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1 Scientific contributions (extended description)

I present my scientific activities since the beginning of my PhD in 1986. T also describe some scientific
directions for future work and projects, in paragraphs entitled “ Plan for future research” inserted in this
presentation. I have added some dates to some of the section titles, these dates are very approximative
and their purpose is to help locating in time the various research themes.

1.1 Summary: main scientific contributions

Here is a list of what I currently consider as my main scientific contributions, since the beginning of
my career, with some references.
I am currently mainly working on topics related to Coherent Differentiation, see 1.7.5.

e Hypercoherence semantics of Linear Logic. A denotational model of classical Linear Logic (LL)
where “first-order functions” are sequential in the sense of Milner, Vuillemin and Sazonov, avoid-
ing the use of intensional notions such as Berry and Curien’s Sequential Algorithms (and, more
generally, deterministic strategies in games). I have also exhibited strong connections between
this model and sequential algorithms (extensional collapse) as well as another independent char-
acterization of its morphisms. [BE91b, BE91a, CE94, BE93, Ehr93, BE94, Ehr96, Ehr99, Ehr99|.

e Relational semantics: non-uniform coherence spaces, extensional collapse. 1 introduced new
coherence spaces which, unlike Girard’s, are fully compatible with the relational model of LL. This
model yields surprising new interpretations of the exponential and its points can be incoherent
with themselves (quite a surprising feature opening new perspectives in semantics). In the same
line T proved that the extensional collapse of the relational model is the Scott model of LL by
means of a completely new duality. [BEMO07, BEM09, ECS10, Ehrl12a, BE00, BEO1, Ehr04,
BEM12, Ehr12b, Ehr20c|.

e Vector space based models of LL: Kdthe spaces and finiteness spaces. 1 discovered new models of
LL where formulas are interpreted as topological vector spaces and proofs as linear and continuous
functions. The first uses locally convex spaces (lcs) and the second one, a “purely algebraic” analog
of lcs’s discovered by Lefschetz in the 1940’s. In the associated Kleisli categories, morphisms are
generalized power series (analytic functions). This enforces the basic intuition that LL is the
logic of (infinite dimensional) linear algebra. [Ehr02, Ehr05, BET12, Ehr10, Ehr18|.

o Differential lambda-calculus and LL. Inspired by these models I introduced the idea that proofs
(programs) can be differentiated wrt. their hypotheses (parameters): such operations are freely
available in these models. I showed that the corresponding extension of LL consists in endowing
the exponential with rules which are dual to the usual structural rules and that the associated
Taylor expansion can be used as the foundation for a new program approximation theory, deeply
related with Bohm trees. [EL06, ER06a, EL07, Ehr10, BEM10, CES10, BEM10, EG16, Ehr19,
ERO03, ER06b, ER08, EL10b, EL10a, Ehr18|.
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o Probabilisitic coherence spaces and functional languages. 1 developed this model introduced by
Girard, refining its definition, extending it to the exponential and recursive types and proving
adequacy and full abstraction theorems wrt. various functional probabilistic programming lan-
guages (including a version of Levy’s call-by-push-value). T extended this model to “continuous
types” (such as the real line) using cones and a notion of stable functions between them. This
extension has been shown to be conservative by one of my PhD students. [EPT11, EPT14,
CEPT17, EPT18b, DE11, EPT18a, ET19, Ehr19, Ehr20a, Ehr20b].

1.2 Introduction: categorical semantics

Proof systems and programming languages are formalisms designed for specific purposes: formalizing
mathematical proofs, writing computer programs. As is now well-known, such formalisms are deeply
related by a long-standing correspondence: the Curry-Howard isomorphism, discovered in the 1950’s
and extended in various directions since then. This correspondence is called an isomorphism because
it works at three levels: logical formulas are related to types, mathematical proofs are related to
(functional) programs and cut-elimination of proofs is related to program execution (presented as
rewriting).

Among the various extensions of the Curry-Howard isomorphism, the most remarkable is probably
the one to classical logic by Griffin [Gri90]. Indeed, before this fundamental discovery which relates
purely classical principles such as the Peirce Law with primitives of functional languages allowing to
handle the evaluation context (the most well known being call/cc), the Curry-Howard isomorphism
was restricted to intuitionistic logic and deeply associated with its effectiveness features such as the
disjunction or the existence property. The classical extension extends this effectiveness to a new
interactive setting where these properties do not hold as such.

In spite of this rich entanglement of concepts coming from mathematical logic and computer science,
the design of logical or computational systems remains a fairly difficult task because of the many
possible choices concerning their syntax and, more importantly, their operational properties. This is
the syntax camembert mou' problem already singled out by Girard in the 1980’s. Fortunately however,
the Curry-Howard correspondence has a kind of third leg, which can be generically called categorical
semantics.

Category theory has been introduced by mathematicians who observed that some kinds of algebraic
invariants (for instance, groups or modules) can be associated with geometric objects (for instance,
topological spaces or manifolds) and that such correspondences can — and actually must — be extended
to morphisms. This leads to the the crucial idea that mathematical structures have to be considered
together with their morphisms whose global features somehow witness the properties of these objects;
this is the key idea of category theory. In that sense, categories must be considered as algebraic objects
generalizing monoids.

Category theory also became a very powerful tool for abstracting mathematical constructions or
situations appearing in many distinct but analogous settings: (co)limits, adjunctions, monads etc and
still plays an important role in this respect, besides its status of a generalized algebra.

In the mid 1960’s, Christopher Stratchey stressed the lack of mathematical foundations for the
many programming languages which were becoming more and more essential in the current practice
of computer scientists; the absence of formal mathematical semantics led to serious issues as to the
meaning of programs. Here “meaning” has not to be taken in an abstract philosophical sense, but in a
very concrete one: what will be the effect of the program when run on an actual computer? It is the
meeting of Stratchey and Dana Scott in Oxford in 1969 which gave rise to a new field of theoretical
computer science: denotational semantics which we can also call categorical semantics since its main
idea consists in interpreting types as objects in a category, and programs as morphisms. They were
actually considering a particular category, namely that of complete lattices and “Scott continuous”
functions (monotone functions preserving directed lubs), a setting strongly suggested by the Rice
Shapiro theorem on partial recursive functions.

!Soft cheese. This pleasant expression was used by him for qualifying all kinds of more or less artificial syntactic
artifact, during his famous DEA lectures in 1986-87 that I’ve been lucky enough to attend.
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This at the same time allowed Dana Scott to settle a long standing problem: find a “functional
interpretation”? of the pure lambda-calculus introduced by Church in the 1930’s and soon recognized as
a suitable setting for defining general computable functions (later proved equivalent to Turing machines
and all other ways of defining partial computable functions).

Such models of programming languages have several positive outcomes.

e First they answer Stratchey’s request® of a formal semantics for programs allowing to express
their meaning mathematically and to prove properties on them. For instance, the fact that
an expression of type ¢ (the type of integers) will actually be evaluated to a unique integer
(independently on the evaluation strategy) can be checked syntactically by proving a Church-
Rosser property of the corresponding rewriting system, but also semantically using a suitable
model (Scott domains, coherence spaces etc).

e One of the main features of denotational semantics is that it is modular, meaning that the
semantics of a program can be computed from the semantics of its various parts. This means in
particular that when one wants to extend the language with an additional construct, it suffices to
find an interpretation in the model for this new construct without changing all the interpretation.

e Models usually contain much more objects and morphisms than those which can be defined using
the programming language under consideration. This means that one can find in the model new
ideas for extending or refining the syntax one started from. This is typically what happened with
the discovery of LL by Jean-Yves Girard or with my introduction of differential constructs in the
lambda-calculus and in linear logic.

e Models are quite agnostic as to the presentation of the language and of its operational semantics,
as long as the main requirement that the interpretation is invariant under reduction is preserved.
So by providing global abstract settings where many different syntaxes can be embedded, models
provide a more canonical grasp to programming languages and logical systems, reducing the
camembert mou effect.

1.3 Some contributions to semantics

After Gérard Huet’s and Pierre-Louis Curien’s DEA’s lectures* in 1985-86 and Girard’s and Krivine’s
DEA’s lectures® in 1986-87, all insisting on the importance of models and presenting their beauties,
I was quickly convinced that this was a perfect research area for a PhD, that I started under the
supervision of Pierre-Louis Curien in 1986.

1.3.1 The Calculus of Constructions (1986-1988) During a DEA internship in INRIA Roc-
quencourt in 1986, I had the opportunity to meet Thierry Coquand and Gérard Huet who introduced
me to the recently discovered Calculus of Constructions which, at that time, was being implemented
in Caml as a proof assistant. In parallel T also learned about Girard’s system F and its qualitative
domain and coherence space denotational semantics [Gir86|, but at that time, inspired by Curien’s
categorical combinators®, I was more interested by the global categorical structures of models than by
their various concrete instances (continuous semantics, stable semantics etc.).

Therefore I developed in my PhD thesis various notions of categorical models for the Calculus of
Constructions, some of them based on the notion of fibration (Grothendieck) and relating them with
other approaches such as Cartmell’s categories with attributes. In these settings I proved results relating

2By this I mean an interpretation of lambda-terms as functions acting on a suitable non trivial space. Such a quest
is most natural because the basic intuition behind lambda-terms is that they represent functions.

$Unfortunately he died too early to really see the flourishing of his ideas in the late 1970°s and 1980’s.

‘DEA d’informatique fondamentale de Paris VII, the DEA I actually took.

SDEA de logique de Paris VII; these were incredibly exciting series of lectures since Girard had just discovered linear
logic and Krivine was setting down the bases of his realizability program, with a quite refreshing viewpoint on the
lambda-calculus.

SWhich were used by Gérard Huet’s group at INRIA as a kind of assembly language in Caml’s implementation: the
categorical abstract machine (CAM) later replaced by the category-independent ZAM in Xavier Leroy’s new implemen-
tation.
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terms and types with their interpretation, this work is reported in [CE87, Ehr89a, Ehr89b|. In 1988,
after my first discussions with Antonio Bucciarelli at ENS, I understood that digging into the fine grain
structures of models would lead to deeper insights and we started to work together on sequentiality, a
notion introduced independently by Jean Vuillemin, Robin Milner and Vladimir Sazonov in the 1970’s.

1.3.2 Denotational semantics, adequacy, full abstraction As already mentioned, the first
denotational models of programming languages were based on complete lattices (soon replaced by
Scott domains which generalize them) and Scott continuous functions.

Scott semantics. In these domains, compact (or isolated) elements play the role of “finite generators”.
Scott continuity means that, for getting a finite” information from the output of a function, a finite
information on the input is sufficient. This accounts quite naturally for the finite nature of computations
expressed in particular by the Rice Shapiro theorem.

More specifically, the key ingredient in the objects interpreting types in this kind of model (usually
called domains) is an order relation whose intended meaning is that the smaller and element is, the less
it is defined. Typically, such a domain has a least element usually denoted 1, and which represents the
completely undefined value. The simplest example is the flat domain of integers {L,0,1,...} ordered
as follows: x < y iff z = 1 and y # L. In this domain L represents the completely undefined integer®
and all the other elements are fully defined integers.

The abstract programming language PCF. One of the great ideas of Dana Scott in his investiga-
tions on the denotational semantics of programming languages, has been to introduce a paradigmatic
functional programming language powerful enough for being Turing complete, and simple enough to be
fully formally described in a few lines. This language, usually called PCF (for programming computable
functions) is a simply typed lambda-calculus extended with one ground type (for us, it will always be
the type of integers, but the original versions also featured a type of booleans) with basic constructs on
this type (successor, predecessor, conditional) as well as a fizpoint construct allowing to define recursive
programs.

Just like the pure lambda-calculus, PCF is a Turing complete functional language, but one has to
be aware that the sources of this Turing completeness for these two languages are quite different. In
the pure lambda-calculus, it comes from the complete freedom in applying terms to terms, involving in
particular self-application?, whereas in PCF term application must respect the quite restrictive simple
type discipline, preventing self-application; there Turing completeness results of course from the direct
availability of fixpoint operators.

PCF is given together with a rewriting system which includes S-reduction as well as quite natural
rules dealing with integers and fixpoints. This rewriting system is easily seen to be Church-Rosser.
Moreover, a simple sub-relation of this basic set of rules defines a reduction strategy'?, it is called here
weak head reduction and has the following main feature: if a closed term M of type ¢ can be reduced
to an integer n using the general reduction, then it can be reduced to n by weak head reduction (with
possibly more reduction steps of course). In other words, weak head reduction is a complete strategy
for computing values'! in PCF.

Adequacy and observational equivalence. Such models also satisfy an important property called
adequacy. It means that, if the denotational interpretation of a closed term of type ¢ is the integer n,
then the reduction of this term leads to the value n. The converse of this statement easily results from

"In this setting, finite means compact, or isolated.

8 Any closed program of type ¢ which loops forever and never produces any result; we have all seen too many such
programs. . .

°The key ingredient in the encoding of fixpoint operators in the pure lambda-calculus.

10Tn the sense that it is deterministic: given a term, there is at most one redex to be reduced, according to this
reduction relation.

' At the end of the day, in PCF, one only computes integers which are the only things one can observe: a function of
type e.g. ¢ = ¢ is an infinite device which cannot be observed in a finite time. Observing the term which defines it is not
the same thing as observing the function itself, see Section 1.3.2.
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the soundness of the interpretation (if the term M reduces to the term M’, then M and M’ have the
same interpretation). Adequacy is a kind of normalization property and its proof typically relies on
reducibility (aka. realizability) techniques.

It has an important consequence regarding observational equivalence, a central concept in the study
of programming languages. Simplifying a little bit'? two closed terms M and M’ of the same type o
are observationally equivalent if, whenever given any closed term C of type ¢ = ¢, both terms C M
and C' M’ either diverge or reduce to the same integer n. In other words, M and M’ are observationally
equivalent if you can use indifferently M or M’ as “subroutines” in any context!3.

An immediate consequence of adequacy (and soundness) is that, if two terms of the same type have
the same interpretation in the considered model, then they are observationally equivalent. This means
that the model can be used as a tool to prove the observational equivalence of programs. Indeed,
proving observational equivalence is notoriously difficult as it involves a universal quantification over
all possible contexts and, even worse, it is not a modular concept (you cannot prove observational
equivalence of programs by reducing this task to substructures of these programs: if you know that M;
is observationally equivalent to M/ for i = 1,2, you cannot infer a priori that M; My is observationally
equivalent to M7 M3).

Full abstraction. When the converse of this implication holds, the model is said to be fully abstract.
This means that the model not only can be used as a tool for proving observational equivalence in the
language, but also that it is a complete tool for this purpose. Moreover, the mere existence of a fully
abstract model implies that observational equivalence is a modular concept.

