e
The differential lambda-calculus: From semantics to syntax

The differential lambda-calculus:
From semantics to syntax

Thomas Ehrhard (IRIF - Université Paris Cité, CNRS, Inria)
Laurent Regnier (12M - Université d’'Aix-Marseille, CNRS)

Tallinn - July 10, 2024

The differential lambda-calculus: From semantics to syntax

What is differentiation?

Approximate functions by linear maps:

Df : R" = L£(R",R)

FIRT =R~ 4 u) = f(x) + DF(x).u + o{u)

Numerical linearization of f

But what if M : A=- B is a program?

M:A=B ~ DM:A= (A— B)

Linear logical linearization of M

The differential lambda-calculus: From semantics to syntax

The lambda-calculus: a syntax for functions

A syntax to denote functions, just as terms of set theory denote
sets: this was the original idea of Alonzo Church’s Type Theory

>
>
>

Given a set of variables V = {x, y, x1,...}

if x €V then x is a term

is M and N are terms then M N is a term (function M applied
to argument N)

if x €V and M is a term then Ax M is a term (function

x — M). The variable x is bound

The differential lambda-calculus: From semantics to syntax

Only one rule for computing with these terms: (S-reduction
redex reduct
—— ——
(AXxM)N — M [N/x]

Computing = rewriting

Fact

A-calculus is a deterministic and Turing complete model of
computation

The differential lambda-calculus: From semantics to syntax

Do A-terms denote functions (or morphisms)?

Yes! It suffices to find a cartesian closed category C and, in that
category, an object U together with two morphisms

et eC(U= U,U)
e” €C(U,U=U)

such that e~ o e™ = ldy—y

» Impossible if C is the category of sets and functions, for
cardinality reasons

» Dana Scott (1968): possible in the category of complete
lattices and directed sup preserving functions

Many other examples since then: denotational models of the
A-calculus

The differential lambda-calculus: From semantics to syntax

An example

Rel, is the following category:

» objects of Rel: all sets

» Rel\(E,F) =P (Mgn(E) x F) where Mg, (E) is the set of
all finite multisets [ay, ..., a,] of elements of E

with
» identity at E: Idg = {([a],a) | a € E}
» composition: if R € Rel,(E, F) and S € Reli(F, G) then

SoR={(m+-+mpc)|3by,....bh€F
((mi. by) € R)i_y and ([by,.... b, c) € S}

The differential lambda-calculus: From semantics to syntax

Intuition
Elements of E = "basis” of a vector space (or rather of a free
semi-module on the semi-ring {0,1} with 1+ 1 = 1); multiset
[a1,...ak] = monomial x,, ...Xa,

Then R € Reli(E, F) is a powerseries (with parameters indexed by
E and output spanned by F)

AxBool e A —x = {([t, t], F), ([F,],), ([t, f], F), ([t, f],)}
= (¢ + 5F + xex5)-F+ xexe.t

The definition of identities and composition is compatible with this
intuition

This is a CCC:

» the categorical product is disjoint union
» the internal hom of E and F is (E = F) = Mg,(E) x F

The differential lambda-calculus: From semantics to syntax

The simplest model of the A-calculus

Given a non-empty set Eg (none elements of which are pairs), we
can define a monotone family of sets:

> Un+1 = EO U (Mﬁn(Un) X Un)

and then

U=|J U, satisfies U=EU (U= U)
n=0

The differential lambda-calculus: From semantics to syntax

Linearity in Rel,

Even if the category Rel, is very simple, it has an interesting
feature: some morphisms are linear

Definition

A morphism R € Reli(E, F) = P (Mg, (E) x F) is linear if all the
elements of R are of shape ([a], b)

Identity morphisms are linear and linear morphisms are stable
under composition

The differential lambda-calculus: From semantics to syntax

~> the subcategory of sets and linear morphisms is (isomorphic) to
Rel, the category of sets and relations

This category is monoidal symmetric, that is there is a well
behaved tensor product which is simply E® F = E x F

Rel is a well-known model of Linear Logic

The differential lambda-calculus: From semantics to syntax

Differentiation

We have actually an internal linear hom in Rel:
Rel(G® E,F) = Rel(G,E — F)

namely E —o F=E x F
As a powerseries any R € Rel\(E, F) = P (Mgn(E) x F) has a
derivative

