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This courses will be in two parts:

e the programming part in which we will exercice to define programs in functional style;

e the proving part in which we will approch a way to ensure correctness of programs.

The connection between programs and proofs is here the correspondance between recursively defined func-
tions and proofs by induction. There is a deep logical correspondance between proofs and programs, but this
will not be the topic of this presentation. We will rather present the shallow correspondance that recursively
defined functions follows naturaly inductive reasonning.

A functional programming language is oriented to the computation of wvalues by mean of functional
application and composition. Values may be either usual one as boolean, integers, strings, lists etc. as well
as functions them selves. The theoretical bases of functional languages is the lambda-calculus where all is
function.

A functional program is roughly a sequence of data types and functions definitions ended by an expression
which is the entry point of the program to be evaluated.

Our programming language will be OCAML. It belongs to the ML’s family of programming languages.
It also includes imperative features and objects, but we will mainly ignore them in this course.

1 Functional programming

In OCAML the syntazx of functional application is usually simply obtained by writting the function and its
arguments: £ x y denotes the application of function f to the two arguments x and y. This is the standard
prefiz notation. Parenthesis may be used. The former application may also be written (f x y). Arguments
may be the result of computation asin (f (g x) (h (g y) z)). Some usual symbols of function are written
with infiz notation, like arithmetic operators, but this is not the rule.

1.1 Basic types and operators

Any programming language provides predefined data types and basic operators for their values. They are
part of the stones with which programmers build their home.

Booleans The two boolean values are writen true and false. The primitives operators are



e the negation written not: (not true) evaluates to false; (not false) evaluates to true.

e the conjunction written && or simply &. It is an infix operator: (true && x) evaluates to the value
of x; (false && x) evaluates to false what ever x may be. The conjunction operator is said to be
sequential in the sense that it evaluates its first argument first and then, if needed, the second.

e the disjunction written | | or or: (true or x) evaluates to true; (false or x) evaluates to the value
of x. It is also an infix and sequential operator.

Boolean values have type bool. One write that the boolean constants belongs to type bool as true:bool
and false:bool. The negation operator belongs to the set of unary functions that maps booleans to booleans.
One write not: bool -> bool. The type of conjunction and negation is bool -> bool -> bool.

Numeric values Basicaly, there is two kinds of numeric values: integers and real numbers. They corre-
spond respectively to the types int and float.

Integer values may be written as decimals:  -1073741824 ...-2 -1 0 1 2 ...1073741823. The set
of integers in OCAML is the finite interval [—23! —1,231] on 32-bit processors and [—25% — 1,2%3] on 64-bit
processors. All computations on integers are done modulo 23! (or 25%). Primitive operators on integers are

e unary negation and substraction, both written -. The value of -n equals that of 0-n;

addition and multiplication respectively written + and *. They are both infix operators;

the integer division, written /. The expression 5/2 has integer value 2.

integer remainder, written mod. This is an infix operator.

the absolute value, written abs.

The language also provides two special integer constants: min_int for the smallest value of type int and
max_int for the greatest.

Real values are written as floating point numbers. They are written as doted decimals as -1.5 -1.567
-1.0 0.0 1.0 1.567 1.5 and may use an exponent: 2.22e-3 for 2,22.1073; 1.79e+3 for 1,79.103. A zero
following the dot may be omitted (as in 1.) but a preceeding one cannot: .1 causes a syntax error. Primitive
operators on reals are

e the four usual arithmetic operations whose symbols are dotted: +. -. *. /.;
e absolute value and remainder are written: abs_float abs_mod;

e the exponentiation written **. It is an infix operator.

e trigonometric functions: cos sin tan;

e and some others we will not detail...

There are three float constants: min float, max _float and epsilon_float. The latter being the smallest
positive float x such that 1.0 +. x is not equal to 1.0. It is usefull because computations on float
values are approximated. So rather the exact test x = 0. one will prefer (-.epsilon_float < x) && (x <
epsilon_float).



Division by zero Division by zero has no value for type int and special ones for type float.

Trying to evaluate 1/0 will raise an exception called Division by zero. When an exception is raised
during an evaluation process, this process is interrupted and the all program fails unless it contains a handler
for this exception. We will come back latter to this mechanism.

Trying to evaluate a division by 0. will give three differents special values according to the case of the
dividend. They are written infinity for a positive dividend, neg_infinity for a negative one and nan (Not
A Number) for a null one. Those special values are propagated along the computation on float expression.

Strong typing and type inference Due to strong typing and type inference, one cannot in OCAML owver-
load symbols. The integer addition has type int -> int -> int and can’t have also type float -> float
-> float. This is why the addition on reals is written with a plus followed by a dot (+.)

But one can explicitelity convert values between int and float by application of the functions float_of_int
or int_of _float.

User defined functions There is no exponentiation function for type int but we can have 5 to the square
by writting int_of float ((float_of_int 5) #** (float_of_int 2)) To avoid the tedious repetiton of this
writting, the programmer has the ability to define a new function:

let pow n m =
int_of_float ((float_of_int n) ** (float_of_int m))

The definition is introduced by the key word let. This new function is named pow. n and m are the formal
parameters of the function definition. The expression following the = symbol is the body of the definition.
The new function pow has type int -> int -> int. Once it is defined, 5 to the square can be obtain by
evaluating the application pow 5 2.

Characters and string Characters are values of type char, there are numbered from 0 to 255. Charac-
ters are written as them-selves surrounded by simples quotes:  ’a’ ...%z’> ’A’> ...°Z’ °0’ ...’9’> 7’
) . ) )+) )#)

Strings (of characters) are values of type string. They are written has themselves surrounded by
double quotes: "hello Georgia!". The double quote inside a string must be excaped: "hello, my name
is Pascal®’. And so the escaping character backslash. There is an empty string written "". The main
operators on strings is the concatenation written with the infix symbol ~. The expression "hello" =~ " " ~
" Georgia!" evaluates to the string value "hello Georgia!".

Modules and libraries A programming language provides a number of predefined data types and func-
tions. In OCAML, they are organized with modules which are sets of definitions concerning a given topic.
The modules Char and String contain additonal usefull functions for manipulating characters and strings.
A function f provided by a module M is written as M.f. Remark that, in OCAML, the names of modules are
required to be capitalized.

The module String provides the following (this is part of the OCAML documentation)

val length : string -> int
Return the length (number of characters) of the given string.

val get : string -> int -> char
String.get s n returns character number n in string s. The first
character is character number 0. The last character is character



number String.length s - 1. You can also write s.[n] instead of
String.get s n.

Raise Invalid_argument "index out of bounds" if n is outside the
range O to (String.length s - 1)

val create : int -> string
String.create n returns a fresh string of length n. The string
initially contains arbitrary characters. Raise Invalid_argument if n
< 0 or n > Sys.max_string_length.

val sub : string -> int -> int -> string
String.sub s start len returns a fresh string of length len,
containing the characters number start to start + len - 1 of string
s. Raise Invalid_argument if start and len do not designate a valid
substring of s; that is, if start < 0, or len < 0, or start + len >
String.length s

val index : string -> char -> int
String.index s c returns the position of the leftmost occurrence of
character c¢ in string s. Raise Not_found if ¢ does not occur in s

val index_from : string -> int -> char -> int
Same as String.index, but start searching at the character position
given as second argument. String.index s c is equivalent to
String.index_from s 0 c

[..]

The word val, which is in fact a key word of OCAML, introduces the name and type of the defined value.
As OCAML is a functional language, functions are values. Remark the value Sys.max_string length
(provided by the module Sys) in the specification of create which indicates that strings have a maximal
length.

All the libraries of the OCAML distribution are so specified. The basics are in the core library which
corresponds to the module Pervasives which is the initialy open module. This means that you don’t need
to prefix values of this module with the name of the module to use them.

The standard library includes 39 modules corresponding to usual data structures and usefull programing
utilities. 9 other libraries are also available, each one being a module, providing more specialized tools.

The unit type There is a particular type named unit which contains only one value written () (opening
and closing parenthethis). It is used for functions whose result or argument does not matter. Typicaly, input
and output functions make use of it.

val print_string : string -> unit
Print a string on standard output.

val read_line : unit -> string
Flush standard output, then read characters from standard input
until a newline character is encountered. Return the string of all
characters read, without the newline character at the end.

Polymorphic comparisons The infix operator = checks the equality between two values. This operator
has a polymorphic type written >a -> ’a -> bool. The result of a comparison is a boolean value and it



can be applied to values of any type. The symbol ’a is used as a type variables that may be instanciated
with any type expression during the type inference process. The only requirement is that the two arguments
of the equality test must have the same type.

Do not confuse here polymorphism and overloading of symbols since ”overloading” means that several
functions are attached to a symbol while ”polymorphism” means that a same function works properly for
values of any type.