The Scott model of PCF is not fully abstract for this language. The reason boils down to the
existence of a Scott continuous function por'* of type ¢ = (1 = ¢) (to be understood as a function
taking two integers and returning an integer) which behaves as follows:

e if one of the two arguments is 0, the result is 0, even if the other argument is L
e if both arguments are 1 the result is 1.

Then it is easy to define two closed terms M and M’ of type of type (¢ = (¢ = ¢)) = ¢ whose inter-
pretations in the Scott model take different values on por but which can be proved!'® observationally
equivalent: the Scott model is not fully abstract for PCF.

One reason for this lack of full abstraction is that the Scott model hosts elements such as por,
which is not definable in PCF. The main feature of por is that it is not possible to say which of its two
arguments it evaluates first: if it were the first one then we would have por(L,0) = L and if it were
the second one we would have por(0, L) = L (and we know that it looks at its arguments as otherwise
it would be a constant function, but we have por(1,1) =1 and por(L,0) = 0).

1.4 Sequentiality and strong stability

In other words por is not a sequential function. This notion was introduced independently by Jean
Vuillemin, Robin Milner and Vladimir Sazonov in the 1970°s. If N stands for the flat domain of
natural numbers (see 1.3.2) and k € N then it is easy to define the notion of sequential function
f Nk — N : it is a monotone function (wrt. the product order) such that if f(z) = L then there are
two possibilities:

e cither f(y) = L for any y > x (that is: there is no way to add information to the input so as to

obtain an information at the output)

e or thereis an i € {1,...,k} such that z; = | and, if y > z and f(y) # L, then y; # L; such an
1 is called a sequentiality index for f at x. This ¢ is an input that is undefined in x and that is
necessary to f for yielding an output.

12The official definition admits non closed terms and uses the concept of context which is slightly more tricky to define;
on closed terms the equivalence relations are the same.

131t is worthwhile to note that as most of this theory, this concept is insensitive to complexity aspects.

YM¥For parallel or.

5 Typically using another adequate model where por does not exist.
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1.4.1 Generalizing sequential algorithms (1991-1992). For trying to define a fully abstract
model of PCF on a semantical basis'® Gérard Berry and Pierre-Louis Curien introduced the concept
of sequential algorithm. Indeed, as it is presented above, the notion of sequential function cannot be
generalized so as to define a cartesian closed category'”. As explained in the introduction of [Ehr99],
this is due to the fact that a sequential function can have several sequentiality indexes at a given x
and sequential algorithms contain explicit choices of indices. These explicit choices allow to define a
cartesian closed category which has been later understood as a category of games and deterministic
strategies'®.

I started to work on this topic with Bucciarelli in 1989 and we first generalized sequential algorithms,
presenting them as pairs of a sequential function and of a “choice function” for sequentiality indices,
going in the opposite direction [BE93|. One major idea of this construction was the observation that
indices (like the k “positions” in the cartesian product N¥) can be understood as linear functions (in
the sense of linear logic, see below) from the considered space (for instance N’i) to the “Sierpinsky
space”, that is, the domain with two elements 1 < T. Indeed, the objects of this category, called
sequential structures, are domains equipped with “abstract cells” which are Sierpinsky-valued linear
maps.

1.4.2 The discovery of strong stability (1991-1993). Later on, playing once more with the
definition of sequentiality, we understood that it could be expressed in a completely different way, as
a preservation property. We observed that, if we say that a subset A of N’i is coherent if it is finite,
non empty, and if, for any index 4, if all the elements x of A satisfy x; # L then there is some n such
that x; = n for all x € A, then being sequential from N’j_ to Nll is equivalent to preserving coherence
and commuting with the glb’s of coherent sets.

This was a striking observation for two reasons:

e First, it generalized in some sense Berry’s idea of stability [Ber78]| rediscovered later by Gi-
rard |Gir86], a weakening a sequentiality leading to cartesian closeness (in the definition above,
replace “coherent” by “upper-bounded”, which easily implies coherence in the sense above, but
there are sets which are coherent in our sense but not in Berry’s).

e Second, unlike the notion of “index” sequentiality is based on, the much more general concept of
coherence can be extended to function spaces, leading to a cartesian closed category of qualitative
domains with coherence and strongly stable functions.

This was the object of our articles [BE91b, BE91a, BE94]. I found the situation quite interesting since
we had two radically different ways to extend sequentiality to functional types: the “game theoretic”
approach of sequential algorithms and the “extensional” approach of strong stability. So I tried to
figure out if the two notions are equivalent is some sense.

More precisely I wanted to define a “projection” from sequential algorithms to strongly stable
functions whose main effect would be to forget the explicit choice of indices contained in sequential
algorithms. This however requires some care, and such a projection cannot be defined for all sequen-
tial algorithms'®. But more importantly, the general notion of qualitative domains with coherence
(gDC) 1.4.2 that we introduced in [BE91b| appeared soon to be too general for proving the surjectivity
of this projection.

Therefore I progressively added some restrictive conditions on gDC’s until one memorable Sunday
of 1992 where I suddenly understood that all these unrelated conditions boiled down to the extremely
simple definition of an admittedly non intuitive new concept: hypercoherence spaces.

16Milner already proposed a construction of such a model based on PCF syntax.

'"That is, a category with finite products and where, given two objects X and Y, one can define a space X = Y which
represents the space of morphisms from X to Y; such categories are necessary to interpret PCF.

!8This idea has been further developed in particular in [Nic94, HO00, AJMO00] to define fully abstract models, by
adding to determinism an additional condition stipulating that a strategy cannot access the whole history of earlier
moves.

19Because a sequential algorithm of type (1 = ¢) = ¢, for instance, can use “intensional” information about its argument
to produce a result in ¢, for instance it can make a difference between the completely undefined function (mapped to L)
and the program of type ¢ = ¢ which tests the value of the argument before looping forever (mapped for instance to 0).



Thomas Ehrhard

A posteriori, hypercoherence spaces are quite similar to Girard’s coherence spaces that led him to
the discovery of linear logic [Gir87]. A coherence space is simply a set called the web?® together with
a binary reflexive and symmetric relation on this set called coherence relation. The elements of the
web should be considered as elementary pieces of information, and the binary relation express when
two such elementary information are compatible. Then a “compound information” is simply a clique,
that is, a subset of the web such that any two elements are related by the coherence relation. Ordered
under inclusion, the cliques of a coherence space form a domain with a least element (the empty clique)
which is a special case of Berry’s notion of dl-domain?.

It is quite interesting to observe that, before coherence spaces, Girard used qualitative domains
in his stable denotational semantics of system F, which are more general than coherence spaces: a
gD is a web together with a collection of subsets of this web, let’s call them configurations, closed
under directed unions, subsets and containing all singletons, so it is essentially a (potentially infinite
dimensional) simplicial complex. Our notion of qDC’s was using qD’s in a crucial way and we will
see that they are still essential with hypercoherences. Of course a coherence space can be seen as a
gD with a very special property: to check that a finite subset of the web {ai,...,a,} is accepted, it
suffices to check that all pairs {a;,a;} are. This fundamentally binary nature of coherence vanishes
when moving from stability to strong stability?2.

1.4.3 Intermezzo: Linear Logic. This is a good place to say a few more words about linear logic
(LL) which plays a central role in my work since my discovery of hypercoherence spaces in 1992. The
reader acquainted with LL can safely skip this section.

Before replacing qD’s with coherence spaces Girard observed that a stable function from a qD X
to a gD Y can be described by means of its trace which is a set of couples (xg,b) where xg is a finite
configuration of X and b belongs to the web of Y; the idea is quite simple: zg is a minimal configuration
where the stable function produces b. The set of all such pairs (xg,b) of a finite configuration of X
and of a point of Y can be equipped with a gD structure so as to define a new gD denoted X = Y
whose configurations are in bijective correspondence with the stable functions from X to Y: this is
the key step for proving cartesian closeness. There is an interesting asymmetry in this construction
between the left-hand side and the right-hand side: on the left one uses finite configurations (which are
sets of elements of the web) whereas on the right one uses single elements of the web. This suggests
restricting one’s attention to the special pairs where the left-hand component is a singleton: through
the above correspondence between configurations in X = Y and stable functions, this corresponds to
a special class of stable functions which are quite easy to characterize. These are the stable functions
which commute with all existing unions of configurations, they are called linear (stable) functions. So
the operation X = Y on qD’s actually splits into two simpler one:

X=Y =1X—oY

where Z — Y is a qD whose configurations represent the linear (stable) maps from the qD Z to Y
whereas !X is a new construction that Girard called ezponential for quite good reasons.

Focusing first on Z — Y, Girard observed that the special case where Y = L, the special gD whose
web is a singleton (there is only one up to unique iso) is quite interesting: Z —o L has the same web as
Z (up to trivial iso) and if one performes this operation twice, defining (Z — L) —o L, one retrieves
Z as soon as one requires it to be a coherence space instead of an arbitrary gqD: it is precisely for
this reason that Girard moved from general qD’s to coherence spaces in his presentation of the stable
semantics.

20Tt is quite natural to assume that this set is at most countable.

21 Berry proved that these domains, together with stable functions, form a cartesian closed category which is a model
of PCF but he didn’t observe that coherence spaces and stable functions form a cartesian closed sub-category sufficient
large for defining this model; in other words, all objects considered by Berry were coherence spaces, but he didn’t notice!

22 A typical example is provided by the well known Gustave’s functions like g : N3 — N, which maps (L, 0, 1), (1, L,0)
and (0,1, 1) to 0 and (0,0,0) to 1. Taken pairwise, the 3 first bahaviours are perfectly sequential, for instance mapping
(1, L,0) and (0,1, 1) to 0 and (0,0,0) to 1 is a sequential behaviour: test first the first argument and depending on the
obtained value decide which input testing next. But these 3 elementary behaviours are not globally coherent, that is, as
a whole, g is not a sequential function, although it is stable in Berry’s and Girard’s sense. This kind of phenomenon can
of course be observed for any arities, not only 3.
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This suggests a beautiful analogy with linear algebra: coherence spaces are like vector spaces® and

linear (stable) functions are like linear maps, L is like the field (1-dimensional space), Z — Y is like
the vector space of linear maps from Z to Y so that Z —o L is like the dual of Z and the iso between
(Z — 1) —o L is like the well known canonical iso between the vector space F and its bidual E**.
Pushing the analogy forward Girard introduced a tensor product of coherence spaces X ® Y as well as
a direct product X & Y, together with their dual operations co-tensor X % Y and direct sum X &Y%+

Concerning “!” Girard understood that it was a functor on the category of coherence spaces and
linear maps similar to a “symmetric tensor algebra” whose structures and properties allowed to recover
the cartesian closed structure of coherence spaces and stable functions®®.

But Girard is a logician and clearly for him “=" means (intuitionistic) implication so what he
had discovered in coherence spaces was actually a decomposition of implication (the most important
connective of logic) into simpler ones: a linear implication “—” and an exponential modality “!”. He
understood that, in terms of sequent calculus®%, this linearization of implication corresponds to a drastic
restriction on the structural rules, forbidding the most important ones: weakening®” and contraction?®.
The role of the exponential modality is then to make these structural rules available again, but now as
explicit logical rules associated with this new unary connective (and its dual), and no more as implicit
structural rules as in intuitionistic or classical logic.

The effects of this refinement of proof theory were too many to be listed here, let us mention only

those which are relevant to the present research summary.

e Conjunction and disjunction are now available in two versions: the multiplicative connectives ®
(tensor) and % (co-tensor) and the additive connectives & (direct product) and @ (direct sum)
that we have already mentioned in coherence space. They differ logically by the way the context
of “hypotheses” is handled in their introduction rules®’.

e There is a linear negation A* corresponding to the linear duality mentioned above on coherence
spaces and which, just like classical negation, is involutive, so that for instance the formulas
A — B and B+ — Al are equivalent (where A — B = A1 % B is linear implication, to be
compared with the “A = B = -AV B” of classical logic).

e There are 4 new rules associated with the exponential connectives “!” and its dual “7”: weakening,
contraction, dereliction (whose intuitive meaning is clear: if we consider proofs of A — B as linear
proofs of A = B and !A — B as “general proofs” of this implication, it expresses that the first
class of proofs is contained in the second one, in other terms, it allows to forget linearity, whence
the name) and promotion which allows to make a proof arbitrarily duplicable and discardable.
It is certainly the most complicated rule of LL, being, in some sense, the only one which deals
with infinity. Notice that promotion is the only rule of LL for introducing a “!”, we shall come
back to this point in 1.7.

e [t is known that classical propositional logic, presented as a sequent calculus, has a cut elimination
property: there is a terminating rewriting system on classical proofs for eliminating cuts. But
this rewriting is far from being confluent, quite the contrary: for any two proofs of a formula A,
there is a third one which reduces to each of these two proofs! One fundamental observation of
Girard is that this is not really due to the involutivity of classical negation, but rather to the
free availability of structural rules in Gentzen classical sequent calculus. And indeed, in spite

Z3With webs playing the role of bases.

24 Contrarily to what we are used to with finite dimensional vector spaces, the co-tensor does not coincide with the
tensor, and neither does direct sums coincide with direct products. This distinction tensor/co-tensor and sum/product
appears in linear algebra when one moves from finite dimensional vector spaces to infinite dimensional topological vector
spaces, so it is not so familiar. . .

%5He probably didn’t know that it was a comonad, but all the comonadic features of
see.

26 A particularly logically convenient presentation of proofs due to Gentzen.

2"Which allows not to use an hypothesis in a proof.

28Which allows to use an hypothesis several times.

29The main feature of the sequent calculus is that it has only introduction rules, apart the cut rule, which can be
eliminated by cut elimination (Gentzen’s Hauptsatz). The cut rule is the sequent calculus version of modus ponens.

“1I” were clear to him as we shall
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of its involutive linear negation, the LL sequent calculus enjoys normalization, confluence, has a
denotational semantics invariant by cut-elimination (in coherence spaces for instance), all these
properties meaning that contrarily to classical logic3®, and like in intuitionisitc logic, LL proofs
are computationally meaningful.

e Thanks to its linear decomposition of logical rules, LL admits a graphical proof representation
which is far more parallel3' than the sequent calculus and even than the lambda-calculus (or
natural deduction) of intuitionistic logic: Girard’s proof nets and Lafont’s interaction nets. Some
rules however are rather reluctant to this “parallelization”; this is the case notably of the pro-
motion rule which requires bozres whose purpose is to delimitate the part of the proof which is
concerned by the rule (and which will possibly be discarded or duplicated by a cut against a
weakening or contraction rule).

o LL gives a clear status to a notion which was hardly visible in intuitionistic and classical logic:
that of polarization. It introduces a notion of negative formulas, for which structural rules are
freely available®?, and their dual, the positive formulas. From a categorical point of view, this
distinction is rather clear: positive formulas are interpreted as objects equipped with a structure
of l-coalgebra (remember that ! is a comonad, so it has an associated notion of coalgebra and
of coalgebra morphisms, which define the Eilenberg-Moore category of !), and negative formulas
are their linear duals. This polarized logic generalizes LL and provides a clear understanding of
Griffin’s computational interpretation of classical logic, of Parigot’s lambda-mu calculus etc.