R' ={(m,(a,b)) | (m+[a],b) € R} € Rel\(E,E — F)

Satisfies all the expected algebraic properties of a derivative
(Leibniz, chain rule etc)

e
The differential lambda-calculus: From semantics to syntax

In the semantic universe Rel; we have at the same time:

» the A-calculus
» and differentiation

This suggests to extend the lambda-calculus with differentiation
this is exactly what we did in 2002

The differential lambda-calculus: From semantics to syntax

The differential \-calculus

We introduce a new construction in the A-calculus:

» if M and N are terms, then DM - N is a term, the differential
application of M to N

Intuitively: M denotes a morphism R € Reli(U, U), so we have
R" € Rel,(U, U — U), and so, swapping the arguments we get

S € Rel(U, U = U)

DM - N denotes the (linear) application of S to the denotation of
N, which € P (V)

This differential application yields an element of
P (U= U)=Rel(U,U)

e
The differential lambda-calculus: From semantics to syntax

Convenient feature of this syntax: derivatives are easy to
iterate

DkM'(le-~~;Nk)=D("‘DM'N]_"')'Nk

The differential lambda-calculus: From semantics to syntax

The differential redex

The main idea of the differential A-calculus is to say that
D(AxM) - N
is a new redex: the differential 3-redex
oM
D(AxM) - N — N
(Ax M) - N — Ax < e)

where %—A):’ - N is a kind of “substitution” defined by induction on M

Intuition: replace exactly one occurrence of x in M

The differential lambda-calculus: From semantics to syntax

> In IM . N, the variable x is still free (there are remaining
occurrences of x not yet substituted) ~» the Ax remaining in
the reduct

P In y x one cannot say that x has exactly one occurrence
because y can be replaced with a function which duplicates or
erases its argument

We need two more operations on terms to define aM - N:

» a3 constant 0
» and if M and N are terms, a new term M + N

Good news
We don’t need anything more

The differential lambda-calculus: From semantics to syntax

ox 3_y

ZN=N N=0ifyeV\{x}

ox Ox
Ay M oM
N = =N
Ox N Ay(&x)
DP-Q (P 0Q
ox ""—D(a"") @+DP (a"’)

WD = (% w)a+ (o (22 n))

The differential lambda-calculus: From semantics to syntax

One must also say that all constructs commute with 0 and +, but
the argument component of ordinary application

So we consider terms up to the following equalities

Ax0 =0 Ax (My + Ma) = Ax My + Ax My

ON=0 (My + Mp) N = My N + M, N
DO-N=0 D(My+M)-N=DM -N+DM,-N
DM-0=0 DM-(Ny+ Ny) =DM - Ny +DM- N,

We do not have

M0O=0 M(N1+N2):MN1—|—MN2

e
The differential lambda-calculus: From semantics to syntax

Example

MXX)-Nz(Dy-N)x

We also need

Schwarz

DM - (N1, Np) = D?>M - (N, Ny)

e
The differential lambda-calculus: From semantics to syntax

Sums come in even if not invited

(D2(AxBo x A —x) - (t,F)0 —* t+f

The differential lambda-calculus: From semantics to syntax

Syntactic Taylor expansion

If we accept infinite sums and rational coefficients, we can write a
Taylor expansion of the application:

1

> = (D"M-(N,...,N))0 instead of M N

!

We can apply this to all the applications in an (ordinary) A-term

Then the only ordinary applications we use are of shape M0

The differential lambda-calculus: From semantics to syntax

Differential resource calculus

» If x € V then x is a term;
» if x&Vand tisaterm then Axt is a term;

» if sis aterm and T is a multiset [t1, ..., t,] of terms, then
(s) T is a term

A = the set of all resource terms

Intuition:
(s) T=(D"s-(t1,...,tn))0
All the constructions are (multi)linear

Example of multilinearity

(s)[tr +t, by s ta] = (S) [t1, -y ta] + (s) [t1, t2, - - -, tn]

The differential lambda-calculus: From semantics to syntax

In a resource term s, all the occurrences of a variable x are linear
occurrences (in contrast with the ordinary A-calculus)

