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Abstract

We prove that, in the hierarchy of simple types based on the type of natural numbers, any
finite strongly stable function is equal to the application of the semantics of a PCF-definable
functional to some strongly stable (generally not PCF-definable) functionals of type two. Ap-
plying a logical relation technique, we derive from this result that the strongly stable model of
PCF is the extensional collapse of its sequential algorithms model.

Introduction

The strongly stable model of PCF presented in [BE94, Ehr93] is not fully abstract. In other words,
although all the functions of type one of this model are sequential and thus PCF-definable, there
exist types whose semantics contain finite elements which are not the semantics of any PCF-term
(by a theorem of Milner [Mil77]). Typical examples of such non definable functions are the three
counter-examples presented at the end of [Cur93a]. All these counter-examples are of type two
(their types are of the shape (:¥ — 1) — ¢, where ¢ is the basic type of natural numbers). Of course,
by applying PCF-terms to such non PCF-definable functionals of type two, one gets generally non
PCF-definable functionals at any type. A very natural question is then: are all non PCF-definable
functionals of this last shape? The object of this paper is to give a positive answer to this question.

We shall use this result for relating closely the strongly stable model of PCF to its sequential
algorithms model. For this purpose, we shall define a logical relation between the two models
with the intended meaning that a strongly stable function is related to a sequential algorithm if
they compute the same thing. Using the relative definability result, we shall prove that, at any
type, any (finite) strongly stable functional is related to at least one sequential algorithm®. We
interpret this result as meaning that any strongly stable functional of the strongly stable model
of PCF is sequentially computable (although not necessarily PCF-computable). By some rather
standard argument, we shall derive from this result that the equational theory induced on PCF by
its strongly stable model contains the theory induced by its sequential algorithms model.

Then we prove a stronger result by investigating further properties of this logical relation. It
induces, at any type, a partial equivalence relation on the sequential algorithms of that type: two

*This is a preliminary version of a paper published in Information and Computation, 152, 111-137 (1999), Aca-
demic Press.

'"The converse is not true: there are sequential algorithms which do not compute any function, by lack of exten-
sionality. A classical example is the functional which maps the strict left “and” algorithm to “true” and the strict
right “and” algorithm to “false”. These two “and” algorithms are different as sequential algorithms but equal as
strongly stable function, so they cannot be mapped to different values by a functional.



sequential algorithms are equivalent if they both compute a strongly stable function, and if these
strongly stable functions are equal. We show that this partial equivalence relation is identical to
the standard “collapsing” logical partial equivalence relation. As a consequence, the strongly stable
model of finitary PCF (that is, PCF with the type of booleans as ground type) is isomorphic to
the extensional collapse of its sequential algorithms model. Last, we generalize this result to the
strongly stable and sequential algorithms models of (non finitary) PCF.

In order to make the presentation reasonably short, we only recall the material about strong
stability and sequential algorithms. So the reader is assumed to be familiar with the usual notions
of denotational semantics and domain theory: PCF and its models (see [Plo77]), stable semantics,
dI-domains, traces, sequentiality (see for instance the preliminary sections of [Ehr96]).

First of all, we shall give some motivation for considering “derived” notions such as strongly
stable functions or sequential algorithms for the purpose of modeling sequential behaviors of func-
tions and functionals. Actually, there is a nice notion of sequential functions, which can be defined
in various equivalent ways (see for instance [Vui74, Mil77, KP78]). So why do not we build a carte-
sian closed category of reasonably behaved domains (for instance, dl-domains, or better, qualitative
domains) and sequential functions? The following semi-formal discussion aims at convincing the
reader that such an attempt must fail, at least if we are seeking for a category satisfying require-
ments that we consider as reasonable.

More precisely, we prove that there is no CCC C satisfying the following conditions:

i) Any object of C is a pair A = (A, A*) where A, is a partially ordered set having a least
element denoted by 1, and A* is a set of cells on A,: A is endowed with a binary relation
e on A, x A* such that L € @ never holds, and if z € @ and 2’ > z, then 2’ € a. Intuitively,
x € a means that z fills the cell a.

ii) Any morphism from A to B is a monotone function A, — B, satisfying the following sequen-
tiality condition: for any @ € A, and any 8 € B* such that f(z) ¢ 3, either for any a2’ > z one
has f(z') ¢ 3, or there exists « € A* such that z ¢ «, and for any 2’ > z, if f(z') € 3, then
2’ € a. This is a rephrasement of the standard notion of sequentiality we mentioned above.

iii) Let T denote the terminal object of C. We assume that the function

Home(T,A) — A.
fo= f)

is onto. As a consequence, C has enough points, and all the categorical operations (projections,
pairing, evaluation and exponential transpose) are set-theoretic (that is, are defined like in the
category of sets and functions). Observe also that T, = { L} and that, for any objects A and
B of C, (A x B), is in bijective correspondence with A. X B, and (A = B), is in one to one
correspondence with Home (A, B). We assume furthermore that the bijective correspondence
between (A x B), and A, x B, is an order isomorphism, considering A, x B, as endowed
with the product order.

iv) If A and B are objects of C, we assume that for any element v of (A X B)™ there exists o € A*
such that
V(z,y) € Ax X By (z,y)ey if zea

and then we write ¥ = la, or there exists § € B* such that

V(z,y) € Ax X B, (z,y)evy iff yep



and then we write v = 2. This assumption is the most important one. It expresses that a
cell of A x Bis a cell of A or a cell of B.

v) Our last assumption is rather innocent. C must have an object of booleans Bool such that
Bool, is the standard flat domain of booleans { L, true, false} and Bool* has only one element
*, which is filled by an element a of Bool, iff a is different from 1. Furthermore, for any
n € N, any sequential function (Bool,)™ — Bool, is a morphism of C.

Assume that such a category C exists. Let A = Bool = Bool, the object of morphisms from Bool
to Bool in C. We know by iii) that A, is Hom¢(Bool, Bool), but we don’t know anything about
its order relation. We claim however that Au.L is its least element. Actually, let f € A,. Let
g : (Bool,)? — Bool, be defined by
L ifv=1
g(v,u) = {

f(u) otherwise

Then g¢ is obviously sequential, and hence is a morphism in C by v). By iii), its exponential
transpose ¢’ : Bool — A in C maps L to Au.L and true to f, and hence Au.l < fin A, because g’
is monotone. So the least element L of A, is Au.L.

Now consider the evaluation function

Ev: A, x Bool, — Bool,

(fiz) = [(z)

which is a morphism in C by iii) and hence satisfies the sequentiality condition by ii). We have
Ev(L, 1) = L, but there are clearly elements (f, z) of A, x Bool, such that f(z) # L. Hence
there exists v € (A x Bool)* such that, for any (f,z) € A« X Bool,, if f(z) # L, then (f,z) € 7.
By our assumption iv) about C, there are two possibilities for v: the case ¥ = 2% where % is the
single element of Bool* is impossible, since Ev(Au.true, L) € x but (Au.true, L) ¢ 2% (observe that
Au.true € A,). Hence we must have v = la for some o € A* that we choose now once and for all.
Take any f € A, such that f # L. There exists ¢ € Bool, such that f(z) # L, that is Ev(f, z) € *,

and hence (f,z) € v, that is f € @. To summarize:
Vi€eA, [#1l=fea (1)

and from this fact we shall derive a contradiction.
Let h : (Bool.)® — Bool, be the conditional function defined by

L ifz=1
h(z,y,z)=< =z if z =true
y if z = false

which, by v), is a morphism Bool® — Bool in C since it is a sequential function. Let &' : Bool® —
A be the morphism of C obtained by curryfying h with respect to its last argument. We have
R'(L,1) = Az.L = L ¢ «, and h'(true, L) # L, hence h'(true, L) ¢ a by (1) and similarly
h'(L,true) € a. And this is impossible, since ¢’ is a morphism of C and hence has to satisfy the
sequentiality condition.

The reader acquainted with sequential algorithms can observe that most of our argument could
be adapted to sequential algorithms as well, and especially, there also exists in that case a cell



« satisfying (1) (“initial cell” in the terminology of concrete data structures). However, in the
framework of sequential algorithms, it is not true that h'(L, L) = L: the sequential algorithm
h'(L,1) : Bool — Bool asks for the value of its argument, and, whatever be the value of this
argument, does not yield any result, whereas the sequential algorithm | does not even ask for the
value of its argument. So in the case of sequential algorithms, we have h’/(L, L) € o and there is no
contradiction anymore.

