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This talk

Try to use the regularity of morphisms in the cartesian closed
category Pcoh, (they are power series with coefficients > 0 with
> 0 radius of convergence).

In particular: these functions have differentials. What is their
probabilistic operational meaning? Two (related) answers:

® Expected computation time
® QOperational distance

in a probabilistic functional programming language: pPCF.



Syntax of probabilistic pPCF

Syntax:
OTy.i=L | o=T
M,N,P...:=n| succ(M) | pred M | x | coin(r) | let(x, M, N)

| if(M,N,P) | (M)N | Ax° M | fix(M)

with r € [0, 1].



Typing rules

TEn:e Nx:okFx:0o

r-M:. rTEM:
[+ succ(M) = M+ pred M0

Fr=M:. x:tFN:o Only for M of type ¢!

M |et(X, Ma N) -0

Mx:ocFM:7 rEM:o=1 r=N:o
FEAT M o= FE(MN T
(FM:o=o re o]

TEfix(M):0  TFcoin(r) e



Intuitions on pPCF

F M : . means that M represents a subprobability distribution on
the integers.

Example: coin(1/3) weights 0 with probability 1/3, 1 with
probability 2/3 and n + 2 with probability 0.

let(x, M, N): samples an integer according to M and feeds N
through x with the obtained value (a n for some n € N).

F M : 1= means that M is an (generally non linear)
sub-probability distribution transformer.



Reduction rules

We define a weak head reduction strategy.

Deterministic reduction rules

O MYN =g M[N/x]  fix(M) —q (M) fix(M)

succ(n) g n+1 if(0, M,N) —q M

if(n+1, M,N) -4 N let(x, n, N) —4 N [n/x]



Probabilistic reductions

M —4 M’ T E—
YNV coin(p) 50 coin(p) ' 1
M B v M L

(M)N B (M')N succ(M) 2 succ(M’)

M5 M
let(x, M, N) 5 let(x, M’, N)

M2 M
if(M, N, P) 5 if(M', N, P)




Probability of reduction

Given M such that = M : ¢, we can consider all possible reductions
from M to a given integer constant n:

M=M2MB...2%MmM =n

Summing up the probabilities Hf;l p; of all these paths we get the
probability that M reduces to n, denoted Pr(M | n).



Observational distance

Given M and N such that = M : 0 and F N : o, one defines the
observational distance dops(M, N) between M and N as the sup of
all

[Pr((C) M 1 0) = Pr((C) N | 0O)|
for all possible “contexts” which are closed terms C such that
FC:o0=1

M and N are observationally equivalent if this “distance” is 0.

dobs(_, ) is a distance on the observational classes of closed terms
of type o (for any type o).
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Reminder — Probabilistic coherence
spaces: an “analytic’ denotational model



If u,u’ € (Rxo)! then (u, v’y =3, uiu} € Rxo.
If P C Roo then

PL:{UIERZOI|VUEP<U,UI>S1}.

A probabilistic coherence space (PCS) is a pair X = (|X|, PX)
where PX C ]Rizopq such that

e PXtL =PX

® Vac |X|[3IxePX x,>0

® Vac |X[ImeRs0VxePX x;<m
So actually PX C (Rxo)X!.



Dual of X: X1 = (|X|,PX") so that X1+ = X.

Examples of PCS's.
® 1= ({*},[0,1]) with 1+ =1 for 0 < r < o0.
* Bool = 1@ 1= ({t,f},{(x. %) € Ry | x +x < 1})
* Bool" =1&1=({t,f}, {(x.x) € R% | xt,x < 1})
° N=(N{xeRx0)"| XZox <1})



Linear morphisms in PCS's

Linear morphisms from X to Y: if t € (R0)XI*IY! (a matrix) and

x € PX (a vector) then we can apply the matrix to the vector:

tx € (Rso) Y with ( Z tabXa
ac|X|

Then t is a linear morphism from X to Y (t € Pcoh(X, Y)) if
Vx € PX tx € PY. This defines a category Pcoh, a model of LL
(with all fixpoints of types and term fixpoint operators at all types).

Pcoh(X,Y) is a PCS structure, that is Pcoh(X,Y) =P(X — Y)
fora PCS X — Y with |[X — Y| = |X| x |Y].

P(N — N): sub-stochastic matrices on N x N.



Non-linear morphisms in PCS's

The non-linear morphisms X — Y are the elements of P(1X — Y)
where [X is a PCS with |IX| = Mg, (| X]) (finite multisets).
If x € PX and m € |IX] define

— I .

ac|X|

Then t € P(1X — Y) = Pcoh|(X, Y) is characterized by

Vx €PXE(x)= | D tmpx" ePY

me|lX]| belY]|

Pcoh, is a model of probabilistic pPCF. Morphisms are functions:

—

tos=tosand (Vx € PX 5(x) = t(x)) = s = t.



pPCF interpretation

Pcoh, is a cartesian closed category with an object of integers N
and least fixpoints operators (X = X) — X for all X. An thus it is
a model of pPCF.

