

Rewriting

Rewrite Theory provides a powerful set of tools to study computational and operational properties of a system : normalization, termination, confluence, uniqueness of normal forms

 \blacksquare tools to study and compare strategies: ■ Is there a strategy guaranteed to lead to normal form, if any (normalizing strat.)?

Abstract Rewrite Systems (ARS) capture the common substratum of rewrite theory (independently from the particular structure of terms) - can be uses in the study of any calculus or programming language.

Abstract Rewriting: motivations

concrete rewrite formalisms / concrete operational semantics:

- λ-calculus
- Quantum/ probabilistic/ non-deterministic/………… λ-calculus
- Proof-nets / graph rewriting
- Sequent calculus and cut-elimination
- string rewriting
- term rewriting

abstract rewriting

- independent from structure of objects that are rewritten
- uniform presentation of properties and proofs

Composition

■ We denote \rightarrow^* (resp. $\rightarrow^=$) the transitive-reflexive (resp. reflexive)

composition, $\emph{i.e.} \quad t\rightarrow_1\cdot\rightarrow_2 s$ iff there exists $u\,\in\,A$ such that

 $\quad \quad \ \blacksquare\ \ \,$ We write $(A,\{\rightarrow_1,\rightarrow_2\})$ to denote the ARS (A,\rightarrow)

closure of \rightarrow ;

 $t \rightarrow_1 u \rightarrow_2 s$.

Global vs Local

Memo: Well-founded Induction

Définition :[Relation bien fondée] Une relation d'ordre $\geq \subseteq E \times E$ est *bien fondée* si il n'existe pas de

51 52

Completeness

Completeness. The restriction to a *subreduction* is a way to control the non-determinism which arises from different possible choices of reduction.

In general, we are interested in subreductions which are complete w.r.t. certain subset of interests $(i.e.:$ values, normal forms, head normal forms).

Given $\mathcal{B}\subseteq\mathcal{A},$ we say that $\frac{1}{e}\subseteq\to$ is $\mathcal{B}\text{-\bf complete}$ if whenever $t\to^*u$ with $u\in\mathcal{B}$, then $\Rightarrow^* u'$, with $u' \in B$.

 \blacktriangleright **Def.** (A, \rightarrow) is strongly (weakly, uniformly) normalizing if each $t \in A$ is, where the three normalization notions are as follows.

- \quad t is strongly \rightarrow -normalizing: every maximal \rightarrow -sequence from t ends in a normal form.
- \pm t is weakly \rightarrow -normalizing: there exist a \rightarrow -sequence from t which ends in a normal form. \equiv t is uniformly \rightarrow -normalizing: t weakly \rightarrow -normalizing implies t strongly \rightarrow -normalizing.

 \blacktriangleright Def.

 \Rightarrow \Rightarrow is a **strategy for** \rightarrow if $\Rightarrow \subseteq \rightarrow$, and it has the same normal forms as \rightarrow .

 \blacksquare It is a normalizing strategy for \rightarrow if whenever $t \in A$ has \rightarrow -normal form, then every $\label{eq:main} \textit{maximal} \xrightarrow[\mathbf{e}]{~} \textit{sequence from t ends in normal form}.$

We say that \rightarrow **strongly postpones** after \rightarrow , if

 $\text{SP}(\overrightarrow{e},\overrightarrow{\cdot}) : \rightarrow \cdot \rightarrow \cdot \overrightarrow{e} \subseteq \overrightarrow{e}^* \cdot \overrightarrow{\cdot}^=$ $(\mathop{\mathsf{Strong}}\nolimits\mathop{\mathsf{Postponent}})$ Elemma (Local test for postponement [26]). Strong postponement implies postponement:

 $\texttt{SP}(\overrightarrow{e},\overrightarrow{\cdot},\overrightarrow{\cdot})$ implies $\texttt{PP}(\overrightarrow{e},\overrightarrow{\cdot},\overrightarrow{\cdot})$, and so $\texttt{Fact}(\overrightarrow{e},\overrightarrow{\cdot},\overrightarrow{\cdot})$.

Local test ? \Box Does SP hold for λ -calculus?