1 Types and terms

We consider the hierarchy of finite types based on the type ¢ of natural numbers. Types are defined
as follows:
c=1]|loc—>0

As usual, if 0y,...,0, and o are types, the type 0y — (02 — ...(0, — 0)...) is denoted by
01,...,0, — 0. This expression denotes ¢ if n = 0. If ¢ and 7 are types and if » > 0 is a natural
number, then ¢” — 7 is a shorthand for o,...,0 — 7 (n occurrences of o).

We define the degree of a type o as a natural number ||o|| by induction on types as usual:
e[l =0 and o = 7| = Max([|lo]| + 1, ||7]])

so that one has
lot = ... = op = ¢ = ll\S/IJank(HUjH +1).

We call simple second order type any type of the hierarchy of finite types of the shape (1" —
t) = (n>1).

The programming language we consider is a version of PCF (see [Plo77]) which has the type
of natural numbers as unique ground type (just for shortening the base cases of inductions). We
decide to represent boolean values by natural numbers as follows: 0 corresponds to “true” and
“false” is represented by any non-zero natural number.

A typical syntax for this language is the following (types are written as superscript when
needed):

M = w° variables
n' numerical constants, n =0,1,2...
L—rt

pT s

If&—n—n—n

‘7' predecessor and successor operators

|
|
| conditional operator
| (M°77N°)" application

| (Az7.M7)°77  abstraction

| Y2927 fixpoint functional.

We do not give the operational semantics of PCF, which may be found in [Plo77].

A model M of PCF consists of a cartesian closed category, still denoted by M, together with
an object tpq of M for interpreting the type of natural numbers. From these, we can associate
to any type o an object [0]™ of M as follows: [(JM = tp and [0 = 1M = [o]M = [1]M
(objects of morphisms in M). The model M has also to provide an interpretation for the basic
operators of PCF (numerical constants, p, s, If and Y). They are points in the interpretation of
the corresponding types. For instance, the interpretation of p is a point in [s — (]J*. Remember



that a point of an object A of M is a morphism from the terminal object of M to A, and that
the points of A = B are in bijective correspondence with the morphisms from A to B in the
category M. Using these data, we can associate to any term M of PCF a morphism in M. More
precisely, if M is a PCF term of type 7 with free variables among the list I = (27", ..., 27*), using
a rather standard categorical machinery (see for instance [LS86, Cur93a]), we can associate to M
a morphism [M]M from [T%,[0:]™ to [r]M. All these data must be such that, for any terms M
and N of the same type, whose variables are among a common list of variables I, if M = N (in
the equational theory of PCF, including n-conversion), then [M]jM = [N]jM. By the way, § and
n-conversion are automatically satisfied because M is cartesian closed.

2 Strong stability

Let us first introduce some notations.

Let E be a set. We denote by Pz (F) the set of all finite and non-empty subsets of E. We
write z Cg F when 2 is a finite and non-empty subset of F.

We denote by #F the cardinality of F.

Let F and F be two sets. If C' C E x F, we denote by Cy or Cg the first projection of C' and
(9 or CF its second projection. We say that C' is a pairing of F and F if Cy = E and Cy = F.

The disjoint union of E and F will be denoted by F + F and represented by G = ({1} x
E)YU ({2} x F). If C C G, we denote by Cy = {a € E | (1,a) € C} its first component and by
Cy={be F|(2,b) € C} its second component.

We say that F is a multisection or simply a section of F' and we write ¥ < F if

Vee FEAbe Faeb and Vbe Fdae Fac€b.

This means that F C |J F and that ENb is non empty for all b € F.
Similarly, if both F and F are subsets of a partially ordered set (V, <), we say that F is
Egli-Milner below F and write £ C F if

Voec FAdbe Fa<b and Vbe Fdaec Fa<b.

2.1 dI-domains with coherence

We describe briefly the cartesian closed category of dI-domains with coherence that we introduced
in [BE94]. We refer to this article for proofs of the results stated here. We shall not need this
general framework until Section 4. Actually, we shall consider first a very special (but very well
behaved) class of dI-domains with coherence: the hypercoherences.

Definition 1 A dl-domain with coherence is a couple (D,C (D)) (often abusively simply written
D) where D is a dI-domain, and C (D) is a set of finite and non empty subsets of D satisfying:

o Foranyxz € D, {z} €C(D).
e Forany A € C (D), for any finite and non-empty subset B of D, if BC A, then B € C (D).

o For any family Ay, ..., A, (n > 1) of directed subsets of D, if for any z; € Ay,...,z, € A,
one has {x1,...,an,} € C(D), then {\/ A1,...,\V A} €C (D).

We define now the morphisms of this category.



Definition 2 Let D and D' be dI-domains with coherence. A strongly stable function from D
to D' is a continuous function f : D — D' such that, for any A € C (D), f(A) € C(D') and

FINA)=NT(A).

This definition is motivated by Proposition 4 which relates strong stability to the standard
Vuillemin-Milner-Kahn-Plotkin notion of sequentiality in a special case which, roughly speaking,
corresponds to the interpretations of “data types” in the strongly stable model. Again, we refer
to [BE94] for more details.

The category of dl-domains with coherence and strongly stable functions will be denoted by
DIC.

Proposition 1 The category DIC is cartesian closed. Let D and D' be dI-domains with coher-
ence.

1. The cartesian product of D and D' is (E,C(E)), where E is the cartesian product of the
dI-domains D and D', endowed with the product order, and a subset of F is in C (E) iff its
first projection is in C (D), and its second projection is in C (D'). This cartesian product will

be denoted by D x D' (or (D,C (D)) x (D',C (D"))).

2. The object of morphisms from D to D' is the set E of all strongly stable functions from D to
D', stably ordered, which turns out to be a dI-domain. Lel fy,..., [, be strongly stable func-
tions from D to D' (withn > 1). Then {f1,..., fn} € C(F) iff for any family x1, ..., 2, € D
such that {z1,...,2,} € C(D) and any pairing K of {1,...,n} and {1,...,m}, one has
{/i(z;) | (i,4) € K} € C(D') and (NiZy fi)(Nj=1 %j) = Ngjex fi(zj). This object of mor-
phisms will be denoted by D = D' or (D,C (D)) = (D',C(D")).

The operations on morphisms associated to these constructions: projeclions, pairing, evaluation,
transposition (curryfication) are defined in the usual set-theoretical way (just like in the category of
sets and functions).

By continuity of the f;’s and by the last requirement of Definition 1, the characterization of C (F)
given in 2 above still holds if we require the z;’s to be compact (isolated).
We shall use the following technical lemma.

Lemma 1 Let D and D' be two dI-domains with coherence. Let [ : D — D' be a strongly stable
function. Let g : D — D' be continuous and such that g < f in the stable order. Then g is strongly
stable.

The proof is easy. See for instance [BE94].

2.2 Hypercoherences

In [Ehr93], we introduced the model of hypercoherences as a simplified framework where strong
stability makes sense. We recall here the basic definitions and the properties of this model that we
use in the sequel. For proofs and details, we refer to the previously mentioned article.

Definition 3 A hypercoherence X is a pair (|X|,I' (X)) where |X| is a denumerable set (the
web) and I' (X) is a subset of Pg, (X) (the atomic coherence) such that, for any a € |X|, one has
{a} e T (X).




If X is a hypercoherence, we denote by I'* (X') and call strict atomic coherence of X the set of all
elements of I' (X') which are not singletons (observe that X can be described by I'* (X) as well as
by I' (X)).

A qualitative domain (see [Gir86]) is a dl-domain where any prime element is atomic. It can be
seen as a set (of sets) closed under subsets and directed unions, and containing the empty set (the
order relation being of course the inclusion). The web |@Q] of the qualitative domain @) is the set of
all elements a such that {a} € @, that is, the set of all prime elements of ).

To any hypercoherence, we associate as follows a dl-domain (more precisely, a qualitative do-
main) with coherence. Observe that not all qualitative domains with coherence can be obtained in

this way.
Definition 4 Let X be a hypercoherence. We define qD (X) and C (X)) as follows :

ADX)={«C|X X

| Vu Chn

vwCae=>uel (X)}

and

C(X)={AC5, dD(X) | VuC5, | X| vt A= uel (X)}.

qD (X) will be called the qualitative domain generated by X and its elements are called the states
of qD (X)), and C (X) will be called the state coherence generated by X. The set of finite states of
gD (X)) will be denoted by qDg, (X).