[t] =N and [o = 7] =![o] — [7]
fTr-M:owithl =(xq:01,...,x: 0k) then

[[M]]r S PCOhg([[O’l]] & - & [[Uk]], [[U]])

so [M]r can be seen as a function Hf-;l Ploi] — P[o].



Why no negative coefficients in power
series’

Seems crucial for combining fixpoints and power series. Assume
e.g. that we admit the “weak parallel or” function

wpor : [0, 1] x [0,1] — [0, 1] (u,v) —»u+v—uv
Spawns two threads, stops as soon as one of them stops.
Add it to pPCF. Then we can define - P:1=1 by
P = fix(Af*=* Ax" wpor(x, () x)) .

Spawns an unbounded number of copies of x, stops as soon as one
of them does. Then [P](0) =0 and [P](u) =1 for u > 0.
Scott continuous, but far from being analytic!



EN ESSAYANT CoNTINUELLEMENT

ON FINIT PAR.REUSSIR. DONC!
PLUS G.A RATE, PLUS ON A

DE CHANCES QUE ¢ & MARCHE. .




Example of term interpretations

* [xilr(d) = ui

® [n]r(d) = e, where (e,); = 6n; € PN.

° [[if(Mv N, 'D)]]r -
[MIr(@)o[N]r () + 2R IMIr (@)n) [Pl ()

® [coin(p)]r(d) = peo + (1 — p)er

* [let(x, M, N)Tr (@) = 3252 IMIr (@)n[ N (4, €n)



Main properties of this interpretation

Fact
For all M with = M : v and n € N, we have Pr(M | n) = [M],,.

As a consequence

Fact (adequacy, Danos and E.)

For all M, N such that = M : o and = N : o, we have
[M] = [N] = dobs(M, N) =0

And also
Fact (full abstraction, Pagani, Tasson and E.)

The converse implication.
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Derivatives and execution (on an
example)



In a pPCF extension with unit type 1, for r € [0, 1]
M, = fix(AF= Axtif (coin(r), (F) x; (F) x, x;x))

where () is the unique value of type 1 and ;" is the “unit
conditional” (M; N reduces to () if both M and N do).

Then [M,] is a monotonic function ¢, : [0,1] — [0, 1] minimal
such that ¢, (u) = (1 — r)u? + ro.(u)?. Hence

i e

u? ifr=0.

NB: by adequacy, (1) is Pr((M,) () | ())



r = 0.2 — graph of @o(u) = (1 — v1—0.64u2)/0.4
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r = 0.3 — graph of g 3(u) = (1 — v/1—0.84u2)/0.6 (steeper

slope at u = 1)
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r = 0.5 — graph of wg5(u) = 1—+/1— u? (vertical slope at u = 1)
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r = 0.6 — graph of vpe(u) = (1 —v1—0.9602)/1.2 (poe(u) <1
but less steep slope at u = 1)
T T T T

0.6 - .




r = 0.9 — graph of v o(u) = (1 —+v1—0.36u2)/1.8
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Probability of termination of (M,) () for r € [0, 1]:

1—/1—4r(1—r)
(Jpr(l): 2r
_1—J1-2r|
N 2r

Lroifr>1/2

r

_{1 if r<1/2



Graph of ¢,(1) for 0 < r < 1: probability of termination of (M,) ().
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= Z an(r)u”
n=0

Fact

an(r) € [0,1] is the probability that the execution of (M,) () uses n
times the argument () in its reduction to ().

(1) = lim orld)

u—1— 1—u Z n an(

Fact

(1)/¢r(1) is the conditional expectation of this execution time,
under the condition that the computation terminates.

S
2,
—



In the example we can compute this derivative. We have
pr(u) = (1= r)u® + ro (u)®
so
er(u) =2(1 = r)u+ 2ro (u)p(u)
The conditional expectation of execution time is

oy (1) 21—-r)  _ {2{12:) if0<r<1/2

o)~ (T—2rp(W))er(1) ~ |25 f1/2<r<1




Graph of ¢.(1)/¢,(1): conditional expectation of the number of

steps in the reduction of (M,) () for 0 < r <1.
T T T T
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Lipschitz property and distances



Amplification of probabilities

Ve € [0,1] &> 0= dops(coin(0), coin(e)) =1

Take C = fix(Af*=* Ax"if(x, 0, (f) x)) then

Pr((C)coin(0) L 0) =0
Pr((C)coin(e) } 0) =1 Ve >0



The denotational distance

There is a “norm” on PX:
Ix|lx = sup{(x,x') | X € PX*} €[0,1]

For instance ||x||n = Yoo Xn-

Also PX is a lattice: x Ay € PX defined pointwise.
Then

dx(x,y) = Ix = (x Ay)lIx +[ly = (x Ay)lix -

defines a distance on PX.



