
The differential lambda-calculus: From semantics to syntax

The differential lambda-calculus:
From semantics to syntax

Thomas Ehrhard (IRIF - Université Paris Cité, CNRS, Inria)
Laurent Regnier (I2M - Université d’Aix-Marseille, CNRS)

Tallinn - July 10, 2024



The differential lambda-calculus: From semantics to syntax

What is differentiation?

Approximate functions by linear maps:

f : Rn → R ;
Df : Rn → L(Rn,R)

f (x + u) = f (x) + Df (x).u + o(u)

Numerical linearization of f

But what if M : A ⇒ B is a program?

M : A ⇒ B ; DM : A ⇒ (A ⊸ B)

Linear logical linearization of M



The differential lambda-calculus: From semantics to syntax

The lambda-calculus: a syntax for functions

A syntax to denote functions, just as terms of set theory denote
sets: this was the original idea of Alonzo Church’s Type Theory

▶ Given a set of variables V = {x , y , x1, . . . }
▶ if x ∈ V then x is a term

▶ is M and N are terms then M N is a term (function M applied
to argument N)

▶ if x ∈ V and M is a term then λx M is a term (function
x 7→ M). The variable x is bound



The differential lambda-calculus: From semantics to syntax

Only one rule for computing with these terms: β-reduction

redex︷ ︸︸ ︷
(λx M)N →

reduct︷ ︸︸ ︷
M [N/x ]

Computing = rewriting

Fact

λ-calculus is a deterministic and Turing complete model of
computation



The differential lambda-calculus: From semantics to syntax

Do λ-terms denote functions (or morphisms)?

Yes! It suffices to find a cartesian closed category C and, in that
category, an object U together with two morphisms

e+ ∈ C(U ⇒ U,U)

e− ∈ C(U,U ⇒ U)

such that e− ◦ e+ = IdU⇒U

▶ Impossible if C is the category of sets and functions, for
cardinality reasons

▶ Dana Scott (1968): possible in the category of complete
lattices and directed sup preserving functions

Many other examples since then: denotational models of the
λ-calculus



The differential lambda-calculus: From semantics to syntax

An example

Rel! is the following category:

▶ objects of Rel!: all sets

▶ Rel!(E ,F ) = P (Mfin(E )× F ) where Mfin(E ) is the set of
all finite multisets [a1, . . . , an] of elements of E

with

▶ identity at E : IdE = {([a], a) | a ∈ E}
▶ composition: if R ∈ Rel!(E ,F ) and S ∈ Rel!(F ,G ) then

S ◦ R = {(m1 + · · ·+mn, c) | ∃b1, . . . , bn ∈ F

((mi , bi ) ∈ R)ni=1 and ([b1, . . . , bn], c) ∈ S}



The differential lambda-calculus: From semantics to syntax

Intuition
Elements of E = “basis” of a vector space (or rather of a free
semi-module on the semi-ring {0, 1} with 1 + 1 = 1); multiset
[a1, . . . ak ] = monomial xa1 . . . xak

Then R ∈ Rel!(E ,F ) is a powerseries (with parameters indexed by
E and output spanned by F )

λxBool . x ∧ ¬x = {([t, t], f), ([f, f], f), ([t, f], f), ([t, f], t)}
= (x2t + x2f + xtxf).f + xtxf .t

The definition of identities and composition is compatible with this
intuition

This is a CCC:

▶ the categorical product is disjoint union

▶ the internal hom of E and F is (E ⇒ F ) = Mfin(E )× F



The differential lambda-calculus: From semantics to syntax

The simplest model of the λ-calculus

Given a non-empty set E0 (none elements of which are pairs), we
can define a monotone family of sets:

▶ U0 = ∅
▶ Un+1 = E0 ∪ (Mfin(Un)× Un)

and then

U =
∞⋃
n=0

Un satisfies U = E0 ∪ (U ⇒ U)



The differential lambda-calculus: From semantics to syntax

Linearity in Rel!

Even if the category Rel! is very simple, it has an interesting
feature: some morphisms are linear

Definition

A morphism R ∈ Rel!(E ,F ) = P (Mfin(E )× F ) is linear if all the
elements of R are of shape ([a], b)

Identity morphisms are linear and linear morphisms are stable
under composition



The differential lambda-calculus: From semantics to syntax

; the subcategory of sets and linear morphisms is (isomorphic) to
Rel, the category of sets and relations

This category is monoidal symmetric, that is there is a well
behaved tensor product which is simply E ⊗ F = E × F

Rel is a well-known model of Linear Logic



The differential lambda-calculus: From semantics to syntax

Differentiation

We have actually an internal linear hom in Rel:

Rel(G ⊗ E ,F ) = Rel(G ,E ⊸ F )

namely E ⊸ F = E × F

As a powerseries any R ∈ Rel!(E ,F ) = P (Mfin(E )× F ) has a
derivative

R ′ = {(m, (a, b)) | (m + [a], b) ∈ R} ∈ Rel!(E ,E ⊸ F )