Plan for future research:

e [ am participating in a project of Handbook on Linear Logic written collectively within the PRN
(former GDRI) Linear Logic. Of course I am more involved in chapters concerning denotational
semantics.

1.4.4 Hypercoherence spaces (aka. hypercoherences): a new model of LL (1992-1998).
After this intermezzo, let us come back to sequentiality. A hypercoherence space X is a set | X| (the
web) together with a subset I'(X) of non-empty elements of Pg,(|X|) (the set of all finite subsets
of |X|) whose elements are said to be coherent and which contains all singletons. There are no
further requirements, in particular: no bound on the cardinality of the elements of I'(X) and, quite
unintuitively, it is not assumed that any non-empty subset of a coherent set (an element of I'(X)) is
coherent (belongs to I'(X)). Then a cligue of X is a subset of | X | whose all finite and non-empty subsets
are coherent: this defines a qD structure on |X|, which is not a coherence space in general. On these
cliques, I'(X) allows also to define a notion of “coherence” (in the sense of gDC’s) and hence a notion
of strongly stable functions between hypercoherence spaces. The main property of this constructions
is that this category of hypercoherence spaces and strongly stable functions is cartesian closed and is
actually a model of PCF.

Cherry on the cake, I observed that this model of PCF arises from an underlying model of classical
linear logic®® whose objects are hypercoherence spaces and morphisms are special strongly stable
functions — of course called linear —, exactly as the category of coherence spaces arises from the
model of classical linear logic of coherence spaces and linear maps. All connectives of LL have in
this model an interpretation similar to their interpretation in coherence spaces, with several striking
differences, especially for the & connective and for the exponentials®*. For instance the linear dual of
a hypercoherence space X is obtained as follows: keep the same web as that of X and decree that a

30Until the already mentioned discovery by Tim Griffin that classical proofs can be given a computational content;
from the viewpoint of LL, this amounts to defining an encoding of classical logic within LL and there are basically two
possible ones corresponding to two confluent restrictions of Gentzen cut elimination.

3In the sense that, whenever this is possible, the redexes which can be reduced in a proof are available immediately
and simultaneously, without having to perform artificial computations such as the boring sequent calculus’ “commutative
cuts”.

32From a proof search viewpoint, these are also the reversible formulas.

33Technically, it is the Kleisli category of a “!” resource modality which is a comonad on the linear category.

34Which is not a surprise since they are the main building blocks of the types :* = ¢ where sequentiality arises.
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finite set is coherent in X if it is finite, non-empty and either a singleton or not coherent in X. It was
particularly impressive to see that such a simple hypergraphical construction was somehow hidden at
the heart of our complicated constructions of gDC’s and, in some sense, of sequential algorithms.

So this hypercoherence space model of linear logic was a complete surprise which convinced me that
linear logic (discovered 6 years earlier by Girard, see 1.4.3 ) is an essential structure in computational
phenomena; since then, it has been one of my main methodological guidelines.

1.4.5 Relating strong stability and sequential algorithms. This drastic simplification of
strong stability was also the key to the proof of the expected theorems relating sequential algorithms
and strongly stable functions. I could prove two main results.

First T could build a cartesian closed category (a model of PCF) whose objects are made of a
sequential structure (see 1.4.1), a hypercoherence space, and a projection from the former to the
latter which has a crucial lifting property. This allowed to provide explicitly a “forgetting functor”
from sequential algorithms — actually not from the original category of sequential algorithms, but
from a subcategory of “extensional” sequential algorithms because the projection cannot be defined on
sequential algorithms such as the one of Footnote 19 — to strongly stable functions, see [Ehr96].

To overcome the restriction to “extensional sequential algorithms” of the above result, I proved
that the PCF model of hypercoherence spaces and strongly stable functions is the extensional collapse
of the sequential algorithm model®®. The key step in this proof is the following crucial property: for
any type o and any finite clique x in the hypercoherence space interpretation of o, it is possible to
find an integer k, a clique y in the hypercoherence space associated with (:* = 1) = ¢ and a PCF
term M of type ((¢¥ = 1) = ¢) = o such that = is equal to the application of M to y (in the model).
This “relative definability result” was per se quite interesting and its proof crucially used the specific
properties of hypercoherence spaces. One obtains the extensional collapse result by observing that
sequential algorithms can easily be associated with strongly stable functions of type (:* = 1) = ¢ (plus
of course some technicalities). These results are presented in [Ehr99].

1.4.6 Another characterization of strong stability. In the meantime, we started to study
another possible definition of higher type sequentiality, with my colleague Loic Colson. He suggested
that, since sequentiality is fundamentally a concept concerning functions of “type 17, that is, of type
F = 1 (for all k € N), it would be a good idea to define it by induction on types by “almost closed
reducibility” as follows: the idea is to define, by induction on o, what is, for all k, a “sequential function”
of type (¥ = o. For o = 1, we already know the answer. For o = (7 = ¢), we have to explain what
is a sequential function f of type ¥ x 7 = ¢. By inductive hypothesis we know what it means to be
sequential of type ¢/ = 7 and ! = ¢ for all [ € N. So we can say that f is sequential if, for all [ € N
and all h sequential of type ¢/ = 7, the function g : (¥ x /! = ¢ which maps (z,y) to f(z,h(y)) is
sequential of type ¥t = ¢ — this is a minimal requirement because we need our notion of sequentiality
to be compositional since we want it to give rise to a denotational model.

Then we could prove that (up to some technicalities related to the fact that we had also to account
for Scott continuity) the functions which are sequential in that sense coincide with the strongly stable
functions on hypercoherence spaces [CE94].

So strongly stable functions can be characterized in two completely different ways (extensional
collapse of sequential algorithms and “heriditarily sequential” functions), apart from strong stability
itself, which is certainly one of the most striking properties of this notion.

1.4.7 Trying to recover games from hypercoherence spaces. My last investigations on this
topic consisted in trying to express game semantics in terms of hypercoherence spaces. The basic idea
stemmed from the observation that the so-called co-graphs, which can also be described as coherence
spaces with a specific property 26, can be seen as trees whose leaves are the points of the web (that is,
vertices of the co-graph). The nodes of such trees are of two alternating kinds which are interchanged by

35 Actually when writing [Ehr96] I didn’t know what an extensional collapse was, I must thank Samson Abramsky to
have explained it to me and suggested that [Ehr96] might be an evidence that there is something interesting to say about
the extensional collapse of sequential algorithms.

36Technically: they have no P; as induced sub-graph.
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the linear duality of coherence spaces, just as the roles of Player and Opponent in game denotational
models are interchanged by linear duality. So why not use co-graphs for defining a game-theoretic
interpretation of linear logic, PCF etc, with a direct connection to hypercoherence spaces?

This idea was reinforced by a second observation: I discovered two classes of hypercoherence spaces,
exchanged by linear duality, and whose intersection coincides with the class of co-graphs®’. These are
the parallel hypercoherence which are those such that two coherent sets which are not disjoint have a
coherent union and the serial ones?®, defined by duality which also admit a nice direct characterization.
Moreover I discovered an operation which allows to turn any hypercoherence space into a parallel one
and I could prove that this parallel enfolding has good preservation properties, and in particular
preserves seriality, so that performing this operation and then its dual turns any hypercoherence space
into a co-graph, that is a game, together with a projection from this co-graph to the hypercoherence
space which I still think to be an abstract version of 1.4.5.

However, due in particular to the complicated behaviour of this parallel unfolding wrt. morphism
(it is not functorial though it has interesting lifting properties), I couldn’t, at that time, go very far
beyond these encouraging preliminary results which are summarized in [Ehr00].

Plan for future research:

e Nevertheless, I think that the idea of reformulating game models in terms of co-graphs and serial
and parallel hypercoherences is an interesting one: for instance there is a natural definition for the
composition of strategies (seen as cliques in co-graphs) in this setting, using parallel unfolding.
During an M2 MPRI internship in 2021 I have proved, together with my student Baptiste Chanus,
that this composition of strategies not only exists but is alseo unique, under mild hypotheses on
the intermediate space. This is a good starting point for such a new approach to game model.

o I also would like to come back to an old idea I was not able to develop 30 years ago, namely that
tools from algebraic topology might be useful for analysing sequentiality in hypercoherence spaces.
Indeed the qDs associated with hypercoherence spaces are nothing but simplicial complexes which
express obstruction to global sequentialization. Typically the Gustave function counterexample
can be seen as a set, of 3 vertices {1, 2,3} such that {1, 2}, {2,3} and {1, 3} are edges but {1, 2, 3}
is not a face because the 3 atomes are pairwise sequentializable but not globally. T would like to
use modern homotopy tools to try analyze geometrically this kind of obstruction to seqentiality.

1.5 Indexed LL and relational semantics (1999-2003)

On the occasion of a long visit of Antonio Bucciarelli in Marseille in 1999, we started to work on
logical relations which are a central proof tool in the study of operational and denotational properties
of programs and proofs. For instance the reducibility method used for proving normalization prop-
erties of functional languages can be understood as a logical relation technique. We focused on the
denotational aspects of logical relations, and more precisely, on their linear refinement that is: what is
the counterpart of logical relations in an LL denotational model?

Rather than considering arbitrary categorical models, we considered the simplest possible one,
which at that time was not so popular®: the relational model. This model is similar to coherence
spaces model, apart that it is stripped from the coherence relation: formulae are simply interpreted as
sets, and proofs as relations between this sets. The main difference with the coherence space models
is that, for defining !X, where X is a set, one takes all finite multisets of elements of X. Taking finite
sets as one is first tempted to do when copying the coherence space semantics doesn’t work.

We understood however that logical relations on the logical model of LL would lead to too poor a
setting for being able to prove interesting results and we managed to give more “flesh” to this inter-
pretation by parameterizing it with a given (though arbitrary) commutative monoid P together with

3TUp to a natural embedding of coherence spaces into hypercoherence spaces.

38This terminology is motivated by the fact that co-graphs are sometimes called serial-parallel graphs due to the fact
that finite cographs are generated from singletons by the two basic operations of graph disjoint union (the one where no
pairs of vertices of the two graphs are related, and the one where all pairs of vertices from the two graphs are related).

39 don’t really know who should be credited for this model, probably Girard again because this semantics underlies
in some sense his quantitative interpretation of the lambda-calculus [Gir88].
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a subset L of P! (where I is an infinite and countable set of indices) satisfying some natural homo-
geneity /symmetry properties. Very roughly, this construction follows ideas similar to those developed
earlier by Girard in the realm of coherence spaces [Gir99] where the model is parameterized with a
commutative comonoid in the category of coherence spaces. But the main novelty of our construction
is that it gave rise to a new class of denotational models of LI that we could unexpectedly relate
with the standard truth value of LL: phase semantics [Gir87]|. Moreover, we discovered a new class of
coherence spaces, quite different from Girard’s original ones.

1.5.1 From denotational semantics to phase semantics. A phase model of LL consists of a
commutative monoid M together with a subset of M (usually denoted as 1)%°. Given FF C M, one
define F- as the set of all m’ € M such that, for all m € F, one has mm/ € L. Then F is a fact is
F = F and all LL formulae are interpreted as facts: these are the “truth values” of the phase model
(M, L). A fact is true if it contains the unit of M; one proves that any provable formula is interpreted
as a true fact (and there is also a completeness theorem). This kind of definition by “biorthogonal
closure” is essential in my work as we shall see.

Without going into technicalities, what we observed is that our new notion of “clique”, parametrized
now by the pair (P!, 1), boils down to a notion of true fact in the phase space (P!, 1), if we consider
cliques not as a set of points of the webs, but as families of points indexed by subsets of I: there
are infinitely many families enumerating a given non-empty set, all these families must correspond to
true facts for the set to be accepted as a clique. This strongly suggested that there was a logic hidden
behind these families of points of webs, and this turned out to be true: we designed a new logical
system, indezed linear logic. With a formula A of indexed linear logic one can associate an underlying
formula A of (ordinary) linear logic as well, a subset J of I (the domain of A) and a J-indexed family
a of points of the interpretation of A in the relational model (which is similar to the web of a coherence
space). Then this formula of indexed LL can be given a phase semantical interpretation in the phase
model (P!, 1) which coincides with the fact associated with a by the denotational model. We have
designed a very natural sequent calculus for indexed LL such that the provability of a formula implies
that the associated fact is true, transforming a definability problem into a provability problem.

1.5.2 Non uniform coherence spaces. We also studied concrete instances of this new class of
models. One of the simplest was based on a 3 elements monoid P and a quite simple 1. We could
prove that the objects of the corresponding model can be seen as “coherence space” that is, as set (an
object of the relational model) together with two binary symmetric relations which have an empty
intersection, to be understood as “strict coherence” and “strict incoherence”. The big difference with
Girard’s coherence spaces is that a point of the web can now be strictly coherent or strictly incoherent
with itself. This may seem weird but it is actually absolutely necessary because, when building the web
of 1.X we take all finite multisets of elements of the web of X. In particular, contrarily to what happens
in Girard’s coherent spaces, we also take multisets consisting of incoherent points. If we remember that
!X is a crucial ingredient of the function type X = Y =1X —o Y, this means that the interpretation
of a function makes no assumption on the uniformity of the behaviour of its argument whence the term
non-uniform semantics for this kind of model. A simple example helps understanding the situation.
Consider the following function of type ¢ = ¢:

Azt if(z,if(x,2,0),if(z, 1,2))

where our conditional is a test to 0 (if the value of the first argument is 0 we take the first branch of
the conditional and if it is not 0 we take the second one). When applied to an integer this term can
only return 2. But if we were in a non-deterministic world were the argument can “change its mind”
between its various usages then we could get the tesults 0 or 1. This possibility is taken into account
by the relational model where the interpretation of this terms contains the pair ([n,n],2) for all n, but
also all pairs ([0, 4 1],0) and ([0,n + 1],1) — these pairs do not appear in Girard’s coherence space
interpretation of this term — where [ay,...,q] is the finite multisets*! which contains the elements

40 Actually this notion is suitable for multiplicative and additive LL, exponentials need an additional structure.
41 Multisets are commutative structures, so that the order in which the argument is tested is not taken into account
by the model contrarily to what happens in game semantics.
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ai,...,a;. Since 0 and 1 are incoherent in the interpretation of ¢, we need [0,n + 1] to be incoherent
with itself, due to the definition of coherence in —o.

