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Abstract

We show that the extensional collapse of the relational model of linear

logic is the model of prime-algebraic complete lattices, a natural extension

to linear logic of the well known Scott semantics of the lambda-calculus.
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Introduction

Linear Logic arose from denotational investigations of second order intuitionistic
logic by Girard (system F [Gir86]). He observed that the qualitative domains1

used for interpreting system F can be assumed to be generated by a binary rela-
tion on a set of vertices (the web): such a structure is called a coherence space2.
The category of coherence spaces, with linear maps (stable maps preserving
arbitrary existing unions) as morphisms, has remarkable symmetry properties
that led him to the sequent calculus of LL, and then to proof-nets [Gir87] and
to the Geometry of Interaction.

Scott semantics of LL. In spite of Barr's observation [Bar79] that the cat-
egory of complete lattices and linear maps is ∗-autonomous, it was a common
belief in the Linear Logic community that the standard Scott semantics of the
lambda-calculus (Scott domains and continuous maps) cannot provide models
of classical linear logic. Huth showed however in [Hut93] that prime-algebraic
complete lattices and lub-preserving maps provide a model of classical LL whose
associated cartesian closed category (CCC for short) � the Kleisli category of
the � !� comonad � is a full sub-CCC of the category of Scott domains and
continuous maps. These ideas are further developed in [HJK00] in the general
setting of complete lattices which satisfy a linear �nite approximation condition
(FS-lattices). A few years later, Winskel rediscovered the same model in a se-
mantical investigation of concurrency [Win98] (see also the beginning of [Win04]
for instance). As a particular case of a more general profunctor construction, he
showed indeed that the category whose objects are preordered sets and where

1Qualitative domains can be seen as particular dI-domains [Ber78].
2The pure lambda-calculus, or the Turing-complete functional language PCF [Plo77], can

also be interpreted in coherence spaces.
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the morphisms from a preorder S to a preorder T are the functions from the set
I(S) of downward closed subsets of S to the set I(T ) which preserve arbitrary
unions is a model of classical LL. This category is equivalent to Huth's model,
but we prefer Winskel's approach, as it insists on considering preorders (and
not lattices) as objects: preorders are similar to the webs of coherence spaces,
to the sets of the relational model, and represent the prime elements of the
corresponding lattices. Moreover, the LL constructions are easier to describe
in terms of preorders than in terms of lattices. It is fair to mention also that
Krivine [Kri90, Kri93] used the same construction (set I(S) of �initial segments�
of a preorder S) for describing models of the pure lambda-calculus and men-
tioned that these preorders give rise to a model of LL, with linear negation
corresponding to taking the opposite preorder.

Relational semantics. On the other hand, when one applies the Occam's
Razor Principle to the coherence space semantics, one is led to interpreting for-
mulas as sets (the webs, without any structure) and proofs as relations between
these sets. Something tricky happens during this process: since coherence van-
ishes, one cannot restrict the set interpreting an �of course� to contain only �nite
cliques as Girard did in [Gir86], the best one can do is take all �nite subsets.
But then, the dereliction relation (from !X to X), which is the set of all pairs
({a}, a) where a ∈ X, is no longer a natural transformation. This problem can
easily be solved by replacing �nite sets with �nite multisets, but the e�ect of this
choice is that the corresponding Kleisli category is no longer well-pointed. One
de�nes in that way the relational semantics of linear logic, which is certainly its
simplest (and, maybe, most canonical) denotational model.

Coe�cients. One way of turning the CCC associated with the relational
model into a well-pointed category is by enriching it with coe�cients: instead
of taking subset of X × Y as morphisms from X to Y , take elements of CX×Y ,
where C is a suitable set (or class) of coe�cients; a canonical choice consists in
taking C = Set, the class of all sets. An element of SetX×Y should be con-
sidered as a matrix whose rows are indexed by the elements of Y , and columns
by the elements of X: this is basically the idea of Girard's quantitative seman-
tics [Gir88], which is presented as a model of intuitionistic logic, but is indeed a
model of LL (Girard wrote this paper before he discovered LL), see [Has02]. It
is also an instance of the already mentioned profunctor constructions [Win98].

Finite coe�cients belonging to more standard algebraic structures (rigs,
�elds, etc.) can also be considered, but this requires adding some structure
to these sets for guaranteeing the convergence of the sums which appear when
multiplying matrices, see [Ehr02, Ehr05, DE11]: the e�ect of such additional
structure is that objects are equipped with a topology for which the (generally
in�nite) sums involved in multiplying matrices converge.

Extensional collapse of the relational model. The other way of making
the relational model well-pointed is by performing an extensional collapse. This
operation is easily understood in the type hierarchy associated with the cartesian
closed Kleisli category of the �nite multiset comonad on the category of sets and
relations: each type A is interpreted by its relational interpretation [A] (a simple
set), together with a partial equivalence relation (PER) ∼A on P([A]). When
A is the type B ⇒ C, an element of P([A]) is a morphism from B to C, and
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two such morphisms f and g are ∼B⇒C-equivalent if, for any x, y such that
x ∼A y, one has f(x) ∼B g(y). In other words, this PER is a logical relation3

(a notion introduced by Tait in [Tai67]), and the extensional collapse of this
type hierarchy is obtained by quotienting each set P([A]) by the PER ∼A (one
considers, when forming the quotient, only the elements x of P([A]) such that
x ∼A x, which are often called invariant elements).

Content of the paper. We prove that this extensional collapse of the rela-
tional model coincides precisely with the Scott model of preorders. The �rst
problem we have to face is to give a precise and convincing meaning to this
statement. We start from the work of Bucciarelli [Buc97], recasting it in a cat-
egorical setting: given a CCC C and a well-pointed CCC E , we want to express
what it means for E to �be� (we'll say to �represent�) the extensional collapse of
C. For this, we introduce two categorical constructions.

• The homogeneous collapse category e(C), whose objects are pairs (U,∼)
where U is an object of C and ∼ is a partial equivalence relation (PER) on
the points of U (that is on C(>, U) where > is the terminal object of C).
The morphisms are those of C which preserve this additional structure,
and it is easy to see that this category is a CCC. The important point
in this de�nition is that the object of morphisms from (U,∼) to (V,∼) is
(W,∼W ) where W is the object of morphisms from U to V in C and the
relation ∼W is de�ned as a logical relation.

• The heterogeneous collapse category e(C, E), whose objects are triples (U,E,
)
where U is an object of C, E is an object of E and 
 ⊆ C(>, U)×E(>, E)
should be understood as a realizability predicate: x 
 ζ means intuitively
that ζ represents the �extensional behavior� of x. The morphisms are the
pairs (f, ϕ) of morphisms which preserve the relation 
, and again, it is
easy to check that this category is a CCC. Again, the important point is
that, when constructing the object of morphisms, 
 is de�ned as a logical
relation.

These two constructions are possible for any CCCs C and E . We say that E
represents the extensional collapse of C if

• e(C, E) contains a �su�ciently large� (in a reasonable sense, to be made
precise later) sub-CCC H whose objects (U,E,
) are modest, meaning
that 
 is a partial surjection from C(>, U) to E(>, E), and therefore in-
duces a PER on C(>, U) (observe that E(>, E) can be considered as the
quotient of C(>, U) by this PER)

• and the functor H → e(C) which maps (U,E,
) to (U,∼), where ∼ is the
PER induced by 
 (and maps a morphism (f, ϕ) to f), is a CCC functor
(that is, preserves the CCC structure on the nose).

The nice feature of this de�nition is that it is compatible with the standard
one (based on type hierarchies) and that it can easily be extended, for instance,
to a simple and general de�nition of what it means for a model of the pure
lambda-calculus to represent the extensional collapse of another one.

3Logicians would speak of a binary reducibility predicate.
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It would be nice of course to have a similar de�nition of the extensional col-
lapse of a categorical model of LL, and not only of CCCs, but since the de�nition
of such a model is already rather complicated, we prefer not to address this is-
sue. Instead, we perform the CCC constructions de�ned above concretely, in a
completely linear setting, obtaining both CCCs e(C) and H as Kleisli construc-
tions of suitable exponential comonads: in the present paper, C is the Kleisli
category Rel! associated with the LL model of sets and relations, and E is the
Kleisli category ScottL! associated with the LL model of preorders and linear
maps between the associated complete lattices.

After having introduced the necessary preliminary material, we �rst build in
Section 2.2 a linear version of the category e(Rel!). More precisely, we de�ne
a model of LL denoted as PerL, whose objects are called PER-objects: they
are sets equipped with a PER on their powersets. The Kleisli category PerL!

is isomorphic to e(Rel!) (or, more precisely, to a full sub-CCC of e(Rel!)).
Then, in Section 3, we describe the Scott model ScottL of LL. The objects

are preordered sets, and a morphism from S to T is a linear map (that is, a map
preserving all unions) from I(S) (the set of all downward-closed subsets of S) to
I(T ). As far as sets are concerned, the multiplicative and additive constructions
in this model coincide with those of the model Rel (more things have to be said
about the associated preorders: for instance, S⊥ is the set S equipped with
the opposite of the preorder of S). As to the exponential, the natural choice
would be to de�ne !S as the set of �nite subsets of S with a suitable preorder:
with that choice, the Kleisli category ScottL! is a sub-CCC of the CCC of
complete lattices and Scott-continuous functions. But we can obtain the same
e�ect by de�ning !S as the set of all �nite multisets of elements of S, endowed
with a similarly de�ned preorder relation which does not take multiplicities
into account, and this will greatly simplify our constructions. Indeed, with
this choice, the set interpreting an LL formula in Rel coincides with the set
interpreting the same formula in ScottL (remember that this set is equipped
with a preorder).

In Section 4, we introduce the linear version of the �heterogeneous category�
H of the construction described above. An object should be a triple (X,S,
)
where X is a set, S is a preordered set and 
 ⊆ P(X) × I(S) (which has to
be a partial surjection). By our choice above for the de�nition of !S, we can
assume X = S, so as a �rst simpli�cation, we can assume our objects to be pairs
(S,
) where S is a preordered set and 
 ⊆ P(S) × I(S) has to be a partial
surjection. A careful analysis shows that, when x 
 u, we must have u = ↓ x
(the downward closure of x in S), so that, for de�ning the partial surjection 
,
we only need to know its domain D. So an object of our category will be a pair
(S,D) where D ⊆ P(S). What condition should D satisfy? As usual, it should
be equal to its double dual for a suitable notion of duality: here, we say that
x, x′ ⊆ S are dual if x′ ∩ ↓ x 6= ∅ ⇒ x′ ∩ x 6= ∅, that is x′ cannot separate x
from its downward closure. We show that these objects (called �preorders with
projections�), with suitable linear morphisms, form a model of linear logic PpL,
whose associated Kleisli category PpL! can be considered as a full sub-CCC of
e(Rel!,ScottL!), of which all objects are modest. And we show that ScottL!

represents the extensional collapse of Rel! in the sense explained above. We
actually exhibit a functor from PpL to PerL which preserves the structure of
LL model and which induces the required CCC functor from PpL! to PerL!.
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In the course of these constructions, we also build models of the pure lambda-
calculus, using notions of inclusions between the various structures we consider,
organizing them into complete partially ordered classes, and using the fact
that the logical constructions (tensor product, orthogonality etc) are continuous
wrt. these inclusions. This provides a simple representation of the extensional
collapse of the re�exive object in Rel! we introduced in [BEM07], as a re�exive
object in the CCC of complete lattices and continuous maps.

1 Preliminaries

1.1 Notations

A �nite multiset p of elements of S is a map p : S → N such that p(a) = 0 for
almost all a ∈ S. We write a ∈ p for p(a) > 0, and use supp(p) for the support
of p which is the set {a ∈ S | a ∈ p}. We use p + q for the pointwise sum of
multisets, and 0 for the empty multiset. We denote by Mfin(S) the set of all
�nite multisets of elements of S.

Given a category C and two morphisms f ∈ E(E,F ) and x ∈ C(>, E) (where
> is the terminal object of C that we assume to exist), we write f(x) instead of
f ◦ x because we consider x as a �point� (an �element�) of E.

1.2 Cartesian closed categories and models of the pure

lambda-calculus

We brie�y recall that a category C is a CCC if each �nite family (Ei)i∈I of
objects of C has a cartesian product &i∈I Ei (in particular, it has a terminal
object>) together with projections πj ∈ C(&i∈I Ei, Ej) such that, for any family
(fi)i∈I with fi ∈ C(F,Ei) there is an unique morphism 〈fi〉i∈I ∈ C(F,&i∈I Ei)
such that πj ◦ 〈fi〉i∈I = fj for each j and if, given two objects E and F of
C, there is a pair (E ⇒ F,Ev), called the object of morphisms from E to F ,
together with an evaluation morphism Ev ∈ C((E ⇒ F ) & E,F ) such that, for
any f ∈ C(G & E,F ), there is an unique Cur(f) ∈ C(G,E ⇒ F ) such that
Ev ◦ (Cur(f) & IdE) = f .

Given two CCCs C and D, a functor F : C → D will be said to be a cartesian
closed functor if it preserves the cartesian closed structure on the nose. This
means that F(&i∈I Ei) = &i∈I F(Ei), F(πi) = πi, F(E ⇒ F ) = F(E)⇒ F(F )
and F(Ev) = Ev.

A re�exive object in a CCC C is a triple (H, app, lam) where H is an object
of C, app ∈ C(H,H ⇒ H) and lam ∈ C(H ⇒ H,H) satisfy app ◦ lam = IdH⇒H .
One says moreover that (H, app, lam) is extensional4 if lam ◦ app = IdH . If
(H, app, lam) is a re�exive object in C and if F : C → D is a CCC functor,
then (F(H),F(app),F(lam)) is a re�exive object in D, which is extensional if
(H, app, lam) is extensional.

Let (H, app, lam) be a re�exive object in the CCC C. Then, given any
lambda-term M and any repetition-free list of variables ~x = x1, . . . , xn which
contains all the free variables of M (such a list will be said to be adapted to

4This notion of extensionality, which corresponds to the η conversion rule of the lambda-
calculus, should not be confused with the notion of extensionality we are dealing with in this
paper, which is related to the categorical notion of well-pointedness.
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M), one de�nes [M ]H~x ∈ C(Hn, H) by induction on M ([xi]H~x = πi, [λxN ]H~x =
lam ◦ Cur([N ]H~x,x) and [(N)P ]H~x = Ev ◦ 〈app ◦ [N ]H~x , [P ]H~x 〉). If M and M ′

are β-equivalent and ~x is adapted to M and M ′, we have [M ]H~x = [M ′]H~x . If
(H, app, lam) is extensional, we have [M ]H~x = [M ′]H~x when M and M ′ are βη-
equivalent.

If F : C → D is a CCC functor then, for any lambda-term M , we have
F([M ]H~x ) = [M ]

F(H)
~x where [M ]

F(H)
~x is the interpretation of M in the re�exive

object (F(H),F(app),F(lam)).

1.3 Seely categories and LL-functors

We introduce now the notion of categorical model of LL that we'll use in this
paper. There are several ways to axiomatize such categories, and for a complete
description of these notions, and comparisons between them, we refer to [Mel09].
From that paper, we use the notion of Seely category originally called �new-Seely
category� in [Bie95].

1.3.1 ∗-autonomous categories. A monoidal category is a category C
(where we denote the composition of morphisms by simple juxtaposition: if
f ∈ C(X,Y ) and g ∈ C(Y,Z), then g f ∈ C(X,Z)) together with a bifunctor
⊗ : C2 → C, an object 1 ∈ C and natural isomorphisms λX : 1 ⊗ X → X,
ρX : X⊗1→ X, αX,Y,Z : (X ⊗ Y )⊗Z → X⊗ (Y ⊗ Z) and these isomorphisms
are required to satisfy coherence commutative diagrams that we do not recall
here (see [Mac71]).

A symmetric monoidal category is a monoidal category together with a nat-
ural isomorphism σX,Y : X ⊗ Y → Y ⊗X such that σY,X σX,Y = IdX⊗Y which
has also to satisfy other commutations (again, see [Mac71]).

A symmetric monoidal closed category (SMCC for short) is a symmetric
monoidal category C such that, for each object X, the functor Y 7→ X ⊗ Y has
a right adjoint Y 7→ (X ( Y ). Let X, Y and Z be objects of C, we have a
linear evaluation morphism ev ∈ C((X ( Z) ⊗ X,Z), and, given a morphism
f ∈ C(Y ⊗X,Z), we have a morphism λ(f) ∈ C(Y,X ( Z). Monoidal closeness
boils down to the following three equations:

ev (λ(f)⊗ IdX) = f

λ(f)h = λ(f (h⊗ IdX)) where h ∈ C(Y ′, Y )

λ(ev) = IdX(Z .

In particular, we have a morphism ηX = λ(ev σ) ∈ C(X, (X ( Z)( Z) which
is natural in X.

Last, a ∗-autonomous category is an SMCC C together with an object ⊥
such that the canonical natural morphism ηX : X → ((X ( ⊥) ( ⊥) is an
isomorphism.

Therefore, in a ∗-autonomous category C, there is a contravariant functor
X 7→ X⊥ = (X ( ⊥) which is actually an equivalence of categories between C
and Cop. Given f ∈ C(X,Y ), we denote as f⊥ the associated morphism Y ⊥ →
X⊥ . Through this isomorphism, we can de�ne another symmetric monoidal
category structure on C whose binary operation (the �co-tensor product� or
par) is de�ned by X ` Y = (X⊥ ⊗ Y ⊥)⊥ so that we have in particular X (
Y = X⊥ ` Y up to a natural isomorphism).
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In a cartesian ∗-autonomous category C, we denote a terminal object as
> and a choice of cartesian product of the a �nite family (Xi)i∈I of objects
is denoted as &i∈I Xi, with projections πi ∈ C(&j∈I Xj , Xi). Given a family
fi ∈ C(Y,Xi) of morphisms, the unique morphism f ∈ C(Y,&i∈I Xi) such that
πi f = fi for each i ∈ I is denoted as 〈fi〉i∈I .

Then C is also cocartesian with initial object 0 = >⊥ and cocartesian product
(also known as direct sum) ⊕.