It is clear that qD (X) is always a qualitative domain, and its web is |X| by our only re-

quirement about hypercoherences (remember that qualitative domains are dI-domains). Moreover,
(gD (X),C (X)) is a dl-domain with coherence.

Definition 5 Let X and Y be hypercoherences. A strongly stable function from X toY is a
strongly stable function from (qD (X),C (X)) to (¢D (Y),C(Y)) (in DIC).

Observe that, if X is a hypercoherence, any bounded, non-empty and finite subset of D (X) is
in C (X) (this holds more generally for dl-domains with coherence). For this reason, any strongly
stable function X — Y is stable from qD (X) to qD (Y'), and thus we can use traces to represent
strongly stable functions faithfully.

We denote by HC the category of hypercoherences and strongly stable functions.

Let X and Y be hypercoherences. Let X x Y be the hypercoherence defined by |X x Y| =

X|+ Y] and w € T (X x Y) if w €}, |X x Y| and

(wy=0=w €l'(X)) and (wy =0 = wy e T(Y)) .

Let X = Y be the hypercoherence Z whose web is the set of all (z,b) where z € qD (X) is finite
and b € |Y|, and whose atomic coherence is given by: w € I' (Z) if w € P{, (|Z]) and

wy €EC(X)= (wp eI (Y) and (#we=1= #wy; =1)) .

Proposition 2 The category HC is cartesian closed. If X and Y are two hypercoherences, their
cartesian product ts X XY and the object of morphisms from X toY is X =Y.
Moreover, HC is a sub-cartesian-closed category of DIC.



The latter statement means that
(@D (X xY),C(X xY)) = (gD (X),C (X)) x (aD(Y),C(Y))
naturally and that similarly
(DX =Y),C(X=Y))=(D(X),C(X))= (aD(Y),C(Y))

naturally. The inverse of this latter isomorphism maps a strongly stable function to its trace. For
this reason, we shall often confuse strongly stable functions between hypercoherences with their
traces.

In the sequel, we shall consider a hypercoherence which will play a central role : the hyperco-
herence N of flat natural numbers. Its web is N, the set of natural numbers, and I' (N) is the set of
all singletons of |[N| = N. One easily checks that, up to an order isomorphism, qD (N) = N, the
flat domain of natural numbers, and so, more generally, for any n € N, D (N") = N}

Observe that a finite and non-empty subset w of | X = N belongs to I'* (X = N) iff wy ¢ C (X).

The following lemma plays a central role in the theory of strong stability (see [CE94, Ehr96]
for other applications). It cannot be generalized to arbitrary dI-domains with coherence (or even
to arbitrary qualitative domains with coherence).

Lemma 2 Let X be a hypercoherence. Let A € C(X) and let n = #A. There exists a set
G € C(N™) with #G = n and a strongly stable function ¢ : N* — X such that ¢(G) = A.

Moreover, if all the elements of A are finite, there exists a finile such function .

Such a set G will be called a Berry set.
Proof: For any natural number n > 1 we define a family {y7};=1,..» of elements of qD (N") as
follows :
7;1: {(17n_j+1)7""(j_ 1,71— 1)}U{(]+171)7?(n7n_])} .

It is easily checked that the set {y7};=1, . is in C (N"), but that no proper subset of this set of
cardinality strictly greater than 1 is in C (N").

Let A = {«1,...,2,} be any element of C (X) with n = #A. Let g = (=, ;. Let us define
the following set ¢ :

t={(0,a)|a€zotuU{(v*a)]i=1,...,nand a € z; \ 2o} .

Then we claim that ¢ € gD (N" = X). Actually, let u be any finite and non-empty subset of ¢, and
assume that u; € C (N"). Observe first that, by construction of ¢, one has: Va € ug 32 € A a € 2.
We consider three cases :

e () € uy. Let a € uy be such that (§,a) € u. Then we have ¢ € zg and hence Vo € A« € u,
hence up < A, hence uy € I' (X). If furthermore u; is the singleton {a}, then uy must obviously
be the singleton {0}.

e 0 ¢ u; and u; is a singleton {y*} (for some i € {1,...,k}). Then uy C x; and hence
ug €T (‘XV)

e () ¢ uy and #uy > 2. Then we know that uy = {y/'}i=1,. ., since uy € C(N"). Let i €
{1,...,n}. Let a € ug be such that (v”,a) € u. Then we have a € w; by construction of ¢
and hence uy < A, thus ug € I' (X). Furthermore, if u; is a singleton {a}, then we must have,
forany i € {1,...,n}, a € z; \ xg which is clearly impossible.



Let ¢ be the strongly stable function whose trace is t. We have, for any ¢ € {1,...,n},

p(rf) = (2 \ wo) Uwo = &

and we are done. n

From this lemma, we derive another characterization of coherent families of strongly stable
functions.

Lemma 3 Let X and Y be two hypercoherences, and let F be a finite and non empty set of
strongly stable functions X — Y. Assume that for any natural number k and any finite strongly

stable function ¢ : N¥ — X the set Fop = {fop | f € F} belongs to C (Nk = Y). Then
FeC(X=Y).

Proof:

Let U be a finite and non-empty section of F and assume that U; € C (X). Let n = #Uy, by
Lemma 2, there exists a Berry set G of N™ and a finite strongly stable function ¢ : N* — X such
that ¢(G) = Uy. Let

W={(fop,y)| f€F, ye Gand 3b(p(y),b)c fNU}

We check first that W is a pairing of Fop and G. Let g € Fop. Let f € F be such that g = fop.
Let (z,b) € fNU (remember that U is a section of F). We have z € Uy = ¢(G), so let y € G
be such that @ = ¢(y). We have (g,y) € W. Conversely, let y € G. We have ¢(y) € Uy, so let b
be such that (¢(y),b) € U. Let f € F be such that also (¢(y),b) € f. We have (fog,y) € W.
Setting C'= Ev(W) = {g(y) | (9,y) € W}, we have

cecy) and (C=(NFou)(NG) (2)

since, by hypothesis (remember that ¢ is finite), Fop € C(N" = V).

A similarly straightforward verification shows that U is a section of C', so Uy € I' (Y). Assume
furthermore that U is a singleton {b}. Let (g,y) € W. Let f € F be such that ¢ = fo ¢ and
¢ € |Y| be such that (p(y),c) € fNU. As Uy = {b} we have ¢ = b, hence b € g(y). Hence b € N C.

> VfeF bE(fogo)(ﬂG):f(ﬂUl)

by (2), since (((Fog) C fopforall f € F. Let z € Uy. Let f € F be such that (z,b) € f. Since
z is minimal such that b € f(z) and since b € f(NUy) and Uy C z, we have z = U, so that Uy
is a singleton. So U € I' (X = Y) and hence F € C (X = Y). .

In the proof of Theorem 1, we shall use the following immediate consequence of the previous lemma.
Proposition 3 Let F be a finite and non emply set of strongly stable functions from X to Y. If

F ¢ C(X =Y), there exists a natural number n such that, for any k > n, there exists a finite
strongly stable function ¢ : N¥ — X such that Fop & C(Y).

3 Relative definability

Definition 6 Let g be a natural number. Let T be any type in the hierarchy of finite types based
on the type of natural numbers. Let L be an element of qD ([T]HC> One says that t is ¢-PCF-

definable if there exists a term M of type T with all free variables among a list | = (uJ', ..., up?) of



HC
oo

variables such that for all j, ||o;|| < ¢, and there exist some elements s; € qD ([01]
qD ([Up]HC) such that
L= Mo, )

Of course, this definition makes sense for any model of PCF.

For instance, in [Plo77], Plotkin proved that, in the standard Scott model of PCF, any compact
element of the interpretation of any type is 1-PCF-definable. We prove here a similar result for the
strongly stable model of PCF.

Observe that if z; € [04]HC, ... 2, € [0,]HC are ¢-PCF-definable, and if M : ¢ is a PCF
term whose all free variables are among the list I = (uf',...,ud"), then [M]HC(zy,...,2,) is
¢-PCF-definable. We shall use tacitly this remark in the following proof.