These results are presented in [BE0O, BEO1] and there is also a completeness theorem for the
indexed linear logic sequent calculus wrt. the “indexed phase semantics” described above, which is
presented in [Ehr04].

More recently, I have applied these ideas to the lambda-calculus, introducing an indexed typing
system in which implication is decorated by an indexing function. This system is deeply related with
non-idempotent intersection types and provides a logical presentation of these systems*?, these results
are presented in [Ehr20c].

Plan for future research:

e With Flavien Breuvert and Federico Olimpieri (LIPN, Université Paris Nord) we have started
in 2021 investigating categorical generalizations of the idea of indexed LL to a setting based on
profunctors, a higher dimensional generalization of the relational semantics of LL. This is part
of a larger program, quite active at an international level: categorification of semantics. The
EPSRC project MOBILLO (led by Nicola Gambino at Leeds), of which I'm a project partner, is
part of this endeavour and Federico Olimpieri as well as my PhD student Zeinab Galal will start
post-docs in Leeds in 2021 in this line of research.

1.6 Quantitative models

The parameterization of the relational model with coefficients taken in a commutative monoid as in 1.5
led me to the idea that, if we consider the objects of the relational models as chosen bases of vector
spaces®3, then it would be quite natural to associate with each of these sets I a collection of I-indexed
families of scalars (taken is some fixed field) closed under algebraic operation so as to define a vector
space. However since the objects of the relational model tend to be infinite sets (actually, due to the
fact that !1 is the collection of all finite multisets of elements of I, this set is infinite as soon as X is non-
empty), we need to consider infinite-dimensional vector spaces and it is well known that such spaces
must be equipped with a well behaved topology, and linear maps to have some continuity properties,
if we want the resulting category to be well-behaved, and in particular if we expect reflexivity (the
infinite dimensional generalization of the finite dimensional iso E' ~ E** which is the semantic account
of LL negation’s involutivity).

1.6.1 Kothe spaces (2000-2002). Rather than trying to axiomatize a well suited class of topo-
logical vector spaces which would enjoy reflexivity?*, I started from the following idea: taking R as
field, the vectors = of the spaces E and the vectors 2’ of E’ (its topological dual) should be elements
x of R! and the application of 2’ (considered as a linear form) to z (considered as a vector) should be
given by

(w,2') = Zxa zl .

acl

However I being usually infinite (but countable), this sum does not make sense in general and since I
has no canonical order relation, the only way to give a meaning to it is to assume that it is absolutely
convergent, that is that we have >, |z, < +o0o. Given X C R, it is then natural to set
Xt ={2' eR |Vo € X ¥, |zaz)| < 4+00}; observe that this set is a vector space (for algebraic
operations defined pointwise). Then an object of our model is a pair (|X|, Fx) where Ex C RX! such
that Ex = Ex*. Automatically Ex is a R-vector space, and X+ = (| X|, E)L() is also an object of the
model.

42The “intersection rule” of intersection types is not a logical rule in the usual sense because it requires that the two
premises are obtained by proofs having the same underlying A-term.

*3Indeed, the operations associated with the various connectives of LL on the objects of the relational model coincide
with the operations on bases of vector spaces associated with the corresponding operations on vector spaces.

44 A goal which is very difficult to reach actually.
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Moreover, for each 2’ € Ey, one can define the map p : Ex — Rs by p(z) = > acr |Ta x| which
is a semi-norm so that Ex is a locally convex vector space (levs) whose topology is generated by all
the unit balls of these semi-norms, and it is easy to prove that it is Cauchy complete. I realized that
this construction was already known in the literature on lcvs’s under the name “perfect Kéthe sequence
space”, that’s why I called my objects X = (| X|, Ex) Kothe spaces.

Then I observed that this construction is compatible with the interpretation of LL connectives in
the relational model: for example, given two Kéthe spaces X and Y, one can build a new Kéthe space
X — Y whose web is | X| x |Y| and such that ¢t € Ex_.y iff, for all # € Ex and each ¢’ € Ey1 one has

Zae\X| be|Y| |tapTayy| < +00. Then the map z — tz = (Zae‘)ﬂ ta,bxa)b v is a linear and continuous
’ €

function EFx — Fy and conversely any linear continuous function EFx — FEy can be represented
by a unique such (potentially infinite dimensional) matrix ¢ € Ex_.y. As any Kothe space Ex .y
is equipped with the topology explained above, and this topology can be characterized intrinsically
(uniform convergence on a class of “bounded” sets). Similarly one defines a tensor product, a direct
product, a direct sum. Also, for all Kéthe space X one can define an exponential !X. Then the
“matrices” in Fix_.y can be understood as analytic functions Ex — Fy. So I have built in that way a
cartesian closed category (that is, a model of the simply typed lambda-calculus) of Kéthe spaces and
analytic functions.

These analytic functions can be differentiated, that is, for any analytic f : Ex — Ey it is possible
to define a new analytic function f': Ex — Ex_.y, the derivative (aka. differential, aka. Jacobian etc)
of f which is characterized by the fact that f(z)+ f’(z) w is the best possible approximation of f(z) in
some sense (remember that f'(x)u is the application of the continuous linear function f'(z) € Ex .y
to u). This suggests to extend the lambda-calculus, and more generally LT, with a differentiation
operation and to study its operational meaning, see 1.7. This model is presented in [Ehr02].

1.6.2 Finiteness spaces (2001-2004). One of the main features of Girard’s coherence space
model of LL is that the intersection of a clique and an anti-clique has at most one element, which
is a denotational account of the finiteness and determinism of computation. This property is lost
in the relational model, and also in the non-uiniform coherence space model 1.5.2. I tried to prove
that one could nevertheless keep this intersection finite, as a witness of the finiteness of computations
compatible with finite non-determinism®®. For this I introduced the notion of finiteness space, based
on an idea similar to that of phase semantics, Kéthe spaces etc.: given a set I and a subset F of
P(I), define F* = {u/ C u | u N« finite}. Then a finiteness space is a pair X = (] X|,F(X)) where
F(X) C P(|X|) satisfies F(X) = F(X)**; the elements of F(X) are called finitary. The dual is defined
as usual: X+ = (| X|,F(X)"1).

This again gives rise to a model of LL, compatible with the relational model. It’s most interesting
feature is that, for any field K it induces a model of LL whose objects are K-vector spaces which are
actually “topological vector spaces” in a sense which is not the most standard one (as far as I know this
notion of tvs was first introduced by Lefschetz in |Lef42]). Indeed, given a finiteness space X we can
define a K-vector space K(X) by taking the elements = of KIXI such that the domain of z (the set of
all a € |X| such that z, # 0) belongs to F(X). The fact that K(X) is a vector space results from the
closeness of F(X) under finite unions which itself results from the assumption F(X) = F(X)*+ (it is a
virtue of this kind of definition to have many nice structural consequences like this one). Now we can
use X+ to equip K(X) with a topology: given u' € F(X) the set of all z € K(X) such that z, = 0
for all a € « is a linear subspace of K(X) and these subspaces (for all possible u’) form a sub-basis of
this topology at 0 (and hence everywhere since the topology must be invariant by translation)?6. This
topology on K(X) is Hausdorff and Cauchy complete?".

45That is, non-deterministic computations where the non-deterministic branchings are finite.

630 all our basic neighborhoods of 0 are linear subspaces of K(X) which is quite different from what one is used to in
Banach spaces and more generally in locally convex spaces. For instance it is easy to prove that all these subspaces are
open and closed, so that the topology is O-dimensional. Also the field itself, considered as a 1-dimensional space, as well
as all finite dimensional spaces of this kind, are equipped with the discrete topology. Of course things become interesting
with infinite dimensional spaces.

“TMore precisely, K(X) is not only a topological space, but also a uniform space and is Cauchy complete as such even
if it is not always a metric space.
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The main idea of this construction is that, if z € K(X) and 2/ € K(X*), the sum (z,2') =
Zae‘ X zqx) has only finitely many non 0 terms since there are only finitely many a € |X| such

that z, # 0 and 2/, # 0, even if |X| is an infinite set. Then it is possible to prove that K(X1) is
linearly isomorphic to the topological dual of K(X) (the space of continuous linear forms on K(X))
and it is possible to characterize the topology on this topological dual which makes this linear iso an
homeomorphism: it is the topology of uniform convergence on bounded*® linear subspaces.

All the finiteness structures associated with the finiteness space interpretation of the various LL
connectives have similar algebraic/topological interpretations. For instance K(X —o Y’) is linearly
homeomorphic to the space of all linear and continuous functions K(X) — K(Y) equipped with the
topology of uniform convergence on bounded linear subspaces. Similarly !X is defined in such a
way that K(IX —Y") can be seen as a space of analytic functions K(X) — K(Y). When X and
Y are finite dimensional (that is, when |X| and |Y| are finite sets), such “analytic” functions are all
polynomial functions. But when these sets become infinite (and the corresponding finiteness structures
non trivial), non polynomial analytic functions arise so that one can probably understand finiteness
spaces as a infinite dimensional generalization of polynomials.

As in Ko6the spaces 1.6.1 these analytic morphisms can be differentiated; this operation generalizes
the formal differentiation of polynomials. These results are presented in [Ehr05, Ehrl8| and urged me
further to develop a differential extension of lambda-calculus and LL.

Plan for future research:

e | would like to generalize these constructs to more general Lefschetz spaces than those induced
by finiteness spaces, and in particular to understand when a Lefschetz space is reflexive. Indeed,
it is not clear a priori that the Lefschetz spaces induced by finiteness spaces have all small limits
(and more specifically, equalizers) which seem crucial for interpreting dependent types, whereas
general Lefschetz spaces clearly have. So they might provide a suitable mathematical setting
where it would possible to combine LL and Dependent Types, a task that I consider as one of the
most important in semantics. We have regular discussions with Christine Tasson on this topic.

1.6.3 The relational model and its extensional collapse (2005-2012). When I moved to
PPS (Paris) from IML (Marseille) in 2005 I started to work with Antonio Bucciarelli and Giulio
Manzonetto on models of the pure lambda-calculus, and more specifically on models based on the
relational semantics of LL. We studied a relational analogue of Scott’s Dy, construction and proved
some basic constructions thereof [BEMO7] and also the semantics of a non-deterministic extension of
the lambda-calculus in this model in [BEM12]. This kind of model always satisfy a property called
sensibility which expresses that any “looping” lambda-term has an empty intersection.

Later on, with Antonio Bucciarelli, Alberto Carraro and Antonino Salibra, we have explored a
modification of the interpretation of the “!” modality in the relational model allowing to build non
sensible models of the pure lambda-calculus. A multiset of elements of a set [ is a function I — N, and
remember that in the relational model, !X is the set of finite multisets of elements of the set X. So we
have replaced N with more general semi-rings containing possibly “infinite” values. We have studied
which conditions should satisfy such a semi-ring in order to obtain an exponential which satisfies the
requirements of LL (that is, which give rise to a model of LL), arriving to a rather general notion*’
of multiplicity semi-rings of which we have found several instances, and show that they give rise to a
non-sensible relational interpretation of the pure lambda-calculus, see [ECS10].

The Kleisli category of the usual exponential (based on finite multiplicities) is not well pointed: for
instance the two morphisms (relations) {([a],b)} and {([a,a],b)} from X to Y in this Kleisli category
(where a € X and b € V) act in the same way on subsets x of X: such a set is mapped to {b} if a € =
and to () otherwise. I have conjectured and then proved that the “extensional collapse” of this model
is the Scott model of LL.

4 This notion can be defined intrinsically.
“*Qur conditions have been further generalized by Flavien Breuvart, but an intersting problem remains, which is to
understand what is the most general axiomatization of such a structure.
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Indeed, it was known since the 1990’s (by several people: Huth, Krivine, Winskel in particular)
that the Scott semantics arises as the Klesili category of a model of LL, very similar to the relational
model. The objects of the LL Scott model are preordered sets S = (|S], <g) (a web plus a transitive
and reflexive relation on it). With any such preorder one can associate a (prime algebraic) complete
lattice Z(S) whose elements are the downwards-closed subsets of |S|, the order relation being C, and it
is quite simple to prove that any prime-algebraic complete lattice can be represented in that way. If we
take as morphisms from S to T' the linear functions Z(S) — Z(T'), that is the functions which commute
with all unions, which are in bijective correspondence with the initial segments of S — T' = S°P x T
(the preorder whose web is |S| x |T| and (a,b) <g .r (a’,V) if @’ <g a and b <7 b'). The linear
negation of S is simply S°P (same web but reversed preorder relation) so it is clearly involutive. The
other connectives of LL have interpretations which are the same as in the relational model, as far as
the webs are concerned. In particular !S has web Mgy (|S]), the set of finite multisets of elements of
|S], and m <, m’ if for all @ € m (meaning that a appears at least once in m) there is a’ € m’ such
that a <g s’. Then it is also easy to exhibit an isomorphism between the lattice of all Scott continuous
functions Z(S) — Z(T') (ordered pointwise) and Z(1S — T).

Using the fact that the web of the interpretation of an LL formula in this Scott model coincides with
the interpretation of this formula in the relational model, I have reduced the study of this extensional
collapse to the introduction of a new model of LL which is based on a hitherto unknown duality
on preorders: given a preorder S and a subset A of |S|, we define a subset AL of |S+| = |S| by
At =/ C|S||Vue Au' Nlu#0=uNu#0D} (where | uis the downwards closure of u in §), in
other words v/ € AL if v’ cannot separate u from its downwards closure, for all u € A. It is essential
to observe that this duality is relative to the preorder structure of S, so one should write AL rather
that AL

An object of this model is a tuple X = (X,D(X)) where X is a preorder and D(X) C P(|X])
satisfies D(X)1+ = D(X) (notice that D(X)* is relative to the preorder X+ so that the second “L” is
taken relative to the preorder X+ = X °P). There is also a notion of morphisms between these objects
(a morphism from X to Y is a subset of |X| x |Y| satisfying some conditions relative to D(X) and
D(Y). Again, the corresponding category is a model of LL: one defines of course X+ = (X°°, D(X)1)
and then X @Y, X B Y etc and the exponential 1X. Of course X — Y = X+ % Y and one can prove
that the morphisms X — Y are exactly the elements of D(X — Y').

