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Abstract

We present a category of locally convex topological vector spaces which is a model of propo-
sitional classical linear logic, based on the standard concept of Köthe sequence spaces. In this
setting, the “of course” connective of linear logic has a quite simple structure of commutative
Hopf algebra. The co-Kleisli category of this linear category is a cartesian closed category of
entire mappings. This work provides a simple setting where typed λ-calculus and differential
calculus can be combined; we give a few examples of computations.

1 Introduction

It has been clear from the very beginning that linear logic has something to do with linear al-
gebra, and thus that, at some point, some real or complex coefficients should naturally appear.
Nevertheless most concrete models discovered so far are essentially discrete (coherence spaces, hy-
percoherences, games. . . ). Interpreting formulae of linear logic as vector spaces is not easy because
to formulae containing exponentials one must associate infinite dimensional spaces and for that
reason, topological vector spaces must be considered. Several models based on topological vector
spaces have already been presented, by Girard [Gir99] and Blute [Blu96], in a setting considered
first by Barr in [Bar79, Bar91]. Other semantics of typed lambda-calculi with real coefficients have
been considered, among which we would like to mention in particular Danos and Harmer’s prob-
abilistic games [DH00], whose non-deterministic character seems to be very much in the spirit of
the model presented here.

We propose a quite concrete approach based on a standard notion in the theory of locally
convex topological vector spaces (lcs for short), the notion of Köthe sequence spaces (see [Köt66]).
These spaces constitute a well-behaved class of Hausdorff and complete lcs which are not Banach
spaces in general and, with this respect, our approach will radically differ from Girard’s model
of coherence Banach spaces. Another difference is the absence of any notion of coherence in our
model, whereas in Girard’s setting, “coherent” vectors are those whose norm is less than 1. Our
semantics will also be quite different from Blute’s model as the topology we shall consider on the
underlying field (the field of real numbers, or the field of complex numbers) will be the standard
topology, not the discrete one. In [Bar79], chapter 4, example 1, topological vector spaces over the
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field of real or complex numbers with the usual topology are also considered, and the construction
presented in that book (and simplified later with the help of Chu spaces) yields a ?-autonomous
category (a model of multiplicative-additive linear logic) which, using the constructions of [Bar90],
should lead to a model of full propositional linear logic based on topological vector spaces. These
constructions however are fairly abstract, and we do not know whether a more concrete description
of the resulting model is possible.

The central notion of the model under consideration is the concept of an absolutely converging
sum. For understanding the relevance of this concept to denotational semantics, one must consider
settings where the exponentials of linear logic are interpreted in a non-uniform way, as in the
models induced by the symmetric product phase spaces of [BE01]. The usual coherence space
semantics indeed is uniform: this means that the elements of the web of the coherence space !E
are the finite cliques (or multi-cliques) of the coherence space E. For that reason, this semantics
has the essential property that the intersection of a clique and an anti-clique contains at most one
element. Intuitively, in a language inspired by game models, the interaction between a strategy
and a counter-strategy yields at most one result: this is a property of determinism. As explained
in [BE01], in a non-uniform version of coherence spaces, the intersection of a clique and an anti-
clique can have more than one element. This is due to the fact that, in this setting, two distinct
points of a web can be neutral (that is, neither coherent nor incoherent) without being equal.

The basic “algebraic” intuition behind coherence spaces is that cliques of E should be considered
as “vectors” and that anti-cliques of E (that is, cliques of E⊥) should be considered as “linear forms”
on E; indeed, E⊥ is isomorphic to E ( ⊥, the space of linear maps from E to ⊥ (the one point
coherence space, which plays the rôle of the “field” considered as a space). If we consider a subset
of |E| as a |E|-indexed family of elements of {0, 1} (the “field” considered as the set of scalars1),
then given a clique x of E and an anti-clique x′ of E, their intersection has 0 or 1 element, and its
cardinality is trivially given by

#(x ∩ x′) =
∑
a∈|E|

xax
′
a ,

this sum converging because at most one of its terms is different from 0(!). In a non-uniform setting,
there is no reason why this sum should converge: in the non-uniform coherence spaces mentioned
above, we just know that if xax′a = 1 and xbx

′
b = 1, then a and b are neutral, but they can be

different. It is here that Köthe spaces come in: let us replace the “field” {0, 1} by one of the two
fields R or C (denoted by K), and let us take as a basic requirement for building our spaces the
convergence of the sum above. Another solution consists in staying in the discrete setting (still
considering subsets of the webs) and saying that two subsets are orthogonal if their intersection is
finite; this leads to the notion of finiteness spaces, see [Ehr00].

More precisely, an at most countable set I being given (the web), we replace the notion of
“subset of I” by the notion of “element of KI”. Then, given x, x′ ∈ KI we replace the notion
of “cardinality of the intersection of x and x′” by the notion of “value of the series

∑
i∈I xix

′
i”.

This latter value of course is not always well defined; since there is a priori no order relation on
I, the only reasonable condition to ask on x and x′ for this series to converge is to require its
absolute convergence2. So, following Girard’s terminology (which, in the present context, could be
misleading, and therefore will be avoided later on), let us say that x, x′ ∈ KI are orthogonal if the

1It is definitely not a field in the usual sense, we just take the word “field” for developping an analogy.
2A classical result due to Riemann asserts that if a family (xi)i∈N is such that

P
i∈N xσ(i) converges for each

permutation σ of the natural numbers, then the series
P

i∈N xi converges absolutely.
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series
∑

i∈I |xix′i| converges, that is, if xx′ ∈ `1(I). Then the notion of “coherence space of web I”
will be replaced by the notion of subset E of KI such that E = E⊥⊥ for this orthogonality, where
E⊥ denotes the set of all the elements of KI which are orthogonal to all the elements of E3.

It turns out that such a subset E of KI is always a vector space (with operations defined in
the obvious componentwise manner), and even a locally convex topological vector space which is
Hausdorff and complete (its topology is defined by a family of semi-norms induced by the elements
of E⊥): these spaces are Köthe sequence spaces4 (which are classically defined as the orthogonals
of certain subsets of KI called Köthe sets), a notion due to Köthe and Toeplitz; see [Jar81], which
will be our basic reference for locally convex spaces. Another classical reference book on this
topic is [Sch71], see chapter 4 for a few informations on Köthe sequence spaces. More detailed
informations on Köthe sequence spaces can also be found in [Pie72] and of course in [Köt66] (in
German). The topological vector spaces so defined are not always (more precisely, they are almost
never) Banach spaces, they can even not be metrizable, but they behave remarkably well with
respect to the operations needed for interpreting linear logic. The sum operation in these spaces
corresponds intuitively to the superimposition of various possible results of a (non-deterministic)
computation: this use of the sum operation has already been considered by Arbib and Manes
in [AM86], see also [Hag01] where Haghverdi uses sums (at the “geometry of interaction” level)
for building fully complete models of multiplicative linear logic. Possible connections between our
model and Haghverdi’s constructions have still to be explored.

For us, a Köthe space is a pair X = (|X|, EX) where |X| is an at most denumerable set and
EX is a subset of K|X| such that EX⊥⊥ = EX . So the space is given together with |X| (its web;
the word has not to be taken in the sense it has in the theory of locally convex spaces), that is,
with an explicit topological Schauder basis (see [Sch71] chapter 3 and [Jar81] chapter 14) which
is actually an absolute topological basis (see [Jar81] chapter 14), and we shall heavily use this
basis in our constructions. A morphism from X to Y is a linear continuous function from EX to
EY , and we show that these functions are in bijective correspondence with the elements of EX(Y

where X ( Y is a Köthe space whose web is |X| × |Y |; the element of EX(Y corresponding to
a linear continuous function is its (infinite-dimensional) matrix. We also define a tensor product
of Köthe spaces and show that the category of Köthe spaces and continuous linear maps is a ?-
autonomous category with (at most countable) sums and products, and we obtain in that way a
model of multiplicative additive linear logic. One of the most striking features of this semantics
is non-determinism. Typically, a boolean value will not simply be t (true) of f (false), but an
arbitrary linear combination λt + µf of these two values, with coefficients λ, µ ∈ K.

Next we introduce the exponential !X of a Köthe space X, which turns out to have a quite rich
algebraic structure. As in [Gir99], the vector space E!X(Y will be isomorphic to a space of analytic
mappings taking their values in EY , but here, these mappings will be defined on the whole space
EX (and will actually be entire functions). In [Gir99] indeed, the analytic functions were defined
only on the open unit ball, that is, on a set of “coherent” vectors: in that sense, the semantics
of coherence Banach spaces is uniform whereas ours is not. Take Y = ⊥ (that is, EY = K) for
simplicity. The web of !X will be, as it is standard in the semantics of linear logic, the set of all

3Interestingly enough, coherence spaces can also be defined in this way: say that x, x′ ⊆ I are orthogonal if
#(x ∩ x′) ≤ 1, then a coherence space of web I can equivalently be defined as a subset of P(I) which is equal to its
bi-orthogonal.

4It is worth observing that the basic “pre-?-autonomous situations” considered in [Bar79], chapter 4, example 1,
are classes of Köthe sequence spaces, suggesting possible connections between the model we present here and the
above mentioned model due to Barr.
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finite multi-sets on |X| (a multi-set on a set I is a map from I to N, it is finite if it vanishes almost
everywhere). Given x ∈ EX and µ ∈ |!X|, we define xµ as the finite product

∏
a∈|X| x

µ(a)
a : this is

just the standard notion of a multi-exponent used in the theory of polynomials (or entire functions)
of several variables (the rôle of the variables being played by the elements of the web), and we define
E!X simply as the biorthogonal of the set of all families (xµ)µ∈|!X| when x ∈ EX . Equivalently,
E(!X)⊥ is the set of all families (uµ)µ∈|!X| of scalars such that the series

∑
µ∈|!X| uµx

µ converges
absolutely, for all x ∈ EX , that is, the space of all power series which converge on the whole space
EX . To give a concrete example, when X = 1 (again, |X| is a singleton, so EX = K), |!X| = N
and E(!X)⊥ is the space of all power series of infinite convergence radius on K. Coming back to the
general situation, an entire map from X to Y (Köthe spaces) is by definition a function from EX
to EY which is definable by such a series (which is then necessarily unique). This interpretation
of intuitionistic proofs as entire maps is of course completely in the spirit of Girard’s quantitative
semantics (see [Gir88, BE99], and also [Has97] where a method is developed for computing the
coefficients of the “power series” associated to λ-terms in Girard’s quantitative semantics).

The space !X has a co-algebraic structure, as it is standard in the semantics of linear logic
(this structure is used for interpreting contraction and weakening), but also an algebraic structure,
and is actually a quite simple commutative and co-commutative Hopf algebra. The algebraic
structure is used e.g. for computing the derivatives of entire maps. The operation X 7→ !X is
functorial, and defines as usual a comonad on the category of Köthe spaces and continuous linear
maps satisfying the properties required for interpreting the ! modality of linear logic. The co-
Kleisli category of this co-monad is therefore cartesian closed, and is isomorphic to the category
of Köthe spaces and entire maps. This may seem surprising a priori as one is used to the idea
that continuity on Hausdorff spaces, and so a fortiori analyticity, is incompatible with cartesian
closeness5. The point is that our entire maps are not continuous with respect to the native topology
of the Köthe spaces on which they are defined; continuity with respect to this topology is relevant
only for linear maps. Typically, the bilinear evaluation function EX × EX⊥ which maps (x, x′) to
〈x, x′〉 =

∑
a∈|X| xax

′
a is not continuous with respect to the product topology, as soon as the set |X|

is infinite. Although this phenomenon may seem weird, it is completely standard in the theory of
locally convex spaces. For instance, the extension of differentiability to infinite dimensional vector
spaces developed by Frölicher and Kriegl in [FK88] is apparently based on the idea that smoothness
is not a topological notion, but a “bornological” notion. This viewpoint is exploited in the book
by Kriegl and Michor [KM97].

At the end of the paper, we sketch a theory of intrinsic Köthe spaces for advocating the fact
that, although we used intensively the webs in our space constructions, the spaces obtained do
not really depend on them. We define an intrinsic Köthe space as a topological vector space E
which is linearly homeomorphic to some Köthe space: this is a property of the topology of E.
Using the functoriality of the operations defined on Köthe spaces, we show how each operation on
Köthe spaces has a corresponding operation on intrinsic Köthe spaces. For instance, given E and
F intrinsic Köthe spaces, we endow L(E,F ) (the vector space of linear continuous maps from E
to F ) with a topology such that this space becomes an intrinsic Köthe space. For defining this
topology, we use linear homeomorphisms of E and F to Köthe spaces, but the resulting topology
does not depend on this choice. Of course, it would be much more satisfactory to directly define this
topology in terms of the topologies of E and F , but we do not know how to do that in general yet
(we give a negative result which closes the most natural track). Note that an isomorphism between

5See [Mac71], chapter 7, section 8 and also the introduction of [Gir99].
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E and some Köthe space EX can also be seen as a choice in E of an absolute basis satisfying some
additional requirement (corresponding to the fact that EX = EX

⊥⊥); we choose such bases in E
and F for defining the topology of L(E,F ), although this topology does not depend on this choice.

