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This part focus on Operational Semantics 
of formal calculi (and programming languages)



Topics

• Tools to study  the operational properties of a system: 

➢ Rewrite Theory (rewriting=abstract form of program execution)

• Induction and Co-induction proof principles.

• Linear Logic and Proof-Nets.

• Bridging between lambda-calculus and functional programming. 

➢ Call-by-Value and Call-by Name, weak and lazy calculi. 

➢ Big-Step and Small-Step operational semantics. 

➢ Observational equivalence

• Reasoning on programs equivalence:

➢Bisimulation and coinductive methods.

• Beyond pure functional:

➢Probabilistic programming  and Bayesian Inference:

Probabilistic lambda calculi, Bayesian Networks & proof-nets



Resources

• Reference Books:

➢R. AMADIO : Operational methods in semantics 

(available on HAL https://hal.archives-ouvertes.fr/cel-01422101v1).

➢D. SANGIORGI: Introduction to Bisimulation and Coinduction
(Cambridge University Press, 2011)

• Lecture Notes   (by Middeldorp,  Laurent, Ong)

Please send me an email 
(with LMFI in the subject)
to have the lecture notes 
on Rewriting Theory
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Abstract Rewriting: motivations

Mconcrete rewrite formalisms / concrete operational semantics:

• λ-calculus

• Quantum/ probabilistic/ non-deterministic/…………   λ-calculus 

• Proof-nets / graph rewriting

• Sequent calculus and cut-elimination  

• string rewriting     

• term rewriting     

abstract rewriting

• independent from  structure of objects that are rewritten

• uniform presentation of properties and proofs



Abstract Rewriting
Basic language



ARS

• 

• A (finite) rewrite sequence is a non-empty
sequence (𝑎0, … 𝑎𝑛) of elements in A such that 𝑎i → 𝑎 𝑖+1

We write 𝑎0 →𝑛 𝑎𝑛 or simply 𝑎0 →∗ 𝑎𝑛

rewrite sequences:
finite a → e → b → c → f
empty a

infinite a → e → b → a → e → b → …



**



Composition



Closure





Normal forms model results

Element a has normal forms ?
How many normal forms has this ARS?





*Termination*

a is WN? SN?
c is WN? SN?
a or c  has UN ?

The nf are convertible? 

An element a is  weakly  normalizing (WN) (or simply normalizing) if it has a normal form. 



*Confluence*



1.  a  is  confluent?
2.  f is confluent?

3. Can you add a single arrow  so that the resulting ARS 
    has unique normal forms without being confluent ?



f(a,a) has normal form? 
Can you produce two different nf?

we can compute from the same term f(a, a) two different normal-forms c and d
different meaning for equivalent terms

(different meaning for same term!)



Same meaning for *equivalent* terms



Confluence & CR



in an ARS with the property UNC every equivalence class of convertible 
elements  contains at most one normal form. 

Q: are UN and UNC equivalent?



Global vs Local



Confluence

A property of term t is local if it is quantified over only one-step reductions from t; 
it is global if it is quantified over all rewrite sequences from t. 

confluence

Global property:

(WCR)



Confluence

A property of term t is local if it is quantified over only one-step reductions from t; 
it is global if it is quantified over all rewrite sequences from t. 

b←a →c

locally
confluentLocal confluence

(WCR)







Which is true?

1. SN => WN
2. WN => SN

3. Confluence => UN
4. UN => Confluence

5. Confluence => Local confluence
6. Local confluence => Confluence

7. WN & UN => Confluence

8. WN & Local Conf.  => Confluence

9. SN  &  Local Conf. => Confluence



WN vs SN

Can you find an infinite reduction sequence?



1. SN => WN
2. WN => SN

3. Confluence => UN
4. UN => Confluence

5. Confluence => Local confluence
6. Local confluence => Confluence

7. WN & UN => Confluence

8. WN & Local Conf.  => Confluence

9. SN  &  Local Conf. => Confluence





Newman Lemma

By well-founded induction 



Memo: Well-founded Induction



Newman Lemma



Newman Lemma
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