Preuves et programmes

Claudia Faggian CNRS (IRIF)
faggian@irif.fr
https://www.irif.fr/~faggian/

This part focus on Operational Semantics
of formal calculi (and programming languages)

: Qutils classiques



Topics

Tools to study the operational properties of a system:
» Rewrite Theory (rewriting=abstract form of program execution)

Induction and Co-induction proof principles.

Linear Logic and Proof-Nets.

Bridging between lambda-calculus and functional programming.
» Call-by-Value and Call-by Name, weak and lazy calculi.
» Big-Step and Small-Step operational semantics.
» Observational equivalence

Reasoning on programs equivalence:
» Bisimulation and coinductive methods.

Beyond pure functional:
» Probabilistic programming and Bayesian Inference:
Probabilistic lambda calculi, Bayesian Networks & proof-nets



Resources

* Reference Books:
» R. AMADIO : Operational methods in semantics
(available on HAL https://hal.archives-ouvertes.fr/cel-01422101v1).

» D. SANGIORGI: Introduction to Bisimulation and Coinduction
(Cambridge University Press, 2011)

* Lecture Notes (by Middeldorp, Laurent, Ong)

Please send me an email
(with LMFI in the subject)
to have the lecture notes
on Rewriting Theory



Operational semantics
of formal calculi and programming languages

Rewriting theory

* Rewriting = abstract form of program execution

e Paradigmatic example: A-calculus
(functional programming language, in its essence)



B DWP P DD PDOPPPPPODPPB
B WP PP PDPDDNDPP PPN P PP
D D P WPPDONPPPNPPPPNP

A colony of chameleons includes 20 red, 18 blue, and 16
green individuals. Whenever two chameleons of different
color meet, each changes to the third color. Some time
passes during which no chameleons are born or die nor do
any enter or leave the colony. Is it possible that at the end
of this period, all 54 chameleons are the same color?

B’ - PP W - PP
PDW - PP o B Hndk R
R Eadk K DBV VWP




Example (Group Theory)

signature e (constant) — (unary, postfix) - (binary, infix)
equations e X ~ X X" X~ e (x-y)-z=x-(y-2) &
theorems e~ Rg e (x-y)” mey -x~
rewrite rules e X — X X-e — X R
X X — € XX — €
(x-y)-z = x-(y-2) X7T — x
e” — e (x-y)” — y -x~
X" (x-y) =y X-(x"-y) = vy

@® s~ tisvalidin &£ (s =¢ t) if and only if s and t have same R-normal form
@ R admits no infinite computations

@® & @ = & has decidable validity problem



Example (Combinatory Logic)

signature
terms

rewrite rules

rewriting

Inventor

S K | (constants) - (application, binary, infix)
S ((K-D-)-5 (x-2)-(y-2)

| - x — x
(K-x) -y — x
(S x)-y)-z—=(x-2) (y-2)

((S-K)-K)-x — (K-x)-(K-x)
— X

Moses Schonfinkel (1924)




Example (Lambda Calculus)

signature A (binds variables) - (application, binary, infix)
terms M:=x|(Ax.M)| (M- M)
Qv conversion AX.X Y =, AZ.Z- Y

B reduction (Ax.M)-N =5 M[x = N]

replace free occurrences of x in M by N
(and avoid variable capturing)

rewriting (Ax.x-x) - (Ax.x-x) — (Ax.x-x)-(Ax.x - x)

inventor Alonzo Church (1932)

both Combinatory Logic and Lambda Calculus are Turing-complete J




Operational semantics
of formal calculi and programming languages

Rewriting theory

* Rewriting = abstract form of program execution

e Paradigmatic example: A-calculus
(functional programming language, in its essence)



Rewriting

m Rewrite Theory provides a powerful set of tools to study computational and
operational properties of a system : normalization, termination , confluence,
uniqueness of normal forms

m tools to study and compare strategies:

m Is there a strategy guaranteed to lead to normal form, if any (normalizing strat. )?

m Abstract Rewrite Systems (ARS) capture the common substratum of rewrite
theory (independently from the particular structure of terms) - can be uses in

the study of any calculus or programming language.