Theorem 1 Let o be any type in the hierarchy of finite types based on the type of natural numbers.
Any finite element of qD ([U]HC) is 2-PCF-definable.

Proof: We proceed by induction on the degree of types. For types of degree 0 or 1, the result is
obvious (remember that any sequential function is PCF-definable).
For the inductive step, consider a type o such that ||o|| > 2. This type can be written as

k k
O’Z(O’%,...,O’lll—)L),...,(O’l,...,Ulk—)L)—)L

with £ > 1 and possibly, for some j’s, [; = 0. But at least one of the /;’s is different from 0. Let ¢
be a finite state of [¢]HC.

Forj =1,...,k, let us denote by X; the hypercoherence Hf;:l[ag
ered as a state of the following hypercoherence:

JH€, so that ¢ may be consid-

k
[[ X;=N)| =N
7=1
The set ¢ (which is finite) can be written

t= {(t-l’val)v R (tﬁ7a”)}

where aq,...,a, are natural numbers, and = (th, ... th),..., 07 = (t},...,17) where, for each
i=1,...,nand each j = 1,... k, ¢’ is a finite state in the hypercoherence X; = N.
For a given vector of arguments fE qD (H§=1 (X; = N)), we know that there is at most one

i € {1,...,n} such that t < f. The problem of computing t(f) is thus twofold:

1) first, we must restrict our attention to an unique iy € {1,...,n} (which of course depends on

f), being sure that if f < ffor some (again, necessarily unique) ¢, then this 7 is equal to g,
2) and then we must test whether £ < I

As we shall see at the end of the proof, the second step is not very difficult, using second order
strongly stable functionals. More precisely, we shall exhibit for all i € {1,...,n} a 2-PCF-definable

functional of codomain N mapping fto {0} if i < fand to ) otherwise. Since these functionals
are “semi-decision” procedures, they cannot be used naively for solving 1), testing successively for
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1=1,2,...,n whether ti < f We must be more intelligent and “guess” the value of the relevant
t0- This can be done using second order strongly stable functionals as we shall see in the first part
of the proof.

Let I C {1,...,n} be of cardinality strictly greater than 1. We know that the set {(t_;, a;) |t €T}

is in I'* ([O‘]HC>. So
k
{ﬁuef}ggc(n X; #N)

and thus there exists j € {1,...,k} such that {t; | i€ I} ¢ C(X; = N). Let us choose such a j,
and let us denote it by ;7.

Applying Proposition 3, let us choose n! € N such that for any k > n! there exists ¢ : N¥ — X1
such that {t; 0 ¢ i€ I} ¢ C (N* = N).

To each subset I of {1,...,n}, let us associate injectively a natural number I. Letv= Max{n' |
I'C{1,...,n}and #I > 2} (it is here that we use the hypothesis that ¢ is finite). For I C {1,...,n}
of cardinality > 2, let ¢! : NV — X1 be a finite strongly stable function such that {t;., opl|ic
I} ¢ C(N” = N).

For each j € {1,...,k}, let ¢; : qD(N x N”) — gD (X;) be the following function, defined
by gluing together the functions ¢! for all sets I such that j7 = j (we identify qD (N x N*) with
qD (N) x gD (N¥)):

I if z={I}and j1 =
Q0.(2,3/):{@@) {Tyand j! =

1] otherwise

or equivalently by the following trace:

{1 y),e) | TC{1,...,n}, #1 > 2, j1 = jand (y,c) € T} .

It is easily checked that, for any j € {1,...,k}, the function ¢; is strongly stable N**1 — X,
because the p!’s are strongly stable. Observe also that the o;’s are finite, since the ¢!’s are, and
since there are only a finite number of possible sets I.

For j € {1,...,k} and v € {1,...,n}, let s} = t’ o @;, it is a finite strongly stable function
N“+t 5 N. We _denote by st the vector of functions (sh,...,8%).

Let s = {( ,1),...,(s",n)}. Let I be any subset of {1,...,n} of cardinality strictly greater
than 1. We have {t;l opl |ie I} ¢ C(N”=N), hence {S;I | i€ I} ¢ C(N“t' = N). Actually,
let U = {(yq,0y) | ¢ = 1,...,p} be a section of {t;, ol | i € I} such that U ¢ T (N¥ = N),
which means that U; € C (N¥) and that Uy ¢ T (N), and that at least one of these two sets is not a
singleton. Fori € I,let Q; = {q | (y,,b,) € t;, op!}. Foreach i € I, (; is non empty, and the union
of the Q;’s is {1,...,p}. Let i € I and ¢ € Q;. We have b, € (t;] o) (y,) = (t;l 0 ;1 )({f},yq)
Let (28, 4%) < ({I},y,) be minimal such that b, € (tj.] o) (zh,yi). Let U = {((2},y}),by) | i €
I and ¢ € Q;}. This set is a section of {t;l op;r | i € I}. Moreover, we have Uy = Uy and
Ul C {{I}} x Uy € C(N"t), so that U] € C (Nt'). Consequently, if U’ € T (N**! = N), U’
must be a singleton {((z,y),b)}. Let us assume that this is the case, so that also U, = {b}. Since
U ¢ I'(N” = N), Uy is not a singleton. Assume first that z = {f} Let ¢ € {1,...,p} and let
¢ € I be such that ¢ € Q;. We have b € (t;l owir)(z,y) = (t;] o 1) (y) and hence, since y C y,
and since y, is minimal such that b € (t;l o 1) (y,), we have y, = y, hence U; is a singleton,
contradiction. Assume now that z = (). Let ¢ € {1,...,p} and let 7 € T be such that ¢ € Q;. We

11



have b € (t;l op;r)(0,y) = t;I((Z)), and hence, since b € (t;l o 1) (y,) with y, minimal, we must have
Y, = 0, contradiction again. So U’ is a section of {8;1 | ¢ € I} such that U' ¢ I'(N” = N) and so
{sj, |ie I} ¢C (Nt = N) as announced.

Thus {(s_;,i) |1 €I} eI™ ((N”‘H = N)Fr = N) and this holds for any I C {1,...,n} with
#1 > 2,50 5 € qD (N1 = N)* = N).

Let @ be the strongly stable function whose trace is s (it is a function from ¢D ((N”‘*’1 = N)k>
to qD (N)). Let us define a function F : Hle(qD (X; = N)) = gD (N) by

_ [ {a} iTO(fioer,..., froer) ={i}and fi > 6. fr > 1,
F(fla--'vfk)_{ ] otherwise. 1 k

One has F = t. Actually, let f € gD (Hle(Xj = N)) There are two cases:

e Either there exists a (necessarily unique) ¢ € {1,...,n} such that f> #i. Then for j =

1,...,k, we have f;0¢; > t30@j = st and hence ®(f1 0 ¢1,..., fr 0 @) = {i}, so F(f)

—

{ai} = 1(f).
e Or there is no such 7. Then we clearly have F(f) =0 = t(f).

It remains to check that F is 2-PCF-definable.

Let j € {1,...,k}. Let usset [ =[;, 0, = 0}, p = ¢; and X = X (we use these notations until
the end of the proof). We observe first that the function Af. f o ¢ is 2-PCF-definable. This is due
to the fact that ¢ = (¢1,...,¢) with, for ¢ € {1,...,1}, ¥, € qDg, ([L”+1 — Uq]HC>, and ¥, is 2-
PCF-definable by inductive hypothesis since [|:*T! — o,|| = Max(1, ||o,]|) < Max(1,||o||—2) < |||
(remember that ||o|| > 2). So the function

A(fl, . .,fk).q)(fl CP1y.- .,fk O@k)

is 2-PCF-definable, as @ is a strongly stable functional of type 2.
We conclude the proof by showing that, for any i € {1,...,n}, the function

G:qD(X=N) = ¢D(N)
I {{0} if f>1¢

1] otherwise

(where ¢ = t}) is 2-PCF-definable. Let us write ¢ as {(y',c'),...,(y™,¢™)} with ¢ € N and
y? € qD (X) for each p € {1,...,m}. For p € {1,...,m} and b € yP, let us denote by S, the
obviously strongly stable finite function qD (N) — gD (X) whose trace is

