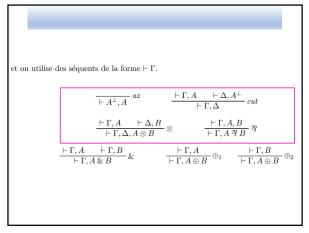
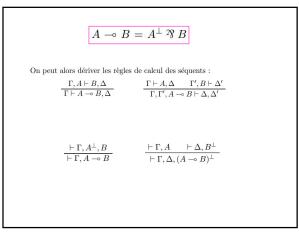


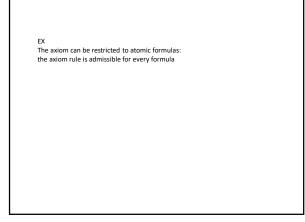
 Define negation:

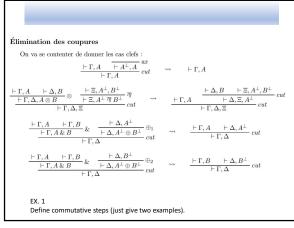
 $A :::= X \mid A \Im A \mid A \& A$
 $| X^{\perp} \mid A \otimes A \mid A \oplus A$
 $(X^{\perp})^{\perp} = X$
 $(A \otimes B)^{\perp} = A^{\perp} \Im B^{\perp}$
 $(A \Im B)^{\perp} = A^{\perp} \otimes B^{\perp}$
 $(A \oplus B)^{\perp} = A^{\perp} \oplus B^{\perp}$
 $(A \oplus B)^{\perp} = A^{\perp} \& B^{\perp}$

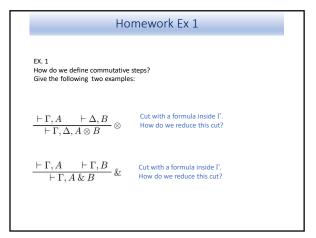
 ce qui donne $A^{\perp^{\perp}} = A$.

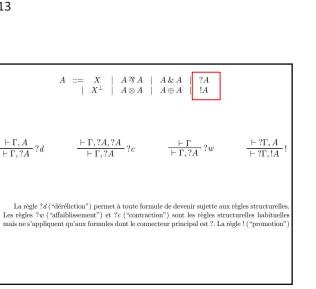


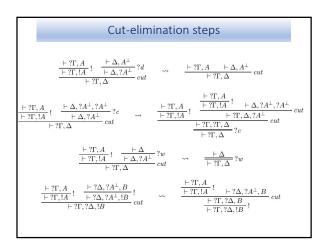


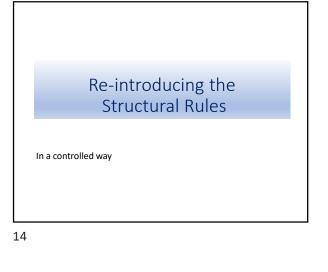






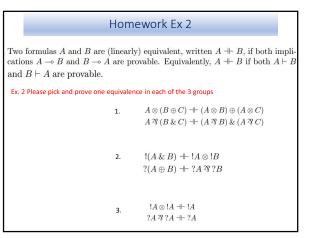


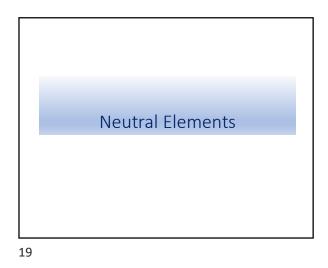


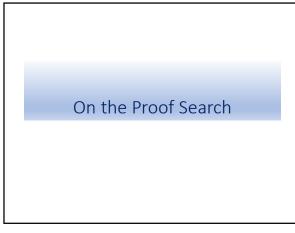


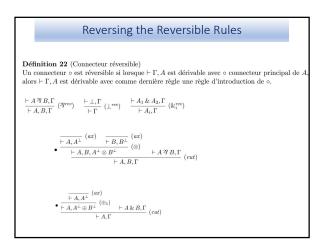
La regle promotion...

est la plus subtile. Elle permet de rendre une formule (et surtout la preuve correspondante) duplicable (ou effaçable), mais ceci nécessite un contexte adapté. On peut comprendre !A comme "A autant de fois que l'on veut". La règle écrite sous la forme :

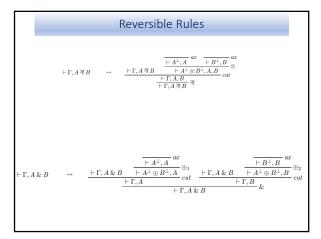


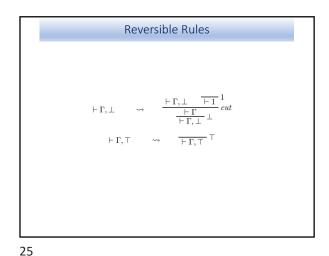




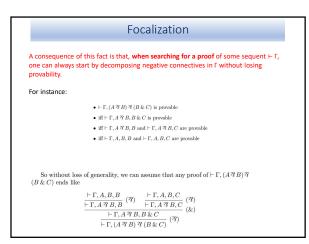


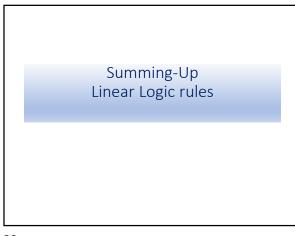


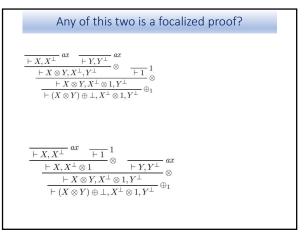


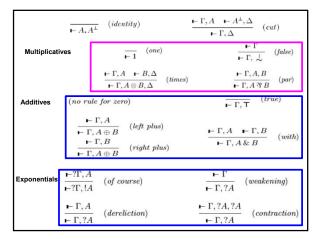


	Posit	ive/nega	tive conne	ective	
$\begin{array}{c} \alpha \\ A\otimes B \\ 1 \\ A\oplus B \\ 0 \\ !A \end{array}$	Positive atom tensor one plus zero of course	A^{\perp} $A \ \mathfrak{P} B$ \downarrow $A \& B$ \top $?A$	Negative negation par bottom with top why not	Class multiplicatives multiplicative un additives additive units exponentials	nits









Linear negation
$(X^{\perp})^{\perp} = X$ $(A \otimes B)^{\perp} = A^{\perp} \Im B^{\perp}$ $(A \Im B)^{\perp} = A^{\perp} \otimes B^{\perp}$ $(A \& B)^{\perp} = A^{\perp} \oplus B^{\perp}$ $(A \oplus B)^{\perp} = A^{\perp} \& B^{\perp}$