1.3.2 Seely categories. A Seely category consists of

• a cartesian ∗-autonomous category C;

• a comonad !_ : C → C which is monoidal from (C,>,&) to (C,⊗, 1)
(counit denoted as dX : !X → X and called dereliction, comultiplication
denoted as pX : !X → !!X and called digging, monoidality isomorphisms
µX,Y : !X ⊗ !Y → !(X & Y ), µ1 : 1→ !>, often called Seely isomorphisms
though they were noticed �rst by Girard, see [Gir87]) such that the fol-
lowing diagram commutes (it expresses a coherence condition relating the
isomorphism µ and the natural transformation p)

!X ⊗ !Y
µX,Y //

pX⊗pY

��

!(X & Y )

pX&Y

��
!!(X & Y )

!〈!π1,!π2〉

��
!!X ⊗ !!Y

µ!X,!Y // !(!X & !Y )

(1)

This monoidal structure induces a lax monoidal structure on the functor !_
from the monoidal category (C,⊗, 1) to itself: this monoidal structure consists
of a morphism m1 : 1 → !1 and of a natural transformation mX,Y : !X ⊗ !Y →
!(X ⊗ Y ) that we give now explicitly. We de�ne m1 as the following composition
of morphisms:

1
µ1 // !>

p> // !!>
!(µ1

−1) // !1

and mX,Y as

!X ⊗ !Y
µX,Y // !(X & Y )

pX&Y // !!(X & Y )
!(µX,Y

−1)// !(!X ⊗ !Y )

!(dX⊗dY )

��
!(X ⊗ Y )

1.3.3 Associated Kleisli CCC. Let C be a Seely category (we use the
notations above for the monoidal and exponential structures). The Kleisli
category of the comonad !_ � simply called Kleisli category of C in the se-
quel � is de�ned as follows: it is the category C! whose objects are those of
C and C!(X,Y ) = C(!X,Y ). The identity morphism is dX ∈ C!(X,X). Given
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f ∈ C!(X,Y ) and g ∈ C!(Y, Z) is de�ned as the following composition of mor-
phisms in C:

!X
pX // !!X

!f // !Y
g // Z

that we denote as g ◦ f . In that way, one de�nes a category which is carte-
sian closed: the cartesian product of the family (Xi)i∈I is X = &i∈I Xi with
projections πi dX and tupling 〈fi〉i∈I ∈ C!(Y,X) for a family of morphisms
fi ∈ C!(Y,Xi) = C(!Y,Xi). Then the object of morphisms from X to Y in C!
is X ⇒ Y = !X ( Y with evaluation Ev ∈ C!((X ⇒ Y ) & X,Y ) given as the
following composition of morphisms in C

!((!X ( Y ) & X)
µ−1

// !(!X ( Y )⊗ !X
d!X(Y // (!X ( Y )⊗ !X

ev

��
Y

Given f ∈ C!(Z & X,Y ), the �curry�ed� morphism Λ(f) ∈ C!(Z,X ⇒ Y ) is
simply Λ(f) = λ(f µZ,X

−1).

1.3.4 LL-functors. Given two Seely categories C and D, a functor F : C →
D is an LL-functor if it commutes on the nose with all the structures de�ned
above, eg. F (X ⊗C Y ) = F (X) ⊗D F (Y ), F (dCX) = dDX etc. Then one has
F ([A]CI ) = [A]DF◦I and F ([π]CI ) = [π]DF◦I for all formula A and proof π of LL,
where I is a valuation from type atoms to objects of C.

Such an LL-functor F induces a cartesian closed functor (still denoted with
F ) from C! to D!.

1.4 Intuitionistic extensional collapse

We present a categorical version of the extensional collapse of a model of the
typed lambda-calculus which is based on [Buc97].

From the usual intuitionistic viewpoint, the extensional collapse is a log-
ical relation. More speci�cally, consider the hierarchy of simple types based
on some type atoms α, β. . . , and intuitionistic implication ⇒. Consider a
cartesian closed category C (with terminal object >, cartesian product & and
function space ⇒). Given a valuation I from type atoms to objects of C, we
have an interpretation of types [A]I ∈ C. The extensional collapse of this inter-
pretation is a type-indexed family of partial equivalence relations (∼A), where
∼A⊆ C(>, [A]I)

2. This relation is de�ned by induction on types.

• At each basic type α, the relation∼α coincides with equality on C(>, I(α)).

• Then, given f, g ∈ C(>, [A⇒ B]I) = C(>, [A]I ⇒ [B]I) ' C([A]I , [B]I),
one has f ∼A⇒B g if, for all x, y ∈ C(>, [A]I) such that x ∼A y, one has
f(x) ∼B g(y) (where we recall that we write f(x) instead of f ◦ x when
the source of x is the terminal object).

By induction on types, one proves easily that ∼A is a PER on C(>, [A]I) for
each type A. Since the family of PERs (∼A) is de�ned as a logical relation,
it is compatible with the syntax of the simply typed lambda-calculus, in the
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sense that, if M is a closed term of type A, its semantics [M ]I ∈ C(>, [A]I)
satis�es [M ]I ∼A [M ]I . This property can be extended to functional enriched
versions of the simply typed lambda-calculus (such as PCF) under some mild
assumptions on C and I.

1.4.1 Representing the collapse as an interpretation. Let E be an-
other cartesian closed category, that we assume to be well-pointed (mean-
ing that, if ϕ,ψ ∈ E(E,F ) satisfy ϕ(ζ) = ψ(ζ) for all ζ ∈ E(>, E), then
ϕ = ψ). Let J be a valuation of type atoms in E and, for each type atom
α, let 
α ⊆ C(>, I(α)) × E(>, J(α)) be a bijection (to be understood as ex-
pressing an equality relation between the elements of the two models at ground
types). Then we de�ne 
A ⊆ C(>, [A]I)×E(>, [A]J) for all types A as a logical
relation (called the heterogeneous relation), that is

f 
A⇒B ψ ⇔ (∀x, ζ x 
A ζ ⇒ f(x) 
B ϕ(ζ)) .

If 
A is surjective for all typesA (that is ∀ζ ∈ E(>, [A]J)∃x ∈ C(>, [A]I) x 
A
ζ), then all the relations 
A are functional (in the sense that if x 
A ζ and
x 
A ζ ′, then ζ = ζ ′). This is easy to check by induction on types and is due
to the well-pointedness of E .

We say that 
A is a representation of the collapse of the interpretation I
by the interpretation J if, for all types A, 
A is surjective (and bijective when
A = α is a basic type) and one has

∀x, y ∈ C(>, [A]I) x ∼A y ⇔ (∃ζ ∈ E(>, [A]J) x 
A ζ and y 
A ζ) .

This means that, at each type A, the relation 
A induces a bijection between
E(>, [A]J) and the quotient5 C(>, [A]I)/∼A.

Assume that 
A is such a representation. Since it is de�ned as a logical
relation, we have [M ]I 
A [M ]J for each closed lambda-term of type A, we have
[M ]I ∼A [N ]I i� [M ]J = [N ]J for all closed terms M and N of type A.

1.4.2 Categorical presentation. There is another, more conceptual way
to describe the situation above. We prefer this approach because it consists in
building new CCCs using C and E . Indeed, one of the main goals of this paper is
to show that these CCCs can be de�ned in another and much more informative
way: we prove that they arise as Kleisli categories of categorical models of linear
logic (see Section 1.3).

First one de�nes the collapse category e(C) of C. Its objects are pairs U =
(pUq,∼U ) where pUq is an object of C and ∼U ⊆ C(>, pUq)2 is a PER. Given
two objects U and V of e(C), the elements of e(C)(U, V ) are the morphisms
f ∈ C(pUq, pV q) such that

∀x, x′ ∈ C(>, pUq) x ∼U x′ ⇒ f(x) ∼V f(x′) .

If the category C is cartesian, then so is e(C) (with cartesian products de�ned
in the most obvious way). And if C is cartesian closed, so is e(C). Given
two objects U and V of C, one de�nes U ⇒ V = (pUq ⇒ pV q,∼U⇒V ) with
f ∼U⇒V f ′ i� f(x) ∼Y f ′(x′) for all x, x′ ∈ C(>, pUq) such that x ∼U x′

5When quotienting a set by a PER, one considers only the elements of the set which are
equivalent to themselves.
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(for f, f ′ ∈ C(>, pU ⇒ V q) ' C(pUq, pV q)). The evaluation morphism Ev ∈
e(C)((U ⇒ V ) & U, V ) is the evaluation morphism of the category C, which is
also a morphism in e(C). We say that an object U of e(C) is discrete if ∼U
coincides with equality.

Similarly, one de�nes the heterogeneous category e(C, E) of C and E . Its
objects are triples X = (pXq, xXy,
X) where pXq is an object of C, xXy
is an object of E and 
X ⊆ C(>, pXq) × E(>, xXy). A morphism θ from
X to Y in that category is a pair (pθq, xθy) where pθq ∈ C(pXq, pY q) and
xθy ∈ E(xXy, xY y) satisfy pθq(x) 
Y xθy(ζ) for all (x, ζ) such that x 
X ζ.

Again, if both categories C and E are cartesian, so is e(C, E), and if they
are cartesian closed, so is e(C, E), with X ⇒ Y de�ned as follows: pX ⇒ Y q =
pXq ⇒ pY q, xX ⇒ Y y = xXy ⇒ xY y and, given f ∈ C(>, pX ⇒ Y q) '
C(pXq, pY q) and ϕ ∈ E(>, xX ⇒ Y y) ' C(xXy, xY y), we have f 
X⇒Y ϕ if
f(x) 
Y ϕ(ζ) for all (x, ζ) such that x 
X ζ.

Let us say that an objectX of e(C, E) ismodest6 if the relation 
X is a partial
surjection from C(>, pXq) to E(>, xXy). Let emod(C, E) be the full subcategory
of e(C, E) whose objects are the modest objects. If C and E are cartesian, then
emod(C, E) is a sub-cartesian category of e(C, E). But in general, emod(C, E) is
not cartesian closed. It can be noticed that, if X and Y are objects of e(C, E)
which are modest (so that, again, X ⇒ Y is well de�ned but not necessarily
modest) and if 
X⇒Y is surjective, then 
X⇒Y is functional, and hence X ⇒ Y
is modest.

There is a cartesian closed �second projection� functor σ : e(C, E) → E
(it maps an object X to xXy and a morphism θ to xθy). There is also a
functor ε : emod(C, E) → e(C) which maps an object X to (pXq,∼ε(X)), where
x1 ∼ε(X) x2 if x1 
X ζ and x2 
X ζ for some (necessarily unique) ζ. Given
θ ∈ e(C, E)(X,Y ), we set ε(θ) = pθq. Indeed, let x1, x2 ∈ C(>, pXq) such that
x1 ∼ε(X) x2 (with ζ ∈ E(>, xXy) such that x1 
X ζ and x2 
X ζ), we have
pθq(x1) 
Y xθy(ζ) and pθq(x2) 
Y xθy(ζ), and hence pθq(x1) ∼Y pθq(x2), so
that pθq ∈ e(C)(ε(X), ε(Y )).

We say that the category E represents the extensional collapse of the category
C if there exists a sub-CCC H of e(C, E) such that

• each object of H is modest;

• the functor ε : H → e(C) is cartesian closed

• and, for any7 discrete object U of e(C), there is an object X of H such
that ε(X) = U (so that pXq = U and 
X is a bijection).

1.4.3 Connection between the two de�nitions. The motivation for this
de�nition is that, in that situation, if I is a type valuation in C then, for
each ground type α, we can �nd an object J(α) of E such that K(α) =
(I(α), J(α),
α) is an object of H, for some bijection 
K(α). We can ex-
tend K into an interpretation of types [A]K in the CCC H which satis�es
[A]K = ([A]I , [A]J ,
A) where 
A coincides with the heterogeneous logical re-
lation de�ned in Section 1.4.1. Then our assumption that E represents the

6This is compatible with the standard terminology of realizability, see e.g. [AC98].
7We actually don't need this property for all discrete Us, but only for those which are

intended to represent the basic types of the functional language we have in mind. For the
sake of simplicity, we adopt this stronger hypothesis.
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extensional collapse of C implies that 
A is a representation of the extensional
collapse of I by J , in the sense of Section 1.4.1.

The bene�t of this abstraction is that the concept of a CCC E representing
the extensional collapse of a CCC C is quite �exible and independent of any
type hierarchy given a priori. For instance, it provides a natural de�nition of
the extensional collapse of a model of the pure lambda-calculus.

1.4.4 Extensional collapse of a re�exive object. Assume indeed that
E represents the extensional collapse of C in the sense above, with H as het-
erogeneous collapse CCC. Let (Z, app, lam) be a re�exive object in H. Then
(ε(Z), pappq, plamq) is a re�exive object in e(C), (pZq, pappq, plamq) is a re�ex-
ive object in C and (xZy, xappy, xlamy) is a re�exive object in E .

In that case, we say that the re�exive object (xZy, xappy, xlamy) is a repre-
sentation of the extensional collapse of the re�exive object (pZq, pappq, plamq).

Remark : The precise logical meaning of this de�nition is not completely clear
yet since logical relations are de�ned by induction on types whereas here we
are in an untyped setting. In this paper, we'll give a representation of the
extensional collapse of the relational model of the lambda-calculus introduced
in [BEM07] (in the sense above), and these two models will clearly be quite
di�erent. However, both models induce the same equational theory on lambda-
terms (namely, the theory H∗, according to which two terms M and M ′ are
equivalent if, for any context C, the term C[M ] has a head normal form i� the
term C[M ′] has a head normal form). With the notations above, this means
that, when restricted to the interpretations of lambda-terms, the relation ∼Z
is just equality. Extending for instance the lambda-calculus with a parallel
composition construction based on the mix rule of Linear Logic as in [DK00,
BEM09], the situation becomes more interesting and the theories induced by
the two models on the language are distinct.

2 The collapse partial equivalence relation

In this section, we �rst de�ne the Seely category Rel of sets and relations
which is a quite simple and canonical model of linear logic. Then we de�ne a
Seely category whose objects are sets equipped with a PER on their powersets
(the collapse category of Rel) and prove that the associated Kleisli category is
isomorphic to e (Rel!) (see Section 1.4.2).

2.1 The category of sets and relations

The Seely categoryRel that we describe now underlies many well known models
of linear logic (coherence spaces etc). As far as we know, it appears implicitly
for the �rst time in [Gir88], and it is a typical piece of folklore of linear logic:
it would be almost impossible to say who mentioned for the �rst time explicitly
that it is a model of LL. We are almost sure that Girard was aware of that
fact when he wrote [Gir87], and that he didn't mention it, considering it as too
degenerate for deserving attention.

2.1.1 Linear structure. The category of sets and relations Rel has sets
as objects, and, given two sets E and F , the set of morphisms from E to F
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is Rel(E,F ) = P(E × F ). Composition is de�ned in the standard relational
way: the composition of s ∈ Rel(E,F ) and t ∈ Rel(F,G) is t s ∈ Rel(E,G).
The identity morphism is the diagonal relation Id ∈ Rel(E,E). This category
has a quite simple monoidal structure: the tensor product is E ⊗ F = E × F
and the unit of the tensor is 1 = {∗}. This tensor product is a functor: given
si ∈ Rel(Ei, Fi) for i = 1, 2, then s1 ⊗ s2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈
si for i = 1, 2}. Equipped with this tensor product, Rel is symmetric monoidal
closed (the associativity, neutrality and symmetry isomorphisms are de�ned in
the usual obvious way), with an object of linear morphisms E ( F = E × F
and linear evaluation morphism ev ∈ Rel((E ( F ) ⊗ E,F ) given by ev =
{(((a, b), a), b) | a ∈ E and b ∈ F}.

The symmetric monoidal closed category Rel is a ∗-autonomous category,
with dualizing object ⊥ = 1, and the corresponding duality is trivial: E⊥ = E
and, given s ∈ Rel(E,F ), the relation s⊥ ∈ Rel(F,E) is the �transpose� of s,
that is s⊥ = {(b, a) | (a, b) ∈ s}. We have E ` F = E ( F = E ⊗ F = E × F
in this model.

Remark : This category is a �degenerate model� of LL in the sense that it
identi�es ⊗ and `. We showed in [BE01] how this model can be enriched with
various structures without modifying the interpretation of proofs, making ⊗ and
` non-isomorphic operations. This can be considered as one of the most striking
features of LL: this logical system is so robust that it survives (in the sense that
proofs are not trivialized) in such a degenerate framework.

Given s ∈ Rel(E,F ) and x ⊆ E, one sets s x = {b | ∃a ∈ x and (a, b) ∈ s}.
The category Rel is cartesian. The cartesian product of a family (Ei)i∈I of

sets is &i∈I Ei =
⋃
i∈I({i} × Ei), with projections πj = {((j, a), a) | a ∈ Ej} ∈

Rel(&i∈I Ei, Ej). Given a family of morphisms si ∈ Rel(F,Ei), the corre-
sponding morphism 〈si〉i∈I ∈ Rel(F,&i∈I Ei) is given by 〈si〉i∈I = {(b, (i, a)) |
i ∈ I and (b, a) ∈ si}. The terminal object is > = ∅.

The exponential comonad is !E =Mfin(E), see in Section 1.1 our notations
for �nite multisets. The action of this functor on morphisms is de�ned as follows:
!s = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ s for i = 1, . . . , n} ∈ Rel(!E, !F ) for
s ∈ Rel(E,F ). Dereliction is given by dE = {([a], a) | a ∈ S} ∈ Rel(!E,E)
and digging by pE = {(m1 + · · ·+mn, [m1, . . . ,mn]) | n ∈ N and m1, . . . ,mn ∈
!E} ∈ Rel(!E, !!E). Given x ⊆ E, one de�nes x! = Mfin(x). Observe that, as
usual, !s x! = (s x)!, dE x

! = x and pE x
! = x!!.

The Seely isomorphism 1 ' !> identi�es ∗ and [], and the Seely isomorphism
!E ⊗ !F ' !(E & F ) maps the element ([a1, . . . , al], [b1, . . . , br]) of !E ⊗ !F to
[(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)] ∈ !(E & F ).