Spp =10, ¢) | c € y" \ {0} U{({0},0)},

or equivalently

yP if z = {0}
Spp(x) = { ZP \ {b} otherwise

Then S; , = <Sz},p7 . -aSzl,,p> with Sy € qDg, ([L — Uq]HC) for each ¢ € {1,...,1}. For any such
g, one has ||t = o,4|| = Max(1,||o4||) < ||o|| and thus, by inductive hypothesis, each of these finite
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functions Sg,p is 2-PCF-definable. Similarly, the y”’s are 2-PCF definable. Let ¥ : qD (N = N) —
gD (N) be the function defined by

S(h) :{ {0} if h(0) = 0 and A({0}) = {0}

1] otherwise

in other words, the trace of 3 is {({({0},0)},0)}. It is easily seen that X is a strongly stable
functional. (But ¥ is not PCF-definable, because it is not monotone wrt. the extensional ordering
of functions.) For f € qD (X = N) one has (using the functional ¥ for checking minimality of the
yP’s)
{0} if, for any p € {1,...,m} one has: f(y?) = {c"}
G(f) = and, for any b € y?, £(Zo fo Sp,) = {0}

] otherwise

where Z : qD (N) — gD (N) is the PCF-definable strict constant function taking 0 as unique value,
whose trace is {({m},0) | m € N}. So G is 2-PCF-definable as the y,’s and the S ’s are, and this
concludes the proof of the theorem. "

Let 0 = (/¥ = 4),...,(t* = 1) = ¢ be an arbitrary second order type, and let 7 = (/5! —
t) = ¢ where &k = Max(ky,...,k,). Then there exist two PCF closed terms A : ¢ — 7 and
B : 7 — o such that, (possibly up to n-conversion), AF.B(A(F)) = AF.F. From this, it results that
any element of qD ([U]HC) is of the shape [BJHC (y) for some y € [7]HC. As a consequence, when
using Theorem 1, we can always assume that the free variables of the PCF term whose existence
is asserted by the theorem are of simple second order type.

The remainder of the paper is devoted to deriving some consequences of Theorem 1, concerning
the connections between the strongly stable model and the sequential algorithm model of PCF.

4 Sequential algorithms

Let us describe briefly the model of sequential algorithms. We just give here some definitions
and state, without proofs, some results. We mainly refer to [Ehr96] for details. Our sequential
algorithms are not different from the sequential algorithms presented in a game-theoretic framework
by Curien in [Cur93b]. The connection between the “abstract” setting that we present here and
the “concrete” settings (CDS’s and games) is presented in details by Bucciarelli in [Buc93]. The
abstract presentation is very convenient for our purpose.

Definition 7 A sequential structure is a tuple E = (E., E* ¢, g), where E is a dI-domain, E*
is a set of cells containing a distinguished element L, eg is a binary relation (called filling relation )
on E, x E*, linear in ils first component (that is, for any o € E* and any bounded subset A of
E., if V A eg « then there exisls ¢ € A such that x eg « and, when A is furthermore finite and
non-emply, if v eg « for all x in A, then A A eg o) and such that x e L never holds, and Fg is
a binary relation (called enabling relation) on E, x E* satisfying

o Forany x,z' € E,, if x and x' are upper bounded, and if, for any a € E*, = eg o iff 2’ €g «,
then © = z'.

o Ifrtpa,thenz ¢ a.

e g L always holds.
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If z €g «, then there exists x' < x such that z' Fg a.

If e Fg o and @' > « salisfies o' ¢ ; o, then o' Fg a.
e If AC F, is directed and \/] A g «, then there exists x € A such that z g «.

If neither x eg « nor x Fg «, then there exists 3 € E* such that x Fg 3 and, for any 2’ > x,
if ' Fg o, then o' e 3.

We shall consider two notions of morphisms between sequential structures: sequential functions
and sequential algorithms.

Definition 8 Given two sequential structures F and F, a sequential function from E to F is a
continuous function f : E. — Fy such that, for any « € E. and any € F* such that f(z) Fr B,
there exists o € E* such that x by o and for any ' > z, if f(2') € 3, then 2’ € .

If « € E,, let us denote by E, the set of all « € E* such that z Fg «.

Let us remind also that a subset A of F, is said to be coherent if it is finite and non-empty
and, for any o € E*, if 2 ¢ a holds for any 2z € A, then A A eg o. We denote by C" (E) the set of
all coherent subsets of F,. (Remember that in a dl-domain, all non-empty sets have a glb.) Then,
(E.,CY(F)) is a dl-domain with coherence.

The following proposition is at the origin of the idea of strong stability.

Proposition 4 A function f : E, — F, is sequential iff it is conlinuous and satisfies, for any
A€ CY(E), f(A) € C¥(F) and f(\NA) = A\ f(A), that is, iff f is a strongly stable function from
(E.,C™(E)) to (F.,C™ (F)).

Sequential algorithms are sequential functions together with a kind of “Skolem function” for
the V3 condition in the definition of sequentiality. Here is a precise definition.

Definition 9 A sequential algorithm from FE to F is a pair (f,¢) where f is a continuous function
from E, to F, and (¢x)zer, is a family of functions ¢, : Fp(z) — Ey such that

o o (L)=1
o Forany x € Ex and any B € Fy(, and for any ' > x, if f(2) ep B, then @’ eg ¢ (B).
e Forany z € E. and any B € Fy(y, and for any 2’ >z, if 2’ ¢ 0.(3), then ¢ (3) = 02(3).

o If A C E, is directed, if 3 € Ff(\/A) with govA(ﬂ) # L, then there exists © € A such that
B € Fyay and 2(8) = p\y 4(8)-

Sometimes, the function f will be called the exztensional component of the algorithm (f, ). In
concrete settings (see [Cur93b]), sequential algorithms are strategies in games. They are naturally
ordered under inclusion. The corresponding order relation in the abstract setting is described by
the following definition.

Definition 10 Let (f,¢) and (g,) be two sequential algorithms from F to F. One says that (f, ¢)
is stably less than (g,%) if f is less than g in the pointwise order, and for any x € FE. and any
€L

B € Fiy, if ¢z(B) # L, then g(z) ¢ B and 4z (8) = ¢x(B).-
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One checks easily that, if (f,¢) < (g,%), then f < g in the stable order of functions.
The following proposition relates sequential functions to sequential algorithms.

Proposition 5 If (f,¢) is a sequential algorithm from E to F, then f is a sequential function.
Conversely, if f is a sequential function from FE to F, there exists ¢ such that (f, ) is a sequential
algorithm from E to F.

The category of sequential structures and sequential algorithms is cartesian closed. The product
of ' and F is the sequential structure G where G, = F, x F, (with the product order), and G* is the
disjoint union of E* and F*, with the L’s collapsed. The filling relation is given by (z,y) eg (1, )
iff # eg o (similarly for the second component of the product), and similarly for the enabling
relation. We denote by E x F this cartesian product. One has the following isomorphism in the
category DIC:

((E x F),CY(E x F)) = (E.,C"(E)) x (F.,C" (F))

The function space of F and F is a sequential structure G that we do not want to describe
here in details. We just need to know that GG, is the set of all sequential algorithms from F to F,
endowed with the stable order of sequential algorithms, which actually turns out to be a dI-domain.
We denote by FF = F this function space.

In this category, we define a model of PCF by choosing an object of natural numbers w as
follows: w, is the standard flat domain of natural numbers {1,0,1,...} and w* is {L, x}, the filling
relation being defined by @ ¢, a iff # # L and o = %, and the enabling relation by z F, a iff « = L
or (¢ = x and z = ). One checks easily that (w,,C"(w)) 2 N in DIC and hence more generally
(W™, CY (w™)) 22 N™. This isomorphism will often be considered as an equality in the sequel. PCF
primitives are interpreted in a natural way. For instance, the If primitive is interpreted by the
sequential algorithm (f, ¢) : w® — w given by

1 ifa=L1
fla,b,e)=¢ b ifa=0
¢ otherwise
and
(I,x) ifa=1
Sﬁ(a,b,c)(*) =¢ (2,%) fe=0andb=_1
(3,%x) ifag {L,0}andc= 1

Concerning fixpoint operators, let us just say that they can be defined in a fairly standard way (see
the end of [BE93] for details). More precisely, for any sequential structure F, we have a fixpoint
sequential algorithm (F,®): (E = F) — F satisfying

F(f,0)=\/ /(1)
n=0
Let us denote by SEQ this model of PCF.

