in one step from the judjments
in  A by using the  rules

A is 

The rules operator has  both 
a least fixed point and a greatest fixed point, which are 
the smallest  closed set and the largest consistent set:

Inductive and co-inductive interpretation of rules Non-termination (co-inductive def.)

Start with the set S of all elements. Then  repeatedly remove  P from the set if P has 
no reduction step.

The largest subset D ⊆ 𝑆 such that (**) if P ∈ D then there is P’ ∈ D such that P → P’ 

Suppose that program Ω reduces to itself, that is Ω -> Ω . 
To see that Ω   contained in D, 
Consider set X = {Ω } . 
Since X satisfies  (**),  then X⊆D, as D is the greatest such set. 
Hence Ω is a member of D.
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Finite list (inductive method) Lists (inductive method)

EX Lists (coinductive method)

Show that the infinite list      s1 = c b c b c …
is in the set coinductively defined by the two rules above, assuming c, b ∈ A

1. Let us try T = {s1} and check that T is consistent with the rules, ie T ⊆ F(T)
2. We strengthen the hypothesis. Take s2 = b c b c b …  

Let us try T = {s_1,s_2},   and check that T ⊆ F(T)

Therefore, {s1,s2} ⊆ gfp F

Constructing the fixpoint

A function  F on a complete lattice is

EX. 
If F is co-continuous (or continuous), then it is also monotone. 
(Hint: take x ≥ y, and the sequence x, y, y, y, . . ..)
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Co-continuity

Ex 
i. Prove that if F is co-continuous (or continuous), then it is also monotone. 

(Hint: take x ≥ y, and the sequence x, y, y, y, . . ..)

ii. Prove co-continuity Theorem

Point ii is more important

Simulation

Back where we started…   (to be continued next week)

CbN Simulation

(recall that the set of binary relations is a complete lattice under set inclusion.)

≤ௌ is the largest fixed point of the following function   on binary relations

CO-INDUCTIVE DEFINITION

We consider weak call-by-name  𝜆 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠. We write  ⇓    for ⇓

Ex. CbN Simulation

EX 
i. Show that ≤ௌ is a preorder over Λ ie a reflexive and transitive binary relation

ii.  Is the union of two simulations a simulation ?

iii.                                                                                                               Prove it.

Homework

Ex. 1 Consider the strings over an alphabet Σ

The largest set S such that

• Consider the relation on elements of S co-inductively defined by the 
rules

(where ≤ is the usual ordering on the alphabet)

• Consider the set S coinductively defined by the following rules (where Σ is an alphabet)

EX.  Prove that     aaaaa⋯ ⩽ baaaa…    (the two strings are infinite)
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Ex. 2    CbN Simulation

EX 
i. Show that ≤ௌ is a preorder over Λ ie a reflexive and transitive binary relation

ii.  Is the union of two simulations a simulation ?

iii.                                                                                                               Prove it.

Inductive and co-
inductive methos

Induction and co-induction principle

A set R of rules on yields a monotone operator

Induction

The Fixed-point Theorem tells us that the least fixed point is the least pre-fixed point: 
the set inductively defined by the rules is therefore the smallest set closed.

Let T be a property

if we have a property T , and we wish to prove that all elements in 
the set inductively  defined by Φ have the property, we have to
show that T is a pre-fixed point of Φ 

Co-Induction
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