All these data de�ne a Seely category in the sense of Section 1.3.

2.1.2 The associated CCC. Remember from Section 1.3.3 that the Kleisli
category Rel! is cartesian closed. Given a set E, a point of E in Rel! is by
de�nition a morphism in Rel(!>, E), that is, a subset of E. The terminal
object is >, the cartesian product of (Ei)i∈I is E = &i∈I Ei, with projections
πi ◦ dE (still denoted as πi). The object of morphisms E ⇒ F is !E ( F , with
evaluation map (keeping implicit the Seely isomorphism)

Ev = {(([(m, b)],m), b) | m ∈ !E and b ∈ F} ∈ Rel(!(!E ( F )⊗ !E,F ) .

Applying a morphism s ∈ Rel!(E,F ) = Rel(!E,F ) to a point x ⊆ E consists
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in composing s with x (considered as a morphism from > to E) in Rel!; the
result is

s(x) = s x! = {b | ∃m (m, b) ∈ s and supp(m) ⊆ x} .

The category Rel! is not well pointed, in the sense that two distinct morphisms
s1, s2 ∈ Rel!(E,F ) can satisfy ∀x ⊆ E s1(x) = s2(x); take for instance s1 =
{([a], b)} and s2 = {([a, a], b)}.

The purpose of the collapse PER is precisely to make it explicit when two
such morphisms should be identi�ed. This depends of course on the PERs E
and F themselves are equipped with: the collapse PER is a logical relation.
We'll present this construction as a new category.

2.1.3 Inclusions. Let E and F be two sets such that E ⊆ F . Then we
denote by ηE,F and ρE,F the relations

ηE,F = (E × F ) ∩ IdE and ρE,F = (F × E) ∩ IdE .

Observe that ρE,F ◦ ηE,F = IdE .
We denote by RelC the class of all sets, ordered by inclusion. This is a

partially ordered class, which is complete in the sense that any family (Eγ)γ∈Γ

of elements of RelC admits a least upper bound. We'll consider actually only
directed families (that is, where Γ is a directed poset, and γ ≤ δ ⇒ Eγ ⊆ Eδ).

2.2 The linear collapse category

We equip now the objects of Rel with a partial equivalence relation whose
purpose is to identify morphisms which yield equivalent values when applied
to equivalent arguments. In that way, we de�ne a new Seely category PerL,
and we'll see that its Kleisli CCC PerL! is a full sub-CCC of e(Rel!), see
Section 1.4.2.

2.2.1 Pre-PERs, PER objects and morphisms of PER objects. Let
E be a set. Given a binary relation B on P(E), we de�ne another binary relation
B⊥ on P(E), called the dual of B, as follows:

x′ B⊥ y′ if ∀x, y ∈ P(E) x B y ⇒ (x ∩ x′ 6= ∅ ⇔ y ∩ y′ 6= ∅) .

Consider x ⊆ E as a datum of type E and x′ ⊆ E as an observation of type E,
we can say that the observation x′ succeeds on x if x∩x′ 6= ∅. Intuitively, x B y
means that the data x and y are observationally equivalent. So two observations
x′, y′ ⊆ E are equivalent (in the sense of B) when they simultaneously succeed
or fail on equivalent data: this is exactly the de�nition of x′ B⊥ y′.

As usual, one has B ⊆ C ⇒ C⊥ ⊆ B⊥ and B ⊆ B⊥⊥ (as subsets of
P(E)2). We say that the relation B is a pre-PER if it is symmetric and satis�es
x B y ⇒ x B x. Clearly, any PER is a pre-PER and if B is a pre-PER, then
B⊥ is a PER; it is of course for this reason that we introduce the notion of
pre-PER.

A PER-object is a pair U = (|U |,∼U ), where |U | is a set and ∼U is a binary
relation on P(|U |) which is a pre-PER such that ∼⊥⊥U = ∼U . This simply means
that, given x, y ⊆ |U |, one has x ∼U y as soon as x ∩ x′ 6= ∅ ⇔ y ∩ y′ 6= ∅, for
all x′, y′ ⊆ |U | such that x′ ∼⊥U y′. By this condition, ∼U is automatically a
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PER (indeed, ∼U is pre-PER, hence ∼⊥U is a PER, and therefore ∼U = ∼⊥⊥U is
a PER).

Let PerL be the category whose objects are the PER-objects, and where a
morphism from U to V is a relation t ⊆ |U | × |V | such, for all x, y ∈ P(|X|), if
x ∼X y then t x ∼Y t y.

Remark : Let U be a PER-object and A ⊆ P(|U |) such that ∀x1, x2 ∈ A x1 ∼U
x2. Then ∀x ∈ A x ∼C

⋃
A. Indeed, let x′1, x′2 ⊆ |U | be such that x′1 ∼U⊥ x′2.

If x ∩ x′1 6= ∅, then x ∩ x′2 6= ∅ because x ∼U x, and hence
⋃
A ∩ x′2 6= ∅.

Conversely, if
⋃
A ∩ x′2 6= ∅, there is some y ∈ A such that y ∩ x′2 6= ∅ and we

conclude since x ∼U y. So each equivalence class of ∼U has a maximal element,
which is the union of all the elements of the class. These particular elements x
of P(|U |) are characterized by the two following properties:

• x ∼U x

• and ∀y ∈ P(|U |) y ∼U x⇒ y ⊆ x.

Lemma 1 Let U be a PER-object and let (xi)i∈I and (yi)i∈I be families of
elements of P(|U |) be such that xi ∼U yi for each i ∈ I. Then

⋃
i∈I xi ∼U⋃

i∈I yi.

The proof is straightforward. In particular ∅ ∼U ∅, for any PER-object U .

2.2.2 Orthogonality and strong isomorphisms. We de�ne the PER-
object U⊥ by |U⊥ | = |U | and ∼U⊥ = ∼⊥U , so that U⊥⊥ = U .

Lemma 2 Given two PER-objects U and V , any bijection θ : |U | → |V | such
that, for all x, y ∈ P(|X|), one has x ∼U y i� θ(x) ∼V θ(y) is an isomorphism
from U to V in PerL.

Such a bijection will be called a strong isomorphism from U to V .
The proof of the lemma is straightforward veri�cation. Of course, θ−1 is a

strong isomorphism from V to U .
Observe that any strong isomorphism θ from U to V is also a strong isomor-

phism from U⊥ to V ⊥ . Indeed, let x′1, x
′
2 ⊆ |U |. Assume �rst that x′1 ∼U⊥ x′2

and let us show that θ(x′1) ∼V ⊥ θ(x′2). So let y1, y2 ⊆ |V | be such that
y1 ∼V y2. We have θ(x′1) ∩ y1 6= ∅ ⇔ x′1 ∩ θ−1(y1) 6= ∅ and we conclude
since θ−1 is a strong isomorphism from V to U . The converse implication
θ(x′1) ∼V ⊥ θ(x′2)⇒ x′1 ∼U⊥ x′2 is proven similarly.

2.2.3 Monoidal structure. We de�ne U⊗V as follows. We take |U ⊗ V | =
|U | × |V |, and ∼U⊗V = E⊥⊥ where

E = {(x1 × y1, x2 × y2) | x1 ∼U x2 and y1 ∼U y2} ⊆ P(|U ⊗ V |)2 .

Since this relation E is a pre-PER (but not a PER a priori, since one cannot
recover x and y from x × y when one of these two sets is empty), the relation
∼U⊗V is a PER, and U ⊗ V so de�ned is a PER-object. We de�ne U ( V =
(U ⊗ V ⊥)⊥ .

Remember that, if t is a binary relation, then t⊥ = {(b, a) | (a, b) ∈ t}.
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Lemma 3 One has |U ( V | = |U | × |V |. If t1, t2 ∈ P(|U ( V |), one has
t1 ∼U(V t2 i� for all x1, x2 ⊆ |U | such that x1 ∼U x2, one has t1 x1 ∼Y t2 x2.
Moreover, one has t1 ∼U(V t2 ⇔ t⊥1 ∼V ⊥(U⊥ t

⊥
2 .

Proof. This is due to the fact that, for any t ⊆ |U ( V |, x ⊆ |U | and y′ ⊆ |V |,
one has t ∩ (x× y′) 6= ∅ ⇔ (t x) ∩ y′ 6= ∅ 2

So the morphisms from U to V are exactly the t ∈ P(|U ( V |) such that
t ∼U(V t. Moreover, if t ∈ PerL(U, V ) then t⊥ ∈ PerL(V ⊥ , U⊥).

Lemma 4 The obvious bijection λ from |U ⊗ V (W | to |U ( (V (W )| de-
�nes a strong isomorphism between the PER-objects U ⊗ V ( W and U (
(V (W ). In particular, for s1, s2 ∈ P(|U ⊗ V (W |), one has s1 ∼U⊗V(W

s2 i� for any x1, x2 ∈ P(|U |) and y1, y2 ∈ P(|V |) such that x1 ∼U x2 and
y1 ∼U y2, one has s1 (x1 × y1) ∼W s2 (x2 × y2).

Proof. Let t1, t2 ⊆ P(U ⊗ V (W ). Assume �rst that t1 ∼U⊗V(W t2, we
want to prove that λ(t1) ∼U((V(W ) λ(t2). But this is clear since, if x1, x2 ⊆
|U | and y1, y2 ⊆ |V | satisfy x1 ∼U x2 and y1 ∼V y2, then we have x1 ×
y2 ∼U⊗V x2 × y2, and therefore (λ(t1)x1) y1 = t1 (x1 × y1) ∼W t2 (x2 × y2) =
(λ(t2)x2) y2. Assume conversely that λ(t1) ∼U((V(W ) λ(t2), we prove that
t1 ∼U⊗V(W t2. For this, we proceed as above, showing that t⊥1 ∼W⊥((U⊗V )⊥

t⊥2 and applying Lemma 3. 2

Lemma 5 The obvious bijection α : |(U ⊗ V )⊗W | → |U ⊗ (V ⊗W )| is an
isomorphism of PER-objects from (U ⊗ V )⊗W to U ⊗ (V ⊗W ).

Proof. By Section 2.2.2, it su�ces to prove that α is an isomorphism from
((U ⊗ V )⊗W )⊥ to (U ⊗ (V ⊗W ))⊥ , and this results from Lemma 4. 2

Given s ∈ PerL(U1, U2) and t ∈ PerL(V1, V2), one de�nes s⊗t ⊆ |U1 ⊗ V1|×
|U2 ⊗ V2| by s ⊗ t = {((a1, b1), (a2, b2)) | (a1, a2) ∈ s and (b1, b2) ∈ t}. Then
one shows using Lemma 4 that s⊗ t ∈ PerL(U1 ⊗ V1, U2 ⊗ V2), and one checks
that the category PerL equipped with this ⊗ binary functor, together with the
associativity isomorphism of Lemma 5 (as well as the symmetry isomorphism
etc.) is a symmetric monoidal category, which is closed (with U ( V as object
of linear morphisms from U to V ) by Lemma 4. The linear evaluation morphism
is ev, as de�ned in Section 2.1.

PerL is ∗-autonomous, with ⊥ = ({∗},=) as dualizing object.

2.2.4 Additive structure. Given a family (Ui)i∈I of PER-objects, one de-
�nes U = &i∈I Ui by setting |U | =

⋃
i∈I({i}× |Ui|), and by saying that, for any

x = (xi)i∈I , y = (yi)i∈I ∈ P(|U |) (identifying this latter set with a product),
one has x ∼U y if one has xi ∼Ui yi for all i ∈ I. Using the fact that ∅ ∼V ∅
in any PER-object V , one shows that ∼⊥U = ∼

&i∈I U
⊥
i

and it follows that U
is a PER-object. It is routine to check that &i∈I Ui so de�ned is the cartesian
product of the Uis in the category PerL, and that this cartesian product is also
a coproduct. When U is a PER-object and I is a set, we denote with U I the
product &i∈I Ui where Ui = U for each U .

In particular, PerL has a terminal object >, given by |>| = ∅ and ∅ ∼> ∅.
Observe that this is the only PER-object with an empty web.
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2.2.5 Exponentials. Given a PER-object U , we de�ne !U by |!U | =Mfin(|U |),
and ∼!U = E⊥⊥ where

E = {(x!
1, x

!
2) | x1, x2 ∈ P(|U |) x1 ∼U x2}

where we recall that x! =Mfin(x). Since E is a pre-PER (and actually a PER,
because x can be recovered from x! using dereliction: x = {a | [a] ∈ x!}), the
relation ∼!U is a PER. We recall that, if s ⊆ |!U ( V | and x ⊆ |U |, then we
denote with s(x) the subset s x! of |Y |, see Section 2.1.

Lemma 6 Let U and V be PER-objects and let s1, s2 ⊆ |!U ( V |. One has
s1 ∼!U(V s2 i�

∀x1, x2 ⊆ |U | x1 ∼U x2 ⇒ s1(x1) ∼V s2(x2) .

Proof. The⇒ direction is trivial. For the converse, one assumes that the stated
condition holds, and one checks that s⊥1 ∼V ⊥((!U)⊥ s⊥2 , and for this purpose,
it su�ces to apply Lemma 3. 2

Given s ∈ PerL(U, V ), one de�nes !s ⊆ |!U | × |!V | as in the standard
relational model by setting

!s = {([a1, . . . , an], [b1, . . . , bn]) | n ∈ N, (ai, bi) ∈ s for i = 1, . . . , n} .

Then, since !s x! = (s x)!, we have !s1 ∼!U(!V !s2 as soon as s1 ∼U(V s2 (by
Lemma 6); in particular, if s ∈ PerL(U, V ), one has !s ∈ PerL(!U, !V ) and so
the operation s 7→ !s is an endofunctor on PerL.

One de�nes dU ⊆ |!U | × |U | as dU = {([a], a) | a ∈ |U |}, and since dU x
! = x

for all x ⊆ |U |, we get easily dU ∈ PerL(!U,U). Similarly, one de�nes pU ⊆
|!U | × |!!U | as pU = {(m1 + · · ·+mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ |!U |}. Since
pU x

! = x!!, we get pU ∈ PerL(!U, !!U). The naturality in U of these morphisms
is clear (it holds in the relational model), and !_ equipped with these two natural
transformations is a comonad. Moreover, the Seely isomorphism also holds in
this setting.

2.2.6 Seely isomorphism and cartesian closeness. Let U and V be
PER-objects. Let θ : |!(U & V )| → |!U ⊗ !V | be the usual bijection de�ned by

θ([(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)]) = ([a1, . . . , al], [b1, . . . , br])

Using Lemma 6, one shows easily that θ ∈ PerL(!(U & V ), !U ⊗ !V ) (as a rela-
tion). For showing that θ−1 ∈ PerL(!U ⊗ !V , !(U & V )), one applies Lemma 4
and then Lemma 6, twice. This shows that θ is a strong isomorphism of PER-
objects.

So the category of PER-objects (together with the monoidal and exponential
structure explained above) is a Seely category with Seely isomorphism θ−1, see
Section 1.3.

We know that the associated Kleisli category PerL! is cartesian closed. The
object of morphisms from U to V is U ⇒ V = !U ( V and we have seen
that the associated PER ∼U⇒V is such that, given two elements s1 and s2 of
PerL!(U, V ), one has s1 ∼U⇒V s2 i� s1(x1) ∼V s2(x2) for all x1, x2 ⊆ |U | such
that x1 ∼U x2. The evaluation morphism is Ev, as de�ned in Section 2.1.2.
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2.2.7 The inclusion functor into the collapse category of Rel!. Any
PER-object U = (|U |,∼U ) is an object of the category e(Rel!) since ∼U is
a PER on P(|U |) = Rel!(>, |U |). We have PerL!(U, V ) = e(Rel!)(U, V ) by
Lemma 6 and both categories PerL! and e(Rel!) have the same identity mor-
phisms and composition laws, which are those of the category Rel!. Therefore,
PerL! is a full subcategory of e(Rel!) and we denote as q the corresponding
inclusion functor. It is clear moreover that the functor q is a cartesian closed
functor.

2.3 The partially ordered class of PER-objects

Let U and V be PER-objects. We say that U is a subobject of V and write U v
V if |U | ⊆ |V |, and moreover η|U |,|V | ∈ PerL(U, V ) and ρ|U |,|V | ∈ PerL(V,U).
This is an adaptation of the concept of embedding-retraction pair (see [Sco76])
to the present setting. We'll introduce several similar notions in the sequel.

One has U v V i� conditions are satis�ed

∀x1, x2 ⊆ |U | x1 ∼U x2 ⇒ x1 ∼V x2

and
∀y1, y2 ⊆ |V | y1 ∼V y2 ⇒ y1 ∩ |U | ∼U y2 ∩ |U | .

Observe that v a partial order relation on PER-objects and let PerC be the
partially ordered class of PER-objects ordered by v.

One of the main features of this de�nition is that linear negation is covariant
with respect to the subobject partial order. We retrieve of course the crucial
property of embedding-retraction pairs: function space becomes a covariant
operation wrt. both parameters when considered as a functor acting on such
pairs.

Lemma 7 If U v V then U⊥ v V ⊥ .

Proof. We have |U⊥ | = |U | ⊆ |V | = |V ⊥ |. Moreover η⊥|U |,|V | = ρ|U |,|V | and

ρ⊥|U |,|V | = η|U |,|V |. The result follows. 2

2.3.1 Completeness.

Lemma 8 Let Γ be a directed set and let (Uγ)γ∈Γ be a directed family of PERs
(meaning that γ ≤ δ ⇒ Uγ v Uδ). We de�ne U =

⊔
γ∈Γ Uγ by |U | =

⋃
γ∈Γ |Uγ |

and, for x1, x2 ⊆ |U |, x1 ∼U x2 i� x1 ∩ |Uγ | ∼Uγ x2 ∩ |Uγ | for all γ ∈ Γ. Then
U is a PER-object. Moreover U⊥ =

⊔
γ∈Γ U

⊥
γ .