Notice that any object of this model provides an object of the relational model (namely |X|) and
of the Scott model of LL (namely X)) and these two mappings commute with the interpretation of LL
connectives in the model. Moreover it provides a partial equivalence relation *° ~x on P(|X]) (points
in the relational model): z is equivalent to y if z,y € D(X) and |« = | y (these downwards closure
being of course taken in the preorder X)) as well as a bijective correspondence between the equivalence
classes of ~x and the elements of Z(X). My main result on this topic shows that this partial relation
“is” the extensional collapse partial equivalence relation of the relational model and therefore that this
extensional collapse is isomorphic to the Scott model. Of course giving a precise meaning to these
rough statements requires some care. These constructions and results are presented in [Ehr09].

In that way we have exhibited a deep connection between the relational model and the Scott model
of LL and revealed its underlying structure as a new duality on preorders. The conceptual benefit of
this connection is that the relational model, though infinitary (in the sense that the interpretation of
functional types are infinite, due to the use of multisets in the interpretation of “!”), is quite simple
and provides in some sense rather explicit information about the syntax of LL. — for instance, it has
been recently proven that the mapping from normal proof-nets LL to the relational model given by the
denotational semantics is injective — whereas the Scott model is much less explicit (a lot of information
on proofs/programs are lost in the semantics) but is finitary: if we interpret ground types with finite
preorders, then the interpretations of all types are finite®!. These results are presented in [Ehr12b].

%0 A symmetric and transitive, but not necessarily reflexive, relation.
51In our presentation of S in the Scott model we have used finite multisets in order to simplify this connection but
one can use finite sets instead without changing the model, which is impossible to do in the relational model.
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1.7 Differential extensions

In the quantitative models 1.6.1 and 1.6.2 we have seen that the morphisms of the associated Kleisli
cartesian closed category are analytic functions which can be differentiated. This means that with
any morphism !X — Y we can associate its differential of type !X — (X —Y'), or equivalently
XX —oY.

1.7.1 The differential lambda-calculus (2001-2003). I have observed that this operation could
be transferred to the syntax of the lambda-calculus and we started with Laurent Regnier to study a
simply typed differential lambda-calculus. The basic idea is to keep the usual types of the lambda-
calculus and to introduce a new syntactic construction of “differential application” follows:

I'-M:A=B I'EN:A
I'-DM-N:A=B
where N is the linear parameter of the differential, whereas the a linear parameter (of type A) can be
given as argument to DM - N by an ordinary lambda-calculus application (DM - N) P.

One nice feature of this way of presenting things is that it makes iteration of this differential
application quite easy: with the same typing assumption on M but with now k terms Ny, ..., Ni such
that ' N; : Aforalli = 1,...,k, we can define DM - (Ny,..., Ny), for instance D2M - (N1, Ny) =
D(DM - Ni) - Ny is a second derivative.

With this new “differential application” construct is associates a new differential S-reduction: given
M such that T,z : A+ M : B and N such that T - N : A the term D(Az? M) - N reduces to M N
exactly as ()\xA M) N reduces to M [N/z] (M where N has been substituted for z), where BM N can
be understood as a “linear substitution”, that is a substitution which replaces ezactly one occurrence
of x in M with N. This “substituted term” can be typed as follows

I'z: AI_(?@]W N:B

X

since it can still contain free variables of x. Exactly as the ordinary substitution M [N/z], this linear,
or differential, substitution 8M - N is defined by induction on M. The three interesting cases are when
M is a variable, a dlfferentlal application DP - @ and an ordinary application (P) Q. We set

ay.N:{N ify =z

ox 0 ify#x
dDP-Q oP oQ
®P-8 N D<ax >Q+DP (a N>
aP)Q . (0P o0Q
- (3 ) or (329)o

This definitions calls several comments. The first equation, in the case M is the variable x is quite
clear: we have exactly one occurrence of x and we substitute it with N. The case M is a variable y # x
has two interpretations. The “operational” one: there are no occurrences of x and hence the process
fails (then 0 is just some kind of error). The algebraic one: we take the derivative of a constant (y is
a constant wrt. ) and the result is 0.

The operational interpretation of the second equation is that we have two ways of substituting
exactly one occurrence of  in DP - Q: either in P or in ) and we return the “non-deterministic” sum
of these two options. The algebraic interpretation is simply Leibniz Law of Calculus, since DP - @ is
a bilinear operation in P and Q.

The interpretations of the third equation is similar though slightly more complicated because we
cannot be sure a priori that an occurrence of x in @ (the argument of the application (P) Q) is linear
in (P) @ even if it is linear in Q): this depends on how P uses its argument. So we “force” P to make a
linear use of its argument by using a differential application in the second summand. From an algebraic
point of view, this is just a combination of Leibniz law and of the chain rule of Calculus.

So we have to add anew term 0 and the possibility of adding terms (endowing them with a com-
mutative monoid structure), these constructs obey the following typing rules:
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- THM :A  TkM:A
Fro:4 TFM +M: A

It is also quite natural to extend these algebraic operations with the action of a commutative semi-ring
so as to turn terms into a semi-module (or a vector space if this semi-ring is a field). We also had
to specify which syntactic constructs of our syntax are linear wrt. to this monoid structure: this is
very simple, all constructs are, but the right side of ordinary application: we have (M; + My) N =
(M1) N + (M) N, but not (M) (N1 + N2) = (M) Ny + (M) Ny in general.

One has also to take into account a commutation law for derivatives (the fact that the second
differential, or Hessian, is a symmetric bilinear function): with the notations introduced above this
boils down to D2M - (N1, Na) = D?M - (Na, Ny).

For all these design choices, we were guided by my vector space LL models, whose Kleisli cate-
gories are of course models of this differential lambda-calculus (with the differential operations already
mentioned for interpreting differential application and substitution).

In [ER03] we studied the operational properties of this calculus: we proved confluence and strong
normalization for a second order typed version of this calculus (a differential System F) under some
restrictions on the semi-ring of coefficients. This kind of rewriting on terms equipped with an linear
structure is quite interesting and reveals new phenomena which have been in particular studied by my
former PhD student Lionel Vaux.

1.7.2 Taylor expansions of lambda-terms (2001-2010). In the same paper [ER03] we also
studied a Taylor ezpansion of lambda-term application. We considered the following situation: two
ordinary lambda-terms M and N such that (M) N is well typed and reduces to a variable (or a constant
if we have some in our language). Then we can write a Taylor expansion at 0 for this application in
our differential lambda-calculus:

k
ZE D*M - (N,...,N) |0
k=0

and we proved that there is exactly one of the terms of this sum which does not reduce to 0 in our
reduction system described above. The corresponding integer k is the number of times N arrives in
code position in the execution of (M) N in Krivine’s machine’2.

In [ER08, ER06a|, we continued this line of investigation by considering now a much more general
Taylor expansion of ordinary lambda-terms where all applications of a term are expanded. By ap-
plying standard computation laws (essentially: the multinomial expansion of expressions of the shape
(> gentr)") we turn in that way any lambda-term into a linear combination of differential terms with
coefficients in QT which is infinite as soon a the lambda-term contains an application. The differential
terms appearing in this expansion have the specificity that all ordinary applications are applications
to 0, that is of the form (M) O0.

We defined a specific syntax for these differential lambda-terms where all applications are to 0,
calling them resource lambda-terms for crediting earlier work by Boudol and Kfoury in particular, who
introduced related formalisms in their study of the lambda-calculus and of its connections with process
algebra (although they had of course no differential background underlying their calculi).

The main feature of our resource lambda-calculus is that application is now of shape (s) [t1,. .., ty]
where [t1,...,t,] is a multiset of resource terms; this represents the nth derivative of s computed at
0 and applied to the tuple (¢1,...,t,); since this differential is a symmetric n-linear function, we use
multisets instead of tuples for collecting arguments. In this setting S-reduction turns (Az s) [t1, ..., t,]
into 0 if the number of occurrences of x in s is # n and into the sum of all terms obtained by substituting
t1,...,t, to the occurrences x1,..., T, in s, up to all permutations (so it is a sum of n! terms). We
compared the S-reduction of the original lambda-term and the reduction of the resource terms of its
Taylor expansion, proving that the computation of the Béhm tree of a term commutes with its Taylor

2 A simple abstract machine for computing lambda-terms which implements a refinement of S-reduction called linear
head-reduction very close to De Bruijn mini-reduction. The point of this reduction is that global substitutions are never
performed, one only fetches in an environment the term corresponding to a variable each time this is needed.
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expansion (an abstract way of expressing that Taylor expansion is compatible with S-reduction). We
also related this Taylor expansion with Krivine’s machine, generalizing our earlier result. For this
purpose we introduced a coherence relation on resource terms (the finite cliques of which are the finite
sets of resource terms which can simultaneously appear in the Taylor expansion of a lambda-term) and
developed a combinatorial analysis of the resource S-reduction.

In the related paper [Ehr10] I defined a finiteness structure (see 1.6.2) on resource terms using their
non-deterministic reduction relation and I related it with system F’s strong normalization. This line
of research has been further investigated by Pagani, Tasson and Vaux. Recently, this approach has
been shown to quite effective for proving syntactic properties of the lambda-calculus by Barabarossa
and Manzonetto in [BM20] which obtained a Distinguished Paper Award at POPL’20.

1.7.3 Differential LL (2001-2010). The categories of 1.6.1 and 1.6.2 are models of LL and so

it was natural to try to understand the new differential rules as LL principles. It has been a quite

pleasant surprise to observe that these rules are exactly dual to the LL rules of dereliction, weakening

and contraction. This led me to a new logical system, differential linear logic (DiLL) which has exactly

the same logical connectives as LL, but new rules for the exponentials that we briefly present and

comment. To understand the rules, a good intuition is to see formulas as representing vector spaces.
The first of these rules is codereliction

AT
F1AT

which allows in particular to prove A — !A in DiLL and thus turn any proof of !A — B (to be seen as
a non necessarily linear function f from A to B) into a proof of A — B (a linear function from A to
B) which should be understood as f'(0). It is dual to the standard rule of dereliction

AT
F?A,T

(('77

where “?7” is the dual connective of “!”, which allows to prove !A — A and thus to turn a linear proof
of A — B (a linear function from A to B) into a proof of !A — B that is, to forget the linearity of f.
The coweakening rule is

H1A

which allows to turn a proof of !A — B (a function f from A to B) into a proof of B (a vector in B,
namely f(0)). It is dual to the weakening rule

L N
F7AT

which allows to turn a proof of B (a vector v in B) into a proof of !A — B (the function from A to B
which is constant of value v).
The cocontraction rule is

FIAT  FIAA
F1A,T, A

which allows to turn a proof of !A — B (a function f from A to B) into a proof of !1A®!A — B (a
two parameter function g from A x A to B, namely g(u,v) = f(u 4+ v)). It is dual to the contraction
rule
F?A,7A,T
F?7A,T

which allows to turn a proof of !A ®!4A — B (a two parameter function g from A x A to B) into a
proof of !A — B (a function f from A to B, given by f(u) = g(u,u)).
There are also rules for dealing with 0 and addition

- FT FT
=
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which are necessary for cut elimination and turn this system into a logically peculiar one since all
formulas are provable (by the 0 proof). Indeed, the point of this system is to deal with partial proofs,
allowing for instance to write approximations of ordinary proofs by means of Taylor expansions.

The symmetry between the structural rules (dereliction, weakening, contraction) and the costruc-
tural ones is rather clear in this sequent calculus presentation, but it becomes even more striking in
proof-nets or interaction nets, this is why we have adopted in my first paper on this topic with Laurent
Regnier [ER06D].

In ordinary LL, as explained in 1.4.3, the purpose of the connective is to make a proof freely
discardable and duplicable by means of the promotion rule which is the only one which introduces
the “!I” connectives. In DiLL we have new rules for introducing this connective, namely coweakening
and codereliction which have not the same “infinite” power as promotion, this changes the meaning
of the “I” connective which can be understood now as expressing that some resources become avail-
able for communication: codereliction allows to make one copy available, coweakening, 0 copy, and
cocontraction allows to add bunches of resources. The resource consumer on the other hand will use
dereliction when it needs exactly one resource, weakening when it needs 0 resource and contraction
when it “branches two consumers of the same type on the same resource channel”?3.

So for instance when one branches (or, in logical terms, cuts) a codereliction on a contraction
we get a sum of two proofs, one where the codereliction is connected to the first consumer and the
second consumer is cut on a coweakening, and dually — algebraically this is Leibniz law —. There is a
completely similar reduction when one connects a dereliction and a cocontraction: the consumer which
needs exactly one resource has to choose between the two providers combined by the cocontraction
— algebraically this is just the fact that a linear function commutes with sums — The sums which
appear in the reduction (we already encountered them in 1.7.1) can naturally be seen as non deter-
ministic choices between two possible behaviours. So DiLL can be considered as an intrinsically non
deterministic logical system extending LL.

Notice also that the symmetry between structural and costructural rules extends to the reduc-
tion (cut elimination) rules. There are also cut elimination rules dealing with costructural rules and
promotion, one of them is an LL version of the already mentioned chain rule.

iy

1.7.4 DiLL and process calculi (2007-2010). In a joint work with Olivier Laurent [EL10b,
EL10a] we have developed these operations intuitions and these non deterministic features of DiLL by
encoding two process algebras in this system. The main idea of these encodings is to use a combination
of contraction and cocontraction for representing parallel composition and dereliction and codereliction
for representing prefixes so that the interaction between these prefixes and parallel composition leads
to non-deterministic sums.

A side product of this research is the observation that this implementation of parallel composition
supports more sophisticated topologies than the simple one where any actor can communicate with
any other actor. Using this idea we developed with Jiang Ying (from the ISCAS, Beijing) a new
process algebra which extends tree automata to an interactive setting, just like Milner’s CCS extends
ordinary automata to an interactive setting [EJ15, JLE19]. With Jean Krivine, we have recently
developed a new presentation of this idea, in a setting more compatible with the formalization adopted
in the process algebra community [EJK19]. The main feature of these new process algebras is that
parallel composition can be an arbitrary graph at the vertices of which processes are located, the edges
indicating which communications are possible. This graph structure evolves during execution.

1.7.5 Coherent differentiation (2021-). Motivated by observations presented in [Ehr19, Ehr22b]|,
see 1.10, and by the preparation of my invited talk at the BIRS meeting Tangent Categories and their
Applications (June 2021), I have developped in May-June 2021 a new categorical setting where the
ideas of the differential A-calculus and of DiLL can be refined and become compatible with deterministic
and with probabilistic computations. In other words, in this new setting, the addition of terms of the
same type is not always possible anymore. Only some specific additions are allowed, sufficent to make
available the summations required by the Leibniz rule (see Section 1.7.1). This new line of ideas is

33In lambda-calculus, this is just identifying two variables of the same type.
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presented in |Ehr21|, accessible online.