Other polymorphic comparison operators are
<> negation of equality

< ”smaller than” comparison

> "greater than” comparison
<= ”smaller or equal than” comparison

>= "greater or equal than” comparison

Note that those operators will raise Invalid_argument if one try to apply them to functional values, that is
to say a value whose type contains an arrow (=>).

Using comparison: alternative Using the <= operator we can define the min and max functions such
that

e (min x y) evaluates to x if (x <= y), and to y otherwise

e (max x y) evaluates to y if (x <= y), and to x otherwise

Programming languages provide this kind of alternative definition by mean of the if-then-else construc-
tion. Let’s use it to define min and max

let min x y =
if (x <= y) then x
else y

let min x y =
if (x <= y) then y
else x

Both functions have polymorphic type ’a -> ’a -> ’a.

The words if, then and else are key words of the alternative construction. They are used to control
the evaluation flow: the condition between if and then (which must be a bool value) is first evaluated; and
according to its value, the evaluation process is oriented to the first expression (between then and else)
or to the second (after the else). Note that in a if-then-else construction only one of the alternative is
evaluated.

Recursive functions Now we have enough to introduce the powerfull feature of functional programming;:
the recursion. Let’s begin with the well known factorial function.

let rec fac n =
if n=0 then 1
else n * (fac (n-1))



We have fac: int -> int. Note that in case of recursive definitions, the key word rec must follow the
let. The name of the defined function comes after (here: fac).

The evaluation process of the application of fac may be described as:

1.

=~ W

6.
7.

(fac 3) evaluates to (3 * (fac 2))
(fac 2) evaluates to (2 * (fac 1))
(fac 1) evaluate to (1 * (fac 0))
(fac 0) evaluates to 1

so, (fac 1) evaluate to1 * 1=1

and so, (fac 2) evaluates to 2 * 1=2

and finaly, (fac 3) evaluates to 3 * 2=6

The factorial is well defined for naturals. What happens with negative arguments? Trying to evaluate
fac (-1)! will cause the following error message:

Stack overflow during evaluation (looping recursion?).

Actually, the "function loops”

1.
2.
3.
4.

fac (-1) evaluates to (-1) * (fac (-2))
fac (-2) evaluates to (-1) * (fac (-3))
fac (-3) evaluates to (-1) * (fac (-4))

and so on...

The case where the argument equals 0, the base case of the recursion, is never reached. In the mathematical
world, this is actually the case that the base case will never be reached as integers can infinitely decrease.
In the computers world the set of int values is finite and we said that computation on int values are made
modulo max_int. So we should have (on 32-bit processors)

fac (-1) evaluates to (-1) * (fac (-2))

fac -1073741823 evaluates to (-1073741823) * (fac (-1073741824))
which is (-1073741823) * (fac min_int)

fac min_int evaluates to min_int * (fac max_int) (and max_int is positive)

fac 1 evaluate to 1 * (fac 0)
fac 0 evaluates to 1

so, fac 1 evaluate to 1

1Remark the parenthesis around -1. They are required to avoid ambibuity with the substraction.



and finally, fac (-1) evaluates to a very big number!

But, what actually happens is that the processor has no room enough to reach the base case. Let’s try to
explain why. To evaluate an expression like 3 * (fac 2) one needs to proceed to the evaluation of (fac
2) remembering that it will have to multiply the result by 3. This “remembering” consumes memory space.
A lot of such “remembering”’s consume a lot of space and it can be to much for achieving the computation.
The memory consumed along a recursive process of evaluation is a stack where the delayed computation are
pushed until the base case is encountered. At this time the pushed elements are poped one after one, from
the last pushed to the first, to terminate the calculus.

When defining a recursive function attention must be paid to the reachability of the base case. This is
the warranty of the well foundness of recursive definitions. So let’s patch our fac definition in this way:

let rec fac n =
if n < O then raise (Invalid_argument "fac")
else if n = 0 then 1
else n * (fac (n - 1))

Note the chained if-then-else construction. In the case the argument of fac is negative, the evaluation
process will stop raising the exception Invalid_argument. This is done by the primitive function raise.

Local definition Our patched definition of fac have a design default, even when the argument is correct
(i.e. positive), the evaluation process will check its non negativity at each step of the recursively looping
evaluation process. We can avoid this bad feature using a local definition.

let fac n =
let rec loop n =
if n=0 then 1
else n * (loop (n-1))
in
if n < O then raise (Invalid_argument "fac")
else (loop n)

The local definition is between the second let and the key word in. A construction as let x = el in e2
is an expression which defines the value of x as being the one of el for the evaluation of e2. So x is said to
be local to e2.

Note that only the inner function loop has to be recursive and that the formal parameter n of fac is not
the formal parameter n of loop.

In this way, the negativity of the argument of fac is checked only one time. The function loop can
assume that its argument is not negative.

Local definitions can also be used to avoid the repetition of redondants calculus. For instance, if we note
that 22" = (2")? and 2?"*! = 2(2")?, to compute 2" we can first compute (one time) /2 and then z"
according to the parity of n. Let’s see how local definitions can be used for that

let rec pow x n =
match n with

0 ->1
| 1 -> x
| n —>

let r = pow x (n/2) in
let r2 =1 * r in



if (even n) then r2
else x * r2

Assuming that even checks the even parity of its argument.

Tuples Functions return one value and it may be needed to have computations which return more than
one value. For instance one may want to split a string as "hello world" into the two words it contains.
For this, programming languages provide the ability of embeding values in data structures. In our case we
can form the pair of the two words as ("hello", "world"). The type of this compound value is string *
string. There are two functions to acces to the components of a pair

val fst : ’a * ’b -> ’a
Return the first component of a pair.

val snd : ’a * ’b -> ’b
Return the second component of a pair.

Note that they are polymorphic functions and that the type of the elements of a pair may differ.

Consider, for instance, the function that split a string in two worlds. More precisely, words are separeted
by a space character. Our function splits the string into two substrings: its first word and the remainding
of the string

let head_word s =
let i = String.index s ’ ’ in
(String.sub s O i,
String.sub s (i+1) ((String.length s) - (i+1)))

This function has type string -> string * string. It fails with exception Not_found if the string contains
no space character.

More generaly one can form tuples of any length as (1, "one", "ein") which has type int * string
* string. But the functions £st and snd apply only one pairs (elements of the type a * ’b). If he needs
them, the programer has to define the projections for tuples others than pairs. For triples:

let fst_3 (x, y, z) = x
let snd 3 (x, y, 2) =y
let thd 3 (x, y, z) = z

In pratice, one rarely needs to explicitely defined this functions but will use the pattern matching mechanism
we will see later.

Beware that functions defined with two arguments cannot be applyed to a pair. A pair is one value, even
if compound of two elements. For instance, the function String.get has type string -> int -> char. So
trying to evaluate String.get ("hello world", 5) will issue to the typing error:

This expression has type string * int but is here used with type string

Lists: inductive data structure A list is a sequence of values. In a strongly typed language as OCAML,
all values of a list must have the same type. The generic data type of lists in OCAML is a parametrized
type written ’a list. It is defined in terms of constructors



e a constant, written [1, for the empty list

e an operator, written : :, for adding an element in front of an already existing list. It is an infix operator.
it is called the cons function.

This is an algebraic data type. The set of values of >a list can be inductively defined as.

For all type ’a

e [] belongs to ’a list;

e if x belongs to ’a and xs to ’a 1list then x::xs belongs to ’a list.

So the list of the 3 first positive integers is 0: :1::2:: [1. As lists are of frequent use, there is a syntactical
shortcut for such a value: [0;1;2]. The type parameter of the elements is int, so the all value has the type
int 1list. The type variable ’a has been instanciated to int by the type inference mechanism.

The main operator on lists is the concatenation. It is written as the infix operator @ Other current
functions for lists are provided by the module List.

Pattern matching So lists are either the empty one [], either of the form x::xs for some head value x
and tail list xs. Imagine we want to know if some value v occurs or not in a given list?. According to the
inductive structure of lists, we can apply the following reasonning

e if the list is empty then the result is false
e if the list has a head x and a tail xs, that is to say, has the form x: :xs then

— if x = v then the result is true

— else the result is the one of checking if v occurs in xs

So we have the theoretical way to define the function mem (for member) whose value is true or false
according to the occuring or not of a value in a list. This theory can be implemented in OCAML (and all
ML dialects) using the powerfull construction of pattern matching.

let rec mem v xs =
match xs with
[ —> false
| x::x8” => if (x = v) then true else (mem v xs’)

The key words match with enclose the expression being analyzed in terms of its pattern (its form). Then
follows the sequence of intended possible patterns separated with the vertical bar |. For each case, the
pattern itself is written on the left side of the arrow -> (characters minus and greater-than); the value of
the function associated to each pattern is written of the right side of the arrow. Moreover, the pattern
expression can name the components of the analyzed value and those names may be used in the associated
right expression.

