Proof Nets

A graph syntax for proofs

Reference:

Notes on proof-nets by Olivier Laurent

(Note: most slides are taken from the notes of Olivier Laurent)
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A graph syntax for proofs

Proof structures

A proof structure M is a labelled directed acyelic graph
(DAG) with possibly pending edges (iLe. some edges may have
no source and/or no target) built over the alphabet of nodes
which is represented below

{ Note: in figures, the edges orientation is always top-bottom. )
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o The nodes are labeiled by ax, cut, ®, 7%
o The edges are labelled by MLL formulas.

I For each node/link: premisses = entering edges, conclusions = exiting edges I

The conclusions of M is the set of pending edges of M.

In the graphical representation of a proof structure, we do not mention
explicitly the direction of edges, but we draw them in such a way that
direction in represented in a top-down way:
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Translate each of these sequent calculus proofs. Start from axioms....
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Is every structure the image of an MLL proof?
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Proof Nets

A PROOF NET is a proof structure which is the image of an MLL proof

Internal condition!
Purely geometrical conditions (correction) characterize the proof structures
which are proof nets

Theorem 1. A proof structure is corrvect iff it is a proof net.

Correctness criteria:

— (LT) Long trip [Girard]
~ (AC) Connected-Acyclic [Danos-Regnier|
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Acyclicity. A multiplicative proof structure is ecyelic if its switching graphs
do not contain any undireeted cycle.

A proof structure with p ¥ nodes induces 27 switchings and thus 27 switching
graphs. A switching graph is not a proof structure in general since its ¥ nodes
have only one premisse,

A connected component of a switching graph is a connected component of
its underlying (undirected) multigraph.
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Correctness Criterion

Switching Graphs
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Correctness
o Switching graphs are acyclic.

@ Switching graphs are connected.
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Definition 2 (Correctness criterion AC (Danos-Regnier)). Let R be o
proof structure,

A switching s s o function on the nodes of R, which chooses, for each
-link, cither the left or the right premise.

A proof structure B is corvect if for each switching, the unoriented
graph. obtained by emsing for each 5-link of R the edges not chosen by s. is:

connected and acyclic
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Is this correct?
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« Correctness guarantees:
+ Graph is image of a proof (sequentialization)

+ Normalization progresses (no deadlocks)
+ Normalization terminates (no infinite cycles)

Soundness

Proposition 4.1.1 {Soundness of Correctness), The translation of a sequent
cadeulus proof of MLL s o connected multiphicative proaf nef.
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Theorem 4.1.1 (Sequentialization). Any connected multiplicative proof net is
the translation of a sequent calewlus proof of MLL.
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Sequentialization answers the question:
We have a proof net. The problem: it is the image of a sequent calculus proof?
And which?
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Normalization
(local graph reductions!)
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Let us try out!

Ax A A®A* Al A
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Write a proof net with this conclusion... and
normalize it
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Lemma (preservation of correctness)

If the proof structure R is correct and reduces to R’
then R’ is correct.
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How we write a proof net of these conclusions?

A % AL must type an edge conclusion of a par link, with premisses ....

A® A+ musttype an edge conclusion of a tensor link, with premisses ....

Then we have to choose the axiom links!
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Properties of normalization

1. Confluence?

2. Is normalization weakly/strongly normalizing?

3. Would you be able to define a normalizing strategy?
4. Would you be able to define a normalizing strategy

which reaches normal form in a minimal number of
steps?
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Let us try out!
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Write a proof net with this conclusion... and
normalize it
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Normalization of MLL proof-nets:
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* Strongly normalizing
* Confluent
* Cut elimination:
a proof-net in normal form contains no cuts
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* Let us try out another example

Let us try one more. First, write a proof net with this conclusion...
(X®X)— (X®X) -
(X@X)'¥(XgX) . X'3X)¥(XeX)

TIP: How we write a proof net? As before, all proof nets with the same
conclusion, start with the same nodes (the formula tree!)
What distinguishes different proofs are the axiom links

To distinguish the different occurrences of atoms, let us write indices:

(X1 ¥ Xoh) ¥ (X3 @ Xy)
In this case, we have two possible proofs, corresponding to two possible way to
write axioms:
1,3 and 2,4
OR
1,4 and 2,3
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In sequent calculus, they correspond to these two proofs (one uses exchange, one no)
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Try to normalize one of the proofs of (X1t 3 Xa1) ® (Xa © Xa)

with the proof net which has conclusions

(X1 ®X2) @ (Xat B Xyt) (X F Xeh) ¥ (X7 © Xs)

and axiom links: (1,6) (2,5) (3,7) (4,8)

What is the function coded by this proof net?
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When we have a formula whose normal proofs are exactly two, we have a
good candidate to code BOOLEANS )

X*3X")3(XoX
Let us indicate the formula ( 13 ) with B (for boolean).

We call one proof true, and the other false...

We can feed one of our two values to a proof which takes a boolean, and return a boolean.

Bt B

We know that the normal form (i.e the result of computation)
will be of type B... Hence one of our two values.
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Correctness: if we focus on acylicity, Danos-Regnier criterion
can be reformulated (in equivalent way)

Let R be a proof structure; a switching path of R is a path which does not
use any two edges entering on the same ¥ link (such edges are called suifching
edges); a switching cycle is a switching path which is a cycle.

Definition 3 (Correctness criterion ). A proof structure is correct if it does
not contain any switching cycle.
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(Miz) 7\we can throw away MIX later
By requiring connectness
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From proofs to proofs structures
—
@ Boxes never overlap.
@ Boxes are sequential (as rules in sequent caleulus),
@ Correctness: box by box.
@ Boxes permit duplication and erasure,
41
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From proofs to proofs structures
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Cut-elimination steps
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Can you write the proof so that all axioms are atomic (ie on atomic formulas)?
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Reduction Steps: 7d
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Reduction Steps: "w
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Reduction Steps: 7¢
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Reduction Steps: 7p
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