5 The heterogeneous logical relation

We relate SEQ to HC. For this purpose, we define a binary logical relation between the two
models. More precisely, we define SC [0]3EQ_ x qD ([U]HC) by induction on o as follows:
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elfo=1,ySaiffz =y.

if y S z, then

* )

elfo=17—>7(g9,%)S fiff for any 2 € qD ([T]HC) and any y € [T]SEQ
9(y) S f(z).

The goal of this section is to prove that this relation is onto in the sense that for any type 7
and any z € qD ([T]HC>, there exists y € [7]5BQ_ such that y S «. Actually, we prove this result
under the further assumption that z is finite.

Lemma 4 For any type o and any monotone families (x,)neN in qD ([U]HC) and (Yn)nenN in

[0]5EQ, such that y, S z,, for all n, one has \/,en Un S Unen Tn (the relation S is closed).

The proof is a straightforward induction on types.
Let us state the fundamental lemma of logical relations in that particular case.

Lemma 5 For any closed term M of PCF, [M]SEQ S [M]HC,

Proof: Observe first that the primitives of the language are related by S. Concerning fixpoints,

just apply Lemma 4. For application and abstraction, we use the fact that, in the model SEQ,

the interpretation of application and abstraction are standard, as far as the extensional part of

morphisms is concerned. For instance, the evaluation algorithm is an algorithm (F' = F)x F — F

whose extensional part maps the couple ((f, ¢),z) to f(z). n
We prove now that the relation S is onto at type 2.

Proposition 6 Let k be a natural number, and let 0 = (\F — 1) = . For any f € qD ([U]HC)

there exists (g,) € [0]5EQ_ such that (g,) S f.

*

Proof: Let = [/ = /]5FQ and X = [/} = JHC and let F = [/*]SFQ and Y = [/*]HC. Let
7 Fy. — qD (X) be defined by 7(f,¢) = f. This definition makes sense since f is sequential and
hence strongly stable. The function 7 is strongly stable from (E,,CY (F)) to (qD (X),C (X)), which
are both objects of the category DIC of dI-domains with coherence. Actually, in the cartesian closed
category SEQ, we have an evaluation sequential algorithm (Ev,¢) : E' X F — w. The extensional
component of this algorithm is the evaluation function

Ev:FE, xF, — w,

(fi)z) = [lz)

which is thus a sequential function from FE X F to w, and hence is a strongly stable function from
(E.,CY(E)) x (F.,CY(F)) to (w«,C"(w)). Its transpose Ev' : (E.,C"(FE)) — ((F.,C"(F)) =
(wy, C¥ (), which maps (f, ) to f is a morphism of DIC, that is a strongly stable function, and
we are done since (F,CY (F)) = (ws,C (w)) is isomorphic to (¢D (X),C (X)).

Now let H : X — N be a strongly stable function. Then H o 7 is a strongly stable function
(E.,CY(E)) — N, and hence by Proposition 4, it is a sequential function from F to w. Thus by
Proposition 5, there exists ® such that (H o7, ®) is a sequential algorithm from F to w. It turns
out that (H om,®)S H and this is due to the obvious fact that, for f € qD (X)) and (g,¢) € F,
one has (¢,v)S fiff f=g. .

We conclude using Theorem 1 for lifting the result of Proposition 6 to any type of the hierarchy
of finite types.
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Theorem 2 Let o be a PCF-type. For any finite x € qD ([U]HC) there exists y € [0]5EQ, such
that y S x.

Proof: By Theorem 1, there exist oy,...,0,, simple second order PCF-types, some states z €
qD ([Ul]HC),...,mn € qD ([UH]HC) and a closed PCF term M : oy,...,0, — o such that z =
[MIHC(2y,...,2,). By Proposition 6, there exist y; € [01]5BQ,... y, € [0,]5FQ, such that
y; S @; for i = 1,...,n. By Lemma 5, we have [M]SEQ(yy,...,y,) S [M]HC(21,...,2,) = z and
we conclude. .

As a consequence of this last theorem, the relation S is functionalin the sense that if y S 2 and
y S a’, then @ = &’ (the proof of this fact is a simple induction on types).

As a corollary, we get immediately

Theorem 3 Let M and N be two closed PCF terms of the same type. If M and N have the same
semantics in SEQ, they have the same semantics in HC.

6 Extensional collapse

Since the relation S is functional, for any type o we can define a partial equivalence relation? ~ on
[0]SBQ_ by y ~ ¢ iff there exists z € qD ([U]HC) such that y Sz and 'S =.

On the other hand, one can define a partial equivalence relation = on [O‘]SEQ* as a logical
relation, by induction on types, as follows:

e at type ¢, & is the equality

o at type o = 7, (f,0) = (f',¢) iff for any y,y’ € [0]5BQ_, if y ~ ¢/, then f(y) ~ f'(y').

The quotient of the model®> SEQ by this relation is the so-called extensional collapse of SEQ.
We aim at proving that these two partial equivalence relations are identical at any type. For
this purpose we need first to prove a few lemmas.

The first lemma states, for any type o, that the order relation and the coherence relation of
[0]HC can be lifted along S.

Lemma 6 Let z,z2' € qD ([U]HC) be finite and such that x C a'. There exist y,y' € [0]SEQ_ such
that ySz, y' Sz’ and y < v'.

Let xq,...,2, € gD ([U]HC) be finite and such that z{,...,x, € C ([O’]HC). There exist
Yty Un € [0]5EQ such that yi,...,y, € CV ([O‘]SEQ*>, y1 S z1,...,yn S x, and furthermore
Ni=1yi S iz @i

Proof: Let d: N — gD ([U]HC) be the strongly stable function defined by the following finite
trace:

tr(d) ={(0,0) | bea}u{({0},b)|bea"\a}.
So d is a finite element of qD ([L — U]HC) and hence, by Theorem 2, there exists a sequential
algorithm (e,¢) € [t = 0]3EQ_ such that (e,2) S d. We set y = e(L) and y' = ¢(0), so that y < ¢/,

y Sz and y' Sz’ as required.

2That is, a symmetric and transitive binary relation.
%For this kind of constructions, the categorical notion of model presented in Section 1 is not suitable. More
convenient is the restricted notion of typed applicative structure described in [Mey82].
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For the second part of the lemma, let zq,...,2, € qD (N") be such that {z,...,2,} € C(N"),
and let d : N* — [¢]HC be strongly stable and such that d(z;) = zy,...,d(z,) = @, (we apply
Lemma 2). As the z;’s are finite, d can be assumed to be a finite element of qD ([L” — U]HC>,
and hence by Theorem 2, there exists (e,s) € [1* — o]5EQ_ such that (e,e) S d. We set y; =
e(21),...,yn = €(z,). Since e is sequential, we have {y;,...,y,} € C" ([O’]SEQ) and e(N=y z;) =
Ai—q yi. So we conclude. .

The second lemma essentially states that S is “strongly stable” at any type. We need Lemma 6
for proving this result.

Lemma 7 i) Let y,y' € [0]5EQ
Then z C 2.

*

and x,z' € qD ([U]HC) be such that y S, y' S’ and y <y'.

i) Let y1,...,yn € [0]5BQ, be such that {yi,...,yn} € C" ([U]SEQ*), and let xy,...,z, €
qD ([U]HC) be such that y1 S x1,...,yn S n. Then {z1,...,2,} € C ([U]HC> and N—, y; S

Mizy i
Proof: We prove simultaneously i) and ii) by induction on . At type ¢, the result is obvious.

We consider now the type o = 7. Let (f,¢), (f,¢') € [0 = 7]3EQ_ be such that (f,¢) < (f,¢),
and let g,¢' € qD ([U — T]HC) be such that (f,¢) S g and (f',¢') S ¢’. We have to prove that

g < g’ in the stable order. So let z,2' € qD ([U]HC) be such that  C 2’. We have to prove that

g(z) = g(2')Ng'(x). For this we can assume that z and 2’ are finite, by continuity of g and ¢’. By
Lemma 6 there exist y,y’ € [0]°FQ, such that y <3/, yS 2 and ¥’ S 2/. Since f < f’in the stable

*

ordering of functions, we have f(y) = f'(y) A f(y’). But we have f(y) S g(z), f'(y) S ¢'(z) and
f(y) S g(2'), and hence by inductive hypothesis (part ii), for 7) f'(y) A f(y') S ¢'(x) Ng(z') because
{f'(y), Fly"} € C ([T]SEQ), these two points being upper bounded by f’(y’'). We conclude by
functionality of S.