We can also set more shortly

let rec mem v xs
match xs with
[1 -> false

| x::xs8” => (x = v) or (mem v xs’)

2This function is provided by the standard module List.



To summarize, a pattern matching construction like

match ... with
o -> ...
| x::xs > ...

operates both

e case analysis of the data structure

e binding of data structure components to local names

Tail recursion Following the recursive function schema of mem we can define the function that counts the
number of occurrences of a value in a list.

let rec count v xs =
match xs with
n->o
| x::xs8” => if (x = v) then 1 + (count v xs’) else (count v xs’)

In the positive alternative of the matching case x::xs’ the evaluation process must have get the value of
(count v xs’) before it can add 1 to get the final result. Here, we can avoid the calculations of 1 + to
be pushed. We do it by in adding an argument to the recursive function. This extra argument is called an
accumulator. Tt will contains along the recursive evaluation process the intermediate results

let count v xs =
let rec loop n xs =
match xs with
(] >n
| x::xs’ -> if (x = v) then (loop (n+1) xs) else (loop n xs)
in
loop O xs

The recursive local function loop is said to be tail recursive. We have used a local definition of the recursive
exploration of the list to keep the same type for the gobal function count. Note that the searched value
v is not an argument of loop. It is actually not needed because, this value is keept constant along the
exploration, and due to the scope of variables, the value v is known by the inner definition.

The correctness of this tail recursive version relies on the fact that the local recursive function loop is
first called with the wright accumulator value: 0.

A trace of the evaluation process of an application of count is

1. (count true [true; false; true; flase]) evaluatesto (loop [true; false; true; false] 0)
2. (loop [true; false; true; false] 0) evaluates to (loop [false; true; false] 1)

3. (loop [false; true; false] 1) evaluates to (loop [true; false] 1)

4. (loop [true; false] 1) evaluates to (loop [false] 2)

5. (loop [false]l 2) evaluates to (loop [1 2)

6. (loop [1 2) evaluates to 2

10



7. then (count true [true; false; true; flase]) evaluates to 2

The gain here is that there has been no need push pending calculus and then the number of steps of the
recursive evaluation process is almost divided by 2.

Note that as the if-then-else construction is functional, we could have also write

let count v xs =
let rec loop n xs =
match xs with
1 >n
| x::xs -> loop xs (if (x=v) then n+l else n)
in
loop O xs

with better emphasis the tail recursion schema: the recursive application of loop is unique and outmost in
the recursive expression.

Using and handling exceptions One wants to define the function that give the position of the first
occurence (the leftmost) of a value in a list. The point is: what will be the value of the function if the
value has no occurence 7 In a strongly typed language, the answer is not always obvious because we have
to determine a resulting value of the intended type for the erroneous argument such that we can be sure it
will never be regular value. Instead of this, exceptions are a better way to signal exceptionals or unexpected
situations.

So a proper way to define the index search function is

let rec index v xs =
match xs with
[1 -> raise Not_found
| x::xs8” => if (x = v) then 0 else 1 + (index v xs’)

As an exercise: give a tail recursive version of this function.

Imagine now that we have a list of lists (a value of type ’a list list) and we want to find the (first)
position of an ’a value in it. The position is here double: the position of the sublist in which the value
occurs and the position in this sublist. The result of the function will be a pair of int.

The idea of the algorithm is the following:
e if there is no more list, then fail

e clse

— if the value is in the first sublist then the result is (0,7) with 0 for the index of the sublist and 4
for the index of the value in the sublist

— else search in the remainding list and add 1 to the index of the sublist in the obtained result.
This can be done in this naive literal way
let rec index2 v xss =
match xss with

[1 -> raise Not_found
| xs::xs8’ —>

11



if List.mem v xs then
(0, index v xs)
else
let (i1, i2) = index2 v xss’ in
(i1+1, i2)

Remark that one can use a tuple in a let construction.

This definition has the default of exploring a first time xs to check the occurence of v and a second time
to compute its index. Using the fact that the function index raises an exception whenever v does not occurs
in xs we potentialy already have the two informations. So we have either a value either the signal that we
have to search again. To actualize this potentiality we need to catch the eventual raising of the exception in
order to resume the computation. This is done in OCAML in this way

let rec index2 v xss =
match xss with
[ -> raise Not_found
| xs::x88° —>
try
(0, index v xs)
with Not_found ->
let (i1, i2) = index2 v xss’ in
(i1+1, i2)

The exception handling construction is done with the two keys words try and with. Its meaning can be
phrased as: try to compute index for v in xs and if it succed, we have finished; but if it fails with Not_found
exception, we continue the computation on the rest of the list. The try-with construction of this second
definition has replaced the if-then-else of the first one.

This way to use exceptions to control the evaluation process is related to programming with continuations.
Actually, the exception mechanism of programming languages is an optimized particular case of the more
general continuation mechanism.

Sorted lists Ordering values storage data structure as lists presents some advantages for some usual
operations as searching, adding, removing values. It may spped such operation by avoiding the explorate
the full length of the list.

Let’s see it with the mem function

let rec mem v xs =
match xs with
[ —> false
| x::x8” —>
if (x < v) then false
else (x = v) or (mem v xs’)

According to the ordering relation between the searched value v and the head value x, it is possible to decide
to leave the search before the end of the list is reached.

So let’s study how, given any list, we can compute a list containing the same elements, but rearranged
according to the ordering defined by the comparison operator <=.

The simplest sorting algorithm in functional programming is the insertion sort. It is based on a function
which inserts a value at its place in an already sorted list. The insertion is iterated with all the elements of
the list to be sorted; starting from the empty list, the resulting sorted list is thus constructed.

12



let rec insert v xs =
match xs with
0 -> [vl

| x::x8” -> if (v <= x) then v::xs else x::(insert v xs’)

let ins_sort xs =
match xs with
0->1

| x::xs’ -> (insert x (ins_sort xs’))
Naturally, one can give a tail recursive of ins_sort

let ins_sort xs =
let rec loop xsl xs2 =
match xs1 with
[l —> xs2
| x::xs1’ -> loop xsl’ (insert x xs2)
in
loop xs []

But the function insert can’t be rewrite into a tail recursive definition. This is due to the fact that insert is
commutative ((insert x1 (insert x2 xs)) = (insert x2 (insert x1 xs)), but not the :: constructor
(in general x1::x2::xs # x2::x1::x8).

Higher order functions The above sorting algorithm is a simple iteration of the inserting function over
elements of the list to sort. This kind of iteration is generic over lists and can be recursively defined as a
function of which one argument is the function to iterate

let rec it_list f a xs =
match xs with
0->a
| x::xs => (f x (it_list f a xs))

The first argument (£) is the function to iterate, the second argument (a) is the value for the base case and

the third (xs) is the list over which iterate. The function it_list has type (’a -> ’b -> ’b) -> ’b -> ’a
list -> ’b. We have that (it_list f a [x1; x2; ..;xn]) computes (f x1 (f x2 .. (f xn a)..)).

Using this iterator, we can defined ins_sort by

let ins_sort xs =
it_list insert [] xs

The module List of the standard library provides some predefined iterators
val map : (’a => ’b) -> ’a list -> ’b list
List.map f [al; ...; an] applies function f to al, ..., an, and
builds the list [f al; ...; f an] with the results returned by f. Not

tail-recursive.

val fold_left : (’a -> ’b => ’a) -> ’a -> ’b list -> ’a

13



List.fold_left f a [bl; ...; bn] is £ (... (£ (f a bl) b2) ...) bn.
val fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

List.fold_right £ [al; ...; an] b is f al (f a2 (... (f an b)
...)). Not tail-recursive.

val for_all : (’a -> bool) -> ’a list -> bool

List.for_all p [al; ...; an] checks if all elements of the list satisfy
the predicate p. That is, it returns (p al) && (p a2) && ... && (p
an) .

val exists : (Pa -> bool) -> ’a list —> bool

List.exists p [al; ...; an] checks if at least one element of the list
satisfies the predicate p. That is, it returns (p al) || (p a2) ||
[l (p an).

Our it_list is in fact List.fold right.

With the List.exists iterator, it is possible to simply define the mem function

let mem x xs
let eq x ¥y
(y = x)
in
List.exists eq_x xs

As OCAML is a full functional language, there exist functional expressions which allow to write a
function without to have to explicitely define it. For instance

let mem x xs =
List.exists (fun y -> (y=x)) xs

where the expression fun y -> (y=x) is the function that checks if his argument y is equal to x.