Of course, the present work does not pretend to bring any new idea to the rich theory of func-
tional analysis and topological vector spaces. Our approach is intensionally quite concrete (bases
are used everywhere), we do not seek for generality; for instance in our spaces of analytic mappings,
we only consider mappings defined on the whole space by a power series having an “infinite radius
of convergence” (entire functions), although Köthe spaces are probably more expressive than that.
We just want to illustrate the fact that rather simple topological vector spaces can quite easily be
used for modeling standard linear logic and typed λ-calculus6. The paper remains at an elementary
level, and no deep knowledge of the theory of topological vector spaces is required; this is due to
the omni-presence of webs (canonical bases). Many important questions remain unanswered among
which we can mention: characterization of the topology in linear and entire function spaces, char-
acterization of the tensor product and comparison with the standard tensor products on lcs. They
are postponed to future work.
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2.2 Köthe spaces and linear continuous maps . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Equicontinuous sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Direct sums and products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 A negative result about the topology of linear function spaces . . . . . . . . . . . . . 18

3 Exponentials and entire functions 20
3.1 Functorial action of the exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The co-monadic structure of the exponential . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The co-algebraic structure of the exponential . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The Hopf algebra structure of the exponential . . . . . . . . . . . . . . . . . . . . . . 28

4 A cartesian closed category of entire mappings 29
4.1 Computing derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Towards an intrinsic theory 33
5.1 Topological dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Linear function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6In [Gir99], linear logic is modified so as to make its interpretation in the category of coherence Banach spaces
possible, by the introduction of weighted sequents. This is due to the fact that Girard’s analytic functions are
defined on the open unit ball whereas proofs are interpreted in the closed unit ball; weights are used for enabling the
application of an analytic function to the interpretation of a proof. This discrepancy seems essentially due to the
fact that his analytic maps are required to be continuous with respect to the topology of the Banach spaces on which
they are defined.

5



5.3 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Some examples 40

2 Köthe spaces

We denote by K the field of real or complex numbers endowed with its usual topology. Let I be an
at most denumerable set. A (I-indexed) sequence space is a sub-vector space of KI which contains
all sequences u such that ui = 0 for almost all i (that is, such that the set {i ∈ I | ui 6= 0} is finite).

For the sake of self-containedness, we recall first some simple informations about infinite sums.
A family u = (ui)i∈I of non-negative real numbers is summable if the set {

∑
j∈J uj | J ∈ F} ⊆ R+

(where F is the set of all finite subsets of I) is bounded, and then
∑

i∈I ui denotes the least upper
bound of this set. A family u = (ui)i∈I of elements of K is absolutely summable if the family
(|ui|)i∈I of non-negative real numbers is summable. In that case, the net (

∑
i∈J uj)J∈F converges

to an element of K denoted by
∑

i∈I ui. This sum can also be defined as the sum of the absolutely
convergent series

∑∞
n=0 uin where (in)n∈N is an arbitrary enumeration without repetitions of I

(assuming I to be infinite). For absolutely summable families, summing is an associative and
commutative operation.
Duality. If u, v ∈ KI , we shall say that u and v are in duality if the sum

∑
i∈I |uivi| converges,

that is, if uv ∈ `1(I). In that case, we shall denote by 〈u, v〉 the sum
∑

i∈I uivi, which converges
absolutely. If E is any subset of KI , we denote E⊥ the set of all the elements of KI which are
in duality with all the elements of E. This set E⊥ (the dual of E) is obviously a sequence space.
If E ⊆ KI satisfies E = E⊥⊥, then E is a Hausdorff locally convex topological vector space
(see [Jar81, Sch71, Köt66]), with topology defined by the following semi-norms (Nx′)x′∈E⊥ :

Nx′(x) =
∑
i∈I

∣∣x′ixi∣∣
Since this collection N of semi-norms is directed (that is, if N,N ′ ∈ N there exists N ′′ ∈ N

such that N(x), N ′(x) ≤ N ′′(x) for all x) and satisfies also, for each λ ∈ R+, N ∈ N ⇒ λN ∈ N ,
the induced locally convex topology can be described as follows: a subset U of E is a neighborhood
of 0 in E iff there is an element x′ of E⊥ such that

∀x ∈ E Nx′(x) < 1 ⇒ x ∈ U .

When E ⊆ KI satisfies E⊥⊥ = E, we denote by ε(E) the locally convex topology just described
above. Unless otherwise specified, such a subspace E of KI will always be considered as equipped
with the topology ε(E). If E is any subset of KI , then E⊥⊥⊥ = E⊥, and so the dual E of any
subset of KI is a subset of KI which satisfies E⊥⊥ = E.
Remark: This topology ε(E) is in general strictly finer than the weak topology on E and
strictly coarser than the strong topology, and is called the normal topology of the sequence space
E in [Sch71, Köt66]. In these books, a sequence space E such that E = E⊥⊥, equipped with its
normal topology, is called a perfect sequence space (vollkommene Folgenraum). The weak topology
is the locally convex topology on E associated to the semi-norms

νF : x 7→ sup
x′∈F

∣∣〈x, x′〉∣∣
6



where the sets F are arbitrary finite subsets of E⊥, whereas the strong topology, which is also
locally convex, is defined in the same way, but now with F belonging to the much larger class
of all bounded subsets of E⊥ (F is bounded when Nx(F ) is bounded in R+, for each x ∈ E).
See [Jar81, Sch71] for more details on these notions.

If x ∈ KI , we denote by |x| the family (|xi|)i∈I ∈ (R+)I ⊆ KI . The next property (sometimes
called solidity in the literature on sequence spaces) is obvious in the present setting, but will be
intensively used in the sequel.

Lemma 2.1 If E ⊆ KI satisfies E⊥⊥ = E, then

x ∈ E ⇔ ∃y ∈ E |x| ≤ |y| .

Until the end of this section, E denotes a subset of KI such that E⊥⊥ = E. This set E is
considered as a topological vector space, endowed with its normal topology ε(E).

The next lemma (as part of the material in this section) is completely standard, we give its
proof because it is simple.

Lemma 2.2 The space E is complete.

Proof: This actually results from the completeness of the Banach space `1(I). We give a direct
proof. Let (x(γ))γ∈Γ be a Cauchy net in E. So (Γ,≤) is a directed set and for all x′ ∈ E⊥ there
exists γ ∈ Γ such that, for δ, δ′ ≥ γ, one has Nx′(x(δ) − x(δ′)) < 1. Then for each i ∈ I, the net
(x(γ)i)γ∈Γ is Cauchy in K and hence has a limit xi. We show first that the family x = (xi)i∈I
belongs to E. So let x′ ∈ E⊥, we show that Nx′(x) <∞. For each n ∈ N, choose γn ∈ Γ such that
Nx′(x(δ)− x(δ′)) < 2−n for δ, δ′ ≥ γn. We may assume the sequence (γn) to be monotone, and we
set x(n) = x(γn). For each i ∈ I, the sequence (x′ix(n)i)n∈N clearly converges to x′ixi in K. Let
J ⊆ I be finite, we have

∑
i∈J

∣∣x′ixi∣∣ =
∑
i∈J

∣∣∣∣∣x′ix(0)i +
∞∑
n=0

(
x′ix(n+ 1)i − x′ix(n)i

)∣∣∣∣∣
≤

∑
i∈J

∣∣x′ix(0)i
∣∣ +

∑
i∈J

∞∑
n=0

∣∣x′ix(n+ 1)i − x′ix(n)i
∣∣

=
∑
i∈J

∣∣x′ix(0)i
∣∣ +

∞∑
n=0

∑
i∈J

∣∣x′ix(n+ 1)i − x′ix(n)i
∣∣

≤ Nx′(x(0)) +
∞∑
n=0

Nx′(x(n+ 1)− x(n)) ≤ Nx′(x(0)) + 2

and we conclude since this holds for all finite J ⊆ I. One shows exactly in the same way that
Nx′(x− x(n)) ≤ 2−n, and from this it follows that the net (xγ) converges to x in E.

We denote by K(I) the subspace of KI whose elements are the families which vanish almost
everywhere.

Lemma 2.3 The vector space K(I) is a dense subspace of E. Therefore, E is separable (that is,
contains a dense countable subset).
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So E can also be considered as the completion of K(I) for the topology ε(E). The proof is trivial.
Remark: Such a space E satisfying E⊥⊥ = E is not necessarily a Banach space. Assume that
I is infinite and take for E the space `1 of all the x ∈ KI such that

∑
i∈I |xi| converges. Then

E⊥ is the space of all bounded families. Indeed, if x′ ∈ KI is unbounded, one can find a sequence
(in)n∈N of pairwise distinct elements of I such that

∣∣x′in∣∣ ≥ 2n. If we define x ∈ KI by xi = 0 if
i /∈ {in | n ∈ N} and xi = 2−n if i = in, then x ∈ E and x and x′ are not in duality, so x′ /∈ E⊥.
Therefore E = E⊥⊥, and as a topological vector space, E is easily seen to be the usual Banach
space `1. But E⊥ is identical to `∞ only as a vector space; its topology (induced by E) is strictly
coarser than the topology of the Banach space `∞. Indeed, if x ∈ E, there is i ∈ I such that
|xi| ≤ 1/4 and for such an i, we have Nx(x′) = 1/2 for x′ ∈ E⊥ defined by x′j = 0 if j 6= i and
x′i = 2. So the unit ball of the semi-norm Nx is not contained in the unit ball of the norm of `∞,
and therefore, this latter unit ball is not a neighborhood of 0 in E⊥. Observe by the way that E⊥

is separable, whereas `∞ is not.
More generally (see [Sch71, Köt66]), given p, q ∈ [1,∞] with 1

p + 1
q = 1, one can establish a

linear isomorphism between (`p)⊥ and `q, and therefore (`p)⊥⊥ = `p. When 1 < p < ∞, neither
`p nor `q can be a Banach space, when equipped with their topologies ε(`p) and ε(`q) (it is proved
in [Jar81] that any Köthe sequence space – see below the definition of this notion – which is a
Banach space is linearly homeomorphic to `1). An easy direct reasoning (similar to the one above
in the case `1/`∞) shows that indeed the topology ε(`p) is strictly coarser than the topology of the
Banach space `p.

The duality between E and E⊥ is determined by the following bilinear map, which is well-defined
by definition (the sum involved in this definition converges absolutely in K).

E × E⊥ → K

(x, x′) 7→ 〈x, x′〉 =
∑
i∈I

xix
′
i

Remark: This map is separately continuous, but not continuous at (0, 0) (for the product
topology), as soon as the set I is infinite. Indeed, if it were continuous at (0, 0), there would exist
y′ ∈ E⊥ and y ∈ E such that, whenever (x, x′) ∈ E × E⊥ satisfy Ny′(x) < 1 and Ny(x′) < 1 then
|〈x, x′〉| < 1. But since

∑
i∈I |yiy′i| <∞, there exists i ∈ I such that |yiy′i| < 1

8 . Then one can find
x, x′ ∈ (R+)I such that xj = x′j = 0 for j 6= i and xi ≤ 1

2|y′i|
, x′i ≤ 1

2|yi| and xix
′
i ≥ 2, and we have

a contradiction.
Again, the following simple lemma is completely standard.

Lemma 2.4 A semi-norm N : E → R+ is continuous iff there exists x′ ∈ E⊥ such that for all
x ∈ E, N(x) ≤ Nx′(x).

Proof: Assume first that N is continuous. There is a neighborhood V of 0 in E such that
x ∈ V ⇒ N(x) < 1. So, by the very definition of the topology of E, there exists x′ ∈ E⊥ such that
Nx′(x) < 1 ⇒ N(x) < 1, for all x ∈ E. Assume that, for some x ∈ E, N(x) > Nx′(x). Then there
exists t > 0 such that N(tx) ≥ 1 > Nx′(tx) and we have a contradiction.

Conversely, let N be a semi-norm on E and let x′ ∈ E⊥ be such that N ≤ Nx′ . Let x ∈ E and
let ε > 0. Let U be the open unit ball of the semi-norm N 1

ε
x′ and let y ∈ E be such that y−x ∈ U .

We have N(y) = N(y−x+x) ≤ N(y−x)+N(x) and so |N(y)−N(x)| ≤ N(y−x) ≤ Nx′(y−x) < ε.
So N is continuous.
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Since in K there is a basis of neighborhood of 0 consisting only of disks, we have:

Lemma 2.5 A linear form f : E → K is continuous iff the semi-norm |f | : E → R+ which maps
x to |f(x)| is continuous.

For i ∈ I, we denote by ei the element of KI defined by (ei)j = δi,j (the Kronecker symbol).
These vectors constitute the “canonical absolute basis” of E.

Lemma 2.6 The space E⊥ is linearly isomorphic to the topological dual E′ of E.