Proof. Let U ′ =
⊔
γ∈Γ U

⊥
γ , it will be enough to show that U = U ′⊥ . Let

x1, x2 ⊆ |U |. Assume �rst that x1 ∼U x2 and let us show that x1 ∼U ′⊥ x2. So
let x′1, x

′
2 ⊆ |U | be such that x′1 ∼U ′ x′2 and assume that x1 ∩ x′1 6= ∅. Let γ ∈ Γ

be such that x1∩x′1∩|Uγ | 6= ∅. By de�nition of U and U ′, we have x1∩|Uγ | ∼Uγ
x2 ∩ |Uγ | and x′1 ∩ |Uγ | ∼U⊥γ x′2 ∩ |Uγ |, and therefore x2 ∩ x′2 ∩ |Uγ | 6= ∅, and
hence x2 ∩ x′2 6= ∅ as required. Assume next that x1 ∼U ′⊥ x2 and let us show
that x1 ∼U x2. So let γ ∈ Γ and let us prove that x1 ∩ |Uγ | ∼Uγ x2 ∩ |Uγ |. So
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let x′1, x
′
2 ⊆ |Uγ | be such that x′1 ∼U⊥γ x′2 and assume that (x1 ∩ |Uγ |) ∩ x′1 6= ∅,

that is x1 ∩ x′1 6= ∅.
We show that x′1 ∼U ′ x′2. Let δ ∈ Γ and let us show that x′1 ∩ |Uδ| ∼U⊥δ

x′2 ∩ |Uδ|. So let ε ∈ Γ be such that γ, δ ≤ ε. Let y1, y2 ⊆ |Uδ| be such that
y1 ∼Uδ y2 and x′1∩|Uδ|∩y1 6= ∅. Since Uδ v Uε and U⊥δ v U⊥ε (by Lemma 7), we
have x′1 ∼U⊥ε x′2 and y1 ∼Uε y2. Therefore x′2 ∩ y2 6= ∅, that is x′2 ∩ |Uδ| ∩ y2 6= ∅
(since y2 ⊆ |Uδ|) as required.

Since x1 ∼U ′⊥ x2 and x′1 ∼U ′ x′2, we have x2∩x′2 6= ∅, that is (x2∩|Uγ |)∩x′2 6=
∅ (since x′2 ⊆ |Uγ |) as required. 2

Lemma 9 If (Uγ)γ∈Γ is a directed family of PER-objects, then
⊔
γ∈Γ Uγ is its

lub in PerC.

Proof. For showing that Uδ v
⊔
γ∈Γ Uγ , one must show that, if x1 ∼Uδ x2,

then x1∩|Uγ | ∼Uγ x2∩|Uγ | for any given γ ∈ Γ; one picks some ε ∈ Γ such that
γ, δ ≤ ε and one proceeds as in the proof of Lemma 8. Let V be a PER-object
an assume that Uγ v V for all γ ∈ Γ, we must show that U =

⊔
γ∈Γ Uγ v V .

Let �rst x1, x2 ⊆ |U | and assume that x1 ∼U x2, and let us prove that x1 ∼V x2.
So let y′1, y

′
2 ⊆ |V | be such that y′1 ∼V ⊥ y′2, and assume that x1 ∩ y′1 6= ∅. Let

γ ∈ Γ be such that x1 ∩ y′1 ∩ |Uγ | 6= ∅. Since U⊥γ v V ⊥ by Lemma 7, we have
y′1∩|Uγ | ∼U⊥γ y′2∩|Uγ | and hence x2∩y′2∩|Uγ | 6= ∅ and so x2∩y′2 6= ∅. Let now
y1, y2 ⊆ |V | be such that y1 ∼V y2 and let us show that y1∩|U | ∼U y2∩|U |, that
is y1 ∩ |Uγ | ∼U y2 ∩ |Uγ | for all γ ∈ Γ, which holds since Uγ v V by assumption.

2

2.3.2 Variable PER-objects and �xpoints thereof. A functor (that is,
a �monotone� class function) Φ : PerCn → PerC which commutes with the lubs
of directed families (of n-tuples) of PER-objects will be said to be continuous, or
to be a variable PER-object (the terminology is borrowed from [Gir86]). Let Ψ :
PerC→ PerC be a variable PER-object. Then Ψ has a least �xpoint fix(Ψ) =⊔
k∈N Ψk(>) where > is the empty PER-object (see Section 2.2.4). Of course,

given a PER-object Φ : PerCn+1 → PerC, the operation PerCn → PerC
which maps (U1, . . . , Un) to fix(Φ(U1, . . . , Un,_)) is a variable PER-object. We
have already seen that the map U → U⊥ is a variable PER-object.

Lemma 10 The operations (U, V ) 7→ U ⊗ V , U 7→ U⊥ , U 7→ U I and U 7→ !U
are variable PER-objects.

Proof. We have already seen that U 7→ U⊥ is a variable PER-object.
We observe that ⊗ is monotone, in the sense that if U v U ′ and V v V ′, then

U ⊗V v U ′⊗V ′. This results from the fact that |U ⊗ V | ⊆ |U ′ ⊗ V ′| and from
the obvious equations η|U⊗V |,|U ′⊗V ′| = η|U |,|U ′| ⊗ η|V |,|V ′| and ρ|U⊗V |,|U ′⊗V ′| =
ρ|U |,|U ′| ⊗ ρ|V |,|V ′|. We check similarly that !_ and (_)I are monotone.

We show that (U, V ) 7→ (U ( V ) is a variable PER-object. It is monotone
by the considerations above. Let (Uγ)γ∈Γ and (Vγ)γ∈Γ be directed families of
PER-objects. We show that U ( V =

⊔
γ∈Γ(Uγ ( Vγ) where U =

⊔
γ∈Γ Uγ

and V =
⊔
γ∈Γ Vγ . Let t1, t2 ⊆ |U ( V |. Assume �rst that t1 ∼U(V t2; one

has t1 ∩ |Uγ ( Vγ | ∼Uγ(Vγ t2 ∩ |Uγ ( Vγ | because, if x1 ∼Uγ x2, one has
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(ti ∩ |Uγ ( Vγ |)xi = (ti xi)∩|Vγ |. Conversely, assume that t1 ∼⊔
γ∈Γ(Uγ(Vγ) t2

and let us show that t1 ∼U(V t2. So let x1, x2 ⊆ |U | be such that x1 ∼U x2, and
let us show that t1 x1 ∼V t2 x2. We have ti xi =

⋃
γ∈Γ (ti ∩ |Uγ ( Vγ |) (xi ∩ |Uγ |)

and (t1 ∩ |Uγ ( Vγ |) (x1 ∩ |Uγ |) ∼Vγ (t2 ∩ |Uγ ( Vγ |) (x2 ∩ |Uγ |) for each γ ∈
Γ. We conclude applying Lemma 1 and using the fact that x1∩|Uγ | ∼Uγ x2∩|Uγ |
for all γ ∈ Γ. Since U ⊗ V = (U ( V ⊥)⊥ , this shows that (U, V ) 7→ U ⊗ V is
a variable PER-object.

One proves easily that U 7→ U I is a variable PER-object.
To conclude, let us prove that Φ : U 7→ (!U)⊥ is a variable PER-object.

It is a monotone operation because !_ is monotone as we have seen. So let
(Uγ)γ∈Γ be a directed family of PER-objects and let us show that Φ(U) =⊔
γ∈Γ Φ(Uγ), where U =

⊔
γ∈Γ Uγ . Let A

′
1, A

′
2 ⊆ Mfin(|!U |). Assume �rst that

A′1 ∼Φ(U) A
′
2 and let γ ∈ Γ, we prove that A′1 ∩ |Φ(Uγ)| ∼Φ(Uγ) A

′
2 ∩ |Φ(Uγ)|.

So let x1, x2 ⊆ |Uγ | with x1 ∼Uγ x2 and assume that A′1 ∩ |Φ(Uγ)| ∩ x!
1 6= ∅.

We have x1 ∼U x2 and hence A′2 ∩ x!
2 6= ∅, that is A′2 ∩ |Φ(Uγ)| ∩ x!

2 6= ∅.
Conversely, assume that A′1 ∼⊔

γ∈Γ Φ(Uγ) A
′
2 and let us prove that A′1 ∼Φ(U)

A′2. So let x1, x2 ⊆ |U | with x1 ∼U x2 and assume that A′1 ∩ x!
1 6= ∅; let

m be an element of that intersection. Since Γ is directed and m is a �nite
multiset, one can �nd γ ∈ Γ such that m ∈ |Φ(Uγ)|. By assumption, we have
A′1∩|Φ(Uγ)| ∼Φ(Uγ) A

′
2∩|Φ(Uγ)| and x1∩|Uγ | ∼Uγ x2∩|Uγ |. We conclude using

the fact that (x1 ∩ |Uγ |)! = x!
1 ∩ |Φ(Uγ)|: we have A′1 ∩ x!

1 ∩ |Φ(Uγ)| 6= ∅, that
is (A′1 ∩ |Φ(Uγ)|) ∩ (x1 ∩ |Uγ |)! 6= ∅ and hence (A′2 ∩ |Φ(Uγ)|) ∩ (x2 ∩ |Uγ |)! 6= ∅
which implies A′2 ∩ x!

2 6= ∅. 2

2.3.3 An extensional re�exive PER-object. Consider the mapping of
PER-object Φe de�ned by Φe(U) = (!(UN))⊥ . By Lemmas 7 and 10, Φe is a
variable PER-object, and has therefore a least �xpoint, namely the PER-object
De =

⊔
k∈N Φke (>). One has De ⇒ De = (!De)

⊥ ` De = (!De)
⊥ ` Φe(De) =

(!De)
⊥ ` (!(DN

e ))⊥ ' (!(De & DN
e ))⊥ by the Seely isomorphism of Section 2.2.6.

We conclude since De & DN
e ' DN

e (by the strong isomorphism which maps
(1, a) to (0, a) and (2, (i, a)) to (i+ 1, a)). Therefore De is an extensional model
of the pure lambda-calculus in the Kleisli category PerL!.

The underlying set |De| is the relational model of the pure lambda-calculus
described in [BEM07]. We denote it as Dr. It is the least �xpoint (in the
partially ordered class of sets) of the monotone and continuous operation E 7→
Mfin(N× E).

3 A linear Scott semantics

We describe now the linear Scott model that we want to connect with the rela-
tional semantics through an extensional collapse. We don't claim to introduce
any novelty in this presentation: all the material of this section can be found in
earlier work by Huth and al. [Hut93, HJK00] and Winskel [Win04]. More infor-
mation and intuitions on this model can be found in these papers, in particular
about the connections between the resource modalities !_ and ?_ and various
powerdomain constructions: our resource modalities are exactly the same as
theirs, up to slight and irrelevant variations in the presentation (in particular,
we insist on considering �nite multisets instead of �nite sets when de�ning !S,
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only for simplifying the description of the collapse). We won't mention further
these properties here because they are not directly related with the result we
aim at.

Given a preordered set (S,≤), we denote with Sop the opposite preorder.
Given x ⊆ S, we denote with ↓S x (or simply ↓ x if the ambient preorder is clear
from the context) the set {a ∈ S | ∃b ∈ x a ≤ b}. And we set ↑S x = ↓Sop x. We
also de�ne

I(S) = {x ⊆ S | ↓
S
x = x}

which, ordered by inclusion, is a prime-algebraic lattice.

3.1 ∗-autonomous structure

Let S and T be preorders. A function f : I(S)→ I(T ) is linear if it commutes
with arbitrary lubs. In other words, for any family (xi)i∈I of elements of I(S),
we must have f

(⋃
i∈I xi

)
=
⋃
i∈I f(xi). This implies in particular that f is

monotone, and that f(∅) = ∅ (of course, we do not necessarily have f(S) = T ).
We denote with ScottL the corresponding category.

We equip the hom-set ScottL(S, T ) with the ordinary pointwise order: f ≤ g
if ∀x ∈ I(X) f(x) ⊆ g(x). We de�ne the linear trace of a linear map f ∈
ScottL(S, T ) as

trS(f) = {(a, b) ∈ S × T | b ∈ f(↓
S
{a})} .

This is similar to the usual de�nition of the trace of a stable linear map (see [Gir87,
AC98]), the main di�erence being that there is no minimality requirement on
a: such a requirement would not make sense in general because usually our pre-
orders are not well-founded. Then it is easily checked that trS(f) ∈ I(Sop × T ).
Conversely, given any t ∈ I(Sop × T ), we de�ne a function

funS(t) : I(S) → P(T )

x 7→ t x

and it is easy to check that funS(t) takes its values in I(T ) and is linear from
I(S) to I(T ).

Proposition 11 The maps trS and funS de�ne an order isomorphism between
the posets ScottL(S, T ) and I(Sop × T ). Moreover, these isomorphisms com-
mute with composition (of maps and relations respectively).

Therefore, we set S ( T = Sop × T . Thanks to the proposition above, we
can consider the morphisms of the category ScottL as linear functions or as
relations. For instance, as a function, the identity morphism S → S is of course
the identity function I(S)→ I(S), but as a relation, it is IdS = {(a, b) ∈ S×S |
b ≤ a}. In this paper, we prefer the relational viewpoint on morphisms for its
similarity with morphisms in Rel.

The following easy lemma clari�es the connection between the two approaches,
in a more general case where the relation is not assumed to be downward closed
in S ( T .

Lemma 12 Let t ⊆ S × T and let x ∈ I(S). One has ↓T (t x) = (↓S(T t)x.
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3.1.1 Isomorphisms. An isomorphism (in the usual categorical sense) from
S to T in ScottL is a relation t ∈ I(S ( T ) such that funS(t) : I(S) → I(T )
is an order isomorphism. As a relation, an isomorphism from S to T has no
reason to be a bijection, not even a function. For instance, if S = {0} and
T = N (with the largest preorder, in which n ≤ m for all n,m ∈ N), then the
relation {(0, n) | n ∈ N} is an isomorphism from S to T (it is actually the only
non-empty morphism from S to T ).

We'll call strong isomorphism from S to T any function ϕ : S → T which is
an isomorphism of preorders (that is, ϕ is bijective and a ≤S b i� ϕ(a) ≤T ϕ(b)).
Such a ϕ, considered as a set of pairs, is not an isomorphism in the categorical
sense above in general, but ↓S(T ϕ is. And we'll say that S and T are strongly
isomorphic if there is a strong isomorphism from S to T .

3.1.2 Monoidal structure. The tensor product of preorders is given by
S ⊗ T = S × T . It is easily seen to be functorial. Indeed, let s ∈ I(S1 ( S2)
and t ∈ I(T1 ( T2). Then, we set

s⊗t = {((a1, b1), (a2, b2)) ∈ (S1 ⊗ T1)( (S2 ⊗ T2) | (a1, a2) ∈ s and (b1, b2) ∈ t} .

One can check that s ⊗ t ∈ I((S1 ⊗ T1)( (S2 ⊗ T2)) and that (s′ ⊗ t′) ◦
(s⊗ t) = (s′ ◦ s)⊗ (t′ ◦ t).

The neutral element of the tensor product is 1 = {?} (actually, any non-
empty preorder such that a ≤ b for all a, b is isomorphic to 1, and therefore is
neutral for ⊗). The so de�ned symmetric monoidal category ScottL is monoidal
closed, with linear evaluation morphism evS ∈ ScottL((S ( T ) ⊗ S, T ) given
by

evS = {(((a, b), a′), b′) | b′ ≤|T | b and a ≤|S| a′} .

We use the same object 1 as dualizing object, but when used in that way,
we denote it with ⊥.

It is clear that S ( ⊥ = Sop (up to the identi�cation of a ∈ S with
(a, ?) ∈ S ( ⊥), and that the canonical map S → (S ( ⊥) ( ⊥ coincides
with the identity, so the monoidal category of preorders and linear maps is a
∗-autonomous category in the sense of Section 1.3.

3.2 Products and coproducts

Let (Si)i∈I be a collection of preorders, the cartesian product of this family is
denoted with &i∈I Si and is the disjoint union

⋃
i∈I({i} × Si), endowed with

the disjoint union of the preorder relations. One has I(&i∈I) =
∏
i∈I I(Si) up

to a trivial and canonical isomorphism. The i-th projection πS
i : &i∈I Si → Si

is given by
πS
i = {((i, a), b) | a, b ∈ Si b ≤ a} .

And given morphisms ti : T → Si, the unique morphism t = 〈ti〉i∈I : T →
&i∈I Si characterized by ∀i πS

i t = ti is given by

t =
⋃
i∈I
{(b, (i, a)) | (b, a) ∈ ti)} .

The sum ⊕i∈I Si = (&i∈I Si
op)

op is the operation dual to this product, and
coincides with it as easily checked.
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If S is a preorder and I is a set, we use SI for the product &i∈I Si where
Si = S for each I. We use > for the product of the empty family of preorders:
it is the terminal object, and, as a preorder, it is empty (so I(>) = {∅}). It is
obviously isomorphic to its dual, denoted with 0.

3.3 Exponentials

Given a preorder S, we de�ne the preorder !S, whose elements are the �nite
multisets of elements of S, with the following preorder relation: given p, q ∈ !S,
one has p ≤!S q if ∀a ∈ supp(p)∃b ∈ supp(q) a ≤S b. Of course we could have
taken !S = Pfin(S), with a similarly de�ned preorder, and the associated lattices
of initial segments would have been trivially isomorphic. We choose multisets
because our goal is to compare this preorder model with the relational model,
where the exponentials are de�ned with �nite multisets. This choice makes the
study of the collapse much simpler.

Given x ⊆ S, we set x! = Mfin(x). The following is a straightforward but
crucial observation.

Lemma 13 Let x ⊆ S. We have (↓|X| x)! = ↓|!S| (x!).

We'll use this remark quite often, tacitly. It implies that, if x ∈ I(S), then
x! ∈ I(!S). Given t : S → T , we set

!t = {(p, q) ∈ !S × !T | ∀b ∈ q ∃a ∈ p (a, b) ∈ t} .

Then one shows easily that !t : !S → !T , and that this operation on morphisms
is functorial. Moreover, it is quite useful to observe that

∀x ∈ I(S) !t x! = (t x)! .

And this property actually characterizes the morphism !t.