Merge sort A less simple sorting algorithm is based on the principle of “divide to conquer”. It is the
mergesort: to sort a list, split it in two parts, sort those two parts and merge the two sorted sublists.

To divide the list into two parts, we use the following

let divide n xs =
let rec loop n xs xsl=
match n, xs with
0, _ => (xs1, xs)
| _, (x::x8’) -> loop (n-1) xs’ (x::xs1)
| _ -> raise (Invalid_argument "divide")
in
loop n xs []

The int argument n gives the length of the first sublist. The order is not preserved in the first sublist but
we don'’t care as it will be sorted latter.
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Merging of two sorted lists will interleave the values of the two list such that the ordering is preserved.
As it explores two lists, it is defined by double induction

let rec merge xsl1 xs2 =
match xs1, xs2 with
[1, _ -> xs2
[ _, [0 -> xs1
| (x1::xs81’), (x2::x82’) ->
if x1 < x2 then
x1::(merge xsl1’ xs2)
else
x2:: (merge xsl xs2’)

The sorting function itself is
let merge_sort xs =
let rec loop n xs =
match xs with
0 ->10
| [x] —> xs
| _ -
let nl1 = n/2 in
let n2 = n - nl in
let xs1, xs2 = divide nl xs in
merge (loop nl xs1) (loop n2 xs2)
in
loop (List.length xs) xs

Note that we do so that the list is divided in two egal parts (more or less 1).

An alternative way of splitting lists is

let divide xs =
let rec loop xs xsl xs2 =
match xs with
[1 —> (xs1, xs2)
| [x] —> (x::xs1, xs2)
| x1::x2::xs -> loop xs (x1::xs1) (x2::xs2)
in
loop xs [1 []

with this, the sorting function becomes
let rec merge_sort xs =
match xs with
0o d->zxs
| _ >
let xs1, xs2 = divide xs in
(merge (merge_sort xsl1l) (merge_sort xs2))

Remark how we have used a minimalist and compact pattern matching: we have join two cases with give a
similar result; and we have avoid bindings by the use of the anonymous universal pattern (_).
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The standard library of OCAML provides a tricky implementation of mergesort. It avoid to actually
calculate the two parts of the divided lists. It is indeed desirable to avoid this because to get the first part
of the list, as do our divide function, leads to build a new copy of this part. And this is repeated each time
the dividing function is called. So, here it is how we can do better

We define a function that merely get the second part of the list

let rec tls n xs =
match n, xs with
0, _ > 1[I
| n, x::xs -> tls (n-1) xs
| _ -> raise (Invalid_argument "tls")

Remark that this function does not build any new structure.
We then use it this way in the sorting process
let rec merge_sort xs =

let rec loop n xs =
match n, xs with

0, _ > 1[1]

| 1, x::_ -> [x]

| _ —>
let nl = n/2 in
let n2 = n - nl in

merge (loop nl xs) (loop n2 (tls n2 xs))
in
loop (List.length xs) xs

The trick is that the first elements of the list are actually considered by the loop function itself while the
last are given via the tls function.

Indeed, the implementation of the standard library optimizes things by considering, in the local recursive
function, list of at least lenght 2, and moreover, it uses alternation of ordering to have a tail recursive merging
process. But we will not consider it further.

1.2 User defined inductive types

ML languages are suitable for symbolic computation on algebraic data types. This is due to its ability of
defining data structures by constructors (free symbols) and functions by pattern matching.

Binary trees For instance the set BT of binary trees (with labeled nodes) may be inductively defined by

e the empty tree belongs to BT

e if x is a label and if b; and by are two elements of BT then the tree whose root is labled z and the
subtrees are by and bs belongs to BT

Symbolicaly, let Empty be a constant and Br a ternary free symbol, we can set

e Empty € BT

e if z is a label and b1,by € BT then Br(z,bi,be) € BT. We say that x is the root label and by, by the
subtrees (resp. left and right).
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This definition can be rephrased in OCAML syntax

type ’a btree =
Empty
| Node of (’a * ’a btree * ’a btree)

The key word type introduces the new data type definition. The name of the new datatype is btree. It is a
generic data structure whose paramiter is >a. The two constructors cases are separeted by the vertical bar
|. The two constructors name are Empty and Node and when it is a functional one, the type of its argument
is given — as a tuple, if several values are needed — after the key word of. So defined data types are sum
types. In the computer scientists litterature they are also called variant type as constructors may encapsulate
values of any type.

The definition syntax of sum types intentionaly reminds the one of pattern matching because pattern
matching is the intended method to define functions over values of sum types.

For instance, the membership function for trees can be defined as

let rec btree_mem v b =
match b with
Empty -> false
| Node(x, bl, b2) -> (x = v) or (btree_mem v bl) or (btree_mem v b2)

Traversing binary trees Traversing a tree is a way to explore the values stored in it. There is three
ways to do that we can illustrate as three ways to output the values of the labels

e prefirz: output the root value, then traverse the left subtree, then traverse the right subtree;
e postfic: traverse the left subtree, then traverse the right subtree and, at the end, ouput the root value;

e infiz: traverse the left subtree, then output the root value, then traverse the right subtree.

Those names come for the three ways to write propositional or arithmetics expressions.

Rather than ouputing values of labels, we propose to build the list of them according to the three
traversing. Then will appear that the inductive structure of lists leads to more or less natural traversing
functions.

So let’s begin by postfiz traversing. The most natural definition suggested by the above description is

let rec postfixl b =
match b with
Empty -> []
| Node(x, bl, b2) -> (postfixl bl)@(postfixl b2)@[x]

We don’t like it because firstly it is not tail recursive and secondly the composition of lists appending leads
to do several times the same work.

We can avoid to redo the same by patching our function this way

let postfix2 b =
let rec loop b xs =
match b with
Empty -> xs
| Node(x, bl, b2) -> loop bl (loop b2 (x::xs))
in
loop b []
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But this is still not tail recursive.

We can fix this by adding to the inner loop function an extra argument to push the right subtrees until
the left one is consumed. We simulate so, but at lower cost, the pushing of the outer function call by the
evaluation process

let postfix3 b =
let rec loop b bs xs =
match b, bs with
Empty, [] -> xs
| Empty, b::bs -> loop b bs xs
| Node(x, bl, b2), bs -> loop b2 (bl::bs) (x::xs)
in
loop b [1 [J

Now we have no work redondancy and are tail recursive. We can improve a bit more our function by avoiding
to push Empty subtrees. For this, we enforce the case analysis by deeper pattern matching

let postfix3’ b =
let rec loop b bs xs =
match b, bs with
Empty, [1 -> xs
| Empty, b::bs -> loop b bs xs
| Node(x, Empty, Empty), [l -> (x::xs)
| Node(x, Empty, Empty), b::bs -> loop b bs (x::xs)
| Node(x, Empty, b2), bs -> loop b2 bs (x::xs)
| Node(x, bl, Empty), bs -> loop bl bs (x::xs)
| Node(x, bl, b2), bs -> loop b2 (bl::bs) (x::xs)
in
loop b [1 [

Let’s now implement the prefixz traversing. The natural recursive function is

let rec prefixl b =
match b with
Empty -> []
| Node(x, bl, b2) -> x::(prefixl bl)@(prefixl b2)

It has the two defaults of postfix1.

We can eliminate the work redoing in the same way, except that we put at the beginning what was put
at the end

let rec prefix2 b =
let rec loop b xs =
match b with
Empty -> xs
| Node(x, bl, b2) -> x::(loop bl (loop b2 xs))
in
loop b []

We could eliminate non tail recursivity as we did in postfix3
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let prefix3_0 b =
let rec loop b bs xs =
match b, bs with
Empty, [1 -> xs
| Empty, b::bs -> loop b bs xs
| Node(x, bl, b2), bs -> loop bl (b2::bs) (xs@[x])
in
loop b [1 [I

But doing so, we reintroduce work redondancy because of the list appending in (xs@[x]).

This can be improved by remarking that building a list by adding values at the end is equivalent to add
all values at the head and then reverse the list. This give the definition

let prefix3 b =
let rec loop b bs xs =
match b, bs with
Empty, [] -> List.rev xs
| Empty, b::bs -> loop b bs xs
| Node(x, bl, b2), bs -> loop bl (b2::bs) (x::xs)
in
loop b [1 [I

It can also be improved by avoiding to push Empty trees (as an exercise).

We can’t do better with the prefix traversing. This is due to the fact thaht in pur functional language,
there is no way the have lists constructed by the end. Those structures are named queues. The inductive
lists have naturaly the behaviour of stacks.

