

Logique pour l'Informatique Avancée

Feuille de TD nº 9

Exercice 1 — Division par deux et logarithme

Le but de cet exercice est de définir un λ -terme div₂ tel que div₂ $S^n 0 \stackrel{*}{\hookrightarrow} S^{\frac{n}{2}} 0$, la division étant comprise comme division entière.

Nous allons avoir besoin pour cela d'un schéma intermédiaire.

1. On souhaite pouvoir utiliser le schéma de récurrence d'ordre 2 suivant :

$$t_0 = t_0$$

 $t_1 = t_1$
 $t_{n+2} = f(n, t_{n+1}, t_n)$

Le problème avec cette récursion est qu'elle est d'ordre 2. Or, on ne peut écrire avec rec seulement des récurrences d'ordre 1. On souhaite donc commencer par écrire un λ -terme rec₂ qui implémente ce schéma.

Pour cela, on commence par introduire, comme pour Fibonacci, la suite $C_n = \langle t_n, t_{n+1} \rangle$.

- (a) Trouver une récurrence d'ordre 1, en utilisant π_1 et π_2 au besoin, satisfaite par la suite C_n .
- (b) En déduire un λ -terme crec₂ tel que crec₂ S^n0 t_0 t_1 $f \stackrel{*}{\hookrightarrow} \langle t_n, t_{n+1} \rangle$
- (c) En déduire un λ -terme rec_2 tel que rec_2 S^n0 t_0 t_1 $f \stackrel{*}{\hookrightarrow} t_n$
- 2. On souhaite donc écrire un terme calculant la division (entière) par deux. On va suivre le schéma de récurrence suivant :

$$0/2 = 0$$

$$1/2 = 0$$

$$(n+2)/2 = (n/2) + 1$$

En utilisant le terme rec_2 , écrire un λ -terme div_2 réalisant cette opération de division (entière) par 2.

3. Trouver un λ -terme ifz tel que ifz 0 t_{\top} $t_{\bot} \stackrel{*}{\hookrightarrow} t_{\top}$ et ifz Sx t_{\top} $t_{\bot} \stackrel{*}{\hookrightarrow} t_{\bot}$ pour tout terme x. Indication: On utilisera astucieusement rec.

On admet qu'alors, si on pose $\log' = \lambda f \lambda n$.ifz n 0 $S((f f) (\operatorname{div}_2 n))$ et $\log = \log' \log'$, alors le terme \log ainsi défini calcule (1+) le logarithme (entier) de son argument.

Exercice 2 — Somme des entiers

On se donne le λ -terme suivant :

iter =
$$\lambda x \lambda y \lambda f$$
.rec $x \ y \ (\lambda x \lambda h.f \ x \ h)$

On admet ici que iter S^n0 y f $\stackrel{*}{\hookrightarrow}$ f $S^{n-1}0$ (f $S^{n-2}0$ $(\cdots (f$ 0 $y)\cdots)). Dit autrement, iter <math>S^n0$ y f calcule $f(n-1,f(n-2,f(\cdots f(0,y)\cdots)))$. En particulier, iter 0 y f $\stackrel{*}{\hookrightarrow}$ y

- 1. En utilisant le terme iter précédent, écrire un λ -terme Sigma tel que Sigma $S^{n}0$ f calcule $\sum_{i=0}^{n-1} f(i)$. On pourra utiliser le terme add vu en cours.
- 2. On rappelle la formule suivante : $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. En utilisant le λ -terme Sigma, écrire un λ -terme sumint tel que

sumint
$$S^n 0 \stackrel{*}{\hookrightarrow} S^{\frac{n(n+1)}{2}} 0$$

Prouver ensuite sa correction.

Exercice 3 — Typage

Les λ -termes suivants sont-ils typables? Si oui, en donner le type.

- 1. $\lambda f \lambda x. f x$
- 2. add = $\lambda x \lambda y$.rec $x \ y \ (\lambda z \lambda h.Sh)$
- 3. $\Omega = (\lambda x. \ x \ x)(\lambda x. \ x \ x)$
- 4. iter = $\lambda x \lambda y \lambda f$.rec $x \ y \ (\lambda z \lambda h.(f \ x \ h))$

Exercice 4 — Ecrire des λ -termes

1. Voilà une multiplication plus performante, en donner le λ -terme.

$$\begin{array}{rcl}
0 \times y & = & 0 \\
Sx \times 0 & = & 0 \\
Sx \times Sy & = & Sy + (x \times Sy)
\end{array}$$

2. Voilà une soustraction plus performante, en donner le λ -terme.

$$0 - y = 0$$

$$Sx - 0 = Sx$$

$$Sx - Sy = x - y$$

3. Fonction d'Ackermann.

$$ack(0,y) = Sy$$

$$ack(Sx,0) = ack(x,S0)$$

$$ack(Sx,Sy) = ack(x,ack(Sx,y))$$