Proof: First, if x′ ∈ E⊥, then the map x 7→ 〈x, x′〉 is well defined and linear from E to K. It
is continuous by lemma 2.4 since |〈x, x′〉| ≤ Nx′(x). We denote by x̂′ this continuous linear map.
Clearly, the map x′ 7→ x̂′ is linear. Conversely, given a continuous linear map f : E → K, the
semi-norm |f | is continuous and so there is x′ ∈ E⊥ such that |f | (x) ≤ Nx′(x) for all x ∈ E.
Taking x = ei, we get |f(ei)| ≤ |x′i|. From this, and from lemma 2.1, it results that setting
y′i = f(ei) for each i ∈ I, one defines an element y′ of E⊥ that we denote by M(f). The map
f 7→ M(f) is clearly linear. Lemma 2.3, together with the continuity and linearity of f , implies
that f(x) = 〈x,M(f)〉 for each x ∈ E, that is M̂(f) = f . Conversely, for x′ ∈ E⊥, one has for
each i ∈ I: M(x̂′)i = x̂′(ei) = 〈ei, x′〉 = x′i and the announced linear bijective correspondence is
established.

2.1 Köthe sequence spaces

In [Jar81], particular subspaces E of KI are obtained as the duals of Köthe sets, that is, subsets P
of (R+)I such that

• P is directed for the pointwise order on functions, that is: ∀p, q ∈ P ∃r ∈ P p, q ≤ r

• and ∀i ∈ I ∃p ∈ P pi 6= 0.

In that situation, one writes traditionally E = Λ(P ) and E is called a Köthe sequence space; Λ(P )
is always considered as a topological vector space for the topology defined by the semi-norms CNp

(for p ∈ P and C ∈ R+). Indeed, the first condition on P ensures that the absolutely convex sets
{x ∈ Λ(P ) | Np(x) < ε} constitute a filter basis at 0, and the second condition ensures that the
corresponding topology is Hausdorff.

Lemma 2.7 The topologies induced on P⊥ by P and by P⊥⊥ are identical if and only if for any
x ∈ P⊥⊥ there exists p ∈ P and C ∈ R+ such that |x| ≤ Cp.

Proof: First, since P ⊆ P⊥⊥, the topology τ induced by P⊥⊥ is always finer than the topology
τ ′ induced by P . If the condition stated in the lemma holds, it is clear that τ ′ is finer than
τ . Conversely, assume that τ ′ is finer than τ . Then for any x ∈ P⊥⊥, the semi-norm Nx is τ ′-
continuous, since it is τ -continuous, hence there exists p ∈ P and C ∈ R+ such that CNp ≥ Nx

(see the proof of lemma 2.4), but this in turn implies Cp ≥ |x|.
Consequently, the topology induced by P⊥⊥ can be strictly finer than the topology induced by

P . Consider indeed the following situation: let D be a maximal ideal of P(N), that is a subset
of P(N) which is closed under finite unions, downwards closed with respect to inclusion, does not
contain N and is maximal with all these properties. Assume moreover that all the finite subsets
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of N belong do D; such a maximal ideal exists by Zorn’s lemma. Then let P be the set of all
characteristic maps of elements of D, it is a Köthe set. The element u of KN which is constantly
equal to 1 belongs to P⊥⊥, and so by lemma 2.7 the topology induced by P⊥⊥ on P⊥ is strictly
finer than the topology induced by P . That u ∈ P⊥⊥ results from the fact that P⊥ = `1 (as a
vector space) as, if this were not the case, there would exist p ∈ KN such that p /∈ `1 and p ∈ P⊥.
But for such a p, it is possible to find two disjoint infinite subsets of N, L and R, such that none
of the restrictions of p to L and R belong to `1. Since D is maximal, we must have L ∈ D or
N \ L ∈ D, and hence L ∈ D or R ∈ D, in contradiction with the fact that p ∈ P⊥.

2.2 Köthe spaces and linear continuous maps

We adopt the following definition of Köthe space, which coincides with the notion of perfect (vol-
lkommene) sequence space of [Sch71, Köt66]. The discussion above shows that it is more restrictive
than the notion of Köthe sequence spaces as defined in [Jar81].

Definition 2.8 A Köthe space is a pair X = (|X|, EX) where |X| is an at most denumerable set
(the web) and EX ⊆ K|X| satisfies EX⊥⊥ = EX . If X is a Köthe space, its dual X⊥ is defined
by |X⊥| = |X| and EX⊥ = EX

⊥. When X is a Köthe space, EX will always be considered as
topological vector space, with topology ε(EX) (the normal topology).

Observe that when |X| is finite, EX = K|X|, with the usual product topology.

Lemma 2.9 A linear function f : EX → EY is continuous iff for all y′ ∈ EY ⊥, the semi-norm
Ny′ ◦ f : EX → R+ is continuous.

Proof: Assume that for all y′ ∈ EY ⊥ the semi-norm Ny′ ◦f is continuous. It suffices to show that
f is continuous at 0. Let V be a neighborhood of 0 in EY . Let y′ ∈ EY ⊥ be such that the open
unit ball of the semi-norm Ny′ is included in V . Since the semi-norm Ny′ ◦ f is continuous, there
exists x′ ∈ EX⊥ such that Ny′ ◦ f ≤ Nx′ . Now if x ∈ EX satisfies Nx′(x) < 1, we have f(x) ∈ V
and so f−1(V ) is a 0-neighborhood in EX , so f is continuous. The converse implication is trivial.

Let f : EX → EY be a linear function. We define its matrix M(f) ∈ K|X|×|Y | by M(f)a,b =
f(ea)b.

Lemma 2.10 Let f : EX → EY be linear. If f is continuous, then for all x ∈ EX and y′ ∈ EY ⊥,
the double sum ∑

a∈|X|,b∈|Y |

M(f)a,bxay′b

converges absolutely.

Proof: Let y′ ∈ EY ⊥ ; the semi-norm Ny′ ◦ f on EX being continuous, there exists x′ ∈ EX⊥ such
that

∀x ∈ EX Ny′(f(x)) ≤ Nx′(x) ,

so that in particular (taking x = ea)

∀a ∈ |X|
∑
b∈|Y |

∣∣y′bM(f)a,b
∣∣ ≤ ∣∣x′a∣∣ . (1)
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Now let x ∈ EX , the sum
∑

a∈|X| |xax′a| converges, and so by (1) the sum

∑
a∈|X|

|xa|

 ∑
b∈|Y |

∣∣y′bM(f)a,b
∣∣

converges and the lemma is proved, since we are dealing with sums of positive terms.

Lemma 2.11 Let M ∈ K|X|×|Y | be a matrix such that the sum∑
a∈|X|,b∈|Y |

Ma,bxay
′
b

converges absolutely for all x ∈ EX and y′ ∈ EY ⊥. Then the linear function f : EX → K|Y | given
by f(x)b =

∑
a∈|X|Ma,bxa is well defined, takes its values in EY and is continuous from EX to EY .

Proof: By our assumption about M , taking y′ = eb, we see that (Ma,b)a∈|X| ∈ EX⊥ and so f is
well defined and is obviously linear EX → K|Y |. Moreover, if x ∈ EX , then f(x) ∈ EY as indeed,
if y′ ∈ EY ⊥ , one has

Ny′(f(x)) =
∑
b∈|Y |

∣∣y′b∣∣
∣∣∣∣∣∣
∑
a∈|X|

Ma,bxa

∣∣∣∣∣∣
≤

∑
b∈|Y |

∣∣y′b∣∣ ∑
a∈|X|

|Ma,bxa| <∞

by our assumption about M .
It remains to show that f is continuous. Let y′ ∈ EY ⊥ and let x′ ∈ EX⊥ be given by x′a =∑
b∈|Y | |Ma,by

′
b| (that x′ is well defined and belongs to EX⊥ is a consequence of our assumption

about M). Then if x ∈ EX we have Ny′(f(x)) ≤ Nx′(x) and we conclude that f is continuous by
lemma 2.9.

We denote by M̂ the function f defined above, and when x ∈ EX , we denote sometimes by
M · x the vector M̂(x) ∈ EY .

Given two Köthe spaces X and Y , the set E of all matrices M ∈ K|X|×|Y | such that the sum∑
a∈|X|,b∈|Y |

Ma,bxay
′
b

converges absolutely for all x ∈ EX and y′ ∈ EY ⊥ is a subset of K|X|×|Y | which satisfies E⊥⊥ = E
(because it is defined as the dual of something), and so the pair (|X| × |Y |, E) is a Köthe space
that we denote by X ( Y . If S and T are topological vector spaces, we denote by L(S, T ) the
vector space of all linear continuous maps from S to T .

Proposition 2.12 The linear maps M 7→ M̂ from EX(Y to L(EX , EY ) and f 7→ M(f) from
L(EX , EY ) to EX(Y define a linear isomorphism between these two spaces.
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Proof: Given M ∈ EX(Y , we have M(M̂)a,b = M̂(ea)b = Ma,b and given f ∈ L(EX , EY ), for
each b ∈ |Y |, the map g : EX → K defined by g(x) = f(x)b is a continuous linear form, and so
g = M̂(g) by lemma 2.6. But M(g)a = g(ea) = f(ea)b = M(f)a,b and so we have, for each x ∈ EX ,
f(x)b =

∑
a∈|X|M(f)a,bxa, and since this holds for each b ∈ |Y |, finally we get that f = M̂(f).

We have defined a category KK whose objects are the Köthe spaces and whose morphisms are
the linear continuous functions between them.

The identity morphism from X to X is of course the usual identity function, and its matrix I is
the diagonal matrix Ia,b = δa,b. Corresponding to composition of functions, the product of matrices
is defined as usual: let A ∈ EX(Y and B ∈ EY(Z , the matrix BA ∈ EX(Z is given by

(BA)a,c =
∑
b∈|Y |

Aa,bBb,c .

This sum converges absolutely because (Aa,b)b∈|Y | ∈ EY as ea ∈ EX and (Bb,c)b∈|Y | ∈ EY ⊥ as
ec ∈ EZ⊥ . Moreover, if f : EX → EY and g : EY → EZ are the linear continuous maps defined
by A and B respectively, then M(g ◦ f)a,c = g(f(ea))c = g(

∑
b∈|Y |Aa,beb)c = (BA)a,c by linearity

and continuity of g. It follows, since g ◦ f is continuous, that BA ∈ EX(Z , and we have seen that
M(g ◦ f) = BA.

An obvious consequence of the considerations above on continuous linear maps is the following

Proposition 2.13 Let f : EX → EY be linear and continuous. Then its transpose tf : E′Y → E′X
(given by tf(v′) = v′ ◦ f) defines a continuous linear map f⊥ : EY ⊥ → EX⊥ whose matrix is given
as usual by M(tf) = M(f)⊥ where A⊥b,a = Aa,b for a matrix A ∈ K|X|×|Y |.

Proof: The function f⊥ is given by f⊥(y′) = M(ŷ′ ◦ f). It is clearly well defined, linear, and
takes its values in EX⊥ . Let A = M(f) ∈ EX(Y . Since clearly A⊥ ∈ EY ⊥(X⊥ , it suffices to show
that f⊥ = Â⊥. So let y′ ∈ EY ⊥ and let a ∈ |X|, we have

f⊥(y′)a = M(ŷ′ ◦ f)a
= ŷ′(f(ea))
= 〈y′, f(ea)〉
=

∑
b∈|Y |

Aa,by
′
b

= Â⊥(y′)a .

The map f⊥ is characterized by the following standard adjunction property:

∀x ∈ EX ∀y′ ∈ EY ⊥ 〈f(x), y′〉 = 〈x, f⊥(y′)〉 .

One defines in that way a contravariant involutive endofunctor X 7→ X⊥ on KK.
Let X and Y be Köthe spaces and let ϕ : |X| → |Y | be a bijection. We denote by ϕ∗ the

reindexing map K|Y | → K|X| given by ϕ∗(y)a = yϕ(a). The following lemma is easy but will be
useful in the sequel.
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Lemma 2.14 If, for each y ∈ K|Y |, one has y ∈ EY iff ϕ∗(y) ∈ EX , then ϕ∗ is a linear homeo-
morphism from EY to EX .

Proof: It is clear that ϕ∗ is linear, and since ϕ−1 satisfies the same condition as ϕ, it will be
sufficient to show that ϕ∗ is continuous. So let x′ ∈ EX⊥ and let y′ = (ϕ−1)∗(x′). We show that
y′ ∈ EY ⊥ , so let y ∈ EY . We know that ϕ∗(y) ∈ EX , so the sum

∑
a∈|X|

∣∣yϕ(a)x
′
a

∣∣ converges, that

is, the sum
∑

b∈|Y |

∣∣∣ybx′ϕ−1(b)

∣∣∣ converges (to the same value). Since this holds for each y ∈ EY , we
have y′ ∈ EY ⊥ . We have also shown that for each y ∈ EY we have Nx′(ϕ∗(y)) = Ny′(y), and so ϕ∗

is continuous.
Of course, not all linear homeomorphisms between Köthe spaces can be described as bijections

between the webs (in sharp contrast with what happens in the “discrete” denotational semantics),
but the “logical” isomorphisms which will be used for describing the categorical structures of the
model under study will be of that particular shape.

2.3 Equicontinuous sets

We start a short digression about the notion of equicontinuous sets. These sets indeed can easily
be used for describing the topology of the dual of a Köthe space, but unfortunately, this description
does not seem to extend simply to more general function spaces, see section 2.6.