 \triangleright **Ex** (λ -calculus and strong postponement). β reduction is decomposed in head reduction $\rightarrow \beta$ and its dual $\rightarrow \beta$ $\rightarrow_{\beta} = \rightarrow_{\mathsf{h}} \cup \rightarrow_{\mathsf{h}} \beta$

Consider:

 $(\lambda x.xxx)(Iz) \xrightarrow[\text{th}]{ } (\lambda x.xxx)z \xrightarrow[\text{th}]{ } zzz.$

59 60

Call-by-Name and Call-by-Value λ -calculus α and α a countable set of *variables*, and *c* over a disjoint (possibly empty) set 65 66

Call-by-Name and Call-by-Value λ -calculus

Terms and values are generated by the following grammars

$$
\begin{array}{rcl} V & ::= & x \, | \, \lambda x.M \qquad \quad (\, Values, \, \mathcal{V}) \\ M & ::= & x \, | \, c \, | \, \lambda x.M \, | \, MM \quad \, (\, Terms \,) \end{array}
$$

If the set of constants is empty, the calulus is *pure*, and the set of terms is denoted Λ . • Otherwise, the calculus is called *applied*, and the set of terms is often indicated as $\Lambda_{\mathcal{O}}$.

Terms are identified up to renaming of bound variables, where λx is the only binder constructor. $P\{Q/x\}$ is the capture-avoiding substitution of Q for the free occurrences of x in P .

Call-by-Name and Call-by-Value λ -calculus

- **Contexts** (with one hole (\dagger)) are generated as follows. **C** (M) stands for the term obtained from C by replacing the hole with the term M (possibly capturing free variables of M).
- $C ::= \langle \mid \rangle \mid \mid MC \mid CM \mid \lambda x.C$ (Contexts)
-

the value it evaluates to.

Name and Call-by-Value λ -calculus

fame calculus $\Lambda^{\text{dm}} = (\Lambda, \rightarrow_{\beta})$ is the set of terms equipped with the
 $(e \beta + \text{rule.} \land \text{rule})$
 Λ^{UV}
 Λ^{UV}
 Λ^{UV}
 Λ^{UV}

where $V \in \mathcal{V}$
 $\Lambda^{\text{UV}} = (\Lambda, \rightarrow_{\beta_*})$

69 70

CbN: Head Reduction

Head reduction in CbN

Head reduction is the closure of β under head context

 $\lambda x_1...x_n$. $\big\downarrow M_1...M_k$

Head normal forms (hnf), whose set is denoted by H , are its normal forms.

- Given a rule ρ , we write $\frac{1}{h}$ for its closure under head context.
- $\quad \ \ \, \text{A step} \rightarrow_{\!\!\rho} \text{is non-head, written } \underset{\neg \text{h}}{\rightarrow_{\!\!\rho}} \text{ if it is not head.}$

What about?

 $H ::= \langle | \rangle | \lambda x . H | H M$

Head Eactorization

- Theorem 2 (Head Factorization).
- **EXECUTE:** Head Factorization: $\rightarrow_{\beta}^* \subseteq \rightarrow_{\beta}^* \rightarrow_{\neg \beta}^*$.
- Read Normalization: M has had $\int_0^{\pi} \frac{1}{\ln x} dx$ only if $M \rightarrow g^* S$ (for some $S \in \mathcal{H}$).

75 76

4. With the same assumption as above, what about $\rightarrow ?$

Basic properties of contextual closure

If a step $T \rightarrow_{\gamma} T'$ is obtained by closure under non-empty context of a rule \mapsto_{γ} , then T and T' have the same shape, i.e. both terms are an application (resp. an abstraction, a variable).

Fact 5 (Shape preservation). Assume $T = C(R) \rightarrow C(R') = T'$ and that the context C is non-empty. Then T and T'

The following is an easy to verify consequence.

Elemma 6 (Redexes preservation).

1. CbN: Assume $T \rightarrow_{\mathbb{R}} S$. T is a β -redex iff so is S.

2. CbV. Assume $T \rightarrow_{\infty}$ β_v S. T is a β_v -redex iff so is S.

ARS Recipe

From Factorization to Normalization (or Standardization)