3.3.1 Comonad structure of the exponential. As required by the def-
inition of a Seely category (see Section 1.3), this functor !_ has a structure of
comonad, which is given by the natural morphism

dS
S = {(p, b) ∈ !S × S | ∃a ∈ p b ≤ a} : !S → S

usually called dereliction and

pS
S = {(p, [p1, . . . , pn]) ∈ !S × !!S | p1 + · · ·+ pn ≤!S p} : !S → !!S

usually called digging. Observe that dS
S x

! = x and that pS
S x

! = (x!)!, and that
these equations characterize the morphisms dS

S and pS
S . With these observa-

tions, it is trivial to check that these morphisms are natural (as announced) and
provide the functor !_ with a comonad structure.

3.3.2 Weakening and contraction. Given two preorders S1 and S2, there
is a canonical and natural strong isomorphism between the preorders !S1 ⊗ !S2

and !(S1 & S2), which is actually the preorder isomorphism

([a1, . . . , an], [b1, . . . , bm]) 7→ [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)] .
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Similarly, there is a trivial isomorphism from 1 to !> (both are the one-point
preorder): these are the Seely isomorphisms of the model. With all these struc-
tures, ScottL is a Seely category in the sense Section 1.3), it is the model
discovered independently by Huth [Hut93] and Winskel [Win98].

Using these isomorphisms, and applying the !_ functor to the diagonal map
δS : S → S & S (which, as easily checked, is the set {(a, (1, b)) | b ≤ a} ∪
{(a, (2, b)) | b ≤ a}) and to the unique map S → > (the empty map), we get
the contraction and weakening maps:

contrSS = {(p, (q1, q2)) | q1 + q2 ≤!S p)} : !S → !S ⊗ !S

weakSS = {(p, ?) | p ∈ !S} : !S → 1 .

3.4 The Kleisli category

Remember that, in the associated Kleisli category ScottL!, a morphism from
S to T is a linear morphism t : !S → T :

ScottL!(S, T ) = ScottL(!S, T ) .

Given such a morphism t : !S → T , we can de�ne a map

FunS(t) : I(S) → I(T )

x 7→ t x!

In other words, FunS(t)(x) = {b ∈ T | ∃p ∈ !S supp(p) ⊆ x and (p, b) ∈ t}
Observe that the function S → !S which maps x to x! is never linear (since

it maps ∅ to {[]}; it is actually the �most non-linear� map from S to S. . . ), but
is Scott continuous. Therefore, the map FunS(t) is Scott-continuous as well.

Conversely, observe that I(S) is a Scott domain, whose compact elements
are the �nitely generated elements of I(S), that is, the elements x0 of I(S)
such that x0 = ↓S u for some �nite u ⊆ S. Given a Scott-continuous function
f : I(S)→ I(T ), one de�nes the set

TrS(f) = {(p, b) ∈Mfin(S)× T | b ∈ f(↓
S

(supp(p)))} .

that we call the trace of f .

Lemma 14 Let S and T be preorders. The maps TrS and FunS de�ne an order
isomorphism between I(!S ( T ) and the set of Scott-continuous functions from
I(S) to I(T ), endowed with the pointwise order.

Proof. Let f, g : I(S) → I(T ) be Scott-continuous functions such that f ≤ g
for the pointwise order. Let (p, b) ∈ TrS(f). Then b ∈ f(↓S (supp(p))) ⊆
g(↓S (supp(p))), so (p, b) ∈ TrS(g) and hence the map TrS is monotone. Let
s, t ∈ I(!S ( T ) be such that s ⊆ t, let x ∈ I(S) and let b ∈ FunS(s)(x). This
means that there exists p ∈ !S such that (p, b) ∈ s and supp(p) ⊆ x. Then
(p, b) ∈ t and hence we also have b ∈ FunS(t)(x), and this shows that the map
FunS is monotone as well.

Let f : I(S) → I(T ) be continuous, f ′ = FunS(TrS(f)) and let x ∈ I(S).
Let b ∈ f(x). Since f is continuous, there is a �nite subset u of x such that
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b ∈ f(↓S (u)). Let p ∈ !S be such that supp(p) = u. Then we have (p, b) ∈
TrS(f) and hence b ∈ f ′(x). Conversely, if b ∈ f ′(x), let p ∈ !S be such that
(p, b) ∈ TrS(f) and supp(p) ⊆ x, then b ∈ f(↓S ( supp(p))) ⊆ f(x) and we have
shown that f ′(x) = f(x) for all x ∈ I(S), so FunS ◦ TrS is the identity map.

Conversely, let t ∈ I(!S ( T ) and let t′ = TrS(FunS(t)). Let (p, b) ∈ t,
then b ∈ Fun(t)(↓S ( supp(p))), and hence (p, b) ∈ t′. Let (p, b) ∈ t′, then
b ∈ FunS(t)(↓S ( supp(p))) and hence there exists q ∈ !S such that (q, b) ∈ t
and supp(q) ⊆ ↓S ( supp(p)), that is, q ≤!S p. Since (p, b) ≤!S(T (q, b) ∈ t and
t ∈ I(!S ( T ), we have (p, b) ∈ t, and this shows that TrS ◦ FunS is the identity
map. 2

3.4.1 The Kleisli category of preorders. This isomorphism is compati-
ble with composition, as easily checked, so that we can consider ScottL! as a full
subcategory of the category of Scott domains and continuous functions. More-
over, it is easily checked that the cartesian products and function space construc-
tions in both categories coincide: the cartesian product in ScottL! of S and T is
S & T , and we have seen that I(S & T ) ' I(S)×I(T ) (with the product order)
and their function space is S ⇒ T = !S ( T , and we have seen that I(!S ( T )
is isomorphic (as a poset) to the space of continuous maps from I(S) to I(T ),
endowed with the pointwise order, which is precisely the function space of I(S)
and I(T ) in the category of Scott domains and continuous functions. The
evaluation map EvS ∈ ScottL!((S ⇒ T ) & S, T ) ' ScottL(!(S ⇒ T ) ⊗ !S, T )
satis�es

EvS = {((r, p), b) | ∃(p′, b′) ∈ r b ≤T b′ and p′ ≤!S p}

as easily checked from the general de�nition of this evaluation morphism in
Section 1.3.3.

So ScottL! is a full sub-CCC of the CCC of Scott domains and continuous
functions.

3.5 The partially ordered class of preorders

We say that the preorder S is a substructure of the preorder T , and we write
S v T if, for any a1, a2 ∈ S, one has a1 ≤S a2 ⇔ a1 ≤T a2. We denote
with ScottC the corresponding partially ordered class. It is easy to check that
ScottC is complete (any directed family (Sγ)γ∈Γ has a lub

⊔
γ∈Γ Sγ), and that

all the constructions we have introduced on preorders are variable preorders,
that is, continuous class functions ScottCn → ScottC. Any variable preorder
Φ : ScottC → ScottC admits a least �xpoint. In particular, the operation
Φs : ScottC→ ScottC de�ned by Φs(S) = (!(SN))⊥ is a variable preorder and
therefore admits a least �xpoint Ds, which is an extensional model of the pure
lambda-calculus (same computation as in Section 2.3.3).

4 The category of preorders with projections

We de�ne a Seely category PpL whose objects are of a mixed nature. An
object X of PpL is a pair (|X|,D(X)) where |X| is a preorder (object of the
category ScottL) which will also be considered as a simple set, that is, as an
object of the category Rel, by forgetting the preorder relation. The two aspects

24



of these objects are related by the predicate D(X) on P(|X|) which satis�es
a closure property de�ned as usual by a duality, whose de�nition involves the
preorder relation on |X|. Using this predicate, we'll de�ne a binary relation
between subsets and downward closed subsets of |X| and show that, in the
Kleisli category associated with this Seely category, this binary relation behaves
as a logical relation, proving that this Kleisli cartesian closed category is a sub-
CCC of the heterogeneous category e(Rel!,ScottL!) de�ned in Section 1.4.2,
and which satis�es the conditions mentioned in that section (its objects are
modest and the �rst projection functor is cartesian closed).

4.1 A duality on preorders

We introduce �rst the duality which will be essential for de�ning these objects.
Let S be a preorder. Given x, x′ ⊆ S, we say that x and x′ are in duality (with
respect to S) and write x ⊥S x′ if

x ∩ x′ = ∅ ⇒ (↓
S
x) ∩ x′ = ∅ .

Of course, the converse implication always holds so that, when it holds, the
implication above is actually an equivalence. The intuition is clear: x and x′

are in duality if x′ cannot separate x from its downward closure.
This duality relation is symmetric in the following sense: since clearly (↓S x)∩

x′ = ∅ ⇔ x ∩ (↑S x′) = ∅ ⇔ (↓S x) ∩ (↑S x′) = ∅, we have

∀x, x′ ⊆ S x ⊥S x′ ⇔ x′ ⊥Sop x .

If D ⊆ P(S), we set

D⊥S = {x′ ⊆ S | ∀x ∈ D x ⊥S x′}

With this de�nition, we have D ⊆ D⊥S⊥Sop . Indeed, let x ∈ D and let
x′ ∈ D⊥S . We have x ⊥S x′, that is x′ ⊥Sop x, and since this holds for
all x′ ∈ D⊥S , we have x ∈ D⊥S⊥Sop . Moreover, if D,E ⊆ P(S), we have
D ⊆ E ⇒ E⊥S ⊆ D⊥S . Therefore, one always has D⊥S⊥Sop⊥S = D⊥S .

One can observe indeed that the operations D → D⊥S and D → D⊥Sop

de�ne a Galois connection from (P(S),⊆) to (P(S),⊇) (this is usually the case
with this kind of orthogonality construction in linear logic).

Let D ⊆ P(S) be such that D = D⊥S⊥Sop (equivalently, D = E⊥Sop for
some E ⊆ P(S)). Then I(S) ⊆ D ⊆ P(S). And one checks easily that
P(S)⊥S = I(Sop) and I(S)⊥S = P(Sop). Let (xi)i∈I be a family of elements
of D. Then

⋃
i∈I xi ∈ D. Indeed, since D = D⊥S⊥Sop , it su�ces to show

that
(⋃

i∈I xi
)
⊥S x′ for all x′ ∈ D⊥S . So let x′ ∈ D⊥S , and let us assume

that
(⋃

i∈I xi
)
∩ x′ = ∅. Then, for any i ∈ I, we have xi ∩ x′ = ∅ and hence

↓S xi∩x′ = ∅ (since xi ∈ D(X)) and therefore
(⋃

i∈I ↓S xi
)
∩x′ = ∅. We conclude

because clearly
(⋃

i∈I ↓S xi
)

= ↓S
(⋃

i∈I xi
)
. So D, endowed with inclusion, is

a complete lattice, whose least element is ∅, and largest element is S.
A preorder with projection (a PP for short; the reason for this terminology

will appear later) is a pair X = (|X|,D(X)) where |X| is a preorder and D(X) ⊆
P(|X|) satis�es D(X) = D(X)

⊥|X|⊥|X|op . We de�ne then

X⊥ = (|X|op
,D(X)⊥|X|) .
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By de�nition, we have X⊥⊥ = X. Remember that I(|X|) ⊆ D(X) ⊆ P(|X|).
Given two PPs X and Y , we de�ne X ⊗ Y by setting |X ⊗ Y | = |X| × |Y |,

endowed with the product order. Then D(X ⊗ Y ) is given by

D(X ⊗ Y ) = {x× y | x ∈ D(X) and y ∈ D(Y )}⊥|X|×|Y |⊥|X|op×|Y |op

We de�ne accordingly X ( Y = (X ⊗ Y ⊥|Y |)⊥|X|×|Y |op , so that |X ( Y | =
|X|op × |Y | and, for t ⊆ |X ( Y |, one has t ∈ D(X ( Y ) i�, for all x ∈ D(X)
and for all y′ ∈ D(Y ⊥), one has

t ∩ (x× y′) = ∅ ⇒ t ∩ ( ↓
|X|

x× ↑
|Y |
y′) = ∅ .

Given t ⊆ |X|×|Y |, remember that the transpose of t is t⊥ = {(b, a) | (a, b) ∈
t} ⊆ |Y | × |X|. One checks easily that t ∈ D(X ( Y ) i� t⊥ ∈ D(Y ⊥ ( X⊥).

Fortunately, there is an easy functional characterization of the elements of
D(X ( Y ).

Proposition 15 Let X and Y be PPs. Let t ⊆ |X| × |Y |. One has t ∈ D(X (
Y ) i� the two following conditions are satis�ed.

• For all x ∈ D(X), one has t x ∈ D(Y )

• and, for all x ∈ D(X), one has ↓|Y | (t x) = ↓|X(Y | t ↓|X| x .

For any t ⊆ |X|×|Y |, the second condition is equivalent to each of the following
three statements

• ∀x ∈ D(X) ↓|X(Y | t ↓|X| x ⊆ ↓|Y | (t x)

• ∀x ∈ D(X) ↓|Y | (t ↓|X| x) ⊆ ↓|Y | (t x)

• ∀x ∈ D(X) t ↓|X| x ⊆ ↓|Y | (t x).

Proof. The equivalences at the end of the proposition result from Lemma 12.
Assume �rst that t ∈ D(X ( Y ). Let x ∈ D(X). We show �rst that t x ∈

D(Y ) = D(Y ⊥)⊥|Y |op , so let y′ ∈ D(Y ⊥) and let us assume that (t x) ∩ y′ = ∅.
This is equivalent to t ∩ (x × y′) = ∅, and since t ∈ D(X ( Y ), we have
t ∩ ↑X(Y (x× y′) = ∅, that is t ∩ (↓|X| x × ↑|Y | y′) = ∅. But this implies
t∩(x×↑|Y | y′) = ∅, that is, (t x)∩↑|Y | y′ = ∅. Since this holds for all y′ ∈ D(Y ⊥),
we have shown that t x ∈ D(Y ).

We must show now that t ↓|X| x ⊆ ↓|Y | (t x). So let b ∈ t ↓|X| x, we have
↑|Y | b ∈ D(Y ⊥) and t ∩ (↓|X| x × ↑|Y | b) 6= ∅, that is t ∩ ↑X(Y (x× {b}) 6= ∅.
Since t ∈ D(X ( Y ), this shows that t∩(x×↑|Y | b) 6= ∅, that is (t x)∩↑|Y | b 6= ∅,
that is b ∈ ↓|Y | (t x) as required.

Assume conversely that the two conditions of the statement are satis�ed, and
let us show that t ∈ D(X ( Y ). So let x ∈ D(X) and y′ ∈ D(Y ⊥), and assume
that t ∩ ↑X(Y (x× y′) 6= ∅. Equivalently, we have t ∩ (↓|X| x × ↑|Y | y′) 6= ∅,
that is (t ↓|X| x) ∩ ↑|Y | y′ 6= ∅. By our second assumption, we have therefore
↓|Y | (t x)∩↑|Y | y′ 6= ∅, and hence t∩(x×y′) 6= ∅ since t x ∈ D(Y ) and y′ ∈ D(Y ⊥).

2

26



4.2 The linear category

Let PpL be the category whose objects are the PPs, and with PpL(X,Y ) =
D(X ( Y ), composition de�ned as the usual relational composition.

4.2.1 Identity and composition. By Proposition 15, the identity relation
Id ⊆ |X| × |X| belongs to D(X ( X).

As to composition, let s ∈ D(X ( Y ) and t ∈ D(Y ( Z), then we show that
the relational composition u = t s of these morphisms belongs to D(Y ( Z),
using Proposition 15. So let x ∈ D(X). First, we have ux = t (s x) ∈ D(Z)
since s x ∈ D(Y ). Next we must prove that u ↓|X| x ⊆ ↓|Z| (ux). But u ↓|X| x =
t (s ↓|X| x) ⊆ t ↓|Y | (s x) since s ∈ D(X ( Y ) and x ∈ D(X). Since s x ∈ D(Y )
and t ∈ D(Y ( Z), we have t ↓|Y | (s x) ⊆ ↓|Z| (t (s x)) = ↓|Z| (ux) as required.

Observe last that ↓X(Z (t s) = (↓Y(Z t) (↓X(Y s). The �⊆� inclusion is
straightforward, we check the converse. Let (a, c) ∈ (↓Y(Z t) (↓X(Y s). Let
b ∈ |Y | be such that (b, c) ∈ ↓Y(Z t and (a, b) ∈ ↓X(Y s. Let (a′, b′) ∈ s be
such that a′ ≤|X| a and b′ ≥|Y | b, and let (b′′, c′) ∈ t be such that b′′ ≤|Y | b
and c′ ≥|Z| c. We have b′′ ≤ b′ and hence (e.g.) (b′, c) ≤|Y(Z| (b′′, c′) ∈ t and
(a, b′) ≤|X(Y | (a′, b′) ∈ s and we conclude.

4.2.2 Tensor product. Given two PPs X and Y , we have de�ned a PP
X ⊗ Y in Section 4.1. We turn now this operation into a functor which will
endow the category PpL with a monoidal structure. For this purpose, it is
convenient to characterize �rst the �bilinear� morphisms: this is the purpose of
the next lemma which is a binary version of Proposition 15.

Lemma 16 Let X1, X2 and Y be PPs. Let t ⊆ |X1 ⊗X2 ( Y |. One has
t ∈ PpL(X1 ⊗X2, Y ) i�, for all x1 ∈ D(X1) and x2 ∈ D(X2), one has

• t (x1 ⊗ x2) ∈ D(Y )

• and ↓|Y | (t (x1 ⊗ x2)) = (↓|X1⊗X2(Y | t) (↓|X1| x1 ⊗ ↓|X2| x2).

The second condition is equivalent to t (↓|X1| x1 ⊗ ↓|X2| x2) ⊆ ↓|Y | (t (x1 ⊗ x2)).

Proof. The conditions are necessary by Proposition 15. We prove that they are
su�cient, so assume that they hold. We prove that t⊥ ∈ D(Y ⊥ ( (X1 ⊗X2)⊥),
using Proposition 15, so let y′ ∈ D(Y ⊥).