Let’s now consider our third traversing: the infiz one.

let rec infixl b =
match b with
Empty -> []
| Node(x, bl, b2) -> (infixl bl)@[x]@(infixl b2)

To step to a tail recursive version of this function, we push both the root label and the left subtree

let infix2 b =
let rec loop b xbs xs =
match b, xbs with
Empty, [1 -> xs
| Empty, (x,b)::xbs -> loop b xbs (x::xs)
| Node(x, b1, b2), xbs -> loop b2 ((x,bl)::xbs) xs
in
loop b [1 []

The traversing implemented here is rightmost infix: the infix list for the right subtree is stored first in the
accumulator xs, then is put the root label and then the list for the left subtree. We do this because of stack
structures of lists.

For the infix traversing, we can also use a tricky way to “push” the pending computations by rearranging
the tree structure. Indeed, a list [x1; x2; ...; xk] is almost a tree where lefts subtrees are always Empty:
Node(x1, Empty, Node(x2, Empty, ..., Node(xk, Empty, Empty))...). This gives, as a first attempt
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let rec infix3 b =
match b with
Empty -> []
| Node(x, Empty, b2) -> x::(infix3 b2)
| Node(x1l, Node(x2, bl, b2), b3) -> infix3 (Node(x2, bl, Node(xl, b2, b3)))

It is not tail recursive because of the second matching case.

Let’s fix it. We cannot use an auxiliary list because of its stack structure which will reverse the order of
elements. But we can simulate both the push of pending computations and values to be output by sliding
to the left subtree the rearrangement

let infix3’ b =
let rec loop b xs =
match b with
Empty -> xs
| Node(x, bl, Empty) -> loop bl (x::xs)
| Node(xl, bl, Node(x2, b2, b3)) -> loop (Node(x2, Node(xl, bl, b2), b3)) xs
in
loop b []

This operates the rightmost infix traversing.

Mutual recursion General trees are trees whose nodes may abitrarly branch: a node may have any
number of subtrees. Such a data structure can be defined as the inductive sum type

type ’a gtree =
GEmpty
| GNode of ’a * (’a gtree) list

We use the list structure ((*a gtree) list) to have a variable number of subtrees attached to a node. Note
that this entails that there is several values of type ’a gtree which represent a tree with only one node:
GNode(x, [1), GNode (x, [GEmpty]), GNode (x, [GEmpty; GEmpty]), etc.

A list of trees is called a forest. Functions over gtree’s often need to defined both a function for the
tree and an other for the forest; and they often are mutualy recursive. For instance the prefix traversing of
gtree is defined

let rec gprefix g =
match g with
GEmpty -> []
| GNode(x, gs) -> x::(gprefixS gs)

and gprefixS gs =
match gs with
o ->1
| g::gs -> (gprefix g)@(gprefixS gs)

The key word and indicates the mutual dependence of the recursive definitions of the two functions. A
mutual definition may involve an arbitrary number of functions.

Binary search trees As for the list case, the membership test can be improved, if the tree structure obey
to an ordering. Binary search trees are values of ’a btree which satisfy the following proprety:
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e Node(x, bl, b2) is a binary search tree if bl and b2 are binary search trees and the root label x is
greater than the labels of bl and smaller than the labels of b2.

e Empty is a binary search tree.

The binary structure of the tree determines a partition of its labels edged by the root label. It then allows
to proceed to dichotomic searching

let rec bstree_mem v b =
match b with
Empty -> false
| Node(x, bl, b2) —->
(v = x) or
(if (v < x) then (bstree_mem v bl)
else (bstree_mem v b2))

The ordered data structure of binary search trees can also be used as an intermediate storage structure
for sorting lists. The sorting process is then divided into two steps

1. insert the values of the list to sort into a binary search tree.

2. traverse the tree structure in order to extract the ordered list.

To achieve the first step we define a function which inserts a new value, at its intended place, in a binary
search tree

let rec ins_bstree v b =
match b with
Empty -> Node(v, Empty, Empty)
| Node(x, bl, b2) ->
if (v < x) then
Node(x, (ins_bstree v bl), b2)
else
Node(x, bl, (ins_bstree v b2))

Note that the new value is always added as a new leaf of the tree.

The binary search tree structure is implemented by (a tail recursive) iteration of of insertion function

let bstree_of_list xs =
let rec loop xs b =
match xs with
1 ->b
| x::xs’ -> loop xs’ (ins_bstree x b)
in
loop xs Empty
The traversing which extracts the sorted list from a binary search tree is the infix one. Just call infix
any function which implements it. The two steps of the sorting function is the functional composition of the

two above functions.

let bstree_sort xs =
infix (bstree_of_list xs)
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Heapsort A heap is a well balanced binary tree such that the root label of any of its subtree is smaller?
than all other labels of the subtree. A well balanced tree is one where each branch of the tree have the same
length upto 1.

The heapsort proceeds also in two steps: build the heap structure then extract the sorted list. The key
point of functional programs for heapsort is the function which adds a new element to a heap: it must
preserve the “well balanced” property.

So, the key function is

let rec ins_heap x h =
match h with
Empty -> Node(x, Empty, Empty)
| Node(x0, hi, h2) ->
if (x < x0) then
Node(x, h2, (ins_heap x0 h1))
else
Node(x0, h2, (ins_heap x h1l))

Note that it is designed for minimal heaps: it keeps the smallest value as the root. The trick of this function
is the rotation it operates with subtrees to preserve the “well balanced” property.

Storing values of the list to be sorted is done, as for the previous, by iterating the insertion function

let heap_of_list xs =
let rec loop xs h
match xs with
(1 >h
| x::xs -> loop xs (ins_heap x h)
in
loop xs Empty

The extraction step traversing is a little less simple than the case of binary search trees. Indeed, the only
think we know about heaps is that the root’s value minimizes all the labels strored in the heap. So we will
keep the root as first element of the extracted list. But we don’t know any think about the relation between
labels strored in the left subtree and the ones of the right subtree. So we need to merge the extracted sublist
instead of simply appending them. This gives

let rec list_of_heap h =
match h with
Empty -> []
| Node(x, hil, h2) -> x::(merge (list_of_heap hl) (list_of_heap h2))

Then the main function is

let heap_sort xs =
list_of_heap (heap_of_list xs)

2 Proofs

Induction As the main paradigm of functional programs is recursion, a lot of proofs about functional
programs require induction.

3Remplacing “smaller” by “greater” defines also a heap.
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On the set of naturals NI, the induction principle can be given as
if ®[0] and if Yy € N[.®[y] = ®[y + 1] then Vo € N.P[x]

Considering +1 as the unary successor function, the set of naturals is recursively defined with the two
constructors 0 and +1: 0 € M and if x € N then x +1 € N. So, because it follow the constructor’s
structure of naturals, the above induction principle can be called structural induction. Extending this to
inductive data types as lists or binary trees, we can set for them such structural induction principles. To
adopt a “computer scientist” style, lets write x : t for x belongs to the set of values of type t. The structural
induction on lists is

If ®[[1] and if Vy : *a.Vys: ’a list.(P[ys] = P[y::ys]) then Vxs: ’a list.P[xs]
And the structural induction on binary trees is

If ®[Empty] and if Vx : *a.¥bl: ’a btree.VYb2: ’a btree.(P[bl] A P[b2] = P[Node(x, bl, b2)])
then Vb : ’a btree.P[b]

Note that the structural induction on lists follows the induction on naturals as the length of [] is 0 and
the length of x:xs equals then length of xs plus 1. For the structural induction on binary trees we rather
use a generalized induction principle using the ordering of naturals:

ifVye NVz e N.(z <y A ®[z] = @[y]) then Vz € N[.P[z].

as the size — ie number of nodes — of b1 and b2 is strictly less than the size of Node(x, bl, b2).

Types and values From the symbolic point of view, we can see the set of wvalues as the set of ML
expressions or terms build upon basic constants and constructors. So true belongs to the set of values of
type bool, 123 belongs to the set of values of type int and [1;2;3] belongs to the set of values of type int
1list. This will be written true : bool, 123 : int and [1;2;3] : int list.

More generaly for the set of values of type ’a list, what ever can be the type ’a (and the set of its
values), as we add with typing discipline, we have that if x : a and if xs : a list then x::xs:’a list.
But recall that we give a stronger meaning to typing assignement. Namely here, it means that if x and
xs are actually defined values then also is x::xs. This entails that the constructors of sum types are
regarded as totaly defined functions. We will still use the typing like notation for this. For instance, we write
Node: (’a * ’a btree * ’a btree) -> ’a btree.

Equality statements When a function, say £ : t1 -> t2, is applied to a value, say v1 : t1, it is expected to
result in a value v2 : t2. We write this as an equational statement (f v1) = v2. For instance (not true) =
false. Let el and e2 be two ML expressions where occur variables x1 .. .xk with respective types t1 ...tk.
The equality el = e2 means that there exists a value v such that forall values v1 ...vk of respective types
tl ...tk, we have el[vl/x1...vk/xk] = v and e2[v1l/x1...vk/xk] = v. In other terms, the universal closure
of el = e2 is valid. For instance (false or x) = x.