Abstract Rewriting: motivations

concrete rewrite formalisms / concrete operational semantics:

e A-calculus

* Quantum/ probabilistic/ non-deterministic/............ A-calculus
* Proof-nets / graph rewriting

e Sequent calculus and cut-elimination

* string rewriting

* term rewriting
abstract rewriting

e independent from structure of objects that are rewritten

e uniform presentation of properties and proofs



Basic language



ARS

Definition 1.1.1. An abstract rewrite system (ARS for short) is a pair A = (A, —)
consisting of a set A and a binary relation — on A. Instead of (a,b) € — we write a — b

and we say that a — b is a rewrite step.

a b c d
e f OA:{a,b,C,d;eafag}

\ o —— {(a,e), (b,a), (b,<), (c,d), (C,f)}

g (e,b), (e,8), (f,e), (f,g)

* A (finite) rewrite sequence is a non-empty
sequence (ao, ... ay)of elementsin A suchthat a; - ag4q)

We write ay, »™ a, orsimply a,-"a,
® rewrite sequence

e finite a—e—>b—o>c—f

® empty a

¢ infinite a—re—~b—a—se—>b—--.



inverse of —

transitive and reflexive closure of —

inverse of —*

symmetric closure of —

seogtiff s 5 t0rt —>¢ s

S<—>;}l‘iffs=S()<—>eRS1 O .. .ors,=tforn>0

conversion (equivalence relation generated by —) %%

transitive closure of —

reflexive closure of —

- 1s relation composition:

R-S={(a,c)|aRband bSc}

=" "



Composition

= We denote —* (resp. —7) the transitive-reflexive (resp. reflexive)
closure of —;

= If =1, —9 are binary relations on A then —; - —5 denotes their
composition, i.e. t —1 - —o s iff there exists u € A such that
t—1 U —9 S.

= We write (A, {—1,—2}) to denote the ARS (A, —)
where — = —1 U —.




Closure

The transitive-reflexive closure of a relation is a closure operator, i.e.
satisfies

—C—, (=%)" =5, —1 € —5 implies —] C —3
As a consequence

(=1 U—=2)" = (=21U—=3)"



Terminology

e if x = y then x rewrites to y and y is reduct of x
o if x »* z*+ y then z is common reduct of x and y

e if x &* y then x and y are convertible

N e

o elf fld not gl d

NL e




Normal forms model results

Definition 1.1.11. Let A = (A, —) be an ARS. An element a € A is reducible if there
exists an element b € A with a — b. A normal form is an element that is not reducible.
The set of normal forms of A is denoted by NF(A) or NF(—) when A can be inferred from
the context. An element a € A has a normal form if a —* b for some normal form b. In
that case we write a —' b.

a < b 5 C s d
Element a has normal forms ?
T J How many normal forms has this ARS?
e < f ARS A = (A,—)
J e dis normal form
e NF(A)={d, g}
g

° b—>!g



e SN strong normalization  termination

e no infinite rewrite sequences

e WN (weak) normalization

e every element has at least one normal form
e Vadb a—='b

e UN unique normal forms

e no element has more than one normal form

e Va,b,c ifa—'band a—' cthen b=c



*Termination™

Definition 1.2.1. Let A= (A, —) be an ARS. An element a € A is called terminating
or strongly normalizing (SN) if there are no infinite rewrite sequences starting at a. The
ARS A is terminating or strongly normalizing if all its elements are terminating. An
element a € A has unique normal forms (UN) if it does not have different normal forms
(Vb,ce Aif a ="' band a —' ¢ then b = ¢). The ARS A has unique normal forms if all
its elements have unique normal forms.

An element a is weakly normalizing (WN) (or simply normalizing) if it has a normal form.

a+——>Db > C s d ,
ais WN? SN?
cis WN? SN?
aorc hasUN?
e+—f

The nf are convertible?



