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Objective

Show that differential interaction nets are sufficiently expressive for
encoding faithfully a sgnificant fragment of the π-calculus.

The fragment: no sums (additives?), no recursion, no replication
(promotion?).
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A typing system

Single type symbol o (outputs), subject to the following recursive
equation o = ?o⊥ � o.

We set ι = o⊥, so that ι = !o ⊗ ι and o = ?ι� o.

Types are MELL formulae based on o and ι (up to these
equations). Here, we use only o, ι, !o and ?ι.

Typing a net consists in associating a type A to each oriented wire
w . If w ′ is w reversed, the type of w ′ must be A⊥.

Typing rules associated with cells must be respected.

Thomas Ehrhard, Olivier Laurent Differential interaction nets and processes



Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets

A bisimulation theorem
Examples

Cells and nets
Reduction rules
A labeled transition system of simple nets
A toolbox for process interpretation

Multiplicative fragment

Binary cells:

•

o

o
?ι � •

!o

⊗

ι

ι

Constants:

⊥
o

1
ι
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Exponential fragment

Dereliction, weakening and contraction:

?
ι ?ι

?
?ι

?
?ι

?ι

?ι

Codereliction, coweakening and cocontraction:

!
o !o

!
!o

!
!o

!o

!o
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Closed promotion cell

A simple net is an interaction net made of these cells (respecting
types), and of the fothcoming closed promotion cell.

A net is a finite formal sum of simple net with the same interface.

Given a (non necessarily simple) net s with only one free port
os we introduce a cell s !

!o
, called closed promotion.
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Labels

We use a set L of labels. They will determine what is observable
from our reduction and used for defining labeled transitions
systems of nets and of processes.

L is countable and has a dummy element τ .

The simple nets are labeled: each dereliction and each
codereliction cell is equiped with a label from L.

If, in a simple net, two of these labels are equal, they must be
equal to τ .
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Multiplicative reduction

• •� ⊗

?ι ?ι

o

o
;m

o o

?ι

⊥
o

;m ε1� 1
o

;m

?ι

o

?ι

o 1

!

;m

!o

ι

⊗ ⊥

!o

ι

?

⊥
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Exponentials: deterministic reductions

Let R be a set of labels, if l ,m ∈ R , then we have the
communication reduction:

? !
ι ι?ι

;c,R
ι

l m
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Exponentials: deterministic reductions (continued)

The next deterministic reduction rules are the structural ones:

?ι

?ι

?ι
?

!

!

! ;s

!

!o

!o

!o
?

?

? ;s

?ι
? ;s εs! ?

?ι

?ι

?ι
;s

s!

s!

s!
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Exponentials: deterministic reductions (continued)

Structural reductions (continued):

?ι
? ! ;s ε

? !

?ι

?ι

?ι
?ι

?ι

;s

!

!

?

?

Semantically, contraction is associative, weakening is neutral for
contraction etc. But there is no need to require corresponding
reductions or equivalences on nets.
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Exponentials: non-deterministic reductions

It is here that sums of nets appear. To be understood as
non-deterministic superposition.

All net constructions distribute over sums of nets. If a subnet of a
simple nets reduces to 0, the whole simple net reduces to 0.

If R ⊆ L and l , r ∈ R , we have the reductions:

? !
ι ?ι

l
;nd,R 0 ! ?

o !o

l
;nd,R 0
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Exponentials: non-deterministic reductions (continued)

?

?

?

?

ι ?ι

?ι?ι

!? +

l

l

;nd,R

?ι

l

!

!

!

!

! ?
o !o

!o

!o
+

l

l

;nd,R
l
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Exponentials: promotion reduction

?
ι ?ι

s;b
s!

l
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Confluence

∆: the set of all nets, N〈∆〉: the set of all nets.

If R ⊆ ∆ × N〈∆〉 is a rewriting relation, R∗ ⊆ N〈∆〉 × N〈∆〉 is
the transitive closure of its “extension to sums”.

Theorem

Let R ,R ′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some of the

reduction relations ;c,R , ;nd,R′ , ;m, ;s and ;b. The relation

R∗ is confluent on N〈∆〉.

The proof is straightforward (reduction is local, no critical pairs).

Particular reduction: ;R = ;m ∪ ;c,{τ} ∪ ;s ∪ ;b ∪ ;nd,R .
We set ;d = ;∅.
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A labeled transition system DL:

objects: simple nets

transitions labeled by pairs of labels

s
lm
−→ t if s ;

∗
{l ,m} s1 + s2 + · · · + sn where

s1 is a simple net which contains a communication redex with
dereliction labeled by m and codereliction labeled by l , and
becomes t when one reduces this redex
and for i > 1, whenever si ;

∗
{l,m} s ′, none of the summands of

s ′ has such a communication redex.
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Dereliction-tensor and codereliction-par cells

Let n ∈ N be a non-negative integer. We define an n-ary cell as
follows. It will be decorated by the label of its dereliction cell (if
different from τ).

?⊗

!o

!o

?ι

⊗
⊗

⊗
1

?