Remember that dops(coin(0), coin(e)) =1 if £ > 0.
On the other hand [coin(0)] = e; and [coin(e)] = eep + (1 — €)ey.
Also e1 A (ceg + (1 —¢€)er) = (1 — €)ey.
dn([coin(0)], [coin(e)]) = [ler — (1 — &)ex|In
+[[(1—¢€)er +eep — (1 —¢€)er]n
= 2¢.

Remember that by Full Abstraction, if - M : 0 and - N : o,
d[[a]]([[Mﬂv [[N]]) =0< dobs(Ma N) =0

we would like to say something not completely trivial in the case
dobs(M, N) # 0 by limiting the space of observation contexts (in
the spirit of the work of Dal Lago and al. on probabilistic distances).



The local PCS

Given x € PX, there is a PCS X, such that
P(Xx) = {u € PX | x+uePX}
We have [ Xy| = {a € |X||3e >0 x + ce, € PX}.

It is a PCS (not completely obvious).
This is the local PCS of X at x.

[ es € (Rx0)X! defined by (€2)s = 61 ]



Local derivatives

Let t € Pcohi(X,Y) and x € PX
Given u € P(Xx), we know that x + u € PX and hence we can
compute t(x + u) € PY:

t(x 4 u)p = Z tmp(x + u)™

mée|lX|
m
SIS B G P
me|lX| p<m p

where



So keeping only the terms which are constant (p empty) and linear
(p singleton) in u:

B+ Y s 3 (m(3) + 1)ty px™ < Ex+ u) € PY
ac|X|  me|lX|

that is

Z ( Z (m(a) + 1)tm+[a]7bxm) us € P(X?(x))

ac|X| \me|'X|



So we define the “Jacobian matrix" of t at x by

V()ap= > (m(a)+ 1)tpifaex™

me|lX]|

and we have seen that

t,(X) S P(XX, Y?(X)) .

Fact (chain rule)

Let s € Pcoh((X,Y) and t € Pcohi(Y, Z). Let x € PX and
u € PX,. Then we have (t o s)'(x) u = t'(5(x)) s'(x) u.



A Lipschitz propery

We take some p € [0,1). Let t € Pcoh(X,1).

Fact (basic observation)

If x € PX and ||x||x < p, then Yu € PX, one has

Ix + (1 = pullx < lIxlx + (1 = p)llulx <1
so (1 —p)u e P(Xx).

So ifw e P(Xx — Y), we have Vu € PX ||lw (1 — p)ully <1 and
hence

(I-pweP(X—-Y).



In particular
(1 - p)t'(x) € P(X — 1).
Let x <y € PX such that ||y|[x < p. Observe that 2 — p > 1.

Then x + (2 —p)(y —x) =y + (1 = p)(y — x) € PX since
ly = xllx < llylx <p <t



Since x + (2 — p)(y — x) € PX we can define

h:[0,2—p] — [0,1]
0 t(x +0(y — x))

We have h € Pcohy([0,2 — p], [0, 1]) by compositionality.

Remember that 2 — p > 1so 1 € [0,2 — p). By Chain Rule
Vo € [0,1], H'(0) = t'(x + O(y — x)) (y — x).

Since ||x + 0(y — x)|Ix < |lyllx < p we have
Vo €[0,1] (1—p)t'(x+0(y—x))€P(X —1).
Hence

V0 €[0,1] H(0) =t'(x+0(y —x))(y —x) < w '



We have
0 < t(y) — t(x) = h(1) — h(0)

1 —_—
0 I—p

From this we deduce easily

Fact (Lipschitz property of non-linear morphisms)

Let p€ [0,1) and t € Pcoh(X,1). Let x,y € PX with
Ix[lx; [lyllx < p. Then

_ dx(x, )
|2(x) = t(y)] < EEre



A syntactic consequence

fr-C:o=1let C» with + CP : 5 =1 be
CP) = Xx? (C)if(coin(p), M, Q).

So that [(CP) M] = [[/C\]](pﬂl\/l]]) when WM :o. If FM: o and
FN:o.

Definition (p-tamed observational distance)

d®) (M, N) = sup{’Pr((C<”>) M10)— Pr((c<P>) N¢g)’

| FC:o=1}



d (M, Ny

= sup{|[[CT(p[MI)o — [CI(PINI)o| | F C o =1}
< sup{[E(pIM]) — E(p[N]|) | t € P([o] — 1)}

d ?
< et PIRL _ P gy, i),




We have proven:

Fact (metric adequacy of PCS's)

If =EM:0, EN:o and0 < p <1, then

d (M, N) < %d[a]]([[lw]]? [N])

So for instance

2ep
1-p

déﬁl(coin(O), coin(e)) <




Perspectives

e Understand better what happens on the border of PCS's
(elements such that ||x|| = 1)

e Extend to “continuous types”’ (using positive cones and
Crubillé's Theorem on stable functions on positive cones)

e A differential pPCF and probabilistic LL? What is the
proof-theoretic status of these local derivatives?
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