The basic idea is to consider a category L, to be understood as a “linear category” where each
homset has a 0 element but, contrarily to the models of 1.6.1 and 1.6.2, addition of morphisms is not
always well defined. Typically, £ is a denotational model of LL, a Seely category such as the category
of coherence or hypercoherence spaces and linear morphisms, or the category of probabilistic coherence
spaces and linear morphisms 1.8.1. Instead of the usual requirement that £ is additive (satisfied in
the models of 1.6.1 and 1.6.2 and meaning that morphisms can freely be added), we assume that £
is equipped with a tuple (S, mg,m1,s) where S : £ — L is a functor and mp, m,s : S — Id are natural
transformation. Intuitively, X being an object of £, SX is the object of summable pairs of elements of
X, mg and 7 are the obvious projections and s is the addition operation, allowed only for summable
pairs. We exhibited a few simple axioms for this structure which imply in particular that addition
becomes a partially defined associative and commutative operation. When these axioms are satsified,
we say that (£,S, 7o, 71,s) is a summable category®*.

Just as in tangent categories, the functor S inherits a monad structure which is technically crucial
for expressing the linearity of differentiation wrt. the partially defined addition of morphisms. What
about differentiation itself? It is simply axiomatized as a natural transformation dx : 1SX — S!X
(here we assume that £ has an “exponential functor” as any model of LL) which, technically speaking,
is a distributive law allowing to extend the functor S to a functor D : £; — £ on the Kleisli category
of £, that is, the category of “non-linear morphisms” which, as we have seen in many examples now,
is typically cartesian closed and provides a model of the A-calculus. On objects, D acts just as S:
DX is the space of summable pairs (z,u) of elements of X. On morphisms, D behaves exactly as
the “tangent bundle functor” T of tangent categories, that is, a morphism f € £;(X,Y) seen as a
non-linear® function X — Y, is mapped to Df : SX — SY which maps the summable pair (x,u) to
(f(z), f'(z) - u) and indeed it is reasonable to consider that f(x) + f'(z).u always makes sense®® since
it is the beginning of the Taylor expansion of f(x + u) at x. Here f’(x) - u represents the application
to u of the differential of f computed at x, which is a linear map (aka. Jacobian of f at z).

The canonical situation. In [Ehr21] I also observe that very often, in a model £ of LL, there is a
summability structure whose existence boils down to very simple conditions on the object | =1 & 1
of £. Indeed when two axioms concerning this object hold, it is possible to show that, defining the
functor S by SX = (I —o X)) and the natural transformations g, 71, s using three simple morphisms in
L(1,1), one gets a summability structure on L.

Notice that when the category L is additive, the cartesian product 1 & 1 is also a coproduct (as in
the category of vector spaces over a given field) so that SX = X & X up to a trivial iso and all pairs
are summable. But when £ is not additive, then | —o X “stands somewhere in-between” X @ X and
X & X being isomorphic to neither of these two objects.

Under these two axioms about | it is also possible to endow it with a commutative comonoid
structure: a morphism | — 1, which is just the first projection of the cartesian product | = 1 & 1,
and a morphism | — | ® | which satisfy the duals of the usual equational properties of a commutative
monoid. This comonoid structure induces the monad structure of the functor S mentioned above. Last,
in such a canonically summable model of LL, the differentiation distributive law dx € L(ISX,S!X)
boils down to a !-coalgebra structure § € L(I,!l) on | satisfying some compatibility condition wrt. the
comonoid structure of this object. When the exponential of £ is free (that is, when £ is a Lafont
category), the morphism coalgebra structure of | is automatically induced by its comonoid structure
and so the differential structure is “for free”.

Several well known models of LL are examples of this canonical situation:

4This structure is similar to that of a tangent category which is a category X (whose object should be thought of
as manifolds) equiped with a functor 7' : X — X to be thought of as the tangent bundle functor: intuitively, it maps
a manifold X to its tangent bundle which is a manifold 7X whose objects are the pairs (x,u) where z is a point of X
and u a tangent vector of X at x. In that case there is also a mp : TX — X natural transformation, but our two other
morphisms 7 and s do not exist for the tangent bundle functor. Moreover, tangent vectors at a given point can freely
be added, a feature that we definitely want to get rid of.

35But very regular, typically analytic as in probabilistic coherence spaces 1.8.1

**We also use the fact that we are in a setting where all coefficients are non-negative so that we can say that f(x) +
f'(z).u < f(z + u), which is the true reason why the pair (f(z), f'(x) - u) is summable.
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e the category Rel of sets and relations of course, which is not very exciting because it is additive
(and hence is a model of DiLL) contrarily to all of the following ones;

e Girard’s category of coherence spaces, with the multiset exponential;

e the category of hypercoherences, with the multiset exponential;

e the category of non-uniform coherence spaces with Boudes’ exponential;

e the category of probabilistic coherence spaces (with its only known exponential);

e the category of non-uniform coherence spaces with the Bucciarelli-Ehrhard exponential which,
contrarily to all the above examples, is not a Lafont category.

This shows that there are many example of coherent differentiation which are also models of determin-
istic computations in the sense that a closed program of type Bool (for instance) can reduce only to
t or to f, but not to both.

Coherent differential PCF. Based on this fundamental determinism of coherent differentiation I
developped a coherent differential version of PCF (see Section 1.3.2) in [Ehr22a]. This language has a
ground type ¢ of integers and if A, B are types then so is A = B. Given a type A, there is a type DA
which is intuitively the type of summable pairs of elements of type A. The semantics tells us that we
should have D(A = B) = (A = DB) so our design choice was to introduce w ground types (D%)gen
and to consider the equation D(A = B) = (A = DB) as a definition of D(A = B).

The syntax of terms follows the general pattern of PCF with some additional constructs strongly
ingpired by the semantics. The most important one is that if M has type A = B then DM has type
DA = DB. Intuitively M represents a function and DM represents the function which maps the
summable pair (x,u) (where z,u have type A) to (M (z), M'(x) - u) which is a summable pair whose
elements have type B.

This new construct induces the new redex R = D(Az* M) : DA = DB (assuming that M : B
under the assumption that = : A). We stipulate that R reduces to R’ = 9(x, M) where 0(z, M),
defined by induction on M, is of type DB under the assumption that x : DA. This inductive definition,
completely guided by the categorical semantics outlined above, is somehow similar to that of %—]\f -N in
the differential A-calculus (see Section 1.7.1) with one crucial difference: we do not “develop the sums”
induced by the Leibniz rule but only introduce “tags” to mark the place where they should appear.
More precisely these tags are syntactical constructs corresponding to the above mentioned monad
structure of the functor S. As a consequence 9(z, M) is a quasi-homomorphic syntactical transform.
Here is a typical example:

d(z,(P)Q) = (0DI(z, P)) 0(x, Q)

where 6 is a syntactical construct corresponding to the “multiplication” of the monad (the operation
S2X — SX which maps a summable pair of summable pairs ((uoo,uo1), (¥10,211)) to the summable
pair (ugo, uo1 + u10), notice that ui; is dropped!).

One particularly nice property of this new coherent setting for the differential A-calculus is that it is
compatible with the fixpoint operator of PCF, contrarily to the original one. Indeed the models listed
above (for instance probabilistic coherence spaces) of coherent differentiation have fixpoint operators
at all types. In the syntax, this property manifests itself by the fact that, still guided by the categorical
semantics, we can simply set

8(x, YM) = Y(6DO(x, M)).

Remember that if M has type A = A then YM has type A and YM reduces to (M) YM.

A last interesting case in this inductive definition is the situation where M is itself a differential,
M = DN. Here the definition is still quasi-homomorphic but requires an interesting ingredient which
also appears in the theory of tangent categories: the “standard flip”.

8(z,DM) = cDd(z, M)
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where c, a syntactic version of the standard flip, corresponds to the operation S2X — S2X which maps
a summable pair of summable pairs ((ugo, uo1), (u10,u11)) to the summable pair of summable pairs
((wo0, u10), (w01, u11)) where the two central elements have been swapped.

I only tried here to convey the general flavour of this calculus which is admittedly complicated. In
the paper [Ehr22a| which presents this calculus

e a set of typing rules and reduction rules is given — there are actually more than 30 reduction
rules, I hope to have a more laconic syntax in a near future —;

e 3 categorical semantics, based on the categorical models of coherent differentiation, is presented;

e soundness is proven wrt. this semantics (if M reduces to M’ then these two terms have the same
semantics);

e we also prove completeness (there are enough reduction rules in the sense that if a closed term
M of type ¢ is denotationally equal to v € N, then M reduces to the constant v).

This latter statement uses a Krivine machine to implement a specific reduction strategy®’ and the
completeness proof requires a serious adaptation of the usual reducibility method for taking into
account all possible iterated derivatives allowed by the calculus. Interestingly, beneath the usual term
and stack components of the machine®®, the machine has also an “access word” which is a sequence
of bits (corresponding to the two projections mp,m associated with the functor S) handled by the
differential constructs of the language. Cherry on the cake, a slight modification of the machine,
suggested by Guillaume Goeffroy and consisting in making this word writable, allows to make the
machine fully deterministic®.

One of the main open questions with the differential extensions of LL and of the A-calculus of 1.7.1
and 1.7.3 was to understand their operational meaning and a major obstacle was the essentially non-
deterministic character of these formalisms. 1 see the introduction of coherent differentiation as a
major step towards a convincing solution to this problem since now we are able to extend standard,
deterministic or probabilistic®?, functional programming languages with differential constructs without
breaking their main operational properties. This does not mean that we fully understand the opera-
tional meaning of these constructs but at least we are now able to study them in a reasonably standard
operational setting (typically, using abstract machines ¢ la Krivine).

Plan for future research:

e My approach to program differentiation is not specific to “ordinary differentiation” wrt. real
or complex numbers in contrast with the languages used for Automated Differentiation (AD)
applied typically to gradient backpropagation algorithms in Machine Learning where the type
float is crucial. On the contrary the kind of differentiation I consider is completely generic:
for instance we can compute the derivative of a program from binary trees labeled by integers
to lists of boolean or even of an higher order program, taking programs as arguments. Even
if more complicated than our initial non-deterministic theory, the new coherent differentiation
completely preserves this genericity of differentiation, turning it into a new set of constructs with
which basically any functional programming language can be extended. Now the question is:
what do these new constructs do actually compute? 1 conjecture that they might be related
to incremental computing where differential ideas are also used, though admittedly without the
strong semantical and logical background our approach relies on.

57 Just as in the usual A-calculus where it is extremely convenient to use a Krivine machine to define the weak head
reduction which allows to prove completeness of the S-reduction.

%8In a forthcoming work we will develop a machine more suitable for implementation, featuring an environment as
well.

%The read-only machine keeps a ground type non-determinism which can be shown to be inessential by denotational
considerations, but remains troublesome from an implementation point of view.

59Probabilistic computations are much closer to deterministic computations than to non-deterministic ones. This
particularly obvious from a denotational point of view.
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e The observation above also suggests to better understand the connection between coherent differ-
entiation and AD. Even if the denotational semantics of AD is not yet very developed, its models
seem to be additive categories whose addition is induced by a commutative monoid structure
on a singled out object of real numbers. This looks quite different from the additive structure
in models of DiLL. We have started to analyze this discrepancy with Damiano Mazza and my
new PhD student Aymeric Walch. This endeavour is also motivated by the fact that the syntax
of my coherent differential PCF has interesting similarities (and differences) with the syntaxes
developed for AD.

e In my paper |[Ehrl8| I introduced a categorical way of understanding the computation of anti-
derivatives (primitives) in categorical models of DiLL: this simply boiled down to the existence
of a natural morphism Ix : !X — !X with specific features. This kind of structure seems per-
fectly compatible with coherent differentiation, and since, in this new setting, all “Scott least
fixpoint operators” (X = X) — X are typically available, it becomes possible to solve differ-
ential equations as least fixpoint of “integral equations” invoking now Scott insead of Lipschitz.
The meaning of such programs defined as recursive functions whose definition involves the Ix
“primitive” construct is of course very intriguing!

e The coherent differentiation setting is compatible with classical LL (all the models of coherent
differentiation we know are also models of LL) but it is an exciting open problem to find elemen-
tary logical constructs allowing to represent its basic operations. Indeed, the coherent differential
PCF is essentially a syntactification of the basic categorical operations used for defining models
of coherent differentiation, and the suitable logical ingredients might be quite different from these
categorical constructs. This is exactly what happens with LL itself: there, the logical presentation
of the exponential (in sequent calculus or proof-nets) relies on the structural rules whereas the
categorical presentation relies on the Seely isomorphisms. Finding the suitable “logical quarks”®!
of coherent differentiation might be a difficult task.

e Of course the whole theory of Taylor expansions of programs should be revisited in this new
setting.

1.8 Probabilistic coherence spaces and probabilistic functional languages

In the early 2000’s I developed with Vincent Danos the theory of probabilistic coherence spaces, a
notion introduced a few months before by Girard and based on my idea of Kéthe spaces 1.6.1.

1.8.1 Probabilistic coherence spaces (about 2004-). The definition of these objects follows
the pattern that we have already met several times?: a probabilistic coherence space is a pair X =
(]X],PX) where | X| is a set (the web) and PX C (Rs0)/X| satisfies PX = PX 1+ where, if P C (Rx)?,
one sets PL = {2/ € (Rxo)! | Vo € P (z,2/) =3 ,; zix; < 1}. One also assumes two more conditions
to hold for avoiding the appearance of infinite real numbers®. As usual we set X+ = (|X|,PX"). The
intuition is that « € PX is a probabilistic data of type X and 2’ € PX " is an observation. Then (z, z’)
is the probability of success of this observation on x. The fact that this probability is not necessarily 1
means that the model accepts partial computations (just like Scott semantics, coherence spaces etc).

A typical example is N where |[N| = N and PN is the set of all z € (Rxo)" such that -, .y @n < 1,
that is the set of all sub-probability distributions on natural numbers: intuitively & € PN represents
a probabilistic program of type ¢, x, is the probability to obtain the result n and 1 — > oy, is
the probability that this computation diverges. But not all probabilistic coherence spaces can be
interpreted in that simple way, the most obvious example being N+ which has also N as web, and
x' € PN+ iff 2/, < 1 for all n; clearly such an 2’ cannot be seen as a probability distribution in general
(for instance we can have )y, = 00).

61T borrow this nice expression to Hugo Herbelin

52This is often called “double glueing” in the litterature, but I am not convinced that this abstraction provides any
real benefit.