We show �rst that t⊥ y′ ∈ D((X1⊗X2)⊥). So let x1 ∈ D(X1) and x2 ∈ D(X2)
and assume that (t⊥ y′) ∩ (x1 ⊗ x2) = ∅, hence (t (x1 ⊗ x2)) ∩ y′ = ∅. But we
have t (x1 ⊗ x2) ∈ D(Y ), and hence (t (x1 ⊗ x2))∩↑|Y | y′ = ∅, and hence, by our
second hypothesis, (↓|X1⊗X2(Y | t) (↓|X1| x1 ⊗ ↓|X2| x2) ∩ ↑|Y | y′ = ∅. Therefore
(↓|X1⊗X2(Y | t)

⊥ ↑|Y | y′ ∩ (↓|X1| x1 ⊗ ↓|X2| x2) = ∅, which clearly implies that
t⊥ y′ ∩ (↓|X1| x1 ⊗ ↓|X2| x2) = ∅, showing that t⊥ y′ ∈ D((X1 ⊗X2)⊥).

Last, we must show that t⊥ ↑|Y | y′ ⊆ ↑|X1⊗X2| (t
⊥ y′) so let (a1, a2) ∈ t⊥ (↑Y y′).

We have that ↓X1⊗X2
{(a1, a2)} ∩ t⊥ (↑Y y′) 6= ∅, that is (t ↓X1⊗X2

{(a1, a2)}) ∩
↑|Y | y′ 6= ∅ and hence (t ↓X1⊗X2

{(a1, a2)}) ∩ y′ 6= ∅ since t ↓X1⊗X2
{(a1, a2)} ∈

D(Y ) by our assumption on t. Therefore we have ↓X1⊗X2
{(a1, a2)} ∩ t⊥ y′ 6= ∅,

that is (a1, a2) ∈ ↑|X1⊗X2| (t
⊥ y′). 2

We can now easily de�ne the functorial action of the tensor product.
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Let ti ∈ PpL(Xi, Yi) for i = 1, 2. Let t1 ⊗ t2 ⊆ |(X1 ⊗X2)( (Y1 ⊗ Y2)| be
de�ned as usual as t1 ⊗ t2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈ ti for i = 1, 2}. Then
we show that t1⊗t2 ∈ PpL(X1⊗X2, Y1⊗Y2) using Lemma 16. So let xi ∈ D(Xi)
for i = 1, 2. We have (t1 ⊗ t2) (x1 ⊗ x2) = (t1 x1) ⊗ (t2 x2) ∈ D(Y1 ⊗ Y2) since
we have ti xi ∈ D(Yi) for i = 1, 2. Moreover, we have

t1 ⊗ t2 ( ↓
|X1|

x1 ⊗ ↓
|X2|

x2) = (t1 ( ↓
|X1|

x1))⊗ (t2 ( ↓
|X2|

x2))

⊆ ↓
|Y1|

(t1 x1)⊗ ↓
|Y2|

(t2 x2)

= ↓
|Y1⊗Y2|

((t1 ⊗ t2) (x1 ⊗ x2))

applying Proposition 15 to t1 and t2.

4.2.3 Strong isomorphisms. Let X and Y be PPs. A strong isomorphism
from X to Y is a preorder isomorphism θ : |X| → |Y | such that, for any x ⊆ |X|,
one has x ∈ D(X) i� θ(x) ∈ D(Y ). A strong isomorphism from X to Y is an
isomorphism (in the categorical sense), as easily seen using Lemma 16. The
converse is certainly true as well, but we don't need it.

4.2.4 Associativity and symmetry isomorphisms. Let α be the obvious
bijection |(X1 ⊗X2)⊗X3| → |X1 ⊗ (X2 ⊗X3)|. Then α is a preorder isomor-
phism which is also a strong isomorphism of PPs (this results actually from the
forthcoming Lemma 17). Similarly, the bijection σ : |X1 ⊗X2| → |X2 ⊗X1| is
a strong isomorphism. This shows that the category PpL, equipped with the
above de�ned tensor product, is a monoidal category (of course, the unit of this
tensor product is the PP 1 = ({∗}, {∅, {∗}}).

4.2.5 Linear function space and monoidal closedness. We have al-
ready de�ned X ( Y = (X ⊗ Y ⊥)⊥ . We show that this object is the linear
function space from X to Y . This results straightforwardly from the following
strong isomorphism.

Lemma 17 The obvious bijection λ : |(Z ⊗X)( Y | → |Z ( (X ( Y )| is a
strong isomorphisms from (Z ⊗X)( Y to Z ( (X ( Y ).

Proof. We already know that λ is a preorder isomorphism.
Let t ∈ D((Z ⊗X) ( Y ) and let us prove that t′ = λ(t) ∈ D(Z (

(X ( Y )), using Lemma 15. So let z ∈ D(Z), we show �rst that t′ z ∈
D(X ( Y ). Let x ∈ D(X), we have (t′ z)x = t (z ⊗ x) ∈ D(Y ). Next,
we have (t′ z) ↓|X| x = t (z ⊗ ↓|X| x) ⊆ t (↓|Z| z ⊗ ↓|X| x) ⊆ ↓|Y | (t (z ⊗ x)) =
↓|Y | ((t′ z)x) by Lemma 15 applied to t, and hence, by the same lemma applied to
t′ z, we have t′ z ∈ D(X ( Y ). We must show now that t′ ↓|Z| z ⊆ ↓|X(Y | (t

′ z),
so let (a, b) ∈ t′ ↓|Z| z. We have b ∈ (t′ ↓|Z| z) ↓|X| a = t (↓|Z| z ⊗ ↓|X| a) ⊆
↓Y (t (z ⊗ ↓|X| a)) so we can �nd b′ ∈ |Y | with b′ ≥ b, c ∈ z and a′ ≤ a such
that ((c, a′), b′) ∈ t, that is (c, (a′, b′)) ∈ t′. Hence (a′, b′) ∈ t′ z, and therefore
(a, b) ∈ ↓|X(Y | (t

′ z) as required. 2

Since we have taken PpL(X,Y ) = D(X ( Y ) it results easily from that
lemma that the monoidal category PpL is monoidal closed, with X ( Y as
function space.
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The category PpL is clearly ∗-autonomous (with ⊥ = 1⊥ = 1 as dualizing
object), since X ( ⊥ = (X ⊗ 1)⊥ and this latter PP is isomorphic to X⊥ by
the strong PP isomorphism which maps a ∈ |X| to (a, ∗), see Section 1.3.1.

4.2.6 The �par� connective. The co-tensor product, or par, is de�ned as
X ` Y = (X⊥ ⊗ Y ⊥)⊥ = X⊥ ( Y and has the same associativity and
symmetry properties as the tensor product. Also, there is a mix morphism
mix : X ⊗ Y → X ` Y , which is the diagonal set mix = {((a, b), (a, b)) | a ∈
|X| and b ∈ |Y |}. As it is well known, this relation is a morphism because
1 = 1⊥ = ⊥. A natural question is whether this morphism is an isomorphism,
as in both categories ScottL and RelL (these categories are compact closed),
and we provide now a counter-example showing that this is not the case in
general.

4.2.7 The morphism mix is not an isomorphism in general. Let X
be the PP de�ned by |X| = N (the natural numbers, with the usual order)
and D(X) = P(N), and let Y = X⊥ . We check �rst that the �successor�
relation s = {(n, n + 1) | n ∈ N} belongs to D(Y ` X) = D(X ( X). Let
x ∈ D(X) = P(N). Obviously s x ∈ D(X), and, if b ∈ s ↓X x, then we have
b > 0 and b− 1 ∈ ↓X x. Let c ∈ x such that c ≥ b− 1. We have c+ 1 ∈ s x and
hence b ∈ ↓X (s x).

On the other hand, we have Id ∈ D(Y ( Y ) = D((Y ⊗X)⊥) and, since |Y |
is N with the opposite order, we have s∩ ↓|Y(Y | Id 6= ∅ (indeed s ⊆ ↓|Y(Y | Id).
But s ∩ Id = ∅, therefore s = mix−1 s /∈ D(Y ⊗X), which shows that mix−1 /∈
PpL(Y ` X,Y ⊗X).

This means that PpL is not compact closed, see [Day77].

4.3 The additives

Given a family (Xi)i∈I of PPs, we de�ne their cartesian product X = &i∈I Xi

by setting |X| =
⋃
i∈I{i} × |Xi| and saying that a set x ⊆ |X| belongs to D(X)

if, for all i ∈ I, one has πi x ∈ D(Xi) (where πi ⊆ |X ( Xi| is πi = {((i, a), a) |
a ∈ |Xi|}, so that πi x = {a ∈ |Xi| | (i, a) ∈ x}; we'll use the notation xi for
πi x in the sequel).

One must check that D(X) = D(X)
⊥|X|⊥|X|op . For this it will su�ce to show

that, for all x′ ⊆ |X|, one has x′ ∈ D(X)⊥|X| i� x′i ∈ D(Xi)
⊥|Xi| for all i ∈ I;

this will show that X de�ned above is a PP, with X⊥ = &i∈I X
⊥
i . Assume

�rst that x′i ∈ D(Xi)
⊥|Xi| for all i ∈ I and assume that ↓|X| x ∩ x′ 6= ∅ for

some x ∈ D(X). There exists i ∈ I such that ↓|Xi| xi ∩ x
′
i 6= ∅, and therefore

xi ∩ x′i 6= ∅, and hence x ∩ x′ 6= ∅. Conversely, assume that x′ ∈ D(X)⊥|X| and
let i ∈ I, we must show that x′i ∈ D(Xi)

⊥|Xi| . So let y ∈ D(Xi) and assume
that ↓|Xi| y ∩ x

′
i 6= ∅. Let x = {i} × y ⊆ |X|, we have x ∈ D(X) (remember the

de�nition of D(X) and the fact that ∅ ∈ D(Y ) for any PP Y ) and ↓|X| x∩x′ 6= ∅.
Therefore we have x ∩ x′ 6= ∅, that is y ∩ x′i 6= ∅.

It is straightforward to check that &i∈I Xi is the cartesian product of the
family (Xi)i∈I , with the relations πi as projections.
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4.4 The exponentials

We have seen that PpL is a cartesian ∗-autonomous category. We equip it now
with an exponential comonad which will give it the structure of a Seely category
in the sense of Section 1.3.

Let X be a PP. We de�ne !X by setting �rst |!X| = !|X|; remember that
this means that |!X| is the set of all �nite multisets of elements of |X|, with the
preorder de�ned as follows: p ≤ q i� ∀a ∈ p ∃b ∈ q a ≤|X| b. Given x ⊆ |X|, we
set x! =Mfin(x), and remember that we have the following property:

↓
|!X|

(x!) = ( ↓
|X|

x)! . (2)

We set then
D(!X) = {x! | x ∈ D(X)}⊥|!X|⊥|!X|op

.

Just as in Section 4.2.2, the �rst thing to prove is an analogue of Proposi-
tion 15 adapted to relations whose domain is an exponential.

Lemma 18 Let X and Y be PPs and let t ⊆ |!X ( Y |. We have t ∈ D(!X (
Y ) i�, for all x ∈ D(X),

• t x! ∈ D(Y )

• and ↓|Y | (t x!) = (↓|!X(Y | t) (↓|X| x)!

and the second condition is equivalent to t (↓|X| x)! ⊆ ↓|Y | (t x!).

The proof is similar to that of Lemma 16.
Let t ∈ PpL(X,Y ), we de�ne !t ⊆ |!X ( !Y | by

!t = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ t for all i = 1, . . . , n} .

Using Lemma 18, we prove that !t ∈ PpL(!X, !Y ). So let x ∈ D(X). We
have !t x! = (t x)! ∈ D(!Y ) since t x ∈ D(Y ). Next we have !t (↓|X| x)! =

(t ↓|X| x)! ⊆ (↓|Y | (t x))! by Proposition 15 applied to t, and we conclude be-
cause (↓|Y | (t x))! = ↓|!Y | (t x)! = ↓|!Y | (!t x!), using Equation (2).

We check that the usual comonad structure of the exponential in the rela-
tional model gives rise to a comonad structure for the !_ functor we have just
de�ned.

We de�ne �rst dX as dX = d|X| = {([a], a) | a ∈ |X|} ⊆ |!X ( X|. Given
x ∈ D(X), we have dX x

! = x and dX (↓|X| x)! = ↓|X| x = ↓|X| (dX x
!) and

so dX ∈ PpL(!X,X) by Lemma 18. Similarly, we de�ne pX as pX = p|X| =
{(m1 + · · ·+mn, [m1, . . . ,mn]) | m1, . . . ,mn ∈ |!X|} ⊆ |!X ( !!X| and we show
that pX ∈ D(!X ( !!X), using Lemma 18 again. So let x ∈ D(X), we have
pX x

! = x!! ∈ D(!!X), since x! ∈ D(!X). Next we have pX (↓|X| x)! = (↓|X| x)
!!

=

↓|!!X| (x!!) = ↓|!!X| (pX x
!) and this completes the proof that pX is a morphism.

4.4.1 Seely isomorphism. We show that the PPs !(X & Y ) and !X ⊗ !Y
are isomorphic, by the bijection θ : |!(X & Y )| → |!X ⊗ !Y | which maps the
multiset [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)] (with ai ∈ |X| and bj ∈ |Y |) to
([a1, . . . , al], [b1, . . . , br]).
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We show that θ is a morphism from !(X & Y ) to !X ⊗ !Y . So let x ∈ D(X)
and y ∈ D(Y ). We have θ 〈x, y〉! = x! ⊗ y! ∈ D(!X ⊗ !Y ) which shows by
Lemma 18 that θ is a morphism, since it is a preorder isomorphism (so that the
second condition of the lemma is trivially satis�ed). Conversely, let ρ = θ−1

and let ρ′ ⊆ |!X| × |(!Y ( !(X & Y ))| be given by

ρ′ = {(p, (q,m)) | m = θ(p, q)} .

By monoidal closedness, it su�ces to prove that ρ′ is a morphism from !X to
!Y ( !(X & Y ), and for this, we apply twice Lemma 18 as follows. First,
let x ∈ D(X), we must show that ρ′ x! ∈ D(!Y ( !(X & Y )). For this, let
y ∈ D(Y ), we have (ρ′ x!) y! = 〈x, y〉! ∈ D(!(X & Y )). Next, we have

(ρ′ x!) ( ↓
|Y |
y)! = 〈x, ↓

|Y |
y〉!

on the one hand and

↓
|!(X&Y )|

((ρ′ x!) y!) = ↓
|!(X&Y )|

〈x, y〉! = ( ↓
|X&Y |

〈x, y〉)!

on the other hand, from which it clearly results that

(ρ′ x!) ( ↓
|Y |
y)! ⊆ ↓

|!(X&Y )|
((ρ′ x!) y!)

and therefore ρ′ x! ∈ D(!Y ( !(X & Y )) by Lemma 18. To �nish the proof,
we must show that ρ′ (↓|X| x)! ⊆ ↓|!Y(!(X&Y )| (ρ

′ x!), so let q ∈ |!Y | and m ∈
|!(X & Y )| and assume that (q,m) ∈ ρ′ (↓|X| x)!. There exists p ∈ |!X| such
p ∈ (↓|X| x)! and m = θ(p, q). Since p ∈ (↓|X| x)!, we can �nd p′ ∈ x! such
that p ≤|!X| p′. Let m′ = θ(p′, q), we have (q,m′) ∈ ρ′ x! and hence (q,m) ∈
↓|!Y(!(X&Y )| (ρ

′ x!) since m ≤|(X&Y )!| m
′.

There is also an obvious isomorphism from !> to 1 (the �0-ary version� of
the Seely isomorphism).

4.4.2 Cartesian closedness. Equipped with this structure (the comonad
(!_, d, p), the Seely isomorphism), the cartesian star-autonomous category PpL
is a model of linear logic in the sense of Section 1.3. It gives rise therefore to a
cartesian closed category, which is the Kleisli category PpL! of that comonad.
The cartesian product of (Xi)i∈I in PpL! is X = &i∈I Xi with projections
πi ◦ dX (simply denoted as πi). The object of morphisms from X to Y is
X ⇒ Y = !X ( Y with evaluation morphism Ev (de�ned in Section 2.1).

4.5 The partially ordered class of PPs

Let X and Y be two PPs. We say that X is a subobject of Y and we write
X v Y if |X| v |Y | (in the sense of Section 3.5) and if η|X|,|Y | ∈ PpL(X,Y )
and ρ|X|,|Y | ∈ PpL(Y,X). This means that the two following conditions must
hold:

∀x ⊆ |X| x ∈ D(X)⇒ x ∈ D(Y )

∀y ⊆ |Y | y ∈ D(Y )⇒ (y ∩ |X| ∈ D(X) and ( ↓
|Y |
y) ∩ |X| ⊆ ↓

|X|
(y ∩ |X|)) .
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Observe that, in the second condition, the converse inclusion always holds be-
cause |X| v |Y |.

It is clear that v is an order relation on the class of PPs; let us denote with
PpC the corresponding partially ordered class.

As usual, the �rst thing to observe is that linear negation is covariant with
respect to this notion.

Lemma 19 If X v Y then X⊥ v Y ⊥ .

Proof. Same proof as for Lemma 7. 2

4.5.1 Completeness. We prove now that this partially ordered class has
all directed lubs, in order to be able to compute least �xpoints of variable types
for de�ning a model of the pure lambda-calculus.

We �rst introduce the a natural candidate of lub for a directed family.

Lemma 20 Let (Xγ)γ∈Γ a directed family of PPs. Let X =
⊔
γ∈ΓXγ be de�ned

as follows: |X| =
⊔
γ∈Γ |Xγ | (in the partially ordered class ScottC) and D(X) =

{x ⊆ |X| | ∀γ ∈ Γ x ∩ |Xγ | ∈ D(Xγ)}. Then X is a PP.

Proof. Observe �rst that, if x ∈ D(Xγ), then x ∈ D(X). Indeed, let δ ∈ Γ, we
must check that x ∩ |Xδ| ∈ D(Xδ). So let ε ∈ Γ be such that γ, δ ≤ ε. Since
Xγ v Xε, we have x ∈ D(Xε), and since Xδ v Xε, we have x ∩ |Xδ| ∈ D(Xδ).