A point here is that the equality statement el = e2 can be true or false but can also be neither true,
neither false: this is the case when el or e2 does not produce any value. Think, for instance to the incomplete
definition of fac which may loop. The equality statement el = e2 has a truth value if and only if exists a
type t such that el : t and e2 : t. So when this requirement is fullfilled, equality statements can be used as
equations.
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Symbolic evaluation The boolean disjunction can be defined using a if-then-else construction

let disj x1 x2 =
if x1 then true else x2

By definition we have here that (disj false x) = (if false then true else x) which is given by
substituing the actual arguments false and x to the formal parameters x1 and x2 in the body of the definition
of disj (we call this unfolding the function’s definition). We still want to have that (disj false x) = x.
So we set the semantics of the if-then-else construction by putting the two equality statements:

e (if true then el else e2) —el

e (if false then el else e2) =e2
One can also define the boolean disjunction using pattern matching

let disj x1 x2 =
match x1 with
true -> true

| false —> x2

And we still want to have that (disj false x) = x. So we set, for the semantics of match-with construction
applied to booleans

e (match true with true -> el | false —> e2) =el

e (match false with true -> el | false —> e2) =e2

Those two semantics equations are valid, but they are far from a complete semantics of pattern matching,
for instance, we also have

e (match false with false —> e2 | true —> el) =e2

e (match false with true -> el | _ -> e2) =e2

We have remarked that pattern matching have also a binding effect. So, if the expression e2 depends on a
variable x, we have

e (match false with true -> el | x -> e2) = e2[false/x]

Moreover, the match-with construction may adress any wvalue, in the sens given at the begining of this
paragraph. For instance, basic pattern matching on lists is

e match [] with [] > el | x::xs -> e2=-el

e match e::es with [] -> el | x::xs -> e2 = e2[e/x,es/xs]

We will not go further with a formal definition of the semantics of pattern matching. Just keep in mind that
it mimics the evaluation process of match-with construction.

We call symbolic evaluation the application of user defined functions unfolding and semantics equations
of language constructs.

Here is for instance how the concatenation of lists is defined and and its application evaluated
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let rec (@) xs1 xs2 =
match xsl with
[ -> xs2
| x::xs1’ -> x::(xs1’@xs2)

[1]e[3;4] = (1::[1)e[3;4]
= match (1::[]) with [1 -> [3;4] | x::xs1’ -> x::(xs1’°@[3;4])
= 1::([]e[3;4])
= 1::(match [] with [] -> [3;4] | x::xs1’ -> x::(xs81’@[3;4]))
= 1::[3;4]
= [1;3;4]

More generaly we can say that, using symbolic evaluation, we get the two equalities:

o ([JOxs2) = xs2

o ((x1::xs1)0xs2) = x1::(x810xs52)

which is closed to the equaltionnal way to define the concatenation of lists.

As a first step in proving programs, here are two little properties on the append function 6. We will
prove them using symbolic evaluation and structural induction.

LEMMA (append1):
Vx:’aVxs: ’a list.(([x] @ xs) = (x::x8))

Recall that [x] is a short cut for x::[].

PROOF: by symbolic evaluation.

((x::[1) @ xs) = match x::[] with [] -> xs | x’::x8’ -> x’::(x8’0xs)
= x::([Jexs)
= x::(match [] with [J] -> xs | x’::xs’ -> x’::(xs’0x8))
= x::XS
LEMMA (appendNil):

Vxs: ’a list.((xs @ []1) =xs)

The concatenation is recursively defined by case on its first argument, so
PROOF: by structural induction on xs.
- If xs equals [], by symbolic evaluation, we have ([J@[]) = [].

- If xs equals x::xs’, assuming the induction hypothesis (xs’ @ [1) = xs’, we have to prove that
(x::xs8?) @ [] = (x::xs8”). Actually

(x::x8’) @ [ = =x::(xs’ @ [1) by symbolic evaluation
= (x::x87) by induction hypothesis

We left as an exercise to the reader to prove that the concatenation of lists is associative:

LEMMA (assoc. append):

Vxsl, xs2, xs3:’a list.(xs10(xs20xs3) = (xs10xs2)0xs3)

Equality of programs In functional programming, equality of programs is equality of functions. Two
functions are equal when they give the same values for the same arguments.
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We can so prove that our two programs revl and rev2 both compute the same function (in the mathe-
matical sens). This is usefull at the practical level to ensure that the improved tail recursive implementation
of reversing a list actually correspond to a less performent but more natural implementation. Lot of bugs
are due to such attempt to improve the behaviour of a program which breaks the safety of a former version
of a program.

So, let’s recall the definitions

let rec revl xs =
match xs with
0 ->1

| x::xs -> (revl xs)@[x]

let rec rev2 xs =

let rec loop xsl xs2 =

match xsl with

[1 -> xs2

| x::xs1’ -> loop xsl’ (x::xs2)
in

loop xs []
We want to establish the following

THEOREM:
Vxs:’a list.((revl xs) = (rev2 xs))

We assume that revl: ’a list -> ’a list and rev2: ’a list -> ’a list have been established.

The inner loop of rev2 uses an accumulator (its second argument). This feature gives to the local loop
function a properties that is more general, regarding its relationship with revl than the one set by our
theorem. We call this property the invariant of the local function loop from which we will deduce our
theorem. So, let’s prove first that

LEMMA (key lemma):
Vxsl, xs2:’a list.(rev2.loop xsl xs2) = (revl xs) @ xs2
(Note: we use the doted notation rev2.loop to designate the function loop local to the definition of rev2)
PROOF: we prove by structural induction on xs1:’a list that
Vxs2:’a list.(rev2.loop xsl xs2) = (revl xs) @ xs2

Note: the universal quatification on xs2 is required to have a suitable induction hypothesis.

- If xs1 equals [], (rev2.loop [] xs2) =xs2=[] @ xs2= (revl []) @ xs2.

- If xs1 equals x: :xs1’, our induction hypothesis is

Vxs2:’a list.(rev2.loop xsl1’ xs2) = (revl xs’) @ xs2

(rev2.loop (x::xs1’) xs2) = (rev2.loop xsl1’ (x::xs2)) by sym. eval

(revl xs1’) @ (x::xs2) by induction hypothesis*
(revl xs1’) @ ([x] @ xs2) by lemma (appendl)
((revl xs1’) @ [x]) @ xs2 by assoc. append

Then we have

= (revl (x::xs1’)) @ xs2 by sym. eval.
PROOF(of the theorem):
(rev2 xs) = (rev2.loop xs []) by def.
= (revl xs) @ [] by (key lemma)
= (revl xs) by lemma (appendNil)
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Double induction The merge function which explore in parallel two lists is defined with a double recursion.
Proofs about it may involve a double induction. To simplify, here is the proof that merge is totally defined.

THEOREM:
Vxsl, xs2:’a list.((merge xsl xs2):’a list)

Note: recall that we use e : t to mean that the value of e belongs to the set of values of the type t. So, the
atomic formula ((merge xs1 xs2) : ’a 1list) indeed means that merge is a well defined list value for all
list values xs1 and xs2.

PROOF: by induction on xs1 we prove that

Vxs2: ’a list.((merge xsl xs2) :’a list)

- If xs1 equals [1, we assume that xs2 : a list. By symbolic evaluation, we have that (merge [] xs2) =
xs2. Then, by hypothesis, we have that ((merge [] xs2) : ’a list).

- If xs1 equals x1::xs1’. Under the following hypothesis (x1 : ’a), (xs1’ : ’a list) and (induction
hypothesis) Vxs2 : ’a list.((merge xs1’ xs2) : ’a list) we prove ((merge x1::xsl1’ xs2) : ’a list)
by induction on xs2

— If xs2 equals [], as (merge x::xs1’ []) ==x::xs1’ we have by hypothesis and the cons (::) typing
property that ((merge x::xs1’ []):’a list).

—If xs2 equals x2: :xs2?, we have a second induction hypothesis: ((merge x1::xs1’ xs2’) :’a list).
By symbolic evaluation, we have that

(merge x1::xs1’ x2::x82’) =
if (x1 < x2) then x1::(merge xsl1’ x2::xs2’) else x2::(x1l::xsl’ xs2’)
We reason by case on the boolean value of (x1 < x2):

— If (x1 < x2) equals true we have that (x1:: (merge xs1’ x2::xs2’) : ’a list) by our first induc-
tion hypothesis.

— If (x1 < x2) equals false we have that (x2::(x1::xs1’ xs2’) : ’a list) by our second induction
hypothesis.