If X and Y are Köthe spaces, a subset H of L(EX , EY ) is equicontinuous if, for any 0-
neighborhood V in EY , the set ⋂

f∈H
f−1(V )

is a 0-neighborhood in EX . If H ⊆ EX , we shall say that H is equicontinuous if the set Ĥ = {x̂ |
x ∈ H} ⊆ E′

X⊥ is an equicontinuous set of continuous linear forms on EX⊥ .

Lemma 2.15 A subset H of EX is equicontinuous iff there exists x ∈ EX such that for all y ∈ H,
|y| ≤ |x|.

Proof: Indeed, H is equicontinuous, by definition, iff there is a neighborhood V ′ of 0 in EX⊥

such that
∀x′ ∈ V ′ ∀y ∈ H

∣∣〈y, x′〉∣∣ < 1

but this in turn is equivalent to requiring that there exists x ∈ EX such that for all x′ ∈ EX⊥

and all y ∈ H, if Nx(x′) < 1 then |〈y, x′〉| < 1. Using the same kind of trick as in the proof of
lemma 2.4, one shows that this is equivalent to

∀x′ ∈ EX⊥ ∀y ∈ H
∣∣〈y, x′〉∣∣ ≤ Nx(x′)

which clearly implies (taking x′ = ea) that |ya| ≤ |xa| for all a ∈ |X| and all y ∈ H. It is obvious
that conversely, if |y| ≤ |x|, then the condition above is fulfilled.

Given a Köthe space X, we denote by EX the set of all the equicontinuous subsets of EX ; it is
clear that each of these sets is bounded (that is, for each B ∈ EX and each continuous semi-norm
p, the set p(B) is bounded). We show that these sets are even relatively compact.

Lemma 2.16 Let x ∈ EX . Then R(x) = {y ∈ EX | |y| ≤ |x|} is a compact subset of EX .
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Proof: Let D be the closed unit disk of K. Let ϕ : D|X| → EX be the function which maps
t ∈ D|X| to tx = (taxa)a∈|X| which belongs to EX because the family t is bounded. It is clear that
ϕ(D|X|) = R(x), and since D|X| is a compact space (for the product topology), it will be sufficient
to show that ϕ is continuous.

So let t ∈ D|X| and let x′ ∈ EX⊥ . Since the sum
∑

a∈|X| |xax′a| converges to, say, S ∈ R+, there
is a finite subset A of |X| such that

∑
a/∈A |xax′a| ≤ 1/4. Let U be the set of all the elements s of

D|X| such that
∀a ∈ A |sa − ta| < ε =

1
4(1 + S)

,

this is a neighborhood of t in D|X| (for the product topology) because A is finite. If s ∈ U , we have

Nx′(ϕ(s)− ϕ(t)) =
∑
a/∈A

∣∣x′axa(sa − ta)
∣∣ +

∑
a∈A

∣∣x′axa(sa − ta)
∣∣

≤ 2
∑
a/∈A

∣∣x′axa∣∣ + Sε < 1

by definition of ε and so ϕ is continuous.
As we have seen, this implies that each equicontinuous set is relatively compact. The converse

does not hold in general. Consider the space `1(N+), with canonical basis (en)n∈N+ . Then the set

{0} ∪ { 1
n
en | n ∈ N+}

is compact since each neighborhood of 0 in `1(N+) contains almost all the vectors 1
nen (remember

that `1(N+) is simply the usual Banach space). But clearly, there is no x ∈ `1(N+) such that
1
nen ∈ R(x) for all n ∈ N+.

Equicontinuous sets provide a simple characterization of the topology of the dual of a Köthe
space.

Proposition 2.17 Let X be a Köthe space. A subset U ′ of EX⊥ is a 0-neighborhood in EX⊥ iff
there is an equicontinuous subset H of EX such that, for all x′ ∈ EX⊥, if |〈x, x′〉| < 1 for all x ∈ H,
then x′ ∈ U ′. In other words, the topology of EX⊥ is the topology of uniform convergence on the
equicontinuous subsets of EX .

This is an obvious consequence of lemma 2.15.

Lemma 2.18 Let X and Y be Köthe spaces and let f : EY → EX be a continuous linear map. If
H ∈ EY then f(H) ∈ EX .

Proof: Let A = |M(f)| ∈ EX(Y and let x ∈ EX be positive (that is, xa ≥ 0 for each a ∈ |X|)
and such that H ⊆ R(x). Then f(H) ⊆ R(Ax) and so f(H) ∈ EY .

2.4 Direct sums and products

Let (Xj)j∈J be a countable family of Köthe spaces. Let K be the disjoint sum of the sets |Xj |. Let
E ⊆ KK be defined by: z ∈ E iff, for all j ∈ J , the restriction πj(z) of the family z to |Xj | ⊆ K
belongs to EXj . Then z′ ∈ E⊥ iff πj(z′) ∈ EXj

⊥ for each j ∈ J and, moreover, πj(z′) = 0 for almost
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all j ∈ J . Therefore, (K,E) is a Köthe space that we denote by &j∈J Xj . The dual operation
⊕j∈JXj = (&j∈J Xj

⊥)
⊥

can be described as follows: |⊕j∈JXj | is the disjoint sum of the |Xj |’s,
and z ∈ E⊕j∈JXj iff z ∈ E&j∈JXj

and πj(z) = 0 for almost all j ∈ J . It is clear then that &j∈J Xj

is the cartesian product of the spaces Xj in the category KK, and that ⊕j∈JXj is their direct sum.
Given x = (x(j))j∈J ∈ E&j∈JXj

and x′ = (x′(j))j∈J ∈ E⊕j∈JXj
⊥ , we have

〈x, x′〉 =
∑
j∈J

〈x(j), x′(j)〉 and Nx′(x) =
∑
j∈J

Nx′(j)(x(j))

which are finite sums.
So the space E&j∈JXj

is canonically isomorphic to
∏
j∈J EXj , and its topology is the product

topology. Observe also that, as usual in vector spaces, the finite direct sum EX⊕Y and the finite
direct product EX&Y are identical.

In particular, KN is a Köthe space, with dual K(N), the space of almost everywhere vanishing
sequences. As the infinite denumerable sum of 1 (the neutral element of the tensor product, see
section 2.5) in the category KK, this latter space will correspond to the domain of “flat natural
numbers”. The space K(N) is not metrizable (we shall prove this fact, using a simple Cantor
diagonalization argument), which shows that we cannot restrict our attention to Frechet Köthe
spaces, for instance (a Frechet space is a complete metrizable lcs). Assume indeed that K(N) is
metrizable, then its topology is induced by a denumerable family of neighborhood (Un)n∈N of 0.
There must exist a family (x′(n))n∈N of elements of KN such that Nx′(n)(x) < 1 ⇒ x ∈ Un for all
x ∈ K(N). Clearly, we can assume that x′(n) belong to (R+)N for each n ∈ N. Let x′ ∈ (R+)N be
given by x′n = x′(n)n + 1. Since (Un)n∈N generates the topology of K(N), there must exist m ∈ N
such that x ∈ Um ⇒ Nx′(x) < 1 for all x ∈ K(N), and this implies that x′(m) ≥ x′ (for the product
order), which leads to the usual contradiction, spelling out this inequation at index m.

Proposition 2.19 Let X be a Köthe space and let (Yj)j∈J be a family of Köthe spaces. Let ϕ :
|X ( &j∈J Yj | → |&j∈J (X ( Yj)| be the obvious bijection (distributivity of the cartesian product
over the disjoint sum). Then ϕ∗ is a linear homeomorphism from E&j∈J (X(Yj) to EX(&j∈JYj

.

The proof is a straightforward verification using lemma 2.14. This can also be considered as a piece
of abstract non-sense resulting from the fact that & is the cartesian product and from the fact that
the functor Y 7→ (X ( Y ) has a left adjoint (tensor product, see below).

2.5 Tensor product

One defines of course X ⊗ Y by X ⊗ Y = (X ( Y ⊥)⊥. The dual operation P is given by X P

Y = X⊥ ( Y . In other terms, X P Y is the space of all families P ∈ K|X|×|Y | such that
the double sum

∑
a,b Pa,bx

′
ay
′
b converges absolutely for all x′ ∈ EX⊥ and y′ ∈ EY ⊥ . For x ∈

EX and y ∈ EY , we define x ⊗ y ∈ K|X|×|Y | by (x ⊗ y)a,b = xayb, and then clearly EX⊗Y =
{x⊗ y | x ∈ EX and y ∈ EY }⊥⊥.

Lemma 2.20 Let A ∈ K(|X|×|Y |)×|Z|. One has A ∈ E(X⊗Y )(Z iff for all x ∈ EX , y ∈ EY and
z′ ∈ EZ⊥, the sum ∑

((a,b),c)∈|(X⊗Y )(Z|

∣∣A(a,b),cxaybz
′
c

∣∣
converges.
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Proof: The condition is clearly necessary, let us show that it is sufficient, and so assume that
it holds. Let t ∈ EX⊗Y and z′ ∈ EZ⊥ . Observe first that for each (a, b) ∈ |X| × |Y | the sum∑

c∈|Z|
∣∣A(a,b),cz

′
c

∣∣ converges by our assumption about A. We must show that the sum∑
((a,b),c)∈|(X⊗Y )(Z|

∣∣A(a,b),cta,bz
′
c

∣∣ =
∑

(a,b)∈|X⊗Y |

|ta,b|
∑
c∈|Z|

∣∣A(a,b),cz
′
c

∣∣
converges. But for this, it is sufficient to show that the family (

∑
c∈|Z|

∣∣A(a,b),cz
′
c

∣∣)(a,b)∈|X⊗Y | belongs

to E(X⊗Y )⊥ = {x⊗ y | x ∈ EX and y ∈ EY }⊥, and this holds iff the sum∑
(a,b)∈|X⊗Y |

|xayb|
∑
c∈|Z|

∣∣A(a,b),cz
′
c

∣∣
converges for all x ∈ EX and y ∈ EY . But this is precisely our hypothesis.

Given matrices A ∈ EX(Y and B ∈ EZ(T , we define a matrix A⊗B = C ∈ K(|X|×|Z|)×(|Y |×|T |)

as follows: C(a,c),(b,d) = Aa,bBc,d.

Lemma 2.21 A⊗B ∈ E(X⊗Z)((Y⊗T ).

Proof: Let x ∈ EX and z ∈ EZ . Let M ∈ E(Y⊗T )⊥ . We assume all these families to be positive.
We make the same assumption concerning A and B, since it suffices to show that |A⊗B| =
|A| ⊗ |B| ∈ E(X⊗Z)((Y⊗T ). Due to lemma 2.20, we just have to prove that the sum∑

((a,c),(b,d))∈|(X⊗Z)((Y⊗T )|

Aa,bBc,dxazcMb,d

converges. Denoting by f and g the continuous linear maps defined by A and B, this sum is equal
to ∑

(b,d)∈|Y⊗T |

Mb,df(x)bg(z)d

and this latter sum converges since M ∈ E(Y⊗T )⊥ , f(x) ∈ EY and g(z) ∈ ET .

Given f ∈ L(EX , EY ) and g ∈ L(EZ , ET ), we denote by f ⊗ g the continuous linear function
EX⊗Z → EY⊗T defined by the matrix M(f)⊗M(g).

Then one proves easily the following:

Lemma 2.22 If x ∈ EX and z ∈ EZ , then (f ⊗ g)(x⊗ z) = f(x)⊗ g(z).

Due to lemma 2.3, the finite sums of tensors x⊗ z constitute a dense subspace of EX⊗Z (which
is isomorphic to the algebraic tensor product EX ⊗ EZ), and so this latter property completely
determines the map f ⊗ g. Hence the operation ⊗ defined on Köthe spaces is functorial.

We denote by ⊗ the bilinear map EX × EY → EX⊗Y which maps (x, y) to x⊗ y.

Lemma 2.23 The canonical associativity bijection ϕ : |X ( (Y ( Z)| → |(X ⊗ Y ) ( Z| induces
a linear homeomorphism ϕ∗ from E(X⊗Y )(Z to EX((Y(Z).
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Proof: We show that ϕ satisfies the conditions of lemma 2.14. So let M ∈ K|(X⊗Y )(Z|, and
assume first that M ∈ E(X⊗Y )(Z . Let x ∈ EX . For each t ∈ E(Y(Z)⊥ = EY⊗Z⊥ we must show
that the sum ∑

(a,b,c)∈|X|×|Y |×|Z|

∣∣M(a,b),cxatb,c
∣∣

is finite, but for this it suffices to show that the family (
∑

a∈|X|M(a,b),cxa)(b,c) (which is well defined
by our assumption about M) belongs to E

(Y⊗Z⊥)⊥
. So let y ∈ EY and z′ ∈ EZ⊥ , we just have to

show that the sum ∑
(a,b,c)∈|X|×|Y |×|Z|

∣∣M(a,b),cxaybz
′
c

∣∣
is finite, but this directly results from our assumption about M . Conversely, assume that ϕ∗M ∈
EX((Y(Z). According to lemma 2.20, we just have to show that for all x ∈ EX , y ∈ EY and
z′ ∈ EZ⊥ , the sum

∑
(a,b,c)∈|X|×|Y |×|Z|

∣∣M(a,b),cxaybz
′
c

∣∣ is finite, but this results from the fact that
y ⊗ z′ ∈ E(Y(Z)⊥ .