It make sense to define

deg, s = number of occurrences of x in s

Differential -reduction becomes:

degn s [t,,(l)/xl, R tg(n)/Xn] if n=deg,s

AXS) [t1, ..., ty] —)
< gt] 0 otherwise

where x1,..., X, are the n occurrences of x in s

The differential lambda-calculus: From semantics to syntax

Normalization of resource terms

Contrarily to the A-calculus, reduction in the resource calculus
always terminates, but can yield any sum (including 0)

Fact

Any resource term s reduces to a unique normal form NF(s) which
is a finite sum of resource terms which have no redexes

Example:

NF((Ax (x) [x, x]) ly; 2, 2]) = 2{y) [z, 2] + 4(2) [y, 2]

The differential lambda-calculus: From semantics to syntax

Then we can define the complete Taylor expansion M* of a A-term
M as a (generally infinite) linear combination of resource terms
with > 0 rational coefficients:

x* =x

(AxM)* = Ax M* =" M Axs
seA
n

nO

e
The differential lambda-calculus: From semantics to syntax

If we develop these expressions, we get
1
=Y s
serom ™)
where
T(x) = {x}
T(AxM)={ xs|seT(M)}

T(MN) = {(s)[t1,...,tn] | n €N, s€T(M)
and t1,...,t, € T(N)}

and m(s) € N\ {0} depends only on s

The differential lambda-calculus: From semantics to syntax

A theorem

If M | x, then there is exactly one s € T(M) such that NF(s) # 0
and this s satisfies
NF(s) = m(s) x

This s is the “trace” of execution of M in the Krivine machine, a
realistic model of A-term execution

s is a “decoration” of M with the multiplicities expressing how
many times the various subterms are used

Example: M =(A\yy(yx))Azz
Then s = (Ay (y) [(y) [X]]) [Nz z, Az z] and m(s) =2

Remark: This theorem may be generalized

The differential lambda-calculus: From semantics to syntax

Linear logic in a nutshell

A ressource aware typing discipline of programs:
M : A — B means M uses its input (typed by A) once and only once

to produce its output (typed by B)

Examples

AxBeel x A —x : Bool = Bool
App; = A AA7B fx:A—(A—-B)—B
App = A AAZB fx: A= (A= B) - B

The differential lambda-calculus: From semantics to syntax

Exponentials

Exponential modalities for typing non linear programs:

A=B=1A—B

(syntactic version of Rel|(E, F) seen above)
Embedding linear programs into general ones

IA— A (dereliction)

And coping with erasing and duplication:

IA— 1 erasing (weakening)
IA—- IA®!A duplication (contraction)

The differential lambda-calculus: From semantics to syntax

Differential linear logic (DiLL)

Codereliction
A—olA

Differentiation at 0O:
F:A=B ~ M*.(DF-x)0:A—B
Coweakening
1—-olA
Evaluationat0: F:A=B ~ FO0:B
Cocontraction
IARIA — 1A

Evaluation on a sum:
F:A=B ~ A M)A F(x+y):A=>A=18B

The differential lambda-calculus: From semantics to syntax

Differential A\-Calculus and Differential Linear Logic, 20
Years Later (a conference at CIRM - Marseille 2024)

» Pierre Clairambault (CNRS, Aix-Marseille Université)
Quantitative semantics in game models

» Ugo Dal Lago (University of Bologna) Reasoning
Operationally about Probabilistic Higher-Order Programs

» Thomas Ehrhard (CNRS, Paris Cité) Coherent differentiation
Zeinab Galal (Bologna) Stable species

v

» Nicola Gambino (University of Manchester) Generalized
species

» Brenda Johnson (Union College) Differential Categories from
Functor Calculus

» Marie Kerjean (CNRS, Sorbonne Paris Nord) Introduction to
DiLL

The differential lambda-calculus: From semantics to syntax

DiALL 2024, continued

v

Delia Kesner (Paris Cité) Non-idempotent intersection types

Giulio Manzonetto (Paris Cité) Taylor expansion and Bohm
trees

Guy McCusker (Bath) Weighted models

Jean-Simon Pacaud Lemay (Macquarie University) Differential
categories

Michele Pagani (ENS de Lyon) Automatic differentiation
Luc Pellissier (Paris-Est Créteil) Taylor expansion in proof nets

Christine Tasson (ISAE-Supaero) Probabilistic coherence
spaces