Let (fY, Y, ..., (f% ¢") € [o — 7]3EQ_ be such that the set {(f1, ¢Y),..., (", ™)} belongs to
clh ([U — T]SEQ), and let g%,...,g" € qD ([U — T]HC) be such that (f1, 1) S gl,..., (/7 ¢") S g™
We have to prove

(a) that A%, (f',¢") SNz 9°
(b) and that {g',...,¢"} €C ([U — T]HC).

Let (f,¢) = A, (f?, #'). Since evaluation is a sequential function [0 — 7]3EQ x [¢]SFQ — [7]SEQ
we have by Proposition 4

n

vy e [0%B (i) [i=1,...,n} eC™ ([7%BQ) and f(y) = A [i(v) (3)

i=1

For proving (a), we consider the function g : D ([U]HC) —qD ([T]HC) (a priori not necessarily
strongly stable) defined by g(z) = N, ¢*(z). It is clear that g is continuous. For proving that g is
strongly stable, by Lemma 1, it suffices to show that g < ¢* (7 arbitrary) in the stable order. So let

z,z" € qD ([U]HC) be such that = C ’. We have to prove that g(z) = g(2')Ng*(z). For this we can

assume that z and 2’ are finite, by continuity of g and ¢*. By Lemma 6, there exist y, y’ € [O’]SEQ*

such that y < ¢/, y S 2 and y' S 2/. We have f'(y) S ¢*(z), and so by inductive hypothesis at
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type 7 and by (3), we have f(y) S g(z) and similarly f(y') S g(z'). Since f < f*in the stable
order, we have f(y) = f(y') A f*(y) and hence by inductive hypothesis and functionality of S, we
conclude that g(z) = g(2') Ng'(z) and hence g < g° in the stable order. So g is strongly stable and
furthermore g < (= g, but since the stable order is included in the extensional order, we actually
have g = (., ¢*. Observe that we have also just seen that f S ¢, that is A7_;(f",¢") S N, g
so (a) is proved.

Now we prove (b). Let @1,..., 2, € gD ([U]HC) be such that {z1,...,2,,} €C ([O’]HC), and let
K be a pairing of {1,...,n}and {1,...,m}. We have to prove that {¢g'(z;) | (i,j) € K} €C ([T]HC>
and that (N1, gi)(ﬂ;ﬁ:l zj) = ij)ex g'(z;). For this we can assume all the z;’s to be finite,
because the ¢*’s are continuous. By Lemma 6, let yy, ..., y, € [0]5FQ_besuch thaty; Szy,...,yn S
Tn, {y1,...,yn} € CH ([U]SEQ) and A™_, v S N,z Since for (i,5) € K we have fi(y;) S
g'(z;), we have by inductive hypothesis {gi(z;) | (i,5) € K} € C ([T]HC), since {fi(y;) | (i,5) €
K} e ct ([T]SEQ) by sequentiality of the evaluation function [0 — 7]SFQ x [¢]5EQ — [7]SEQ,
For the same reason, we have A(; jyex i) = f( T 1 y;) where (f,¢) = " (f' ¢'). We have
Njer I'(y5) = FINZ195) S 9(Miz 25) (since (f,9) S g) and Ag jyer [ (45) S Neijyex 9°(25) by
inductive hypothesis and we conclude by functionality of S that (\; ;)ex g'(z;) = (M=, ¢°) (ML ;)
and (b) is proven. .

Given a model M of PCF and a morphism r : []J™ — [s]™ in this model, we can define at any
type o a morphism r7 : [c]™ — [o]M (or equivalently a point of [c — o]™) by induction on o as
follows:

e T =r

o r(o=7) = [Au?7 7T Av? (wI_)T(u(wg_mv)))]ml,wg)(TT’ r7)

Lemma 8 Let ¢ € qD ([U]HC) and y € [0]SFQ_ be such that y S x. There exists an increasing

sequence (z;)ieNn of finite elements of qD ([U]HC) and an increasing sequence (y;);eN of elements
of [0)HC_ such that Uy z; = z, V'_y y; = y, and, for alli € N, y; S z;.

Proof: Let r, be the strongly stable function N — N whose trace is {({i},¢) | 0 < ¢ < n}. The
family (r,)nen is increasing and \/, N rn = Id. One extends each r, to any types ¢ as r,%, and
we get an increasing sequence (r,”),en of morphisms such that \/,cn7,” = Id (by monotonicity
and continuity of the interpretations of terms). Furthermore, the functions r,” have finite range
and take only finite values, as easily checked by induction on types.

On the other hand, it is clear that R, = (ry, p") is a sequential algorithm from w to w, if we
set p} (¥) = * and pj(+) = L if y # L. Moreover, the sequence (R,)neN is increasing and has the
identity sequential algorithm as lub. Of course, R, S r,. Again, we extend R, to any type o as
R,?, and the sequence (R, ),eN is monotone and has the identity as lub. Furthermore, for any o
and any n € N, we have R, S r,” by Lemma 5.

So by setting z,, = r,”(z) and y, = R, (y), we define two sequences satisfying the required
conditions. .

Theorem 4 Lel y,y' € [0]SEQ . Theny ~y' iff y=y'.
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Proof: We prove the two directions in a single induction on o. At type ¢, the result is obvious.
Let us consider the type ¢ — 7.

Let (f,9),(f',¢") € [0 —= 7]5BQ_ be such that (f,¢) ~ (f,¢'). Let g € qD ([a—) T]HC)
be such that (f,¢) S g and (f/,¢') S g. Let y,y’ € [0]5EQ_ be such that y ~ y’. By inductive
hypothesis we have y ~ v/, so let € qD ([U]HC) be such that y S 2 and y’ S z. We have f(y) S g(z)
and f'(y") S g(x) and hence f(y) ~ f'(y') and hence, by inductive hypothesis, f(y) = f'(y).

Next, let (f,¢), (f!,¢') € [0 — 7]3EQ_ be such that (f,¢) =~ (f',¢'). We have to define a
strongly stable function h such that (f,¢) S h and (f',¢') S h. We define first the restriction g
of this function to finite arguments. Let z € qD ([U]HC) be finite. By Theorem 2, there exists
y € [U]SEQ* such that y S 2. We have y ~ y and hence y =~ y, by inductive hypothesis. But
by symmetry and transitivity of =, we have (f,¢) = (f,¢), so f(y) = f(y) and by inductive
hypothesis, f(y) ~ f(y) so there exists z € qD ([T]HC) such that f(y) S z and this z is unique
by functionality of S. Moreover, z does not depend on the choice of y: if y’ satisfies also y’ S z,
then y ~ g, hence by inductive hypothesis, y = y', hence, as (f,¢) = (f, ), we have f(y) = f(v')
and then, by inductive hypothesis, f(y) ~ f(y') and since f(y) S z and S is functional, we have
f(¥')S z. So we can set g(z) = z. The function g is completely characterized by the following
property: for any finite € qD ([U]HC> and any y € [0]5FQ_|if y S z, then f(y) S g(z) (and then,
also, f'(y) S g(z), as f(y) = f'(y) and thus f(y) ~ f'(y) by inductive hypothesis).

Let us prove that g is monotone. Let z,z’ € qD ([U]HC) be finite and such that z C z’. By
Lemma 6, there exist y,y’' € [0]3EQ_ such that y S z, ¥’ S 2’ and y < y'. We have f(y) < f(v'),
f(y) S g(z)and f(y') S g(z'). Hence, by Lemma 7, we have g(z) C g(2'). Now let us check that g is
strongly stable (for families of C ([U]HC) whose elements are finite). Let zy,...,2, € qD ([U]HC)
be finite and such that {z1,...,2,} € C ([U]HC). By Lemma 6, there exist yy,...,y, € [O’]SEQ*
such that {yi,...,y.} € C" ([U]SEQ), 1 S z1,..,yn S z, and A;y: S Neyzi. By se-
quentiality of f we have {f(y1),..., f(y.)} € C ([T]SEQ) and f(A=qvi) = Ai=i f(yi). Since
fly) S g(z1),..., f(yn) S g(z,), we have by Lemma 7 that {g(z1),...,9(z,)} € C ([T]HC>
and AiLy f(yi) S Mizy g(xi). We also have that AiLy f(y:) = f(Ai1 ) S g(Miy @i) and hence
g(Ny zi) =Ny g(z;) by functionality of S.