By proposition 2.12, this linear homeomorphism ϕ∗ induces a (linear) bijection from L(EX⊗Y , EZ)
to L(EX , EY(Z). If f : EX⊗Y → EZ is linear and continuous, the corresponding linear and con-
tinuous function g : EX → (EY(Z) maps x to g(x), the matrix of the linear and continuous map
fx : EY → EZ defined by fx(y) = f(x⊗ y).

Using lemma 2.23, one shows easily that ⊗ is associative. Symmetry of ⊗ and the commutation
of the Mac Lane pentagonal diagram are easily checked too. So the category KK is symmetric
monoidal closed. It is actually a ?-autonomous category in the sense of [Bar79] (see also [Bie95]).

Let f : EY → EX and g : EZ → ET be linear continuous maps between Köthe spaces. Then
we can define a linear continuous map f ( g : EX(Z → EY(T by its matrix (indexed by
(|X| × |Z|) × (|Y | × |T |)) as follows: M(f ( g)(a,c),(b,d) = M(f)b,aM(g)c,d. This matrix belongs to

E(X(Z)((Y(T ) by lemma 2.21, indeed M(f ( g) = (M(f)⊗M(g)⊥)
⊥
.

Lemma 2.24 The operation (f, g) 7→ f ( g is functorial (contravariant in its first argument
and covariant in its second argument). Moreover, if h ∈ L(EX , EZ), one has (f ( g)(M(h)) =
M(g ◦ h ◦ f).

Proof: Functoriality results from the functoriality of the ⊗ operation on morphisms. Let h ∈
L(EX , EZ), we have (f ( g)(M(h)) = M(f ( g)M(h) (product of matrices) by proposition 2.12,
and an easy computation shows that M(f ( g)M(h) = M(g)M(h)M(f).

Proposition 2.25 The tensor product distributes over direct sums.

This results from proposition 2.19.
A central notion in the theory of locally convex spaces is the notion of bounded set (see [Jar81,

Sch71]). We conclude this section by observing that the universal bilinear map ⊗ : EX × EY →
EX⊗Y associated to this tensor product, though not continuous in general, nevertheless preserves
bounded sets.

Definition 2.26 A subset B of a lcs E is bounded if, for any neighborhood U of 0 in E, there
exists λ ∈ R+ such that B ⊆ λU or, equivalently, if, for any continuous semi-norm p : E → R+,
the set {p(x) | x ∈ B} is bounded.
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Bounded sets are closed under taking subsets and under finite unions. A subset of a direct
product of two lcs is bounded iff its two projections are. Moreover, continuous linear maps preserve
boundedness (i.e. are bounded). The converse holds for instance in Banach spaces, but is false in
general: an lcs E is bornological if any bounded linear map from E to a Banach space is continuous.
Even in our setting, there are bounded linear forms on (`1)⊥ which are not continuous. Indeed, as
a vector space, (`1)⊥ = `∞ and one can check that a subset of (`1)⊥ is bounded iff it is bounded for
the norm of the Banach space `∞. So a bounded linear form on (`1)⊥ is just a continuous linear
form on the Banach space `∞. Then it is a standard exercise to construct, using the Hahn-Banach
theorem, a non-zero continuous linear form on `∞ which maps to 0 all the sequences which converge
to 0, and such a linear form cannot be continuous on (`1)⊥; this latter space is not bornological.

The bilinear map ⊗ : EX × EY → EX⊗Y cannot be continuous in general, since the bilinear
form EX × EX⊥ → K is not continuous as soon as |X| is infinite, whereas the linear evaluation
map EX⊗X⊥ → K is continuous by monoidal closeness. We show that nevertheless this map ⊗ is
bounded, that is, it maps bounded sets to bounded sets (this condition is certainly not sufficient
for a separately continuous bilinear map to factorize through the tensor product).

Assume that ⊗ is not bounded. Let B and C be bounded subsets of EX and EY and let
M ∈ E(X⊗Y )⊥ be such that {NM (x ⊗ y) | (x, y) ∈ B × C} is not bounded. Then we can find
in B and C two sequences (x(n))n∈N and (y(n))n∈N such that NM (x(n)⊗ y(n)) ≥ 4n for all
n ∈ N. For each a ∈ |X|, the sequence (x(n)a)n∈N is bounded in K since B is bounded, and so
the series

∑∞
n=0 |x(n)a| 2−n converges; let us denote by xa its sum. Then x = (xa)a∈|X| belongs

to EX : let x′ ∈ EX⊥ be positive, and let A be an upper bound of {Nx′(z) | z ∈ B}, then
Nx′(2−nx(n)) ≤ 2−nA and so Nx′(x) ≤ 2A. Now let y′ ∈ K|Y | be given by y′b =

∑
a∈|X| |Ma,b|xa,

by our assumption about M , we have y′ ∈ EY ⊥ . Therefore, the sequence Ny′(y(n)) must be
bounded. But Ny′(y(n)) = NM (x⊗ y(n)) ≥ 2−nNM (x(n)⊗ y(n)) ≥ 2n, contradiction.

2.6 A negative result about the topology of linear function spaces

In view of proposition 2.17, one might hope to characterize the topology of EX(Y as the topology of
uniform convergence on equicontinuous sets. In this section, we provide a counter-example against
this conjecture. We take K = R and hence D = [−1, 1].

We start with some simple combinatorial considerations. For p ∈ N, let (Pj)j=1,...,4p be an enu-
meration of all the subsets of {1, . . . , 2p} (we denote by Qj the complementary of Pj in {1, . . . , 2p})
and let A(p) the N+ ×N+-matrix given by

A
(p)
i,j =


1 if j ≤ 4p and i ∈ Pj
−1 if j ≤ 4p and i ∈ Qj
0 otherwise.

Given t ∈ DN, we set

S(p)(t) =
4p∑
j=1

∣∣∣∣∣
2p∑
i=1

A
(p)
i,j ti

∣∣∣∣∣ ∈ R+ .

Observe first that, for all t ∈ DN, one has S(p)(t) = S(p)(|t|), due to the definition of A(p). Then,
using the fact that the function x 7→ |a+ x| + |a− x| is monotone on R+ (for any given a ∈ R),
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we obtain easily

∀t ∈ DN S(p)(t) ≤
4p∑
j=1

∣∣∣∣∣
2p∑
i=1

A
(p)
i,j

∣∣∣∣∣ = T (p) .

But we have

T (p) =
4p∑
j=1

|#Pj −#Qj |

=
2p∑
k=0

(
2p
k

)
|k − (2p− k)|

= 4
p−1∑
k=0

(p− k)
(

2p
k

)
Using the identity k

(
2p
k

)
= (2p − k + 1)

(
2p
k−1

)
, one shows then that

∑p−1
k=0(p − k)

(
2p
k

)
= 1

2p
(
2p
p

)
and an easy application of Stirling formula shows that p

(
2p
p

)
∼ C4p

√
p as p goes to the infinity (for

a certain constant C > 0). Therefore:

lim
p→∞

T (p)

p4p
= 0 .

Using actually only finite-dimensional matrices, we have thus proven the following

Lemma 2.27 For all ε > 0, there exists a matrix A ∈ `1(N×N) \ {0} such that, for all t ∈ DN,∑
j∈N

∣∣∣∣∣∑
i∈N

Ai,jti

∣∣∣∣∣ ≤ ε ‖A‖1 .

Let X and Y be Köthe spaces. The topology of uniform convergence on the equicontinuous
subsets of EX is defined on EX(Y by the following semi-norms

νx,y′(A) = sup
u∈R(x)

Ny′(A · u) = sup
t∈D|X|

∑
b∈|Y |

∣∣∣∣∣∣
∑
a∈|X|

Aa,bxay
′
bta

∣∣∣∣∣∣ ≤ Nx⊗y′(A) ,

for x ∈ EX and y′ ∈ EY ⊥ . This topology τ is always coarser than the topology of X ( Y . When
Y is finite-dimensional (that is, when EY is finite-dimensional, or equivalently when the set |Y | is
finite), the two topologies coincide. We show that, in some circumstances, the topology τ is strictly
coarser than the topology of X ( Y .

Let Y be the Köthe space given by |Y | = N and EY = `1, and let X = Y ⊥, so that EX is the
space of all bounded elements of KN. Then clearly EX(Y = `1(N×N). If the topology of EX(Y

were the topology of uniform convergence on the equicontinuous sets, there would exist a constant
k > 0 and two vectors x ∈ EX and y′ ∈ EY ⊥ such that, for all A ∈ EX(Y , ‖A‖1 ≤ kνx,y′(A). We
can assume ‖x‖∞ , ‖y′‖∞ ≤ 1 (due to the presence in this statement of the multiplicative constant
k), and so this statement is equivalent to the existence of k > 0 and of y′ ∈ EY ⊥ with ‖y′‖∞ ≤ 1
such that

∀A ∈ `1(N×N) ‖A‖1 ≤ k sup
t∈DN

∑
j∈N

∣∣y′j∣∣
∣∣∣∣∣∑
i∈N

Ai,jti

∣∣∣∣∣
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and so finally, if the topology of EX(Y were the topology of uniform convergence on the equicon-
tinuous sets, there would exist a constant k > 0 such that

∀A ∈ `1(N×N) ‖A‖1 ≤ k sup
t∈DN

∑
j∈N

∣∣∣∣∣∑
i∈N

Ai,jti

∣∣∣∣∣ .
But this cannot be the case, since by lemma 2.27, one would be able to find A ∈ `1(N×N), A 6= 0,
such that

∀t ∈ DN
∑
j∈N

∣∣∣∣∣∑
i∈N

Ai,jti

∣∣∣∣∣ ≤ ‖A‖1

2k
≤ 1

2
sup
s∈DN

∑
j∈N

∣∣∣∣∣∑
i∈N

Ai,jsi

∣∣∣∣∣
and this is impossible since supt∈DN

∑
j∈N

∣∣∑
i∈NAi,jti

∣∣ > 0 as A 6= 0.
So we can conclude with the following negative result.

Proposition 2.28 There are Köthe spaces X and Y such that the topology of X ( Y is strictly
finer than the topology of uniform convergence on the equicontinuous subsets of EX .

And we are left with the problem of finding a functional characterization of the topology of EX(Y ,
but at least, a track is closed.

3 Exponentials and entire functions

If I is a set, we denote by M(I) the set of all finite multi-sets of elements of I. Let us first introduce
some notations concerning finite multi-sets. If µ is an element of M(I), we define its support |µ| as
the set of all i ∈ I such that µ(i) 6= 0. We define its size (or cardinality) as #µ =

∑
i∈I µ(i) ∈ N.

We also define its factorial as µ! =
∏
i∈I µ(i)!. We extend to M(I) all the ordinary operations on

natural numbers componentwise and denote by [i1, . . . , in] the multi-set of the elements i1,. . . ,in of
I, taking multiplicities into account. If µ, ν ∈ M(N) are such that ν ≤ µ, we define the binomial
coefficient (

µ

ν

)
=

µ!
ν!(µ− ν)!

=
∏
i∈I

(
µ(i)
ν(i)

)
For x ∈ KI and µ ∈M(I), we define xµ ∈ K as xµ =

∏
i∈I x

µ(i)
i . Since the multi-set µ is finite,

this product makes sense (we adopt the usual convention that 00 = 1).
With these notations, the usual binomial equation immediately generalizes as follows: for x, y ∈

KI and µ ∈M(I), one has (x+ y)µ =
∑

ν≤µ
(
µ
ν

)
xνyµ−ν .

Let now S be a commutative monoid (with additive notations for the operations). If γ ∈M(S),
we denote by Σ(γ) the element of S given by Σ(γ) =

∑
s∈S γ(s)s.

We define next the multinomial coefficients for multi-sets. Let J be another index set. Let
µ ∈M(I) and let α ∈M(I × J). If the following property holds:

∀i ∈ I
∑
j∈J

α(i, j) = µ(i)

then we define the multinomial coefficient[
µ

α

]
=
µ!
α!
∈ N .
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The binomial coefficient
(
µ
ν

)
corresponds to the particular case J = {1, 2}, α(i, 1) = ν(i) and

α(i, 2) = µ(i)− ν(i).
Let X be a Köthe space and let x ∈ EX . We define then x! ∈ KM(|X|) by (x!)µ = xµ. The

Köthe space !X is given by

|!X| = M(|X|) and E!X = {x! | x ∈ EX}
⊥⊥

.

Our definition of an entire map is just the natural extension to this setting of the usual defi-
nition of an entire map between finite dimensional spaces (analytic map with an infinite radius of
convergence at 0).

Definition 3.1 Let X and Y be Köthe spaces. A function h : EX → EY is entire if there exists
a continuous linear function f : E!X → EY such that h(x) = f(x!) for all x ∈ EX . Such a linear
function f (and its matrix) will be called a power series defining h. If f : E!X → EY is a continuous
linear function, we denote by F(f) the corresponding entire function from EX to EY .