*Confluence™

Definition 1.2.3. Let A = (A, —) be an ARS. An element a € A is confluent if for all
elements b.c € A with b *« a —* ¢ we have b | ¢. The ARS A is confluent if all its
elements are confluent.

) | ) S a b e a
VRN N

= e

FEvery confluent ARS has unique normal forms.



1. a is confluent?
2. fisconfluent?

BOnUs Po;
3. Can you add a single arrow so that the resulting ARS Ing

has unique normal forms without being confluent ?



Given

flx,x) - ¢
— b
fx,b) — d

pS
I
Q

f(a,a) has normal form?
Can you produce two different nf?

we can compute from the same term f(a, a) two different normal-forms c and d
different meaning for equivalent terms
(different meaning for same term!)



Same meaning for *equivalent™ terms



Confluence & CR

Definition 1.2.3. Let A = (A, —) be an ARS. An element a € A is confluent if for all
elements b.c € A with b *« a —* ¢ we have b | ¢. The ARS A is confluent if all its
elements are confluent.

An ARS A = (A, —) is confluent if and only if <* C |.



Definition 1.2.10. An ARS A = (A,—) has unique normal forms with respect to
conversion (UNC) if different normal forms are not convertible (V a,b € NF(A) if a <* b
then a = b).

in an ARS with the property UNC every equivalence class of convertible
elements contains at most one normal form.

Q: are UN and UNC equivalent?

> C <







Confluence

A property of term tis local if it is quantified over only one-step reductions from t;
it is global if it is quantified over all rewrite sequences from t.

Locally confluent (WCR) Strongly confluent Diamond
g " ™

I I I

* | * | |

| . I |

L _C- _ v

Let A = (A,—) be an ARS. An element a € A is confluent if for all
elements b.c € A with b *« a —* ¢ we have b | ¢. The ARS A is confluent if all its

elements are confluent.

Global property:




Confluence

A property of term tis local if it is quantified over only one-step reductions from t;
it is global if it is quantified over all rewrite sequences from t.

Locally confluent (WCR) Strongly confluent Diamond
g " ™

I I I

* | * | |

| . I |

L _C- _ v

focally
Nl IRl I Let A = (A, —) be an ARS. An element a € A is |_cgpflyent_ for all
elements b,c € A with| b«a—c |we have b | ¢. The ARS A is confluent if all its

elements are confluent.

An ARS A = (A, —) has the diamond property () if - — C | — - <



e diamond property ¢

® — .- — C — -«
® VYa,b,c a
7N
b_‘ C
3d e

e cvery ARS with diamond property is confluent



An ARS A = (A, —) is strongly confluent (SCR) if < - = C —= - *«— see Figure
a Show that every strongly confluent ARS is confluent.
b Does the converse also hold?

¢ Show that an ARS A = (A4, —) is confluent if and only if &+ = C 5% &~




Which is true?

SN =>WN
WN => SN

Confluence => UN
UN => Confluence

Confluence => Local confluence
Local confluence => Confluence

WN & UN => Confluence

WN & Local Conf. => Confluence

SN & Local Conf. => Confluence




WN vs SN

| fla — ¢
ﬂ‘{ ) - fl@

The system is weakly normalising but not strongly normalising:

Can you find an infinite reduction sequence?

fb) = f(a) > ¢

Jf(b) = fa) = f(a)...



SN =>WN (Ca——b
WN => SN

Confluence => UN C a b > C
UN => Confluence

Confluence => Local confluence o
Local confluence => Confluence _—

WN & UN => Confluence
WN & Local Conf. => Confluence

SN & Local Conf. => Confluence Newman's Lemma



WN & UN = CR

e WN = dny, ny: b1—> nlandb2—> ny ‘A//\\‘

e UN = m=m = bilb




Newman Lemma

Newman’s Lemma. Fvery terminating and locally confluent ARS is confluent.

By well-founded induction



Memo: Well-founded Induction

Définition :[Relation bien fondée] Une relation d’ordre >C E X E est bien fondée si il n’existe pas de
suite infinie d’éléments de E décroissante par rapport a >.