Satisfies all the expected algebraic properties of a derivative
(Leibniz, chain rule etc)



The differential lambda-calculus: From semantics to syntax

In the semantic universe Rel! we have at the same time:

▶ the λ-calculus

▶ and differentiation

This suggests to extend the lambda-calculus with differentiation
this is exactly what we did in 2002



The differential lambda-calculus: From semantics to syntax

The differential λ-calculus

We introduce a new construction in the λ-calculus:

▶ if M and N are terms, then DM · N is a term, the differential
application of M to N

Intuitively: M denotes a morphism R ∈ Rel!(U,U), so we have
R ′ ∈ Rel!(U,U ⊸ U), and so, swapping the arguments we get

S ∈ Rel(U,U ⇒ U)

DM · N denotes the (linear) application of S to the denotation of
N, which ∈ P (U)

This differential application yields an element of
P (U ⇒ U) = Rel!(U,U)



The differential lambda-calculus: From semantics to syntax

Convenient feature of this syntax: derivatives are easy to
iterate

DkM · (N1, . . . ,Nk) = D(· · ·DM · N1 · · · ) · Nk



The differential lambda-calculus: From semantics to syntax

The differential redex

The main idea of the differential λ-calculus is to say that

D(λx M) · N

is a new redex: the differential β-redex

D(λx M) · N → λx

(
∂M

∂x
· N

)
where ∂M

∂x ·N is a kind of “substitution” defined by induction on M

Intuition: replace exactly one occurrence of x in M



The differential lambda-calculus: From semantics to syntax

▶ In ∂M
∂x · N, the variable x is still free (there are remaining

occurrences of x not yet substituted) ; the λx remaining in
the reduct

▶ In y x one cannot say that x has exactly one occurrence
because y can be replaced with a function which duplicates or
erases its argument

We need two more operations on terms to define ∂M
∂x · N:

▶ a constant 0

▶ and if M and N are terms, a new term M + N

Good news

We don’t need anything more



The differential lambda-calculus: From semantics to syntax

∂x

∂x
· N = N

∂y

∂x
· N = 0 if y ∈ V \ {x}

∂λy M

∂x
· N = λy

(
∂M

∂x
· N

)
∂DP · Q

∂x
· N = D

(
∂P

∂x
· N

)
· Q +DP ·

(
∂Q

∂x
· N

)
∂(P Q)

∂x
· N =

(
∂P

∂x
· N

)
Q +

(
DP ·

(
∂Q

∂x
· N

))
Q



The differential lambda-calculus: From semantics to syntax

One must also say that all constructs commute with 0 and +, but
the argument component of ordinary application

So we consider terms up to the following equalities

λx 0 = 0 λx (M1 +M2) = λx M1 + λx M2

0N = 0 (M1 +M2)N = M1N +M2N

D0 · N = 0 D(M1 +M2) · N = DM1 · N +DM2 · N
DM · 0 = 0 DM · (N1 + N2) = DM · N1 +DM · N2

We do not have

M 0 = 0 M (N1 + N2) = M N1 +M N2



The differential lambda-calculus: From semantics to syntax

Example

∂(y x)

∂x
· N = (Dy · N) x

We also need

Schwarz

D2M · (N1,N2) = D2M · (N2,N1)



The differential lambda-calculus: From semantics to syntax

Sums come in even if not invited

(D2(λxBool . x ∧ ¬x) · (t, f)) 0 →∗ t+ f



The differential lambda-calculus: From semantics to syntax

Syntactic Taylor expansion

If we accept infinite sums and rational coefficients, we can write a
Taylor expansion of the application:

∞∑
n=0

1

n!
(DnM · (N, . . . ,N))0 instead of M N

We can apply this to all the applications in an (ordinary) λ-term

Then the only ordinary applications we use are of shape M 0



The differential lambda-calculus: From semantics to syntax

Differential resource calculus
▶ If x ∈ V then x is a term;
▶ if x ∈ V and t is a term then λx t is a term;
▶ if s is a term and T is a multiset [t1, . . . , tn] of terms, then

⟨s⟩T is a term

∆ = the set of all resource terms

Intuition:

⟨s⟩T = (Dns · (t1, . . . , tn)) 0

All the constructions are (multi)linear

Example of multilinearity

⟨s⟩ [t1 + t ′1, t2, . . . , tn] = ⟨s⟩ [t1, . . . , tn] + ⟨s⟩ [t ′1, t2, . . . , tn]



The differential lambda-calculus: From semantics to syntax

In a resource term s, all the occurrences of a variable x are linear
occurrences (in contrast with the ordinary λ-calculus)

It make sense to define

degxs = number of occurrences of x in s

Differential β-reduction becomes:

⟨λx s⟩ [t1, . . . , tn] →

{∑
σ∈Sn

s
[
tσ(1)/x1, . . . , tσ(n)/xn

]
if n = degxs

0 otherwise

where x1, . . . , xn are the n occurrences of x in s



The differential lambda-calculus: From semantics to syntax

Normalization of resource terms

Contrarily to the λ-calculus, reduction in the resource calculus
always terminates, but can yield any sum (including 0)

Fact

Any resource term s reduces to a unique normal form NF(s) which
is a finite sum of resource terms which have no redexes

Example:

NF(⟨λx ⟨x⟩ [x , x ]⟩ [y , z , z ]) = 2 ⟨y⟩ [z , z ] + 4 ⟨z⟩ [y , z ]



The differential lambda-calculus: From semantics to syntax

Then we can define the complete Taylor expansion M∗ of a λ-term
M as a (generally infinite) linear combination of resource terms
with ≥ 0 rational coefficients:

x∗ = x

(λx M)∗ = λx M∗ =
∑
s∈∆

M∗
s λx s

(M N)∗ =
∞∑
n=0

1

n!
⟨M∗⟩ [

n︷ ︸︸ ︷
N∗, . . . ,N∗]



The differential lambda-calculus: From semantics to syntax

If we develop these expressions, we get

M∗ =
∑

s∈T (M)

1

m(s)
s

where

T (x) = {x}
T (λx M) = {λx s | s ∈ T (M)}
T (M N) = {⟨s⟩ [t1, . . . , tn] | n ∈ N, s ∈ T (M)

and t1, . . . , tn ∈ T (N)}

and m(s) ∈ N \ {0} depends only on s



The differential lambda-calculus: From semantics to syntax

A theorem

If M ↓ x , then there is exactly one s ∈ T (M) such that NF(s) ̸= 0
and this s satisfies

NF(s) = m(s) x

This s is the “trace” of execution of M in the Krivine machine, a
realistic model of λ-term execution

s is a “decoration” of M with the multiplicities expressing how
many times the various subterms are used

Example: M = (λy y (y x))λz z

Then s = ⟨λy ⟨y⟩ [⟨y⟩ [x ]]⟩ [λz z , λz z ] and m(s) = 2

Remark: This theorem may be generalized



The differential lambda-calculus: From semantics to syntax

Linear logic in a nutshell

A ressource aware typing discipline of programs:

M : A ⊸ B means M uses its input (typed by A) once and only once

to produce its output (typed by B)

Examples

λxBool . x ∧ ¬x : Bool ⇒ Bool

Appℓ = λxA . λf A⊸B . f x : A ⊸ (A ⊸ B) ⊸ B

App = λxA . λf A⇒B . f x : A ⇒ (A ⇒ B) ⊸ B



The differential lambda-calculus: From semantics to syntax

Exponentials

Exponential modalities for typing non linear programs:

A ⇒ B = !A ⊸ B

(syntactic version of Rel!(E ,F ) seen above)

Embedding linear programs into general ones

!A ⊸ A (dereliction)

And coping with erasing and duplication:

!A ⊸ 1 erasing (weakening)

!A ⊸ !A⊗ !A duplication (contraction)



The differential lambda-calculus: From semantics to syntax

Differential linear logic (DiLL)

Codereliction
A ⊸ !A

Differentiation at 0:
F : A ⇒ B ; λxA . (DF · x) 0 : A ⊸ B

Coweakening
1 ⊸ !A

Evaluation at 0: F : A ⇒ B ; F 0 : B

Cocontraction
!A⊗ !A ⊸ !A

Evaluation on a sum:
F : A ⇒ B ; λxA . λyA . F (x + y) : A ⇒ A ⇒ B



The differential lambda-calculus: From semantics to syntax

Differential λ-Calculus and Differential Linear Logic, 20
Years Later (a conference at CIRM - Marseille 2024)

▶ Pierre Clairambault (CNRS, Aix-Marseille Université)
Quantitative semantics in game models

▶ Ugo Dal Lago (University of Bologna) Reasoning
Operationally about Probabilistic Higher-Order Programs

▶ Thomas Ehrhard (CNRS, Paris Cité) Coherent differentiation

▶ Zeinab Galal (Bologna) Stable species

▶ Nicola Gambino (University of Manchester) Generalized
species

▶ Brenda Johnson (Union College) Differential Categories from
Functor Calculus

▶ Marie Kerjean (CNRS, Sorbonne Paris Nord) Introduction to
DiLL



The differential lambda-calculus: From semantics to syntax

DiλLL 2024, continued

▶ Delia Kesner (Paris Cité) Non-idempotent intersection types

▶ Giulio Manzonetto (Paris Cité) Taylor expansion and Böhm
trees

▶ Guy McCusker (Bath) Weighted models

▶ Jean-Simon Pacaud Lemay (Macquarie University) Differential
categories

▶ Michele Pagani (ENS de Lyon) Automatic differentiation

▶ Luc Pellissier (Paris-Est Créteil) Taylor expansion in proof nets

▶ Christine Tasson (ISAE-Supaero) Probabilistic coherence
spaces