!o

!o

!o

ι ?ι

•

•
•

•

=.

.

. l

l

Codereliction-par cell defined dually.
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Prefix cells

n-ary input and n-ary output prefix cells are

!�?⊗

?⊗

!

••
.

.

.

.

.

.

.

.

. =
ll

?

!�
!� ?⊗

••
.

.

.

.

.

.

.

.

. =
ll

where n is the number of pairs of auxiliary ports.
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Reduction of prefixes

If the two prefix cells have the same arity, then one has

• •

.

.

.

!?
.

.

.

.

.

.

m

l

;c,{l,m} u ;
∗
∅

otherwise, the lefthand configuration reduces to 0 (but we can
avoid this situation).
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Boxed identity

Let I be the following “identity” net ��?⊗

⊥

o•

Then we shall use the closed promotion cell I !: I ! .
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Transistor triggering

We use the unlabeled unary output prefix cell as a kind of
transistor, triggered by the boxed identity cell, since indeed we
have the reduction

I ! ?
•

;
∗
∅
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Communication areas

Let n ≥ −2. We define a family of nets with 2(n + 2) free ports,
called communication areas of order n. Here is how we picture a
communication area of order 3:

3
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Communication areas of order −1, 0 and 1

?∗

!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗

where the ?∗-cells are “contraction trees” (containing possibly
weakening cells) and similarly for the !∗-cells.
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Other representation of a communication area of order 1

!

? ?

?

! !
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Aggregation of communication areas

When connecting two distinct communication areas through a pair
of wires, one obtains a new one, applying only structural
reductions:

p + q .

.

.

.

.

.

p ;
∗
s

q .

.

.

.

.

.
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Identification structures

Given a function f : {1, . . . , p} → {1, . . . , n}, one defines a
structure, using only communication areas:

1 . . .

. . .

f

p

n1

For instance, if n = 4, p = 3, f (1) = 2, f (2) = 3 and f (3) = 2, it is

−1

1

0−1
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Identification structures composition

Applying communication areas aggregation, we have:

;
∗
s

f

g

g ◦ f

. . .

. . .

. . .

. . .

. . .
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Interaction between prefixes and communication areas

?

!

!

?

?! ! ?ti
r r ′

p +

N∑

i=1

· · · · · ·

l lm

m

;
∗
{l,m}

· · ·

p + 1
l m
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Syntax

N = {a, b, a1, . . . } a set of names.

Empty process: nil

Parallel composition: P1 | P2

Name restriction: νa · P

Input prefix: Q = [l ]a(b1 . . . bn) · P where the names
a, b1, . . . , bn are pairwise distinct. The bis are bound. l ∈ L.

Output prefix: [l ]a〈b1 . . . bn〉 · P , no restriction on the names
a, b1, . . . , bn, they are all free in the process. l ∈ L.

The labels of a process must be distinct from τ and pairwise
distinct.
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States of the machine

Environment: finite partial function e : N → N .

Closure: (P , e) with all free names of P in the domain of e.

Soup: multiset S = (P1, e1) · · · (PN , eN) with all labels
pairwise distinct.

State: (S ,L) with L ⊆ N finite (the private names of the
state).

The state is canonical if all the Pis start with input or output
prefixes.
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Canonical form of a state

The reduction

((nil, e)S ,L) ;can (S ,L)

((νa · P , e)S ,L) ;can ((P , e[a 7→ a′])S ,L ∪ {a′}) fresh a′

((P | Q, e)S ,L) ;can ((P , e)(Q, e)S ,L)

is confluent on states (up to α-conversion). The normal forms are
canonical states.

Can(S ,L) the normal from of (S ,L) for this reduction.
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A labeled transition system of states

Objects: canonical states.

Transitions labeled by pairs of labels, defined by

(([l ]a(b1 . . . bn) · P , e)([m]a′〈b′
1 . . . b′

n〉 · P
′, e′)S ,L)

lm
−→ Can((P , e[b1 7→ e′(b′

1), . . . , bn 7→ e′(b′
n)])(P

′, e′)S ,L)

if e(a) = e′(a′).
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Translation of processes
Translation of states

General principle

The translation is not a function but a relation because we do not
work up to associativity, commutativity. . . of (co)contraction: there
are many different (co)contraction trees of the same arity.

Given a repetition-free list a1, . . . , an of names, Ia1,...,an is a
relation from processes whose free names are in that list and
simple nets of the shape

t
a1 an

. . .

c

where c is an additional controle port.
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Empty process

nil Ib1,...,bn
t if t is of the shape

bn

. . .

b1

?∗
c
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Name restriction

νa · P Ib1,...,bn
t if there is s such that P Ia,b1,...,bn

s and t is of the
shape

s

a b1 bn

. . .

c
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Parallel composition

P1 | P2 Ib1,...,bn
t if t is

b1 bn

. . .

b1 bn

. . .

. . .

c
c c

t1 t2

γ1 γn

?∗

with P1 Ib1,...,bn
t1, P2 Ib1,...,bn

t2 and γ1, . . . , γn are
communication areas of order 1.
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Input prefix

[l ]a(b1 . . . bn) · P Ia,c1,...,cp t if t is

!
I !