53Specifically, for any a € |X| we assume that the set {z, | + € PX} is upper bounded and not reduced to {0}.
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In [DE11] we developed the semantics of LL in this setting. For example, given two probabilistic
coherence spaces X and Y we defined the probabilistic coherence space X —o Y whose web is | X| x |Y]
and t € P(X — Y)if for all z € PX and ¢/ € PYL, one has Zaep(\,be\Y\ tapTayy, < 1. In other words,

for any x € PX the vector tz = (Zae‘)ﬂ ta,b$a>b v (application of the matrix ¢ to the vector x)
€

belongs to PY. When X =Y = N, these matrices are exactly the N x N sub-stochastic matrices.
These matrices € P(X — Y') are the morphisms of our categorical model of LL. As Girard we defined
a tensor product ®, a co-tensor %%, a direct product & and a direct sum ¢. But we also introduced
an exponential !X whose Kleisli category is cartesian closed as usually, and again all these definitions
are based on the relational model: the web of !X is the set of all finite multisets of elements of | X].
Given such a multiset m and an x € PX, one defined 2™ = Haax‘ x?(a) € R>¢ (this product is finite
since m is a finite multiset). Then we set z' = (@) mepx| € (R>0)™! and P(!1X) is the biorthogonal
closure of the set of all ' for 2 € PX (the definition of !X in Kothe spaces and finiteness spaces follows
exactly the same pattern).

It follows from this definition that a morphism X — Y in the Klesili category, which is an element of
P(!X —Y), is a (generalized) power series with non-negative coefficients. Indeed given t € P(!1X —Y')

we can define a function 7 : PX — PY by #(z) = (Zme‘!x‘ tm,bznm) _— and this correspondence ¢ — ¢
is injective.

For instance, if X = Y = 1 (the probabilistic coherence space such that |1] is a singleton and
P1 = [0,1] up to trivial iso), then |!1| = N and an element of P(!1 —o 1) is simply (up to trivial iso)
a sequence (t,)nen such that 33 _t, < 1. The corresponding function is ¢ : [0,1] — [0,1] given by
t(z) = Y onen tn"

The corresponding Kleisli category, that is, the category of probabilistic coherence spaces with
these analytic functions as morphisms — and composition is the ordinary composition of functions —
is cartesian closed. Moreover PX can always be seen as a complete domain, elements being ordered
pointwise. By some standard categorical constructions this implies that for any object X there is an
analytic morphism (!X — X) — X which maps a morphism ¢ to its least fixpoint®4,

Therefore it is possible to interpret a probabilistic extension of PCF in this model, that is a PCF 1.3.2
extended for instance with a constants coin(p) which reduces to 0 with probability p and to 1 with
probability 1 — p (one constant for each p € Q N[0, 1] for keeping the language countable). One has
to be careful when defining the operational semantics of the language (weak head reduction, see 1.3.2)
which can be presented as a Markov chain whose states are the terms of the language: terms rewrite
to probability distributions. We developed in [DE11] the denotational interpretation of this language
in this cartesian closed category and proved an adequacy theorem expressing that the denotational
interpretation [M] € PN of a closed term M of type ¢ is such that [M], is equal to the probability of
M to reduce to n.

In the same paper [DE11] we showed that all recursive types (lists, trees, streams, but also models
of the pure lambda-calculus and many other complicated types) can be interpreted very simply in
this model. Last, we outlined a simple connection between probabilistic coherence spaces and Banach
spaces. In [EPT11] we studied the induced probabilistic semantics of the pure lambda-calculus.

neN

Probabilistic coherence spaces and Bayesian Networks (2021-). Probabilistic coherence spaces
provide a natural setting for understanding connections between Bayesian inference (Bayesian inver-
sion, Bayesian networks etc) and LL and more specifically, proof-nets. During the LMFI M2 internship
of Robin Lemaire (May-August 2021), supervised by myself, Claudia Faggian and Michele Pagani,
we made major progresses in this direction, establishing a simple connection between Bayesian Net-
works and Proof Nets fully compatible with the Pcoh semantics of LL. and we understand now basic
Bayesian networks algorithms as proof manipulations related to MLL cut-elimination. We are pursuing
this study, designing a let language for denoting Bayesian Networks admitting a simple semantics in
Pcoh, and expressing the variable elimination of Bayesian networks in this new setting (taking care-
fully complexity aaspects into account). One benefit of Linear Logic in this case is that it allows to

54 A kind of categorical miracle because the fact that this operation is analytic is not at all obvious a priori.
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give types to substructures of Bayesian networks whose statuts was not clear sofar because they do not
represent stochastic matrices. This should in particular increase the modularity of some algorithms
used in Bayesian inference. A research report should be available soon.

1.8.2 Full abstraction in probabilistic coherence spaces (2010-2014)). With Michele Pa-
gani and Christine Tasson we understood that the presence of probabilities in the syntax greatly
increases the separation power of contexts, thus allowing to prove a full abstraction theorem for our
interpretation of probabilistic PCF in probabilistic coherence spaces. Without going into technicali-
ties, the proof is based on the fact that, roughly speaking, if two analytic functions coincide on a non
empty open subset of their domain, they have the same representation as a power series. We published
first this full abstraction result in [EPT14] and then we realized that our probabilistic PCF was not a
realistic language from the viewpoint of programming.

Indeed this language was purely call-by-name, thus in an application (M) N where N is a closed
term of type ¢ (which reduces to integers with a sub-probability distribution which coincides with [N]
as we have seen), each time M uses N, she will sample another integer according to this probability
distribution: it seems impossible to sample an integer and then use several times the result of this
sampling. This makes probabilistic programming quite difficult and probably impossible. ..

Fortunately this serious difficulty can be overcome very cleanly by observing that N (the proba-
bilistic coherence space interpreting the type ¢ of integers) has a canonical structure of !-coalgebra.
This means that there is a canonical morphism N —o IN (warning: this has nothing to do with the
codereliction of DiLL!) which allows to turn any morphism !N — X into a morphism of type N — X.
This operation is essential for interpreting a “let” construct let x be N in R where N must be of type ¢
which allows to sample an integer along the distribution defined by N and providing the result of this
sampling M as a value for z, that M can use as many times as she wants.

In [EPT18a] we introduced a version of probabilistic PCF extended with a “let” construct restricted
to integers as explained above and proved adequacy and full abstraction for this much more realistic
programming language which can be understood as a call-by-name language where the terms of ground
type ¢ (and only them) can be used in a call-by-value fashion.

1.8.3 Generalizing to call-by-push-value (2012-2018). The formulas of LL which have a
canonical !-coalgebra structure are the positive ones, and so it seems natural to consider them as
data types (in contrast with functional types which typically are not positive), generalizing the con-
siderations above on ¢. All formula of the form !A is positive, and the connectives ® and @ preserve
positivity: this is the key idea of polarized linear logic (see for instance [LR03]).

This means that it is possible to define a notion of value for these positive types (values are terms
whose interpretation preserve the l-coalgebra structure) which are freely discardable and duplicable. It
is possible to define a functional language implementing this idea. It has two kinds of types: positive
ones ¢, ... (to be considered as data types) and general ones o,7.... Any positive type is a general
type, and if ¢ is a positive type and o is a general type then ¢ —o ¢ is a general type. If o is a general
type then lo is a positive type. If ¢ and 1 are positive types then ¢ ®1 and @@ are positive types. It
is also easy to add recursive positive types. These types are associated to terms of a A-calculus where
one defines a syntactic notion of value which is crucial in the definition of the operational semantics.
This language is extremely close to Paul Levy’s call-by-push-value and has a clear interpretation in
models of LL based on the principles explained above (positive types are interpreted as !-coalgebras,
and general types as general objects of the model), this is the object of |Ehrl6|. One of its main
features is that it allows to combine freely call-by-name and call-by-value.

Then with Christine Tasson we studied in [ET16, ET19] a probabilistic extension of this language,
that we interpreted in the model of probabilistic coherence spaces and for which we could again proof
adequacy and full abstraction. Since this language is much richer than PCF and in particular features
all recursive types, the proofs are significantly more involved than in [EPT18a].

1.8.4 The exponential is free (2016-2017). With Raphaélle Crubillé, Michele Pagani and Chris-
tine Tasson, we proved in [CEPT17| that the exponential “!” presented in 1.8.1 is free which means that

26



Thomas Ehrhard

for any object X the object !X is the free commutative comonoid generated by X, giving canonical
status to this exponential. At the beginning of this work we were actually trying to build a free ex-
ponential using a construction of Melliés, Tabareau and Tasson hoping to define a new exponential on
probabilistic coherence spaces. We still do not know if other exponentials are available in this model.

1.9 Cones and stable and measurable functions (about 2016-).

Probabilistic coherence spaces seem to have intrinsic limitations which make them difficult to use for
interpreting functional languages which handle probability distributions on measurable spaces like the
real line (in the spirit of Church or Anglican). Since this is an essential feature in current probabilistic
programming we have tried to extend our model in this direction, with Michele Pagani and Christine
Tasson. Our starting point has been that any probabilistic coherence space can be seen as a cone in
a sense made explicit by Selinger. A cone is a cancellative R>¢-semimodule equipped with a norm
which is monotone in the sense that ||z|| < ||z + y||. It is also complete in the sense that any increasing
sequence (w-chain) in the closed unit ball of this norm has a sup which belongs to this ball. Here we
use the algebraic partial order on the cone, defined by x; < x5 if there is y such that zo = ;1 +y. By
cancellativity when this y exists it is unique and we denote it by xo — x1. Then if X is a probabilistic
coherence space we get such a cone by taking all x € (Rzo)lx‘ such that z € aPX for some a € R>q
and for ||z|| the glb of all these as.

But we have another very simple class of examples which were not available in probabilistic coher-
ence spaces: for any measurable space X' the set of all finite measures on X' (measures p such that
p(X) is finite), with algebraic operations defined in the obvious way and ||| = pu(X) is a cone.

Our main result, presented in [EPT18b] is that these cones form a cartesian closed category for a
certain class of functions that we called stable functions. Given two cones P and @ a stable function
from P to Q is a function f from the unit ball of P to @) which is bounded in @) and satisfies an infinite
bunch of inequalities:

f(z) < flz +u)
fl@+uw) + f(z+u2) < flz+ur +uz) + f(x)
flx+ur +ug) + fz +ux +us) + flo+uy 4+ uz) + f(z)
< flr+up +ug+uz) + flx+u) + fz+u2) + flx+ us)

(as soon as the sums which appear in the arguments of f make sense, that is, belong to the unit ball of
P). The first condition says that f is monotone wrt. the algebraic order. The second condition expresses
that the — therefore well-defined — function z — f(z 4+ u) — f(z) is monotone in x. The third one
expresses that the — therefore well-defined — function x — f(z+ui+us)+f(x)—f(z4ui)— f(z+us) =
(f(x +ui +u2) — f(x +uw1)) — (f(z + u2) — f(x)) is monotone in x etc. One also assumes that f
commutes with the lubs of w-chains (Scott continuity).

This gives rise to a cartesian closed category®® which is a model of PCF where we can have a ground
type for each measurable space, using the cones defined above from any measurable space.

Following a suggestion of mine inspired by a theorem of Bernstein on totally monotone functions,
Raphaglle Crubillé managed to prove during her PhD that, when restricted to the cones generated by
probabilistic coherence spaces, these stable functions coincide with the analytic functions presented
in 1.8.1.

Plan for future research:

e This quite non-trivial result shows that our cone model is a conservative extension of probabilistic
coherence spaces and opens the way to many applications, such as extending to stable functions
the differential operations available in Pcoh, see Section 1.10, a reserch direction that I would
like to investigate with Crubillé.

55Surprisingly one of the most tricky point was to prove that this is actually a category, that is, the composition of
two stable functions is a stable function, assuming that the first one ranges in the unit ball of its codomain.
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1.9.1 Measurability structure in cones. As explained before, the sampling primitive of our
language is basically a “let” construct, but now for all measurable spaces (we restrict our attention
to the real line in this presentation) and requires some form of integration. So we need an additional
structure on our cones which allows to express that a stable function is “measurable” in some sense.
This notion of measurability needs of course to lift to the construction of function spaces P = @ (the
category of measurable spaces and measurable functions is well known not to be cartesian closed so we
cannot naively copy the usual definition of measurable space). The idea is to equip each cone P with
a set MF of test functions m : R x P — Rxq such that

e for each 7 € R the function m(r, ) is linear and continuous on P;
e for each x € P the function m(_,x) is measurable

e for each m € M? and measurable function h : R — R, the function (r,z) — m(h(r),z) belongs
to MP

e and if 2,2’ € P are # there is m € M such that m(0,z) # m(0,2') (NB: the choice of 0 is
arbitrary and irrelevant by the 3rd condition). We need this separation property by lack of a
general Hahn Banach theorem for cones, and it is not particularly difficult to leave with it.

Then one can define a measurable path in P as a function § : R — P such that for all m € MF
the function R — R>g which maps r to m(r, 5(r)) is measurable. And last a stable map P — @ is
measurable if f o 8 is a measurable path of @ for each measurable path 5 of P. A measurable cone is a
cone equiped with such a measurability structure MT and we proved that the category of measurable
cones and measurable stable function is cartesian closed, has fixpoint operators at all types. These
ideas are also presented in [EPT18b].

From now on all the cones we consider are measurable so we often drop the adjective.

1.9.2 Measurable cones as a model of intionistic LL (2019-2020). Given two cones P and
Q, there is a natural definition of linear and continuous morphisms from P to @), and of a cone P — Q)
whose elements are these morphisms. So it was natural to try and define a tensor product of cones
making this category monoidal closed and turning cones into a model of intuitionistic LL. After several
more concrete attempts, I managed to do so in a surprisingly simple way, using the very powerful
Special Adjoint Functor Theorem and the (also surprising) observation that probabilistic coherence
spaces are “dense” in cones, in a precise technical sense. By the same method I could equip this
symmetric monoidal closed category with an exponential based on the notion of stable and measurable
functions. These results have been presented at LICS in 2020 [Ehr20a].