In fact, the double induction here and the use of the two induction hypothesis is the unfolding of lexico-
graphic ordering on the pair of arguments.

Nested double induction The infix traversing implemented by rearrangement of the tree in the function
infix3’ is defined by nested recursion: one first on the tree and, in the Node case, a second on one of its
subtree. This computational trick has a counter part when reasonning by induction on such programs: the
formula for the second induction embed the first induction hypothesis.

Let’s see this in the proof of the equality between the naive infix traversing implentation (function infix1)
and the more structural infix3’.

THEOREM:
Vb: ’a btree.(infix3’ b) = (infixl b)
Here again, the theorem will be a consequence of an invariant property of the local loop in the infix3’
definition.

LEMMA:
Vb: ’a btree.Vxs:’a list.(infix3’.loop b xs) = (infixl b)@xs

PROOF: by structural induction on b.
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- If b equals Empty, immediate by sym. eval.
- If b equals Node(x1, bl, b2), we will prove that
Vx:’a.Vbl: ’a btree.
(Vxs:’a list.((infix3’.loop bl xs) = (infixl bl)0Oxs)
= (Vxs:’a list.(infix3’.loop (Node(x, bl, b2)) xs) = (infix (Node(x1l, bl, b2)))@xs))
by induction on b2
— If b2 equals Empty. Assuming Vxs: ’a list.(infix3’.loop bl xs) = (infixl bl)@xs we prove

(infix3’.loop (Node(x1l, bl, Empty)) xs) = (infixl (Node(xl, bl, Empty)))0@xs

That is to say (infix3’.loop bl (x1::xs)) = (infixl b1)@[x1]@(infix1 Empty)@xs Which is true by
hypothesis and sym. eval.
— If b2 equals Node (x2, b2, b3). Let’s assume the two induction hypothesis
HR1:
Vx:’a.Vbl: ’a btree.
((Vxs:’a list.(infix3’.loop bl xs) = (infixl bl)@xs)
= (Vxs:’a list.(infix3’.loop (Node(x, bl, b2)) xs) = (infixl (Node(x, bl, b2))0xs)))
HR2:
Vx:’a.Vbl: ’a btree.
((vxs: ’a list.(infix3’.loop bl xs) = (infixl bl)@xs)
= (Vxs:’a list.(infix3’.loop (Node(x, bl, b3)) xs) = (infixl (Node(x, bl, b3))0xs)))
and also
H: (infix3’.loop bl xs) = (infixl bl)0Oxs)

We have then to prove

(infix3’.loop (Node(x1l, bl, Node(x2, b2, b3)) xs)
= (infix1l (Node(x1l, b1, Node(x2, b2, b3))))0xs

That is to say, by definition of infix3’

(infix3’.loop (Node(x2, Node(xl, bl, b2), b3)) xs)
= (infixl (Node(x1l, bl, Node(x2, b2, b3))))0xs

By definition of infix1 and associativity of @ we have that

(infixl (Node(x1l, bl, Node(x2, b2, b3))))0xs
= (infix1l (Node(x2, Node(xl, bl, b2 ), b3)))0xs

So, we need to prove that

(infix3’.loop (Node(x2, Node(xl, bl, b2), b3)) xs)
= (infixl (Node(x2, Node(xl, bl, b2 ), b3)))06xs

From HR1 and H we get
F1: (infix3’.loop (Node(xl, bl, b2)) xs) = (infixl (Node(xl, bl, b2))e@xs)
Then, from HR2 and F'1 we get the expected

(infix3’.loop (Node(x2, Node(xl, bl, b2), b3)) xs)
= (infixl (Node(x2, Node(xl, bl, b2 ), b3)))06xs
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Specification We want now to scale to the proof that some program meets some intended specification.
For instance, that a program computes a sorted permutation of its input. For this we first need to set the
specification of the intended behaviour of the programm and secondly prove the correctness of the functions
involved in the program.

Intuitively, a sorted list is such that for any values x1, x2 in the list, if x1 is before x2 then x1 < x2.
Because of transitivity of the ordering <, we only need to consider elements x1 and x2 such that x1 is just
before x2. This is easy to set if x1 and x2 are the two first elements of the list. In this case, by construction,
we know that the list has the form x1::x2: :xs for some xs. We can then define a recursive function which
checks if a list is sorted or not

let rec sorted xs =
match xs with
[1 -> true
| [x] -> true
| x1::x2::xs8 —> (x1 <= x2) && (sorted (x2::xs))

Alternatively, we can define the property to be sorted as the inductive predicate Sorted satisfying the
three axioms

DEFINITION(inductive predicate Sorted):

1. Sorted([1)
2. Vx: ’a.Sorted([x])

3. Vx1,x2;’aVxs: ’a.(x1 <x2 A Sorted(x2::xs) = Sorted(x1::x2::xs))

where x1 < x2 is a shortcut for (x1 <= x2) = true.

With such a structural definition of the intended proprety, it is easy to prove the correctness of the sorting
function ins_sort.

THEOREM:
Vxs :’a list.Sorted(ins_sort xs)

This theorem is a mere consequence of the fact that the inserting function preserves the ordering.

LEMMA:
Vxs :’a list.Vx: ’a.(Sorted(xs) = Sorted((ins x xs)))

PROOF: by structural case on xs.
(Note: “structural case” is a degenerated structural induction where induction hypothesis are ignored.)

- If xs equals [], the result is immediate.

- If xs equals x1: :xs1, we have to prove that for some x0 : >a, we have
Sorted(x1::xs1) = Sorted((ins x0 x1::xs1))
By definition of ins we have that
(ins x0 x1::xs1) =if (x0 <= x1) then x0::x1::xs1 else x1::(ins x0 xsl)

So, let’s consider the two cases:
— If x0 < x1, assuming Sorted(x1: :xs1), we need Sorted(x0::x1::xs1). What we have by Sorted.3.

-~ If x1 < %0, (ins x0 x1::xs1) = x1::(ins x0). We deduce Sorted(x1::(ins x0)) from the most
general
Vx : ’a.(x < x0, Sorted(x: :xs1) = Sorted(x:: (ins x0 xs1)))
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that we prove by induction on xs1.
— If xs1 equals [], we have x::(ins x0 []) = x::x0::[] and, as x < x0 by hypothesis, it is sorted.

— If xs1 equals x2::xs1. Assume, for some x1, that x1 < x0, Sorted(x1::x2::xs1). This gives, by
Sorted.3, x1 < x2 and Sorted(x2: :xs1). Remains to prove Sorted(x1::(ins x0 x2::xs1)).

According to the definition of ins, we consider for this the two cases:

— — If x0 < %2, we have to prove Sorted(xl::x0::x2:xs1), which we have as x1 < x0 < x2 and
Sorted(x2: :xs1).

— — If x2 < %0, we have to prove Sorted(x1::x2::(ins x0 xs1)). As we have x1 < x2, we only need
Sorted(x2:: (ins x0 xs1)) which we have by induction hypothesis (here is why we needed to generalize x
before doing induction on xs1).

To acheive the correctness of ins_sort we have to establish that it computes a permutation of its
argument. We consider that a list is a permutation of an other if and only if the number of occurences of any
value x in the first list is equal to its number of occurences in the second. So, we define the (ML) function
which counts the number of occurences of an x in a list:

let rec nb x xs =
match xs with
l->o
| x7::x8” —>
if (x = x’) then 1 + (nb x xs8’)
else (nb x xs’)

Note: we don’t want to have an optimized or a tail recursive definition of this function as we don’t want to
use It for computation but rather as a specification. And for this purpose a direct and simple expression is
better.

We will need the following trivial fact
LEMMA (nb-cons):

Vx1, x2:’aVxsl, xs2:’a list.
((nb x1 xs1) = (nb x1 xs2) = (nb x1 x2::xs1) = (nb x1 x2::x82))

PROOF: trivial by symbolic evaluation and case analysis of x1 = x2.
The correctness property we want is

THEOREM:
Vxs:’a list.Vx:’a.(nb x xs) = (nb x (ins_sort xs))

It is a consequence of
LEMMA:
Vxs:’a list.Vx1l, x2:’a.(nb x1 x2::x8) = (nb x1 (ins x2 xs))
PROOF: by structural induction on xs.
- If xs equals [], it is immediate as (ins x2 []) =x2::[].
- If xs equals x3: :xs. By definition of ins we have two cases:
—If (ins x2 x3::xs) = x2::x3::xs then the result is immediate.