To conclude, it remains to extend ¢ to non finite elements. Let A : qD ([U]HC> —qD ([T]HC>

be defined by
h(z) = | J{g(z0) | 7o C = and zo finite} .

By monotonicity of g, h is well defined and continuous. One checks easily that A is strongly stable.
Let us prove that (f,¢) S h. Let z € qD ([U]HC) and y € [0]5FQ_ be such that y S z. By

Lemma 8, we can find an increasing sequence (z;);en of finite elements of qD ([U]HC) and an

increasing sequence (y;)ieN of elements of [0]3EQ_ such that J'; ; = 2, \V_; y; = v, and, for all

i €N, y; Sai. Wehave f(y) = VZy f(y:) and h(z) = U2 g(x;) (because the a;’s are finite), and
hence, by Lemma 4, f(y) S h(z). Hence (f,¢) S h and similarly (f',¢') S h, so (f,¢) ~ ([, ¢')

and we conclude. "

If V is a set and R is a partial equivalence relation on V', the relation R is an equivalence
relation on the set V' of elements of ¥V which are related to themselves by R. We call quotient of
V by the partial equivalence R, and denote by V/R, the quotient V'/R.

20



For any type o, the relation S induces an injective mapping from [0]3EQ_/ ~ to qD ([U]HC),
which is surjective onto finite elements. So by the theorem above, this mapping can be considered
as a function ¢, from [¢]5EQ_/ ~ to qD ([U]HC), and it can be checked that this family of functions
(¢,) is a model morphism (that is, commutes to the interpretation of terms) from the extensional
collapse of the sequential algorithm model to the strongly stable model. Moreover, if y € [0]SEQ,

and z € gD ([U]HC) are such that y S x, and if y is compact, it is easily shown, using lemma 8

and the functionality of S, that z is finite. One can also prove that conversely, if z € qD ([U]HC) is
finite, there exists y € [0]5EQ_ compact*such that y S @ (for this, one can use for instance the finite
retractions introduced in definition 11 below). So ¢, induces a bijection between the equivalence
classes of compact sequential algorithms of type o and the finite strongly stable functions of the
same type. Hence if, instead of considering the hierarchy of simple types based on the type of
natural numbers, we consider a hierarchy based on some finite approximation of the type of natural
numbers (for instance, the booleans), the strongly stable model is the extensional collapse of the
sequential algorithms model as in that case, for any type o, all the elements of gD ([U]HC> are finite

and all the elements of [0]3EQ_ are compact. This result can be extended to the hierarchy based
on natural numbers. This is done by Jaap van Oosten in [vO97] and by John Longley in [Lon98]
in realizability settings.

We give now a simple proof of this general result in our sequential algorithms setting.

Clearly, it suffices to extend theorem 2, showing that for any ¢ € gD ([U]HC), there exists

y € [O']SEQ* such that y S . For this purpose, the main ingredients are theorem 2 and Konig’s
lemma.

For starting with, let us remind some quite standard technical material from [Ehr96] (with a
non-standard terminology).

Definition 11 Let E be a sequential structure. A retraction on F is a mmonotone map p : F, — F,
which is stably less than the identity. A retraction p on F is finite if moreover:

o p(E,) is finite
o for any y € F., there are only finitely many cells of E which are filled by p(y) (and hence
p(y) is compact).

A retraction p is continuous and satisfies pop = p.
It is proven in [Ehr96] (lemma 12) that, if p is a retraction on F, then (p, 7”) is a sequential
algorithm, where 7P is given by

v « if a is not filled by y, but is filled by some element of p(E,)
mh(a) = .
yr 1 otherwise

Then (p, 7P) is less than the identity sequential algorithm (lemma 12), and if p; and p; are finite
retractions on E such that p; < pg, then (pg, 7Pt) < (pg, 772) (lemma 13 of [Ehr96]).
Let p be a retraction on F and ¢ be a retraction on F. Then the map

[p,ql: (E=F), = (E=1F),
(fie) = (g7 o(f,¢)o(p,n")

*Observe however that if y compact, one can perfectly have y ~ y' for some non compact y'.
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is a retraction on F = F, which is finite as soon as p and ¢ are finite (see lemma 22 of [Ehr96]).
Moreover the map (p, ¢) — [p, ¢] is clearly monotone with respect to the pointwise order which, for
retractions, is equivalent to the stable order.

Let o be a PCF type and let p be a retraction on [0]SEQ. Let r be a strongly stable map from

[0]HC to itself. We write p S’ r if p(y) S r(z) for all y € [0]3EQ_ and = € D ([U]HC) such that
ySz.

Let 7 be another PCF type, ¢ be a retraction on [7]5FQ and s be a strongly stable map from
[7]HC to itself such that ¢ S' s. Let [r, s] be the following strongly stable map:

*

[r,s]:qD ([a—>r]HC) ~ D <[U_>T]Hc)
g — sogor

One checks easily that [p,¢] S’ [r, s].

In the proof of lemma 8, we have endowed each hypercoherence [¢]7% with an increasing family
(rn?)nenN of functions from [0]HC to itself, which has the identity as lub, and such that each r,°
takes only finite values and has finite range. Moreover, remember that r,°~7 = [r,7,r,"].

Hence, since each function r, (see the proof of lemma 8) is a finite retraction on w, the con-
siderations above show that one can endow each sequential structure [¢]5FQ with an increasing
family (p”")nen of finite retractions such that p®* S’ r,? for all n € N: take p*" = r, and
p? T = [p®", p™"], and remember that the function (p,q) — [p, ¢] is monotone.

HC

Now let ¢ be a PCF type and let z € qD ([U]HC). For any natural number n, let z, = r,7 (2).

Let U, be the set of all elements y of p”([¢]5EQ ) which satisfy y S z,. This set is finite, as
p°™ is a finile retraction. It is also non-empty: let z € [0]3EQ_ be such that 2 S z,, (such a z exists
by theorem 2 as z,, is finite). Then one has p?"(2) S 1,7 (z,,) = @.

Consider now the set ¢ of all the sequences (yi,...,y,) such that y; € U; for all ¢ < n, and
y1 < ...< y,. Endowed with the prefix order, this set is a tree, which is finitely branching as the
sets U; are all finite.

Moreover, for any n € N, there exists a sequence (y1,...,y,) € U (take any y, € U, and set
y; = p°(y,) for i < n) so U is infinite.

By Koénig’s lemma, ¢ has an infinite branch. In other words there exists an infinite sequence
(y1,92,...) such that (y1,y2,...,yn) € U for all n € N. For all i € N, we have y; S @; and y; < yiy1.
By lemma 4, \/;cn¥i S Vien i = @ and we are done.

We can summarize as follows the results proven above.

Theorem 5 For any type o of PCF and any x € qD ([U]HC), there exists y € [0]5EQ_ such that
ySz.

The family of morphisms (¢,) is an isomorphism between the extensional collapse of the sequen-
tial algorithms model of PCF and its strongly stable model.

7 Concluding remarks and acknowledgments

We proved theorem 1 some years ago, but we observed only recently that it could be applied for
comparing the equational theories of the models SEQ and HC. The idea of using logical relations
for this purpose comes from discussions with A. Bucciarelli (the proofs follow the pattern presented
in [Buc97]). The idea that the strongly stable model could be the extensional collapse of the
sequential algorithms model was suggested by a remark of S. Abramsky, after his reading of [Ehr96].
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It results actually from [Ehr96] that HC is the extensional collapse of a model of “extensional”
sequential algorithms, which differs from the standard model of sequential algorithms we consider
here.

I want to thank John Longley who pointed out to me that, in an earlier version of this paper,
the final statement concerning the extensional collapse was not a direct consequence of the results
previously proved, as the generalization of theorem 2 based on the use of Kénig’s lemma was absent
from that version.

Theorem 5, combined with the fact that the model of sequential algorithms is fully abstract for
the extension PCFC of PCF by a “catch and throw” operator (see [CCF94]), seems to indicate that
there should exist a sub-language of PCFC admitting a fully abstract semantics in HC. Roughly
speaking, it suffices likely to add to PCF all the closed terms M of PCFC of simple second order
types which satisfy [M]3EQ ~ [M]5EQ. But this is not a very explicit definition, and it would be
interesting to define such a sub-language in terms of a (preferably finite) set of second order natural
intensional primitives.
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