Theorem :[Principe d’induction bien fondée] Soient donnés un ensemble E quelconque, un ordre strict
< sur E (dont .Z est son ensemble d’éléments minimaux), et une propriété P sur E.

Si
1. pour tout élément minimal m € .# on a P(m)
2. le fait que P(k) soit vérifiée pour tout élément k < x implique P(x)

alors
pour tout x € E on a P(x)

The proof technique of well-founded induction states that a property P of elements
of a terminating ARS A = (A, —) holds for all elements in A if the following condition
is satisfied: An element a € A has the property P if all elements b with a — b have the
property P. In particular every normal form has to satisfy the property P.




Newman Lemma

Newman’s Lemma. Fvery terminating and locally confluent ARS is confluent.

by @ C1
/ * \J k‘// * \
b @ c
) s ®
REVERRY, L
B T ® WCR
N e @ induction hypothesis (a — b = by is CR)

on ® induction hypothesis (¢ — ¢; = ¢; is CR)



8
Newman Lemma 7S By,
e

Newman’s Lemma. Fvery terminating and locally confluent ARS is confluent.

A second Proof Let A = (A, —) terminating and locally confluent

It suffices to show that every element has unique normal forms

e suppose B={ac€ A| -UN(a)} # 9
e let b € B be minimal element (with respect to —)

e b—'nyand b —=' np with ny #

» Conclude by showing that it is impossible (absurd)



	01_ARS_slides1
	Preuves et programmes : Outils classiques
	Topics
	Resources
	Operational semantics�      of formal calculi and programming languages��Rewriting theory �
	Slide 6 
	Slide 7 
	Slide 8 
	Slide 9 
	Operational semantics�      of formal calculi and programming languages��Rewriting theory �
	Slide 11 
	Abstract Rewriting: motivations
	Abstract Rewriting
	ARS
	Slide 15 
	Composition
	Closure
	Slide 18 
	Normal forms model results
	Slide 20 
	*Termination*
	*Confluence*
	Slide 23 
	Slide 24 
	Same meaning for *equivalent* terms
	Confluence & CR
	Slide 27 
	Global vs Local�
	Confluence
	Confluence
	Slide 31 
	Slide 32 
	Which is true?
	 WN vs SN
	Slide 35 
	Slide 36 
	Newman Lemma
	Memo: Well-founded Induction
	Newman Lemma
	Newman Lemma
	Recap Flash Ex�
	Recap basics
	The heart of confluence is a diamond
	Closure
	Commutation
	Proving confluence modularly 
	An effective usable  technique
	an effective usable  technique
	Strategies�and subreductions�
	Normalization
	Normalizing strategis
	Completeness
	Factorization�
	Operational properties of interest
	Factorization�(aka Semi-Standardization, Postponement, or often simply Standardization)
	Factorization�(aka Semi-Standardization, Postponement, or often simply Standardization)
	Slide 57 
	Local test ?
	Does SP hold for 𝜆-calculus?
	Does SP hold for 𝜆-calculus?
	Slide 61 
	Slide 62 
	Examples�of uses for factorization�
	�Call-by-Name and �Call-by-Value 𝜆-calculus�
	�Call-by-Name and Call-by-Value 𝜆−calculus�
	Slide 66 
	�Call-by-Name and Call-by-Value 𝜆−calculus�
	�Call-by-Name and Call-by-Value 𝜆−calculus�
	�Call-by-Name and Call-by-Value 𝜆−calculus�
	CbN: Head Reduction
	CbN Head Factorization
	Slide 72 
	CbV: Weak Reduction
	CbV Weak Factorization
	Basic properties of the contextual closure
	Basic properties of contextual closure
	Internal steps preserve head and weak normal nf
	Back to�Factorization�
	From abstract to concrete system
	ARS Recipe
	Concretely: CbN and Head Factorization
	Concretely: CbV and Weak Factorization
	Recap
	You designed a system�You have Factorization�Now what?
	ARS:�more abstract tools�
	Decreasing (Van Oostrom)
	To commute
	Newman Lemma, again
	Strong Commutation implies Commutation
	Slide 90 