1.9.3 Integration in cones (2018-). Omne main weakness of this cone-based semantics is that
sampling according to a probability measure, which is crucial in the interpretation of probabilistic
programming languages, was available in [EPT18b]| only for cones of shape P = 1 where 1 is the cone
of non-negative real numbers. This limitation is due to the fact that measurable R>¢-valued functions
on the real line can be integrated, but functions on the real line taking values in more general cones
cannot a priori. We observed with Guillaume Geoffroy (IRIF) that, thanks to the the definition of
measurability structures on cones explained in Section 1.9.1, and especially to the separation property,
it is possible to say that a measurable path R — P is integrable wrt. a probability measure p on R if
there is a (necessarily unique) = € P such that, for all m € MF one has

m(0,z) = / m(0, B(r))u(dr)

the integral in this formula being a standard Lebesgue integral which is well defined by our definition
of measurable paths. When this is the case we use z as a definition of the integral [ B(r)u(dr) of B
wrt. u. Then we say that a cone P is integrable if any P-valued measurable path is integrable wrt. any
probability measure on R. The nicest feature of this notion is that integrability is just a property of a
measurable cone, and not an additional structure (as I initially thought it would be).
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In turn this allows to refine the notion of linear morphism f : P — Q: we ask them to be measurable
of course, but also to preserve integrals in the sense that for any measurable path 5 : R — P and any
probability measure p on R, one has f([ 8(r)u(dr)) = [ f(B(r))u(dr), both integrals being defined
since P, () are integrable cones. Using this notion of integrable cones and linear morphisms we could
build a model of intuitionistic LL with a stable exponential, for which we are also studying more refined
exponentials based on a notion of analyticity (relying on the canonical notion of multilinear map). In
this model, integration is available for all objects and so we have a general let (aka. sampling) operator.
So it will be possible for instance to interpret probabilistic call-by-value probabilistic programming
languages, not just call-by-name as in [EPT18b|. We are currently writing a first report on these
constructions (Summer 2022).

1.10 Differentiation in probabilistic coherence spaces (2017-).

One main feature of the probabilistic coherence space model is that the morphisms of its Kleisli
category are analytic functions and therefore are extremely regular. For instance, as already explained
in Section 1.8.1, in that category, a morphism 1 — 1 (remember that 1 is a constant of LL which
corresponds to the type unit which has () as single value) is a function f : [0,1] — [0, 1] such that
f(z) = > 07 janz™ with a, € R>g for each n. These functions are in bijective correspondence with
the families (a)nen in RY, such that 0% ja, < 1. Such a function f admits a derivative for each
x € [0, 1), the slope being possibly infinite at # = 1. A typical example is the function®® z + 1—y/1 -z
which is actually the interpretation of a program as explained in [Ehr19].

In that paper I show that each a, has a natural operational interpretation: thinking of f as the
interpretation of a program M of type 1 — 1, a,, is the probability that, fed with (), the program M
will use its argumentS” n times®. Therefore /(1) = >_°° ; na, is the (possibly infinite) expectation of
the number of times M will use its argument () if we evaluate (M) (). It is actually more sensible to
compute f'(1)/f(1) which is this expectation conditioned by the termination of (M) (). By computing
such derivatives formally on programs we can evaluate this expectation of termination, as illustrated on
an example of [Ehr19], that I would like to generalize introducing a differential probabilistic functional
programming language (current research).

The possibility of computing such differentials (or Jacobians), but now for a more general morphism
f:PX —[0,1] in the category Pcohy at any x € PX such that ||z|| < 1, combined with the fact that
f is upper bounded by 1 and has only non-negative coefficients (when considered as a power series),
makes it easy to show that f is Lipschitz of ratio 1/(1 — p) on the “ball” {x € PX | ||z|| < p}, for any
p € [0,1). I show how this property can be used to upper-bound a p-tamed version of the observational
distance by a distance naturally associated with the norm of the model. Let me explain this point
shortly.

In a probabilistic programming language, it is tempting to say that the distance between two
terms (programs) M and M’ which are closed of type o is the sup of all |gc — ¢| where, given C
closed of type 0 = 1 (such a term is a o-context), qc is the probability that (C) M converges and
similarly for g and M’. However this distance is well known to be way too discriminating. For
instance (taking for o the type of integers), for any ¢ € (0,1], it puts at distance 1 the program
0 (constant 0) and M. which has probability 1 — ¢ to converge to 0 and ¢ to converge to 1. Nev-
ertheless if we restrict the o-contexts C used in the definition of the observational distance to be of
shape Az (D) (if (coin(p), z, 27)) where D is an arbitrary o-context (that is: before feeding the context
with the argument, we allow the argument to diverge with probability 1 — p), the obtained observa-
tional distance d, satisfies dp,(M, M') < $£-d([M], [M']) where d is the distance of the model (and
d([0], [M:]) = 2e so that dy,(0, M.) goes to 0 when € does as one would expect). I could prove this
using the above mentioned Lipschitz property, see [Ehr22b].

These ideas are at the origin of my current work on coherent differentiation 1.7.5.

56The coefficients of its Taylor expansion at 0 are actually all > 0.

5"The argument is a probabilistic program of type 1, it has only 2 possible behaviors: either produce () in a finite
time, or diverge; in the model, it is interpreted by its probability to converge.

%8In a Krivine-like stack machine.
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1.10.1 Approximation from above in probabilistic coherence spaces (2019). Denotational
models such as Pcoh provide approximations from below for probabilities of convergence. Consider for
instance a closed term M of type ¢; we know that [M] is the probability that M reduces to the value
0. But this probability is obtained as a limit involving the computations of lubs of infinite monotone
sequences of probabilities associated with the occurrence of fixpoints subterms (implementing general
recursion, or while loops) in M. One can obtain lower approximations by replacing such fixpoint
subterms with finite iterations starting from 0. One could obtain similarly approximations from above
if we could iterate starting from a maximal element in the corresponding probabilistic coherence space.

The problem is that (just as ordinary coherence spaces) probabilistic coherence spaces in general
do not have maximal elements! We can solve this problem by coming back to Berry’s old trick of
bidomains, equipping probabilistic coherence spaces with an “extensional” pre-order relation C . This
pre-order is actually defined only on a subset £ of “extensional” elements. Such a pair (£,C) must be
equal to its bidual for a natural notion of duality whose definition swaps in some sense the roles of
£ and C. One obtains in that way a categorical model Pcoh® of LL of ezxtensional coherence spaces
whose main feature is that, in X — Y, one has s € Ex .y if Vo,y € Ex * Cx y = sz Cy sy and
sCx oy tiff s,t € Ex oy and Vo € Ex sx Cy tx. It is then possible to interpret ground types as
objects of Pcoh® which have C-maximal elements. For instance, one can interpret the type of integers
with a an object whose underlying probabilistic coherence space is N @ 1 (whose web is NU {x}) and
E = P(N@1); * should be understood as a kind of error element. In this object one stipulates that
v Cyif Y cr(@n —yn) < Yo — x4 where I = {n € N |z, > y,}. Of course z < y = x C y but
the converse implication is false: we can have  C y whithout having z,, < y, for all n € N (that is
x < y), the only restriction is that y, —x, must be greater than the sum of the “inversions” z,, —y, > 0
for the n’s such that it is not true that x, < y,. Then the special element e, € P(N@® 1) such that
(ex)« = 1is C-maximal. These ideas are presented in [Ehr20d]| where it is shown how they can be used
for addressing our initial upper-approximation problem: the main ingredients are the fact that types
are interpreted as C-monotone functions and the existence of C-maximal elements in all types of PCF.

Plan for future research:

e The construction above should clearly be presented as a kind of extension of Pcoh with an error
monad (in the sense of Haskell) but it is not completely clear how to formalize this in a way
which takes properly into account the additional “extensional” structure of the objects of Pcoh®,
this is one of the next steps to be taken in this research direction.

e [t is well-known that approximation of fixpoints by iteration is usually slow and inefficient and
that Newton method provides often much better results. I plan to adapt Newton method to
probabilistic coherence spaces — using the regularity of the morphisms of Pcoh, (analytic func-
tions) — for accelerating convergence to fixpoint approximations in the framework of 1.10.1. A
priori this should work only for lower approximations (which use the algebraic order relation <),
extending it to C-approximations from above will certainly be more challenging. In any case this
project is a clear incentive for extending LL with differential constructs compatible with Pcoh
since this Newton algorithm will require the use of formal differentials of programs: the new
setting of coherent differentiation 1.7.5 might be helpful with this respect.

1.11 LL with fixpoints and its semantics (2018-)

From March to July 2018, I supervised the M1 MPRI internship of Farzad Jafarrahmani and he
has started a PhD under my and Alexis Saurin’s supervision in september 2019. We focused our
attention on the denotational semantics of linear logic extended with least and greatest fixpoints. In
the current litterature this extension plLL of LL is mostly considered from the viewpoint of system
specification /verification.

Our starting point was the observation that Girard’s coherence spaces provide a natural model of
this system, but that this semantics does not make any distinction between least and largest fixpoints
(allowing also to interpret contravariant recursive types which are well known to be incompatible with
strong normalization, for instance they can be used to define models of the pure lambda-calculus).
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Our key observation was that Girard’s coherence spaces with totality allow to recover the distinction
between least and greatest fixpoints as well as strong normalization: totality is a denotational account
of strong normalization.

A notion of totality on a coherence space F is a collection of cliques 7 such that 7 = 71+ where
T+ = {2’ € CI(EL) | xna’ # 0} and the set of all notions of totality of a coherence space form a
complete lattice (for C). Then we showed how to use the Knaster Tarski theorem to interpret least
and greatest type fixpoints non trivially in the coherence space with totality model of LL.

The same approach allows to interpret this logical system in Koéthe spaces, finiteness spaces and
probabilistic coherence spaces with totality. These results are reported in [EJ19]. We submitted a
considerably improved version of this work to LICS’21 where it has been accepted [EJ21]. In that
paper we give in particular the first general categorical definition of a “Seely model” of puLL based on
the concepts of strong functors and of final coalgebras of functors. One major benefit of considering ulLL
as we do rather than uMALL (as in earlier work in particular by Baelde, Doumane and Saurin) is that
the presence of exponentials®® makes the presentation of the introduction rule for greatest fixpoints
much more natural, by allowing the presence of a context (which must be of shape 7Ay,...,7A,, for
deep reasons related to cut-elimination, this is why they are absent from yMALL).

In the same paper we also introduce a new denotational model of uLL based on the idea of totality,
but without the coherence relation of coherence spaces with totality: the category of non-uniform total-
ity spaces (NUTS). This simplification makes these objects much easier to deal with, both theoretically
and practically (for computing the actual interpretation of types). Also this semantics of pLL is fully
compatible with its simplest semantics (in the model Rel of LL) in the sense that a proof in interpreted
as the same set in both models, the model of NUTS providing the additional information that this
set is total. Notice also that in the model of NUTS, least and greatest fixpoints are interpreted by
non-isomorphic object, contrarily to Rel.

1.11.1 A polarized calculus with fixpoints (2020-). Then, together with Alexis Saurin, we
have developed pLLP, a single-sided polarized version of pylLL with a term calculus based on ideas
borrowed to the work of Laurent, Curien, Herbelin and Munch-Maccagnoni. The main feature of
this calculus is that it has a notion of positive types (preserved in particular by least fixpoints) and of
negative types (preserved by greatest fixpoints), dual to each other by linear negation. Just as in [ET16]
the main property of positive types is that they have structural rules for free in the sense that the
values of these types can be freely erased and duplicated. So, even though our polarized calculus has
all the constructs of puLL, we don’t need explicit syntactic constructs to deal with structural operations
and from this respect, it is very close to a standard lambda-calculus formalism (or to Levy’s call-by-
push-value).

We developed a new reducibility proof technique for establishing normalization for this kind of
calculus in Spring 2021, we were confident that this method would smoothly incorporate least and
greatest fixpoint constructs by a standard application of the Knaster-Tarski theorem. But this turned
out not to be the case, in spite of many attempts (using step-indexing and other techniques).

In parallel we developed the corresponding categorical notion of positive strong functor and the
general interpretation of least and greatest fixpoints (as initial algebras and final coalgebras of functors)
in this polarized setting. We applied this general definition to construct a concrete interpretation of
our calculus in NUTS. Using this interpretation and the fact that any proof is interpreted as a total set,
combined with an intersection typing system accounting for the simple relational semantics of uLLP
undelying this NUTS interpretation, we could finally establish a normalization result for uLLP. The
idea is twofold:

e One can prove normalization for uLLP wrt. the relational intersection typing system, using cru-
cially the fact that the intersection types, even within coinductive types, are finite trees so that
we can reason by induction on them.

e And then one can use the NUTS model to prove that any term of a suitable type, for instance

59Tn the proof-search perspective of Baelde, there were excellent reasons for rejecting the exponentials: LL provability
is a well-known undecidable problem. This is not an issue if we have a Curry-Howard kind of perspective on plLL.
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the type of integers, is typable in the intersection typing system and hence normalizes.

This calculus puLLP seems to be an interesting extension of Godel’s System T to all inductive and
coinductive types, incorporating also classical constructs such as call/cc, but its precise functional
expressiveness needs still to be studied. In the meantime plan to submit this work to a journal in
Fall 2022. A report is already available [EJS22].

1.11.2 Semantics of infinite proofs. This first semantic work is based on a finitary presentation
of uLL, where the greatest fixpoint rule is a syntactic account of the fact that greatest fixpoints are final
object in a category of coalgebras. In this system, proofs are finite trees, but since coinductively defined
objects are naturally thought of as infinite structures, it is quite natural to develop logical systems
where proofs are infinite trees as in [BDS16]. Of course not all infinte proof trees are correct, only those
whose all infinite branches satisfy a criterion dealing with the occurrences of fixpoint formulas. It is not
difficult to define the relational (or coherent) semantics of any proof tree, even of incorrect ones; proving
that the correct proof trees are interpreted as total sets was one of the goals of Farzad Jafarrahmani’s
PhD which has been achieved in 2021 and presented by him at the TLLA 2021 workshop.

Plan for future research:

e As noticed by Baelde [Bael2], it is possible in pulLL to define an exponential as a coinductive
formula and this formula has an interesting denotational semantics based on binary trees instead
of finite multisets as for the usual exponentials of LL: it is a free pointed (co)magma instead of
being a free commutative (co)monoid. Categorically, it turns out to be a comonad as expected,
but does not satisfy the Seely isomorphisms required for giving rise to a cartesian closed Kleisli
category. It provides a denotational interpretation of LL which is invariant under cut-elimination
but not under the Rétoré conversion rules on proof-nets. I expect that a study of the connection
between this exponential and the usual one in models such as coherence spaces will shed a new
light on the notion of wuniformity (an interpretation is uniform if it assumes some determinism
from the arguments of programs). Also this comagmatic exponential provides a semantics of
programs which is “non commutative” in the sense that, just as in game models, the order
of elementary operations is faithfully reflected by the interpretation. This analogy with game
semantics deserves further inquieries that I would like to undertake in a cooperation with Paul-
André Mellies.

e We would like to use our new pulLP term calculus to better understand the formalization of
least and greatest fixpoints in systems such as the Calculus of Inductive Constructions where
termination is obtained by means of guardedness conditions we seem quite different from our
ours.
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