We shall first show that, when a function is entire, it is defined by a unique power series. This
is done as usual, with the help of derivatives.

Let X be a Köthe space and let f : EX → K be an entire map, with defining power series given
by its matrix M ∈ E(!X)⊥ . This means that, for any x ∈ EX , one has

f(x) =
∑

µ∈M(|X|)

Mµx
µ ,

this sum converging absolutely. Let s = (a1, . . . , an) be a finite sequence of pairwise distinct
elements of |X|. We define an injective continuous linear map ηs : Kn → EX by ηs(t1, . . . , tn) =∑n

i=1 tieai . Then f ◦ ηs is an entire function (in the usual sense) defined on Kn by the following
absolutely converging sum, because the ai’s are pairwise distinct:

(f ◦ ηs)(t1, . . . , tn) =
∑

(k1,...,kn)∈Nn

Mk1[a1]+···+kn[an]t
k1
1 . . . tkn

n .

Let µ ∈ M(|X|), and let s = (a1, . . . , an) be an enumeration, without repetitions, of |µ| (so
that n is the cardinality of |µ|, not the cardinality of µ). Then Mµ appears as the coefficient of
t
µ(a1)
1 · · · tµ(an)

n in the development above of (f ◦ ηs)(t1, . . . , tn). Therefore

Mµ =
1
µ!

∂#µ(f ◦ ηs)
∂t
µ(a1)
1 · · · ∂tµ(an)

n

(0, . . . , 0)

and this shows that an entire function from EX to K has only one defining power series. This
immediately extends to the case of the general entire functions f : EX → EY (consider the entire
functions x 7→ f(x)b for b ∈ |Y |).

Proposition 3.2 If f : EX → EY is an entire function, there is exactly one linear continuous
function f̃ : E!X → EY such that f(x) = f̃(x!) for each x ∈ EX .
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In particular, there is a canonical linear isomorphism between E(!X)⊥ and A(X), the vector
space of all entire mappings from EX to K. We denote by ΘX : A(X) → E(!X)⊥ this isomorphism
(which maps an entire scalar-valued function to its defining power series). By proposition 3.2, this
isomorphism is completely characterized by the following equation

〈x!,ΘX(h)〉 = h(x)

which holds for all x ∈ EX and h ∈ A(X).

3.1 Functorial action of the exponentials

Given a continuous linear map f : EX → EY of matrix A = M(f) ∈ EX(Y , we want to define a
continuous linear map !f : E!X → E!Y of matrix !A ∈ E!X(!Y . Rather than directly defining !f ,
we define its transpose g = (!f)⊥ : E(!Y )⊥ → E(!X)⊥ . For this, we identify E(!X)⊥ with the space
A(X) of all entire mappings from EX to K. Given h ∈ A(Y ), we define g(h) : EX → K by

∀x ∈ EX g(h)(x) = h(f(x)) ∈ K (2)

and we shall prove that g(h) is entire. Let ν ∈ M(|Y |) and consider the element h ∈ A(Y )
which corresponds to the element eν ∈ E(!Y )⊥ , h is just the “monome” function h(y) = yν . By
condition (2), the matrix !A must satisfy, for all x ∈ EX

∑
µ∈M(|X|)

(!A)µ,νxµ = (f(x))ν =
∏
b∈|Y |

 ∑
a∈|X|

Aa,bxa

ν(b)

. (3)

We shall need now the following lemma.

Lemma 3.3 Let (ui)i∈I be a family of elements of K such that the sum
∑

i∈I ui converges absolutely
and let k ∈ N. Then the sum ∑

γ∈M(I)
#γ=k

[
k

γ

]
uγ

converges absolutely and its value is
(∑

i∈I ui
)k.

Proof: The equality holds when u vanishes almost everywhere; this is standard. One concludes
by continuity of the map t 7→ tk.
So we can write  ∑

a∈|X|

Aa,bxa

ν(b)

=
∑

ρ∈M(|X|)
#ρ=ν(b)

[
ν(b)
ρ

] ∏
a∈|X|

(Aa,bxa)ρ(a)

=
∑

ρ∈M(|X|)
#ρ=ν(b)

[
ν(b)
ρ

] ∏
a∈|X|

(Aa,b)ρ(a)

xρ
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Let L(ν) be the set of all multi-sets σ over the set |X| × |Y | such that
∑

a∈|X| σ(a, b) = ν(b) for
each b ∈ |Y | (these multi-sets σ are necessarily finite and by σb we denote the element of M(|X|)
given by σb(a) = σ(a, b)).

The product
∏
b∈|Y |

(∑
a∈|X|Aa,bxa

)ν(b)
(which is actually a finite product over |ν|) can now

be written as the following absolutely converging sum:

∑
σ∈L(ν)

 ∏
b∈|ν|

[
ν(b)
σb

]
xσb

  ∏
(a,b)∈|X|×|Y |

A
σb(a)
a,b

 =
∑

σ∈L(ν)

[
ν

σ

]
Aσx

P
b∈|Y | σb .

So finally ∏
b∈|Y |

 ∑
a∈|X|

Aa,bxa

ν(b)

=
∑

µ∈M(|X|)

 ∑
σ∈L(µ,ν)

[
ν

σ

]
Aσ

xµ

where by L(µ, ν) we denote the set of all multi-sets σ over |X|×|Y | such that
∑

a∈|X| σ(a, b) = ν(b)
for each b ∈ |Y | and

∑
b∈|Y | σ(a, b) = µ(a) for each a ∈ |X|; such multi-sets σ are N-valued matrices

with sums of columns prescribed by µ and sums of lines prescribed by ν. Observe that a necessary
condition for L(µ, ν) to be non empty is that #µ = #ν, and then #σ = #µ = #ν for each
σ ∈ L(µ, ν).

This gives us an explicit formula for the matrix !A:

(!A)µ,ν =
∑

σ∈L(µ,ν)

[
ν

σ

]
Aσ . (4)

Moreover, the above calculation shows that the sum
∑

µ∈M(|X|)(!A)µ,νxµ converges absolutely,
for each x ∈ EX and each ν ∈ M(|Y |). Indeed, we can assume that A and x are positive, and
we have obtained the sum

∑
µ∈M(|X|)(!A)µ,νxµ as the finite product of converging sums of positive

terms
∏
b∈|ν|

(∑
a∈|X|Aa,bxa

)ν(b)
. Assume still A and x to be positive, and let R ∈ E(!Y )⊥ be also

positive, we show that the sum ∑
(µ,ν)∈M(|X|)×M(|Y |)

(!A)µ,νxµRν

converges. Let h ∈ A(Y ) be the entire function defined by R and let f : EX → EY be the linear
function defined by A. Then

∞ > h(f(x)) =
∑

ν∈M(|Y |)

Rν(f(x))ν

=
∑

ν∈M(|Y |)

Rν
∏
b∈|Y |

 ∑
a∈|X|

Aa,bxa

ν(b)

=
∑

ν∈M(|Y |)

Rν

 ∑
µ∈M(|X|)

(!A)µ,νxµ

 by the calculation above

=
∑

(µ,ν)∈M(|X|)×M(|Y |)

(!A)µ,νxµRν
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since we are dealing with sums of positive terms. Due to the following lemma, this implies that
!A ∈ E!X(!Y .

Lemma 3.4 Let X and Z be Köthe spaces and let M ∈ K|!X(Z|. Then M ∈ E!X(Z iff for all
x ∈ EX and all z′ ∈ EZ⊥, the sum

∑
µ∈M(|X|),c∈|Z| |Mµ,cx

µz′c| converges.

Proof: Assume that M satisfies the condition above. One observes first that for each µ ∈
|!X| and each z′ ∈ EZ⊥ the sum

∑
c∈|Y | |Mµ,cz

′
c| converges since it is majorized by the sum∑

ν∈M(|X|),c∈|Z| |Mν,cx
νz′c| which converges by our assumption about M , where x ∈ EX is the

characteristic map of |µ| (indeed xµ = 1). Then one concludes that M ∈ E!X(Z like in the proof
of lemma 2.20, using the fact that E(!X)⊥ = {x! | x ∈ EX}

⊥. The converse implication is trivial.

Therefore, if A ∈ EX(Y , |!A| = !|A| ∈ E!X(!Y and so !A ∈ E!X(!Y .
Moreover, the calculation above shows that, for any h ∈ A(Y ) and any linear and continuous

f : EX → EY , one has h(f(x)) = 〈x!, (!A)⊥ ·R〉 for all x ∈ EX , where A ∈ EX(Y is the matrix of
f and R ∈ E(!Y )⊥ is the matrix (the power series) of h.

To summarize:

Proposition 3.5 Let A ∈ EX(Y . Then the matrix !A defined by equation (4) belongs to E!X(!Y .
Moreover, if h ∈ A(Y ), then

(̂!A)⊥(ΘY (h)) = ΘX(h ◦ Â) . (5)

If f : EX → EY is linear and continuous, then h ◦ f : EX → K is entire and

h̃ ◦ f = h̃ ◦ !f

where !f is the linear continuous map from E!X to E!Y whose matrix is !M(f). Moreover, the
operation f 7→ !f is functorial.

Lemma 3.6 Let X and Y be Köthe spaces. One has

E(!X⊗!Y )⊥ = {x! ⊗ y! | x ∈ EX and y ∈ EY }
⊥

Proof: Since, for x ∈ EX and y ∈ EY , one has x! ⊗ y! ∈ E!X⊗!Y , the inclusion ⊆ holds. Let us
prove the converse, so let R ∈ {x! ⊗ y! | x ∈ EX and y ∈ EY }

⊥ and let M ∈ E!X and N ∈ E!Y , we
must show that the sum

T =
∑

µ∈|!X|,ν∈|!Y |

|MµNνRµ,ν |

converges. First, for any fixed ν ∈ |!Y |, the sum
∑

µ∈|!X| |MµRµ,ν | converges as the family
(Rµ,ν)µ∈|!X| belongs to E(!X)⊥ . Indeed, let x ∈ EX , we have to show that S =

∑
µ∈|!X| |xµRµ,ν |

converges. But let y : |Y | → K be the characteristic function of |ν|, which belongs to EY
since it vanishes almost everywhere. Then yν = 1 and so the sum S is majorized by the sum∑

µ∈|!X|,ν′∈|!Y |

∣∣∣xµyν′Rµ,ν′∣∣∣ which converges by our hypothesis about R. So proving that T con-
verges amounts to showing that the sum (whose terms are now well defined)∑

ν∈|!X|

|Nν |
∑
µ∈|!X|

|MµRµ,ν |
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converges. For this, it is sufficient to show that the family (
∑

µ∈|!X| |MµRµ,ν |)ν∈|!Y | belongs to
E(!Y )⊥ . So let y ∈ EY , we must show that

T ′ =
∑

µ∈|!X|,ν|!Y |

|Mµy
νRµ,ν |

converges. The same considerations, on the other side, reduce our problem to showing that, for
each x ∈ EX and each y ∈ EY , the sum

∑
µ∈|!X|,ν|!Y | |xµyνRµ,ν | converges, and this in turn results

from our hypothesis about R.
This exponential satisfies the following fundamental isomorphism.

Proposition 3.7 Let X and Y be Köthe spaces. There is a canonical linear homeomorphism
between !(X & Y ) and !X ⊗ !Y .

Proof: We assume |X| ∩ |Y | = ∅ and we identify |X & Y | with |X| ∪ |Y |, just for simplifying
the notations. The function ϕ : |!X ⊗ !Y | → |!(X & Y )| which maps (λ, ρ) to λ + ρ is a bijection,
with inverse ψ. Then ψ∗ is a linear homeomorphism E(!X⊗!Y )⊥ → E(!(X&Y ))⊥ by lemma 2.14. One
checks that indeed the hypothesis of that lemma is fulfilled by the bijection ψ, using lemma 3.6
and the observation that, for x ∈ EX and y ∈ EY , denoting by (x, y) the corresponding pair in
EX&Y ' EX × EY , one has (x, y)µ = xλyρ, where (λ, ρ) = ψ(µ), that is

(x, y)! = ψ∗(x! ⊗ y!) .

3.2 The co-monadic structure of the exponential

For each Köthe space X, we consider the two particular matrices (called respectively dereliction
and digging): dX ∈ K|!X(X| and pX ∈ K!X(!!X given by

(dX)µ,a = δµ,[a] and (pX)µ,M = δµ,Σ(M) .

We recall that, if M ∈ |!!X|, then Σ(M) ∈ |!X| is given by Σ(M)(a) =
∑

ν∈|!X|M(ν)ν(a).
Let x ∈ EX and let x′ ∈ EX⊥ , we have∑

µ∈|!X|,a∈|X|

∣∣xµx′a(dX)µ,a
∣∣ =

∑
a∈|X|

∣∣xax′a∣∣
and hence dX ∈ E!X(X .
Remark: This matrix dX allows us to see any linear continuous map as an entire map. Indeed,
let f : EX → EY be linear and continuous. Then f ◦ d̂X : E!X → EY is linear and continuous, and
so defines an entire map h : EX → EY by h(x) = f(d̂X(x!)), that is h(x) = f(x). We shall say that
an entire map h : EX → EY is linear when h = f ◦ d̂X for some linear and continuous f , and then
one easily sees that f = h̃. One checks also easily that an entire map h is linear iff it is linear in
the usual sense, that is h(λx) = λh(x) and h(x+ y) = h(x) + h(y) for λ ∈ K and x, y ∈ EX .
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Now, let x ∈ EX and let R ∈ E(!!X)⊥ , we have∑
µ∈|!X|,M∈|!!X|

∣∣xµRM (pX)µ,M
∣∣ =

∑
M∈|!!X|

∣∣∣xΣ(M)RM

∣∣∣ .
But (x!)! ∈ E!!X and one has ((x!)!)M = xΣ(M) for each M ∈ |!!X| and so the sum above converges,
by our hypothesis about R. Therefore, pX ∈ E!X(!!X .