For proving the lemma, we build X ′ =
⊔
γ∈ΓX

⊥
γ (this makes sense since the

family (X⊥γ )γ∈Γ is directed by Lemma 19), and we show that X = X ′⊥ . Since
obviously |X| = |X ′⊥ | (as preorders), it remains to show that D(X) = D(X ′)⊥ .

First, let x ∈ D(X) and let us show that x ∈ D(X ′)⊥ . So let x′ ∈ D(X ′) and
assume that ↓|X| x∩x′ 6= ∅. Let a ∈ x and let a′ ∈ x′ be such that a′ ≤|X| a. Let
γ ∈ Γ be such that a, a′ ∈ |Xγ | (so that a′ ≤|Xγ | a). We have x∩ |Xγ | ∈ D(Xγ),
x′ ∩ |Xγ | ∈ D(X⊥γ ) and a′ ∈ ↓|Xγ | (x ∩ |Xγ |)∩ (x′ ∩ |Xγ |), and hence x∩ x′ 6= ∅.

Conversely, let x ∈ D(X ′)⊥ , and let us show that x ∈ D(X). So let γ ∈ Γ
and let us show that x ∩ |Xγ | ∈ D(Xγ). Let x′ ∈ D(X⊥γ ) and assume that
↓|Xγ | x∩x

′ 6= ∅. By our initial observation, we have x′ ∈ D(X ′). Since ↓|Xγ | x∩
x′ 6= ∅, we have ↓|X| x ∩ x′ 6= ∅ and hence x ∩ x′ 6= ∅. 2

Next we show that the object introduced in Lemma 20 is actually the lub of
the directed family of PPs under consideration.

Lemma 21
⊔
γ∈ΓXγ is the least upper bound of the family (Xγ)γ∈Γ in the

partially ordered class PpC.

Proof. Let δ ∈ Γ, we check that Xδ v
⊔
γ∈ΓXγ = X. We have already seen

that, if x ∈ D(Xδ), then x ∈ D(X). So let x ∈ D(X). By de�nition, we have
x ∩ |Xδ| ∈ D(Xδ). We have to check that ↓|X| x ∩ |Xδ| ⊆ ↓|Xδ| (x ∩ |Xδ|), so
let a′ ∈ ↓|X| x ∩ |Xδ| and let a ∈ x such that a′ ≤|X| a. We can �nd ε ≥ δ
such that a, a′ ∈ |Xε|. Then a′ ∈ ↓|Xε| x ∩ |Xδ| and since Xδ v Xε, we have
↓|Xε| x ∩ |Xδ| ⊆ ↓|Xδ| (x ∩ |Xδ|) and hence a′ ∈ ↓|Xδ| (x ∩ |Xδ|) as required.

Let Y be a PP such that Xγ v Y for each γ ∈ Γ and let us show that X =⊔
γ∈ΓXγ v Y . We already know that

⊔
γ∈Γ |Xγ | v |Y |. First, let x ∈ D(X) and
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let us show that x ∈ D(Y ). So let y′ ∈ D(Y ⊥) and assume that ↓|X| x ∩ y′ 6= ∅.
Let a′ ∈ ↓|X| x ∩ y′ and let a ∈ x be such that a′ ≤|X| a. Let δ ∈ Γ be such
that a, a′ ∈ |Xδ|, so that a′ ≤|Xδ| a. We have a′ ∈ ↓|Xδ| (x ∩ |Xδ|) ∩ (y′ ∩ |Xδ|),
x ∩ |Xδ| ∈ D(Xδ) (by de�nition of X) and y′ ∩ |Xδ| ∈ D(X⊥δ ) (since Xδ v Y ,
and by Lemma 19). Hence x ∩ y′ 6= ∅, and this shows that x ∈ D(X).

Next, let y ∈ D(Y ). We must show �rst that y ∩ |X| ∈ D(X), but this
results immediately from the de�nition of X and from the fact that Xδ v Y
for each δ ∈ Γ. Last, we must show that ↓|Y | y ∩ |X| ⊆ ↓|X| (y ∩ |X|). Let
a′ ∈ ↓|Y | y ∩ |X|. Let δ ∈ Γ be such that a′ ∈ |Xδ|. Since Xδ v Y , we have
↓|Y | y ∩ |Xδ| ⊆ ↓|Xδ| (y ∩ |Xδ|) and we conclude because a′ ∈ ↓|Y | y ∩ |Xδ| and,
obviously, ↓|Xδ| (y ∩ |Xδ|) ⊆ ↓|X| (y ∩ |X|). 2

4.5.2 Variable PPs and least �xpoints thereof. A variable PP is a
functor Φ : PpCn → PpC which commutes with the lubs of directed families
of PPs (as usual we say then that Φ is continuous).

We �rst observe that the standard logical operations on PPs are variable
PPs.

Lemma 22 The operations (X,Y ) 7→ X ⊗ Y , X → XI and X 7→ !X are
variable PPs.

Proof. We observe �rst that these operations are monotone, as in the proof of
Lemma 10.

So the operation (X,Y ) 7→ (X ( Y ) is monotone, we prove that it is
continuous. Let (Xγ)γ∈Γ and (Yγ)γ∈Γ be directed families of PPs, and let X and
Y be their lubs. Then (Xγ ( Yγ)γ∈Γ is a directed family of PPs (we have just
seen that _( _ is monotonous wrt. v), let Z be its lub. We must show that
Z = X ( Y . We already know that |Z| = |X ( Y | and that Z v X ( Y , so it
will be enough to show that D(X ( Y ) ⊆ D(Z). So let t ∈ D(X ( Y ) and let
γ ∈ Γ, we must prove that tγ = t ∩ |Xγ ( Yγ | ∈ D(Xγ ( Yγ). Let x ∈ D(Xγ),
we have x ∈ D(X) and tγ x = (t x) ∩ |Yγ | ∈ D(Yγ). Moreover, tγ ↓|Xγ | x =
(t ↓|Xγ | x) ∩ |Yγ | ⊆ (t ↓|X| x) ∩ |Yγ | ⊆ ↓|Y | (t x) ∩ |Yγ | since t ∈ D(X ( Y ).
Therefore, since Yγ v Y , we have tγ ↓|Xγ | x ⊆ ↓|Yγ | ((t x) ∩ |Yγ |) = ↓|Yγ | (tγ x)
(remember that x ∈ D(Xγ)) and this concludes the proof that tγ ∈ D(Xγ ( Yγ),
and therefore also the proof that _( _ is a variable PP.

The operation Φ : X 7→ (!X)⊥ is monotone, and we conclude by proving
that it is continuous. Let (Xγ)γ∈Γ be a directed family, let X be its lub, and
let Y be the lub of the directed family (Φ(Xγ))γ∈Γ. We have Y v Φ(X) and
|Y | = |Φ(X)|, so it will be su�cient to prove that D(Φ(X)) ⊆ D(Y ). Let
A′ ∈ D(Φ(X)) and let γ ∈ Γ, we must prove that A′∩|Φ(Xγ)| ∈ D(Φ(Xγ)). Let
x ∈ D(Xγ) and assume that A′∩↓|!Xγ | (x

!) 6= ∅. Then we have A′∩↓|!X| (x!) 6= ∅
and hence A′ ∩ x! 6= ∅, since x ∈ D(X), that is (A′ ∩ |Φ(Xγ)|) ∩ x! 6= ∅. 2

Of course, any variable PP Φ : PpC→ PpC admits a least �xpoint, namely⊔
k∈N Φk(>) (remember that > = (∅, {∅}), so that > is the least element of PpC

for the preorder v).

4.5.3 An extensional re�exive PP. The operation Φpp : PpC → PpC
de�ned by Φpp(X) = (!(XN))⊥ is a variable PP and has therefore a least �xpoint
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that we denote with Dpp. One checks easily (as in Section 2.3.3) that Dpp is an
extensional re�exive object in the CCC PpL!.

4.6 PPs are heterogeneous logical relations

We know from Section 2.1.2 and Section 3.4.1 that Rel! and ScottL! are CCCs
and that ScottL! is well-pointed, so we can apply to these categories the con-
structions of Section 1.4.2. We'll see that, up to canonical isomorphisms, PpL!

is a sub-cartesian closed category of emod(Rel!,ScottL!).
If E is a set considered as an object of Rel!, a point of E (that is an element

of Rel!(>, E)) is just a subset of E. And if S is a preordered set considered as
an object of ScottL!, a point of S is an element of I(S).

4.6.1 Heterogeneous relation associated with a PP. Given a PPX, we
de�ne an object h(X) of the category e(Rel!,ScottL!) by setting ph(X)q = |X|
(considered as a simple set), xh(X)y = |X| (considered as a preordered set) and

x 
h(X) u if x ∈ D(X) and u = ↓
|X|

x .

Given a morphism t ∈ PpL!(X,Y ), we de�ne a pair of morphisms h(t) =
(ph(t)q, xh(t)y) with ph(t)q = t ∈ Rel!(ph(X)q, ph(Y )q) and xh(t)y = ↓|!X(Y | t,
which belongs to ScottL!(xh(X)y, xh(Y )y).

The next result shows that this correspondence turns PpL! into a sub-
cartesian closed category of e(Rel!,ScottL!).

Theorem 23 The operation h de�ned above is a full and faithful cartesian
closed functor from PpL! to e(Rel!,ScottL!).

Proof. Observe �rst that h(t) ∈ e(Rel!,ScottL!)(h(X), h(Y )) (with the nota-
tions above). Indeed, due to the de�nition of 
h(X) and of 
h(Y ), this amounts
to checking that, for any x ∈ D(X), one has t x! ∈ D(Y ) and ↓|Y | (t x!) =

↓|!X(Y | t (↓|X| x)!. This holds by Lemma 18.
Let us check the functoriality of h, so let s ∈ PpL!(X,Y ) and t ∈ PpL!(Y,Z).

One has �rst ph(t ◦ s)q = t ◦ s = ph(t)q ◦ ph(s)q. Next, we have xh(t ◦ s)y =
↓|!X(Z| (t ◦ s). Let x ∈ D(X). We have, applying again Lemma 18,

xh(t ◦ s)y ( ↓
|X|

x)! = ↓
|!X(Z|

(t ◦ s) ( ↓
|X|

x)!

= ↓
|Z|

((t ◦ s)x!)

= ↓
|Z|

(t ((s x!)!))

= ↓
|!Y(Z|

t ( ↓
|Y |

(s x!))!

= ↓
|!Y(Z|

t ( ↓
|!X(Y |

s ( ↓
|X|

x)!)!

= ( ↓
|!Y(Z|

t ◦ ↓
|!X(Y |

s) ( ↓
|X|

x)!

and hence xh(t ◦ s)y = xh(t)y ◦ xh(s)y because the category ScottL! is well-
pointed, and because any element of I(|X|) can be written ↓|X| x for some
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x ∈ D(X) (remember that I(|X|) ⊆ D(X)). One proves similarly that identities
are preserved.

Fullness of h results again from Lemma 18 (used in the converse direction).
It remains to prove that this functor is cartesian closed.

Let (Xi)i∈I be a �nite family of PPs and let X = &i∈I Xi, so that ph(X)q =

&i∈Iph(Xi)q and xh(X)y = &i∈Ixh(Xi)y. Moreover, ph(πi)q = πi and xh(πi)y =
↓|!Xi(Xi| πi = πS

i . Last, given x = 〈xi〉i∈I ∈ P(|X|) and u = 〈ui〉i∈I ∈ I(|X|),
we have x 
h(X) u i� x ∈ D(X) and ↓|X| x = u. The �rst of these two con-
ditions is equivalent to ∀i ∈ I xi ∈ D(Xi) and the second one is equivalent to
∀i ∈ I ↓|Xi| xi = ui and therefore x 
h(X) u⇔ ∀i ∈ I xi 
Xi ui and this shows
that h commutes with cartesian products.

It remains to show that h commutes with the function space construction,
so let X and Y be PPs and let Z = (X ⇒ Y ) = (!X ( Y ). We clearly
have ph(Z)q = ph(X)q ⇒ ph(Y )q and xh(Z)y = xh(X)y ⇒ xh(Y )y. Next
we have ph(Ev)q = Ev and xh(Ev)y = ↓|Z| Ev = EvS (see Section 3.4.1). Fi-
nally, let t ∈ P(|Z|) and let w ∈ I(|Z|). Assume �rst that t 
h(Z) w, that
is t ∈ D(Z) and ↓|Z| t = w. We must prove that t 
h(X)⇒h(Y ) w. So let
x ∈ P(|X|) and u ∈ I(|X|) be such that x 
X u, that is x ∈ D(X) and
↓|X| x = u. By de�nition of t(x) and w(u) (see Section 1.1), we have t(x) = t x!

and w(u) = w u! = (↓|Z| t) (↓|X| x)! = ↓|Y | (t(x)) by Lemma 18. By the same
lemma, we have t(x) ∈ D(Y ), and hence t(x) 
h(Y ) w(u) as required. Con-
versely, assume that t 
h(X)⇒h(Y ) w; we must prove that t 
h(Z) w. We
apply again Lemma 18, so let x ∈ D(X). We have x 
X ↓|X| x and hence
t(x) ∈ D(Y ) (that is t x! ∈ D(Y )) and ↓|Y | (t x!) = w (↓|X| x)! (by de�ni-
tion of 
h(X)⇒h(Y )). We prove that ↓|Z| t = w. Let (m, b) ∈ |Z|. We have
↓|Y | (t (↓|X| supp(m))!) = w (↓|X| supp(m))!. Assume �rst that (m, b) ∈ ↓|Z| t
and let (m′, b′) ∈ t be such that (m, b) ≤|Z| (m′, b′). Then m′ ∈ (↓|X| supp(m))!

and hence b ∈ ↓|Y | (t (↓|X| supp(m))!). So let m′′ ∈ (↓|X| supp(m))! be such that
(m′′, b) ∈ w. Since w ∈ I(|Z|), we have (m, b) ∈ w. Conversely, assume that
(m, b) ∈ w. Since m ∈ (↓|X| supp(m))!, we have b ∈ ↓|Y | (t (↓|X| supp(m))!)

so we can �nd (m′, b′) ∈ t such that m′ ∈ (↓|X| supp(m))! and b ≤ b′, that
is (m, b) ≤|Z| (m′, b′), which show that (m, b) ∈ ↓|Z| t. Therefore, x being
an element of D(X), we have ↓|Y | (t x!) = ↓|Z| t (↓|X| x)! and so t ∈ D(Z) by
Lemma 18. This concludes the proof that t 
Z w, and therefore we have
h(Z) = h(X)⇒ h(Y ). Therefore h is a CCC functor. 2

So we can consider PpL! as a sub-CCC of e(Rel!,ScottL!), and, considered
as objects of e(Rel!,ScottL!), all the objects of PpL! are modest. In order
to show that ScottL! represents the extensional collapse of Rel! in the sense
of Section 1.4.2, we must show that the functor ε : PpL! → PerL! is a CCC
functor since we have seen in Section 2.2.7 that PerL! is a sub-CCC of e(Rel!)
through an inclusion functor denoted as q.

4.7 A functor from PPs to PER-objects

We �rst de�ne this functor on the linear category instead of de�ning only on the
cartesian closed category. In order to avoid confusion and clarify the situation,
we give a di�erent name to this larger functor and call it ε0.

Given a PP X, we obviously de�ne a PER (denoted with BX for the time
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being) on P(|X|) by saying that x BX y if x, y ∈ D(X) and ↓X x = ↓X y.
Observe that x BX ↓X x for any x ∈ D(X).

The �rst thing to prove is that this de�nition gives rise to a PER which
satis�es the closure property of a PER-object.

Lemma 24 For any PP X, one has B⊥X = BX⊥ and therefore B⊥⊥X = BX .

Proof. Let x′, y′ ⊆ |X|. Assume �rst that x′ B⊥X y′ and let us show that
x′ BX⊥ y′. We prove �rst that x′ ∈ D(X)⊥ , so let x ∈ D(X), and assume
that x′ ∩ ↓|X| x 6= ∅, we must show that x′ ∩ x 6= ∅. This results from the
fact that x BX ↓|X| x. Similarly we get y′ ∈ D(X)⊥ . We must show now that
↑|X| x′ = ↑|X| y′, so let a ∈ ↑|X| x′. This means that ↓|X| a ∩ x′ 6= ∅. Since
↓|X| a BX ↓|X| a, we get ↓|X| a ∩ y′ 6= ∅, that is a ∈ ↑|X| y′.

Conversely, assume that x′ BX⊥ y′ and let us show that x′ B⊥X y′. So let
x, y ⊆ |X| be such that x BX y, and assume that x∩x′ 6= ∅; we must show that
y ∩ y′ 6= ∅. We have a fortiori ↓|X| x ∩ ↑|X| x′ 6= ∅, that is ↓|X| y ∩ ↑|X| y′ 6= ∅.
But then, since y ∈ D(X) and y′ ∈ D(X)⊥ , we get y ∩ y′ 6= ∅. 2

We can rephrase this result as follows.

Lemma 25 For any PP X, ε0(X) = (|X|, BX) is a PER-object and we have
ε0(X⊥) = ε0(X)⊥ .

The relation BX can therefore also be denoted with ∼ε0(X).
Next we show that, at linear function types, this PER admits a functional

characterization: it is a �linear logical relation�.

Lemma 26 Let X and Y be PPs and let s1, s2 ∈ P(|X ( Y |). One has
s1 ∼ε0(X(Y ) s2 i� for all x1, x2 ∈ P(|X|), if x1 ∼ε0(X) x2 then s1 x1 ∼ε0(Y )

s2 x2. This means that ε0(X ( Y ) = ε0(X)( ε0(Y ).