—1If (ins x2 x3::xs) = x3::(ins x2 xs), by induction hypothesis, (nb x1 x2::xs) = (nb x1 (ins x2 xs))
and it is clear that in this case (nb x1 x2::x3::xs) = (nb x1 x3::(ins x2 xs)).
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Tuning specification The proof that insertion sort computes a sorted list comes naturaly by structural
induction because both the program and the definition of Sorted use simple structural tools. This is not as
simple with mergesort, because of the merging function.

Indeed, a proof that merge_sort is correct requires to prove that the merge function preserves the ordering

LEMMA (Sorted-merge):

Vxsl, xs2:’a list.(Sorted(xsl) A Sorted(xs2) = Sorted(merge xsl xs2))

Trying to attack directly the proof of this lemma by double structural induction will lead to multiply case
analysis. Let’s outline why: after double induction, there is two cases of merge definition x1:: (merge xsi
x::xs2) and x2:: (merge x1::xs1 xs2); but this is not enough to use the S3 clause of Sorted’s definition.
So in each case for merge we have to apply an other case analysis (resp. on xs1 and xs2). This gives the
total of 10 cases splitting. So we are tempted to reduce this by setting an alternative characterisation of
being sorted as “adding a smaller element at the head of a sorted list gives a sorted list”.

So, we need first to extend the ordering to a relation between a value x and a list xs. We write xs > x
to mean that all values of xs are greater than x, which reads also x is smaller than all values in xs®. To
define this relation, think about the recursive boolean function you would write to check that a value x is
smaller than all value in xs and turn it to the inductive definition of a predicate. You have graet chances to
choose the following

DEFINITION(xs > x): where xs: ’a list and x: ’a

1. Vx:’a.[l >»x

2. Vx, x0:’aVxs:’a list.((x0 > x) A (xs> x) = (x0::x8 > x))

We leave to the reader the definition of the dual xs < x.

Using this we can now give a new way to get recursively non empty sorted lists (the empty case does not
need any improvement). We set it as the following theorem to ensure that our original view is preserved

THEOREM (Sorted-cons):

Vx:’aVxs: ’a list.(Sorted(xs) A xs > x < Sorted(x: :xs))

PROOF: immediate by case on xs.
We must prove that merge does not introduce noise and preserves the >> relation.

LEMMA (merge->>):

Vx0:’a.Vxsl, xs2:’a list.(xs1>>x0 A xs2>> x0 = (merge xsl xs2) > x0)

PROOF: by double induction on xs1 and xs2
- If xs1 or xs2 equal [], trivial.
- If xs1 equals x1::xs1 and xs2 equals x2: :xs2, according to cases of x1 < x2

—If x1 < x2, we have x1 > x0 by the hypothesis x1: :xs1 > x0 and we have (merge xs1 x2::xs2) > x0
from the first induction hypothesis, then x1:: (merge xs1 x2::xs2) > x0.

— If not, we have x2 > x0 by the hypothesis x2: :xs2 > x0 and we have (merge x1::xs1 xs2) > x0 by
the second induction hypothesis, then x2:: (merge x1::xsl1 xs2) > xO0.

PRrOOF(of lemma (Sorted-merge)): by double induction on xs1 and xs2

5We should have written as well x < xs. The present choice is guided by what follows about binary search trees.
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- The case where xs1 or xs2 equal [] is still trivial.

- So let xs1 equals x1: :xs1 and xs2 equals x2: :xs2. According to the definiton of merge, there is two
cases.

—Ifx1 < x2, we have two prove Sorted(x1: : (merge xs1 x2::xs2)). We get Sorted(merge xs1 x2::xs2)
by induction hypothesis. So, by (Sorted-cons), we need to we prove that (merge xs1 x2::xs2) > x1.

We have by hypothesis that Sorted(x1::xs1), so xs1 > x1; we are in the case where x1 < x2 (ie
x2 > x1) and we have xs2 > x2 from the hypothesis that Sorted(x2::xs2), so x2::xs2 > x1; then, by
lemma (merge->) we have (merge xsl x2::xs2) > x1.

— The proof that Sorted(x2:: (merge x1::xs1 xs2)) follows a similar reasonning line.

Traversing structure The sorting algorithm using intermediate binary search tree structure relies on two
steps

1. the spliting of the value to sort into two globaly ordered parts.

2. the view of sorted lists as the concatenation of already sorted lists.

The spliting correspond in fact to the definition of binary search trees: what is on the left is less than
the root label; what is on the right is more. All we need can be defined on the inductive structure of ’a
btree’s.

Definitions of “to be less than” and “to be more than” are
DEFINITION(b < x): where b: ’a btree and x: ’a
e Empty < x

e Vx0:’a.Vbl,b2: ’a btree. (bl < x A x0<x A b2 <K x =Node(x0, bl, b2) < x)
DEFINITION(b > x): where b: ’a btree and x: ’a

e Empty > x

e Vx0:’a.Vbl,b2: ’a btree.(bl > x A x0>x A b2>>x =Node(x0, bl, b2) > x)

Note: we overload the symbols < and > that we used for lists. But as all our variables will be typed,
this should not cause confusion for the reader and emphasis the relationship of the minimizing/maximizing
relations.

A the definition of “being a binary search tree” is

DEFINITION(Bst(b)): where b: ’a btree

1. Bst(Empty)

2. Vx0: ’a.Vbl,b2: ’a btree.(Bst(bl) A bl < x0 A Bst(b2) A b2>> x0 = Bst(Node(x0, bl, b2)))

To ensure the correctness of the first step of binary search tree sorting, we must prove that the insertion
function ins_bstree preserve the Bst property

LEMMA (Bst-ins_bstree):

Vb : ’a btree.Vx: ’a.(Bst(b) = Bst(ins_bstree x b))
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Structural induction on b will give by induction hypothesis that inserting in left or right subtrees produce
binary search trees. But it will not ensure that the < and > relations are satisfied. So it must be proved
that insertion of smaller or greater values does not break the < or > relation.

LEMMA:(ins_bstree-<):

Vx1, x2:’aVb:’a btree.(b < x2 A x1 < x2 = (ins_bstree x1 b) < x2)
ProOOF: immediate by induction on b
LEMMA:(ins_bstree->>):

Vx1, x2:’a.Vb: ’a btree.(b > x2 A x1>x2 = (ins_bstree x1 b) > x2)

PROOF: immediate by induction on b

PROOF(Bst-ins_bstree): by induction on b with the help of lemmas (ins_bstree-<) and (ins_bstree->>)
for the inductive case.

Now comes the second step of the algorithm: the extraction of the sorted list from the tree structure.
The proof that the infix traversing of a binary search tree gives a sorted lists relies on two propreties:

e the fact that the relations < and > are carried from trees to lists
e a new view of sorted lists as the concatenation of sorted lists
Those two properties need the generalisation of < and > relation to list concatenation.
LEMMA (append-<):
Vxs1,xs2: ’a list.Vx:’a.(xsl < x A x82 < x = x810xs2 < Xx)
PRrROOF: immediate by induction on xs1
LEMMA (append->>>):
Vxs1,xs2: ’a list.Vx:’a.(xsl>x A xs2>> x = xs10xs2 > x)
PRrROOF: immediate by induction on xs1

The first property which carry < and > from trees to lists, is expressed by the two lemmas

LEMMA (btree-list-<):
Vb: ’a btree.Vx: ’a(b <« x = (infix b) < x)

PROOF: by structural induction on b with the help of ((append-<).

LEMMA (btree-list->>):
Vb: ’a btreeVx: ’a(b>> x = (infix b) > x)

PROOF: by structural induction on b with the help of ((append->>).
The second property, which see sorted as the concatenation of separated sorted lists is given by

LEMMA (Sorted-append)
Vxs1,xs2: ’a list.Vx: ’a.(Sorted(xsl) A xsl < x A Sorted(xs2) A xs2 > x = Sorted(xs10[x]@xs2))

Note: the expression zs1@[z]@zs2 correspond to one particular definition of the infix traversing (namely,
our function infizl). It does not mean that we are forced to use this function to define binary search tree
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sorting. We can use any other implementation of infix traversing provided that we have proved the equality
between our function and infizl which is used here as the specification of infix traversing.

PROOF: by induction on xs1

— If xs1 equals [1, as Sorted(xs2) and xs2 > x by hypothesis, we have Sorted([x]@xs2) by (Sorted-
cons).

— If xs1 equals x1::xs1, from the induction hypothesis we deduce Sorted(xs1@[x]@xs2). We will have
Sorted(x1::xs1@[x]0xs2) if we prove that xs1@[x]@xs2 > x1.
We have xs1 > x1 from the hypothsesis Sorted(x1::xs1); we have x1 < x (ie x > x1) from the hypothesis

x1::xs1 < x; and then we have xs2 > x1 from the hypothesis xs2 > x and the previous x > x1. What is
implicit in this is that the separating x gives that values in xs1 are all smaller than the one in xs2.
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