Checking that dX is natural in X is a straightforward verification. We check that pX is natural
in X. Let A ∈ EX(Y , we must show that the following equation of matrices holds:

pY (!A) = (!!A)pX .

This amounts to showing that, for each µ ∈ |!X| and each N ∈ |!!Y |, one has

(!A)µ,Σ(N) =
∑

M∈|!!X|
Σ(M)=µ

(!!A)M,N .

This latter sum is a finite sum as indeed (!!A)M,N 6= 0 ⇒ #M = #N and there are only finitely
many multi-sets M ∈ |!!X| such that #M = #N and Σ(M) = µ. Let t ∈ E!X . Equation (3) gives
in that case ∑

M∈|!!X|

(!!A)M,N t
M =

∏
ν∈|!Y |

 ∑
µ∈|!X|

(!A)µ,νtµ

N(ν)

Let x ∈ EX and replace in this equation t by x!, we obtain

∑
ρ∈|!X|

 ∑
M∈|!!X|
Σ(M)=ρ

(!!A)M,N

xρ =
∏
ν∈|!Y |

 ∑
µ∈|!X|

(!A)µ,νxµ

N(ν)

(6)

For each ν ∈ |!Y |, we have
∑

µ∈|!X|(!A)µ,νxµ = (Ax)ν by equation (3), and hence the right-hand
side of equation (6) is equal to (Ax)Σ(N), and so, applying once more equation (3), we arrive to

∑
ρ∈|!X|

 ∑
M∈|!!X|
Σ(M)=ρ

(!!A)M,N

xρ =
∑
ρ∈|!X|

(!A)ρ,Σ(N)x
ρ

and we conclude by proposition 3.2.
To prove that, with the natural transformations dX and pX , the functor X 7→ !X is a comonad,

one has to check the commutations of three diagrams corresponding to the following equations

(!dX)pX = I!X and d!XpX = I!X

and
(!pX)pX = p!XpX
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We check the third equation; the first one is similar (but simpler) and the second one is trivial.
Let M ∈ |!!X| and S ∈ |!!!X|. For P ∈ M(|!X| × |!!X|), one has (pX)P 6= 0 iff |P | ⊆ {(ρ,R) ∈

|!X| × |!!X| | Σ(R) = ρ} = H, by definition of pX . Now let P ∈ M(|!X| × |!!X|) be such that
|P | ⊆ H. Then P ∈ L(M,S) (with the notations introduced for equation (4)) holds iff, for all
R ∈ |!!X|, S(R) = P (Σ(R), R) and, for all ρ ∈ |!X|,

M(ρ) =
∑

R∈|!!X|

P (ρ,R) =
∑

Σ(R)=ρ

S(R)

If M and S satisfy that M(ρ) =
∑

Σ(R)=ρ S(R) for each ρ ∈ |!X|, then L(M,S) has exactly one
element P such that |P | ⊆ H, and P is given by P (ρ,R) = S(R)δρ,Σ(R). Moreover, if P and S
satisfy S(R) = P (Σ(R), R) for all R ∈ |!!X| and if |P | ⊆ H, then

[S
P

]
= 1. Therefore formula (4)

gives in the present situation

(!pX)M,S =
{

1 if ∀ρ ∈ |!X| M(ρ) =
∑

Σ(R)=ρ S(R)
0 otherwise

Given µ ∈ |!X| and S ∈ |!!!X|, we have therefore ((!pX)pX)µ,S =
∑

Σ(M)=µ(!p
X)M,S = δµ,T (S)

where T (S) ∈ |!X| is given by

T (S)(a) =
∑
ρ∈|!X|

ρ(a)
∑

Σ(R)=ρ

S(R)

=
∑

R∈|!!X|

(Σ(R))(a)S(R)

=
∑

R∈|!!X|

 ∑
ρ∈|!X|

ρ(a)R(ρ)

S(R)

=
∑

ρ∈|!X|,R∈|!!X|

ρ(a)R(ρ)S(R)

= Σ(Σ(S))(a) ,

but it is clear on the other hand that ((p!X)pX)µ,S = δµ,Σ(Σ(S)) and this concludes the proof.

3.3 The co-algebraic structure of the exponential

The diagonal continuous linear map DX : X → X & X maps x ∈ EX to (x, x) ∈ EX×EX ' EX&X ,
and its matrix is given by M(DX)a,(i,b) = δa,b. Then !(DX) induces, through the isomorphism of
proposition 3.7, a linear continuous map ∆X : !X → !X ⊗ !X (corresponding to contraction in
logic). The matrix of this operator is easily seen to be given by

M(∆X)µ,(λ,ρ) = δµ,λ+ρ

for µ, λ, ρ ∈ |!X|. This turns !X into a co-algebra, with neutral element e0 (where 0 denotes the
empty multi-set), and ∆X is associative and commutative, because DX is, trivially. Categorically,
the neutral element must be considered as the linear continuous map wX : E!X → E1 = K given
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by wX(x) = x0 (corresponding to weakening in logic). In more algebraic notations, the action of
∆X on an element t of E!X can be written

∆X(t) =
∑

λ,ρ∈|!X|

tλ+ρ(eλ ⊗ eρ) .

In particular ∆X(x!) = x! ⊗ x! for x ∈ EX .
Until now, we have shown that the category of Köthe spaces and linear continuous maps

(equipped with the tensor product and the exponential functor we have presented) is a model of
first order propositional linear logic, and more precisely, a new-Seely category in the sense of [Bie95].

3.4 The Hopf algebra structure of the exponential

We apply proposition 3.7, and the fact that finite sums and cartesian products of Köthe spaces
coincide for endowing the space !X with an algebraic structure. Indeed, the co-diagonal morphism
X⊕X → X induces a linear continuous map aX : X & X → X given by aX(x, y) = x+y. Its matrix
is given by M(aX)(i,a),b = δa,b. Then !(aX) induces, through the isomorphism of proposition 3.7, a
linear continuous map mX : !X ⊗ !X → !X. An easy computation, using formula (4), shows that,
for λ, ρ, µ ∈ |!X|,

M(mX)(λ,ρ),µ =
(
µ

λ

)
δλ+ρ,µ . (7)

The neutral element of this operation is e0 ∈ E!X . The associativity of this operation immedi-
ately results from its definition, and from the associativity of addition. Commutativity of mX is
established in the same way. If we consider mX as a bilinear map E!X ×E!X → E!X , its action on
(s, t) ∈ E!X × E!X can be written

mX(s, t) =
∑

λ,ρ∈|!X|

(
λ+ ρ

λ

)
sλtρeλ+ρ =

∑
µ∈|!X|

∑
λ≤µ

(
µ

λ

)
sλtµ−λ

 eµ .

In particular, mX(x!, y!) = (x+ y)!, for x, y ∈ EX .
Keeping implicit the linear homeomorphism between !X ⊗ !X and !(X & X) and the linear

isomorphism between E(!X)⊥ and A(X), the dual of mX maps an element h of A(X) to the element
k of A(X & X) defined by k(x, y) = h(x+ y).

The last structure map of a Hopf algebra is the antipode SX . Let nX : EX → EX be the
continuous linear map defined by nX(x) = −x, its matrix is given by M(nX)a,b = −δa,b. The
antipode is defined as SX = !nX , and it is a linear continuous map from !X to itself. Its matrix is
easily seen (again, using formula (4)) to be given by

M(SX)µ,ν = (−1)#µδµ,ν .

In other words, SX(t) =
∑

µ∈|!X|(−1)#µtµeµ for all t ∈ E!X .
Checking that (!X,mX ,∆X ,SX) is a Hopf algebra consists first in checking that (!X,mX ,∆X)

is a bi-algebra. This is done using straightforwardly the definitions of mX , ∆X and the functoriality
of !. The last diagram to check expresses that SX is an antipode, and this is also trivial.
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4 A cartesian closed category of entire mappings

The standard co-Kleisli construction applied to the co-monad X 7→ !X gives rise to a cartesian
closed category K!

K which is defined as follows:

• an object in this category is a Köthe space;

• a morphism from X to Y in this category is a continuous linear map from E!X to EY ;

• the identity from X to X in K!
K is d̂X ∈ L(E!X , EX);

• if f : X → Y and g : Y → Z are morphisms in K!
K, their composite g ◦A f in K!

K is given by
g ◦A f = g ◦ !f ◦ p̂X where composition is taken in KK:

E!X
p̂X

- E!!X
!f

- E!Y
g

- EZ .

So there is a bijective correspondence between the morphisms f : X → Y in K!
K and the entire

functions from EX to EY . We show first that the definition above of identity and composition is
compatible with this correspondence. Remember that, if f : E!X → EY is linear and continuous,
we denote by F(f) : EX → EY the corresponding entire function (see definition 3.1).

As to the identity, given x ∈ EX , we have

F(d̂X)(x) = d̂X(x!)

=
∑
a∈|X|

 ∑
µ∈|!X|

(dX)µ,a(x!)µ

 ea

=
∑
a∈|X|

(x!)[a]ea

= x

since (x!)[a] = xa.
As to composition, we must show that (with the notations above), F(g ◦A f) = F(g) ◦ F(f).

This results immediately from the following lemma.

Lemma 4.1 If x ∈ EX , then (!f)(p̂X(x!)) = f(x!)!.
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Proof: Denoting by A the matrix of f (so that A ∈ E!X(Y ), we have

(!f)(p̂X(x!)) =
∑

M∈|!!X|

xΣ(M)(!f)(eM )

=
∑

M∈|!!X|

xΣ(M)

 ∑
ν∈|!Y |

(!A)M,νeν


=

∑
ν∈|!Y |

 ∑
M∈|!!X|

(!A)M,νx
Σ(M)

 eν

=
∑
ν∈|!Y |

 ∑
M∈|!!X|

(!A)M,ν(x!)M

 eν

=
∑
ν∈|!Y |

f(x!)νeν by equation (3)

= f(x!)
!

and we are done.
The cartesian product of X and Y in K!

K is X & Y . If f : EX&Y → EZ is entire, its “transpose”
(curryfication) is f c : EX → E!Y(Z where f c(x) = M(g̃), where g : EY → EZ is the entire function
defined by g(y) = f(x, y). The function f c itself is entire, and we have M(f̃ c)µ,(ν,c) = M(f̃)µ+ν,c

where µ + ν is the multi-set on |X| + |Y | obtained by juxtaposing µ ∈ |!X| and ν ∈ |!Y |. There
is also an entire evaluation map ev : E(!X(Y )&X → EY given by ev(f, x) = f(x); its power series
(identifying the canonically isomorphic spaces !((!X ( Y ) & X) and !(!X ( Y )⊗ !X) is given by
the matrix

M(ev)ϕ,µ,b = δϕ,[(µ,b)] .

4.1 Computing derivatives

The space !X possesses another important structure which is a map ∂X : EX → E!X given by

∂X(x)µ =
{
xa if µ = [a] for some a ∈ |X|
0 otherwise

It is clear that ∂X ∈ L(EX , E!X), with matrix M(∂X)a,µ = δ[a],µ. This map is natural in X and one
has

d̂X ◦ ∂X = IdX . (8)

Given an entire function f : EX → EY , f̃ ◦ ∂X is the linear continuous map from EX to EY
whose matrix is given by M(f̃ ◦ ∂X)a,b = f̃[a],b, that is, f̃ ◦ ∂X is the derivative of f at 0. More
generally, one can define a map ∂1

X as the composite of the two maps

!X ⊗X
!X ⊗ ∂X- !X ⊗ !X

mX - !X

and an easy computation using equation (7) shows that, for µ, ν ∈ |!X| and a ∈ |X|, one has
(∂1
X)µ,a,ν = ν(a)δµ+[a],ν . Therefore, if f : EX → EY is entire, the composite f̃ ◦ ∂1

X is a continuous
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linear map !X ⊗ X → Y whose transpose Df : !X → (X ( Y ) (using the monoidal closeness
of KK) is the derivative of f (it is an entire map from EX to EX(Y ), in the sense of the formal
derivatives of power series. In particular, for all y′ ∈ EY ⊥ and u ∈ EX the map t 7→ 〈f(x+ tu), y′〉
from K to K is entire (as the composite of three entire maps) and one checks easily that

〈Df(x) · u, y′〉 =
d〈f(x+ tu), y′〉

dt
(0)

where, if A ∈ EX(Y and u ∈ EX , we recall that we denote by A · u the application of the matrix
A to the vector u. This property completely characterizes the derivative Df of f .