Proof. Assume �rst that s1 ∼ε0(X(Y ) s2. Let x1, x2 ⊆ |X| be such that
x1 ∼ε0(X) x2, we want to show that s1 x1 ∼ε0(Y ) s2 x2. Let y′1, y

′
2 ⊆ |Y | be such

that y′1 ∼ε0(Y ⊥ ) y
′
2. One has (s1 x1)∩y′1 6= ∅ i� s1∩(x1×y′1) 6= ∅ and, since x1 ∈

D(X) and y′1 ∈ D(Y )⊥ , this latter condition holds i� s1∩↓|X⊗Y ⊥ | (x1 × y′1) 6= ∅,
which in turn is equivalent to ↓|X(Y | s1 ∩ ↓|X⊗Y ⊥ | (x1 × y′1) 6= ∅ since s1 ∈
D(X ( Y ). Since ↓|X(Y | s1 = ↓|X(Y | s2 (because s1 ∼ε0(X(Y ) s2) and
↓|X⊗Y ⊥ | (x1 × y′1) = ↓|X⊗Y ⊥ | (x2 × y′2) (because x1 ∼ε0(X) x2 and y′1 ∼ε0(Y ⊥ )

y′2), we conclude that (s1 x1) ∩ y′1 6= ∅ ⇔ (s1 x2) ∩ y′2 6= ∅, and this shows that
s1 x1 ∼ε0(Y ) s2 x2 by Lemma 24.

Conversely, assume that s1 x1 ∼ε0(Y ) s2 x2 whenever x1 ∼ε0(X) x2, and
let us show that s1 ∼ε0(X(Y ) s2. Observe that our assumption implies that
s1 x1 ∼ε0(Y ) s1 x2 (indeed, x2 ∼ε0(X) x2, hence s1 x2 ∼ε0(Y ) s2 x2 and we can
apply transitivity of the relation ∼ε0(Y )). We show �rst that s1 ∈ D(X ( Y ).
So let x ∈ D(X). We have x ∼ε0(X) x and hence s1 x ∼ε0(Y ) s2 x, which
implies s1 x ∈ D(X). Let b ∈ s1 ↓|X| x, we show that b ∈ ↓|Y | (s1 x). We
have x ∼ε0(X) ↓|X| x and hence s1 x ∼ε0(Y ) s1 ↓|X| x which implies ↓|Y | (s1 x) =
↓|Y | (s1 ↓|X| x) and we conclude since b ∈ ↓|Y | (s1 ↓|X| x). By Proposition 15, we
have s1 ∈ D(X ( Y ), and of course the same holds for s2 by symmetry. It
remains to show that ↓|X(Y | s1 = ↓|X(Y | s2.
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Let (a, b) ∈ ↓|X(Y | s1. This means that ↓|X⊗Y ⊥ | (a, b) ∩ s1 6= ∅, that is
(s1 ↓|X| a)∩↑|Y | b 6= ∅. But ↓X a ∼ε0(X) ↓X a and hence s1 ↓|X| a ∼ε0(Y ) s2 ↓|X| a
and since ↑|Y | b ∼

⊥
ε0(Y ) ↑|Y | b, we have (s2 ↓|X| a) ∩ ↑|Y | b 6= ∅, that is (a, b) ∈

↓|X(Y | s2. 2

In particular, for any PPsX and Y , one hasPpL(X,Y ) = PerL(ε0(X), ε0(Y ))
and so the operation ε0 is a full and faithful functor, which is the identity on
morphisms. Indeed, composition of morphisms is de�ned in the same way in
both categories, as the standard composition of relations.

Next we prove that the functor ε0 commutes on the nose with all construc-
tions of linear logic: ε0 is an LL-functor in the sense of Section 1.3.4.

Lemma 27 Let X and Y be PPs. We have ε0(X ⊗ Y ) = ε0(X) ⊗ ε0(Y ), that
is, the functor ε0 is strict monoidal.

Proof. Apply the fact that X ⊗ Y = (X ( Y ⊥)⊥ , Lemma 25 and Lemma 26.
2

Lemma 28 The functor ε0 commutes with all cartesian products.

The proof is a straightforward veri�cation.

Lemma 29 Let X be a PP, one has ε0(!X) = !ε0(X).

Proof. By Lemma 25, it su�ces to show that ε0(!X)⊥ = (!ε0(X))⊥ . Let
A′1, A

′
2 ⊆ |!X|.

On the one hand, A′1 ∼ε0(!X)⊥ A
′
2 means that A′1 ∼

⊥
ε0(!X) A

′
2, that is

∀A1, A2 ⊆ |!X| A1 ∼ε0(!X) A2 ⇒ (A1 ∩A′1 6= ∅ ⇔ A2 ∩A′2 6= ∅) ,

and remember that A1 ∼ε0(!X) A2 means that A1, A2 ∈ D(!X) and ↓|!X|A1 =
↓|!X|A2. By Lemma 25, A′1 ∼ε0(!X)⊥ A

′
2 is also equivalent to A′1 ∼ε0((!X)⊥ ) A

′
2,

that is
A′1, A

′
2 ∈ D(!X)⊥ and ↑

|!X|
A′1 = ↑

|!X|
A′2 . (3)

On the other hand, A′1 ∼(!ε0(X))⊥ A
′
2 means that A′1 ∼

⊥
!ε0(X) A

′
2, that is

∀x1, x2 ⊆ |X| x1 ∼ε0(X) x2 ⇒ (x!
1 ∩A′1 6= ∅ ⇔ x!

2 ∩A′2 6= ∅)

and remember that x1 ∼ε0(X) x2 means that x1, x2 ∈ D(X) and ↓|X| x1 =
↓|X| x2.

Hence x1 ∼ε0(X) x2 implies x!
1, x

!
2 ∈ D(!X) and ↓|!X| x!

1 = (↓|X| x1)! =

(↓|X| x2)! = ↓|!X| x!
2, that is x

!
1 ∼ε0(!X) x

!
2 and henceA

′
1 ∼
⊥
ε0(!X) A

′
2 ⇒ A′1 ∼

⊥
!ε0(X)

A′2.
Let us prove the converse implication, so assume that A′1 ∼

⊥
!ε0(X) A

′
2 and

let us prove that property (3) holds. We prove �rst that A′1 ∈ D(!X)⊥ . So
let x ∈ D(X) and assume that A′1 ∩ x! = ∅. Since x ∼ε0(X) ↓|X| x, we have
x! ∼!ε0(X) (↓|X| x)! = ↓|!X| (x!), and hence A′1 ∩ ↓|!X| (x!) = ∅ since we have

A′1 ∼
⊥
!ε0(X) A

′
1. It remains to show that ↑|!X|A′1 = ↑|!X|A′2, we only prove the
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�⊆� inclusion. So let m ∈ |!X| and assume that m ∈ ↑|!X|A′1. This means that
A′1 ∩ ↓|!X|m 6= ∅, and since ↓|!X|m ∼!ε0(X) ↓|!X|m, we have m ∈ ↑|!X|A′2. 2

Theorem 30 The functor ε0 is an LL-functor.

Proof. This results from Lemmas 26, 27, 28 and 29, from the fact that ε0 acts
trivially on morphisms and from the fact that the operations on morphisms are
de�ned in the same way in both categories. 2

It follows that ε0 is a cartesian closed functor from PpL! to PerL! which
itself is a full sub-CCC of e(Rel!) through the inclusion functor q (see Sec-
tion 2.2.7). Moreover, when consideringPpL! as a full sub-CCC of e(Rel!,ScottL!),
the functor ε and ε0 coincide. This can be stated more precisely as follows (we
recall that the de�nition of the functor h is given in Section 4.6.1).

Theorem 31 We have ε ◦ h = q ◦ ε0 : PpL! → e(Rel!).

The proof is a straightforward veri�cation. It follows that, when restricted to
the image H of the full and faithful CCC functor h, which is a full sub-CCC of
e(Rel!,ScottL!), the functor ε : H → e(Rel!) is cartesian closed.

Let U be a discrete object of e(Rel!); this means that ∼U is the equality
on P(|U |). Let X be the PP de�ned by: |X| = |U | with the discrete preorder
relation, and D(X) = P(|U |). Then one has ε0(X) = U and all the conditions
of 1.4.2 are ful�lled. We can state the main result of the paper.

Theorem 32 ScottL! represents the extensional collapse of the category Rel!.

Our purpose now is to extend this result to re�exive objects, according to
Section 1.4.4. But before that we give more information about the forgetful
functor PpL→ ScottL.

4.8 A functor from PPs to preorders

Remember from Section 1.4.2 that there is a second projection CCC-functor σ :
e(Rel!,ScottL!)→ ScottL! which induces a CCC-functor PpL! → ScottL! by
composition with the full and faithful CCC-functor h : PpL! → e(Rel!,ScottL!)
of Section 4.6.1. We want to show that this functor is induced by an LL-functor
σ0 from PpL to ScottL. This will complete the linear picture of the extensional
collapse and will be useful for dealing with the extensional collapse of re�exive
objects.

Given a PP X, we set σ0(X) = |X|, which is a preorder. Given two PPs X
and Y and t ∈ PpL(X,Y ) = D(X ( Y ), we set

σ0(t) = ↓
|X(Y |

t ∈ I(|X ( Y |) ' ScottL(|X|, |Y |) .

In other words, the linear map σ0(t) : I(|X|) → I(|Y |) is given by σ0(t)(x) =
↓|Y | (t x) (see Lemma 12).

Lemma 33 The operation σ0 on morphisms is a functor, that is σ0(IdX) = IdS
X

and, given s ∈ PpL(X,Y ) and t ∈ PpL(Y,Z), one has σ0(t s) = σ0(t)σ0(s).
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Proof. See Section 4.2.1, where the proof is given. 2

Theorem 34 The functor σ0 is an LL-functor.

Proof. This is a routine veri�cation.
As an example, let X and Y be PPs. We have σ0(!X) = |!X| = !|X| =

!σ0(X). Let t ∈ PpL(X,Y ), we prove that σ0(!t) = !σ0(t). Let (p, q) ∈ |!X| ×
|!Y |. If (p, q) ∈ σ0(!t), we can �nd (p′, q′) ∈ !t such that p′ ≤|!X| p and q ≤|!Y | q′;
we show that (p, q) ∈ !σ0(t) = !(↓|X(Y | t). Let b ∈ q, let b′ ∈ q′ such that b ≤|Y |
b′. Let a′ ∈ p′ be such that (a′, b′) ∈ t (since (p′, q′) ∈ !t). Let a ∈ p be such
that a′ ≤|X| a (since p′ ≤|!X| p). We have (a′, b′) ∈ t and (a, b) ≤|X(Y | (a′, b′),
hence (a, b) ∈ σ0(t) and this shows that (p, q) ∈ !σ0(t).

Assume conversely that (p, q) ∈ !σ0(t) and let us show that (p, q) ∈ σ0(!t).
Let us write q = [b1, . . . , bn]. For each i ∈ {1, . . . n}, let us choose ai ∈ p such
that (ai, bi) ∈ σ0(t) = ↓|X(Y | t and let (a′i, b

′
i) ∈ t be such that a′i ≤|X| ai

and bi ≤|Y | b′i. Let p′ = [a′1, . . . , a
′
n] and q′ = [b′1, . . . , b

′
n]. We have (p′, q′) ∈ !t.

Moreover, we have q ≤|!Y | q′ and p′ ≤|!X| p and hence (p, q) ∈ σ0(!t) as required.
Last, let us check that σ0(pX) = pS

σ0(X). Let (p, P ) ∈ !|X| × !!|X|, so that
P can be written P = [p1, . . . , pn] with p1, . . . , pn ∈ |!X|. Assume �rst that
(p, P ) ∈ σ0(pX) = ↓|!X(!!X| pX and let us show that (p, P ) ∈ pS

σ0(X), that is
p1 + · · · + pn ≤!|X| p. So let a ∈ p1 + · · · + pn, and let i ∈ {1, . . . , n} be such
that a ∈ pi. Let (p′, P ′) ∈ pX be such that p′ ≤!|X| p and P ≤!!|X| P

′, so
that P ′ = [p′1, . . . , p

′
k] with p′ = p′1 + · · · + p′k. Let j ∈ {1, . . . , k} be such that

pi ≤!|X| p
′
j . Let a′ ∈ p′j be such that a ≤|X| a′ (remember that a ∈ pi). Then

we have a′ ∈ p′ and hence we can �nd a′′ ∈ p such that a′ ≤|X| a′′. This shows
that p1 + · · ·+ pn ≤!|X| p as required. Conversely, assume that (p, P ) ∈ pS

σ0(X)

(that is p1 + · · · + pn ≤!|X| p) and let us show that (p, P ) ∈ σ0(pX). We
have (p1 + · · · + pn, P ) ∈ pX by de�nition of pX and we have (p, P ) ≤|!X(!!X|
(p1 + · · · + pn, P ) since p1 + · · · + pn ≤!|X| p. Therefore (p, P ) ∈ σ0(pX) as
announced. 2

It follows that σ0 is a cartesian closed functor from PpL! to ScottL!. This
functor σ0 is related with σ by the following property.

Proposition 35 One has σ0 = σ ◦ h : PpL! → ScottL!.

The proof is a straightforward veri�cation.

4.9 Extensional collapse of the re�exive object

It is straightforward from the de�nition of PpC that σ0 is a continuous class
function from PpC to ScottC.

Remember from Section 4.5.3 that we have de�ned a re�exive object Dpp in
PpL! as the least �xpoint of a continuous class function Φpp : PpC → PpC,
in other words Dpp =

⊔
n∈N Φnpp(>). By continuity of σ0, we have σ0(Dpp) =⊔

n∈N σ0(Φnpp(>)) =
⊔
n∈N Φne (>) = Ds (see Section 2.3.3) since σ0 is an LL-

functor from PpL to ScottL.
Setting Dh = h(Dpp), we de�ne a re�exive object in e(PerL!,ScottL!) which

satis�es σ(Dh) = Ds by Proposition 35.
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On the other hand, it is clear that the �rst component pDhq of Dh =
(pDhq, xDhy,
Dh

) (see Section 1.4.2) coincides with Dr, so that we have proved
the following result.

Theorem 36 The re�exive object Ds is the extensional collapse of Dr in the
sense of Section 1.4.2.

4.9.1 Continuity of ε0. To conclude the paper, we show that the re�exive
objects de�ned in PpL! and PerL! are related by the functor ε0.

Let X and Y be PPs such that X v Y . Since η|X|,|Y | ∈ PpL(X,Y ) and
since ε0 acts trivially on morphisms, we have η|X|,|Y | ∈ PerL(ε0(X), ε0(Y )).
Similarly, we have ρ|X|,|Y | ∈ PerL(ε0(Y ), ε0(X)). Therefore ε0(X) v ε0(Y ),
that is ε0 is a monotone class function from PpC to PerC.

Theorem 37 The monotone class function ε0 : PpC→ PerC is continuous.

Proof. Let (Xγ)γ∈Γ be a directed family of PPs and let X =
⊔
γ∈ΓXγ ∈ PpC.

We already know that |X| =
⋃
γ∈Γ |Xγ | and so we have to prove that, given

x, y ⊆ |X|, the two following conditions are equivalent:

1. x, y ∈ D(X) and ↓|X| x = ↓|X| y

2. for all γ ∈ Γ, x ∩ |Xγ |, one has y ∩ |Xγ | ∈ D(Xγ) and ↓|Xγ | (x ∩ |Xγ |) =
↓|Xγ | (y ∩ |Xγ |).

That (1) implies (2) results from the monotonicity of ε0 (for each γ ∈ Γ, we
have Xγ v X and hence ε0(Xγ) v ε0(X)), so let us prove the converse and
assume that (2) holds. That x, y ∈ D(X) results directly from the de�nition of
X (see Section 4.5.1). We conclude by checking that ↓|X| x ⊆ ↓|X| y. For this, it
is su�cient to have x ⊆ ↓|X| y, so let a ∈ x. Let γ ∈ Γ be such that a ∈ x∩|Xγ |.
By assumption, a ∈ ↓|Xγ | (y ∩ |Xγ |), so let b ∈ y ∩ |Xγ | be such that a ≤|Xγ | b.
Since |X| is the lub of the |Xγ |s in the partially ordered class ScottC, we have
a ≤|X| b and this concludes the proof. 2

As a consequence of this result, we have ε0(Dpp) = De (where De is de�ned
in Section 2.3.3).

Conclusion and further work

One of our motivations in this work was to understand more deeply the connec-
tion between the quantitative and the qualitative approach to the denotational
semantics of linear logic. The quantitative model Rel provides very detailed
information about the use of resources by programs, but the price to pay is that
the interpretations in this model tend to be in�nite even for very simple types
and expressions. On the other hand, the qualitative semantics ScottL forgets a
lot of information, keeping track only of the presence of elementary tokens in the
interpretation of programs, and not of their quantities. Consider for instance
the �nite type hierarchy based on booleans. In both models, the basic type
Bool has four points (the four subsets of {t, f}). In ScottL!, the interpretation
of all types remain �nite, whereas in Rel!, all types but Bool have an in�nite
interpretation. This means that the extensional collapse of Rel! skims o� a very
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small part of the quantitative model and we aimed at a more concrete grasp of
this selection process: the present work is a �rst step in this direction, the main
tool for understanding the situation being the concept of PP.

A remarkable di�erence between the two models is that Rel accommodates
di�erential linear logic and di�erential interaction nets whereas ScottL doesn't.

The main novelty of di�erential linear logic [ER06] with respect to ordinary
linear logic is the existence of a codereliction rule of type A ( !A. In the
general categorical setting of Section 1.3.1, this rule must be interpreted as a
natural transformation ∂X ∈ C(X, !X). When trying to �nd such a codere-
liction morphism in the preorder model of Section 3, the only possibility is to
de�ne it as ∂S ∈ I(S ( !S) given by ∂S = {(a,m) | ∀b ∈ m b ≤ a} because we
must have dS ◦ ∂S = IdS . The problem is that one does not de�ne a natural
transformation in that way. The reason for this phenomenon is that di�eren-
tial linear logic is a fundamentally quantitative logic which allows to count (by
means of codereliction, precisely) how many times a piece of data is used by a
function. This quantitative information is lost in the preorder model. In order
to understand the collapse in a syntactic setting, we would like to endow the
simple resource terms of [ER08] with a PP structure (as we did with a �niteness
structure in [Ehr10]) in order to characterize the sets of resource terms which
are �extensional�: we know that those which arise in the Taylor expansion of
lambda-terms have this property and we would like to know if there are more.
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