•

?
•

s

. . .

a c1 cp. . .c

c1 cp

b1 . . .

. . .

bn

ac

l

γ
?∗

with P Ia,b1,...,bn,c1,...,cp
s. Remember that a and the bi s are

pairwise distinct.
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Output prefix

[l ]bf (0)〈bf (1) . . . bf (q)〉 · P Ib1,...,bn
t if t is

•

?

?
•

I !

.

.

.

bnb1 . . .

. . .
b1 bn

.

.

.

1

nq

0
c

f
.

.

.

c

. . .

s

l

γn

δ

!∗ γ1

with P Ib1,...,bn
s.
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Translation of soups

(P1, e1) . . . (PN , eN) Ib1,...,bn
t if t is

I !I !

e. . .

. . . . . .

. . .

. . .

1

1

p

n

c c

. . .

s1 . . .

δ

sN

if Pi Icni +1,...,cni+1
si (with c1, . . . , cp a repetition free list containing

all the free names of all Pi s) and e such that ei(cj ) = be(j) for
ni + 1 ≤ j ≤ ni+1.
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Translation of processes
Translation of states

Translation of states

(S ,L) Ib1,...,bn
t if S Ic1,...,cp,b1,...,bn

, c1, . . . , cp is a repetition-free
enumeration of L and t is s where communication areas of arity −1
have been plugged on the pairs of ports corresponding to the cj s.
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The main result

(S ,L) Ĩb1,...,bn
s if there exists a simple net s0 such that

(S ,L) Ib1,...,bn
s0 and s0 ∼d s.

Theorem

The relation Ĩb1,...,bn
is a bisimulation from the labeled transition

system of canonical states to the labeled transition system of

simple nets.

Uses crucially the confluence of the reduction.
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What this means

Assume that (S ,L) Ĩb1,...,bn
s and let l ,m ∈ L \ {τ}.

If (S ,L)
lm
−→ (T ,M) then there is a simple net t such that

s
lm
−→ t and (T ,M) Ĩb1,...,bn

t.

If s
lm
−→ t then there is a canonical state (T ,M) such that

(S ,L)
lm
−→ (T ,M) and (T ,M) Ĩb1,...,bn

t.
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Concurrent communication

P = νa ·
((

[l ]a() · nil | [m]a〈〉 · nil
)
| [r ]a〈〉 · nil

)
I s where s is

I !

I !

?∗

?∗

?

!
•

• •

?∗

?

•
?

!∗

I !

•

?∗

?

•
?

!∗

I !

?∗

l m r
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Applying aggregation of communication areas, we get

?∗

!

I !

?∗

I !

?•

•

?

?

I !

?∗

•

•

?

?

I !

?∗

•

•
!∗

?∗

!∗

l
m r
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Applying the ;d reduction, we get

!
•

I ! ?∗

?∗

?
•

?∗

I !

!∗

!∗

I ! ?∗

?•

l
m

r
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And this nets reduces to a sum of two nets, by the
prefix/communication area interaction. One of these is

I !

?∗

!

?
•

?∗

I !

!∗

?
•

?∗

I !

m •

r

l
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Sequentiality

Let P be the process

[l ]a′() · [l ′]b′() · nil | [m′]b′〈〉 · nil | [m]a′〈〉 · nil

Then P Ib s where s reduces by aggregation to
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?∗

I !

?

?

I !

?∗

•

•

?

?

I !

?∗

•

•
!∗

!

I !

?•

•

?∗

!∗

?∗

!

I !

?•

•

?∗

mm′l

l ′

a′

b′
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which reduces by ;d to

!•

I !

?∗

?
•

?∗

?∗

I !

!
•

?
•

!∗

?∗

I !

?
•

!∗

?∗

I !

m

l ′

m′

l

a′

b′
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Which reduces to a sum s1 + · · · where s1 (and only s1) contains a
communication redex on l and m, and by reducing this redex, we
get from s1

?
•

?∗

?∗

I !

!
•

?
•

!∗

?∗

I !

I !

l ′

m′

a′

b′

and only now it will be possible to reduce l ′/m′.
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Name passing

νz ·
(
[l ]a〈z〉 · P | [l ′]z(y) · Q

)
| [m]a(x) · [m′]x〈b〉 · R translates to

s which (up to some aggregations. . . ) is

c c c

I !

I !

I !

I !

!

?∗

?

!∗

?∗

!

!∗

?
?

•

•
•

•

•

s1 s2 s3
a z y x b
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m

m′

b′

a′
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Then s
ml
−→ t∼dt

′ where t ′ is

c c c

I !

I !

!

?∗

!∗

?

•

•

s1 s2 s3
a z y x bI !

m′

l ′

b′

a′

in which the names x and z are now identified (the corresponding
communication areas are connected).
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Finally t ′
l ′m′

−→ t ′′ where t ′′ is

I ! I !
c c cs1 s2 s3

a z y x bI !

b′

a′
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