Observe also that when f : EX → EY is linear, then we have

∀x ∈ EX Df(x) = M(f) . (9)

Of course, we can compute n-th derivatives for all n ∈ N, and this is done by precomposing f̃
with the linear continuous map ∂nX : !X ⊗X⊗n → !X obtained by iterating ∂1

X in the obvious way,
setting ∂n+1

X = ∂nX ◦ (∂1
X ⊗X⊗n):

!X ⊗X ⊗X⊗n ∂1
X ⊗X⊗n

- !X ⊗X⊗n ∂nX - !X .

Again, an easy induction shows that

(∂nX)µ,a1,...,an,ν =
ν!
µ!
δµ+[a1,...,an],ν . (10)

If f : EX → EY is entire, its n-th derivative Dnf is the transpose of the linear continuous map
f̃ ◦ ∂nX : E!X⊗X⊗n → EY , considered as an entire map from EX to EX⊗n(Y . Of course, for each
x ∈ EX , the corresponding n-linear map Dnf(x) : EnX → EY is symmetrical.
Taylor formula. One proves then the Taylor formula: for each x ∈ EX ,

f(x) =
∞∑
n=0

1
n!
Dnf(0)(x⊗n) . (11)

Let A ∈ E!X(Y be the power series defining f , we have

f(x) =
∑

µ∈|!X|, b∈|Y |

Aµ,bx
µeb

=
∞∑
n=0

 ∑
#µ=n, b

Aµ,bx
µeb


but for an element µ of |!X| such that #µ = n, there are exactly n!/µ! tuples (a1, . . . , an) such that
[a1, . . . , an] = µ. Moreover, for such a tuple, we have xµ = (x⊗n)(a1,...,an). Applying equation (10)
and the definition above of Dnf , we see that (with µ and (a1, . . . , an) as before, and with b ∈ |Y |):

(Dnf(0))(a1,...,an),b = µ!Aµ,b ,
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so

f(x) =
∞∑
n=0

∑
(a1,...,an)∈|X⊗n|

b∈|Y |

[a1, . . . , an]!
n!

1
[a1, . . . , an]!

(Dnf(0))(a1,...,an),b(x
⊗n)(a1,...,an)

and we conclude.
The Taylor series (11) converges absolutely in EY for each x (this means that for each y′ ∈ EY ⊥ ,

the series of positive terms
∑∞

n=0Ny′( 1
n!D

nf(0)(x⊗n)) converges). Indeed,

1
n!
Dnf(0)(x⊗n) =

∑
#µ=n, b

Aµ,bx
µeb

so thatNy′( 1
n!D

nf(0)(x⊗n)) ≤
∑

#µ=n, b |y′bAµ,bxµ| and we conclude since we know that
∑

µ, b |y′bAµ,bxµ| <
∞ because f is entire.

One can say better, namely that the the series
∑

n fn converges absolutely in E!X(Y , where fn
is the entire (indeed “polynomial”) map defined by fn(x) = 1

n!D
nf(0)(x⊗n).

Partial derivatives. When f : EX → EZ is entire, we also denote by

df

dx
: EX → EX(Z and

dnf

dxn
: EX → EX⊗n(Z

its derivatives.
Consider now an entire map of two variables f : EX&Y → EZ . Using the cartesian closeness of

the category of Köthe spaces and entire mappings, we can transpose this map into an entire map
f1 : EX → E!Y(Z which in turn can be derived, giving rise to the entire map

df1

dx
: EX → EX⊗!Y(Z

(we have used the monoidal closeness of KK), which, when considered as a linear continuous map
d̃f1
dx : E!X → EX⊗!Y(Z , can be transposed into a linear continuous map (up to the symmetry of ⊗)
E!X⊗!Y → EX(Z giving rise to an entire mapping

∂f

∂x
: EX&Y → EX(Z ,

the partial derivative of f with respect to the first parameter. One defines of course similarly

∂f

∂y
: EX&Y → EY(Z .

Then the derivative
df

d(x, y)
: EX&Y → EX&Y(Z

can be expressed as follows, using these partial derivatives:

df

d(x, y)
(x, y) · (u, v) =

∂f

∂x
(x, y) · u+

∂f

∂y
(x, y) · v ∈ EZ (12)

for x, u ∈ EX and y, v ∈ EY . Of course, this can be generalized in the obvious way to entire
functions depending on a finite number of parameters.
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Chain rule. Consider now two entire mappings f : EX → EY and g : EY → EZ . Then the usual
chain rule holds, that is, the derivative of g ◦ f satisfies

d(g ◦ f)
dx

(x) · u =
dg

dy
(f(x)) ·

(
df

dx
(x) · u

)
. (13)

Contraction and evaluation. Let f : EX&X → EZ be an entire map of two parameters in the
same space EX (the first generic parameter will be denoted by “x1”, the second by “x2”). The
map g : EX → EZ defined by g(x) = f(x, x) is entire: g̃ is obtained by composing f̃ with !DX :
E!X → E!(X&X), a linear continuous map, i.e. by composing f with the diagonal X → (X & X) in
K!

K. Using formulae (12) and (13), we obtain easily

dg

dx
(x) · u =

∂f

∂x1
(x, x) · u+

∂f

∂x2
(x, x) · u (14)

which will be useful for derivating proofs containing contractions.
Using the matricial characterization above of the evaluation map ev : E(!X(Y )&X → EY , one

shows easily that the two partial derivatives of this entire map are given by

∂ev
∂f

(f, x) · h = h(x) (15)

and
∂ev
∂x

(f, x) · u =
df

dx
(x) · u (16)

for f, h ∈ E!X(Y and x, u ∈ EX (in the latter formula, we identify an element of E!X(Y with an
entire map from EX to EY ). The first partial derivative does not depend on f ; this corresponds to
the fact that evaluation is linear in its first argument. Observe also that the second derivative is
linear in its first argument as well.

Remark: All these easy properties give a quite natural semantical foundation to an extension
of proof systems and typed λ-calculus by differential constructions. With L. Regnier, we have
been able in that way to define a differential lambda-calculus where lambda-terms can be formally
differentiated, see [ER01].

5 Towards an intrinsic theory

All the spaces introduced so far were equipped with explicit bases (the webs) which, from the
viewpoint of classical functional analysis, seems to be a major drawback of our approach. The goal
of this section is to show that, at least in principle, these bases are not essential.

We shall say that a topological vector space E is an intrinsic Köthe space if there is a Köthe
space X and a linear homeomorphism ϕ : E → EX . Such a linear homeomorphism ϕ will be called
a chart of E. Such a chart is by no mean part of the structure of E; only the existence of a chart
turns a topological vector space E into an intrinsic Köthe space, and the existence of a chart is a
property of the topology of E. The goal of this section is to show that the constructions defined
so far can be performed on intrinsic Köthe spaces, and not only on Köthe spaces. This means in
some sense that they are “basis independent”.
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Let E be a topological vector space and let X be a Köthe space. Let ϕ : E → EX be a linear
homeomorphism. Through this isomorphism, E inherits a bornology Eϕ from the equicontinuous
bornology EX of EX :

Eϕ = {ϕ−1(G) | G ∈ EX} = {H ⊆ E | ϕ(H) ∈ EX} .

Consider now some other linear homeomorphism ψ : E → EY to a Köthe space. We claim that
Eψ ⊆ Eϕ, and so, by symmetry, Eψ = Eϕ. Let H ⊆ E be such that H ∈ Eψ, that is, ψ(H) ∈ EY . Let
θ be the linear homeomorphism ϕ ◦ ψ−1 : EY → EX . Then ϕ(H) = θ(ψ(H)) and we conclude by
proposition 2.18.

So an intrinsic Köthe space E possesses a canonical equicontinuous “bornology” (class of
bounded sets, see [Jar81, Sch71]), that we can denote by EE , and which is equal to Eϕ where
ϕ is any chart of E. Moreover, E is clearly locally convex, Hausdorff, separable and complete and
also, E possesses an absolute basis (it is shown in [Jar81], chapter 14, that these properties are
equivalent to saying that E is linearly homeomorphic to a Köthe sequence space Λ(P ), but they
are not sufficient for implying that E is an intrinsic Köthe space in our sense).
Remark: One can rephrase the definition of an intrinsic Köthe space as follows: a topological
vector space E is an intrinsic Köthe space if it is a complete Hausdorff lcs which admits an absolute
basis (xn) such that, for any sequence rn of non-negative real numbers, if the series

∑
n |〈un, x〉| rn

converges for each x ∈ E, then the semi-norm x 7→
∑

n |〈un, x〉| rn is continuous, where un : E → K
is the n-th coefficient linear form associated with (xn).

5.1 Topological dual

Using this bornology, we can define the topological dual E′ of E as a topological vector space: E′

is the linear space of all continuous linear forms on E, and a subset U ′ of E′ is a neighborhood of
0 iff there exists G ∈ EE such that, for any f ∈ E′, if |f(x)| < 1 for each x ∈ G, then f ∈ U ′ (that
is, the topology of E′ is the topology of uniform convergence on the elements of EE). If u ∈ E and
u′ ∈ E′, then we denote by 〈u, u′〉 the application of u′ to u.

Lemma 5.1 The function ϕ′ : E′ → EX⊥ which maps each u′ ∈ E′ to M(u′ ◦ ϕ−1) is a linear
homeomorphism from E′ to EX⊥. If x ∈ EX , one has

〈x, ϕ′(u′)〉 = 〈ϕ−1(x), u′〉

and if x′ ∈ EX⊥, one has
〈u, ϕ′−1(x′)〉 = 〈ϕ(u), x′〉 .

This results from proposition 2.17. One checks easily that if ϕ : E → EX is a linear homeomor-
phism from E to some Köthe space, then 〈u, u′〉 = 〈ϕ(u), ϕ′(u′)〉.

So E′ is an intrinsic Köthe space and possesses therefore a canonical bornology EE′ , and the
reader can check that a subset G′ of E′ belongs to this bornology iff it is an equicontinuous set of
linear forms. Moreover, this operation E 7→ E′ is functorial; let indeed f : E → F be linear and
continuous. Its usual algebraic transpose tf : F ′ → E′, which maps v′ ∈ F ′ to v′ ◦ f ∈ E′, is linear.
Its continuity results (for instance) from the characterization above of the dual topology, and from
the fact that continuous linear maps preserve equicontinuous sets (see proposition 2.18).
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Last, the canonical linear function η : E → E′′ which maps u ∈ E to the linear form η(u) on
E′ given by η(u)(u′) = u′(u) is easily seen to make the following diagram commutative

E

@
@

@
@

@

ϕ

R

EX = EX⊥⊥

�
�

�
�

�
ϕ′′

�

E′′

η

?

so that η = ϕ′′−1 ◦ ϕ is a linear homeomorphism.
The cartesian product of two intrinsic Köthe spaces is an intrinsic Köthe space, endowed with

the product topology, which is also the direct sum of the two spaces.

5.2 Linear function space

Now we study the space L(E,F ) of continuous linear maps from E to F , two intrinsic Köthe
spaces7. This is clearly a vector space, and we must endow it with a topology. Let ϕ : E → EX
and ψ : F → EY be linear homeomorphisms to some Köthe spaces X and Y . We shall say that a
subset U of L(E,F ) is ϕψ-open if the set Uϕ,ψ = {M(ψ ◦ f ◦ ϕ−1) | f ∈ U} is open in the Köthe
space EX(Y . Since the map f 7→ M(ψ ◦ f ◦ ϕ−1) is a linear isomorphism between L(E,F ) and
EX(Y , we turn in that way L(E,F ) into a topological vector space, whose topology depends a
priori on ϕ and ψ. So let σ : E → EZ and τ : F → ET be some other linear homeomorphisms
to Köthe spaces. Let θ = ϕ ◦ σ−1, it is a linear homeomorphism from EZ to EX . One also sets
η = τ ◦ ψ−1, it is a linear homeomorphism from EY to ET .

By lemma 2.24, the map θ ( η is a linear homeomorphism from EX(Y to EZ(T . For
f ∈ L(E,F ), we have, by lemma 2.24 again,

(θ ( η)(M(ψ ◦ f ◦ ϕ−1)) = M(τ ◦ f ◦ σ−1)

and therefore (θ ( η)(Uϕ,ψ) = Uσ,τ , hence Uσ,τ is open (as θ ( η is open as an homeomorphism),
so U is στ -open. Symmetrically, if U is στ -open then U is ϕψ-open. So we have defined a canonical
topology on L(E,F ), which depends only on the topologies of E and F (since these topologies
determine the class of charts ϕ and ψ for E and F and since the topology we have defined on
L(E,F ) does not depend on a particular choice of charts ϕ and ψ as we have shown). Moreover,
by construction, L(E,F ) is an intrinsic Köthe space, since the function

L̂(ϕ,ψ) : L(E,F ) → EX(Y

f 7→ M(ψ ◦ f ◦ ϕ−1)
7The situation here is not as good as for the topological dual: we do not know yet any way of defining the topology

of L(E, F ) directly in terms of the topologies (and the bornologies) of E and F ; in particular, the topology of uniform
convergence on all equicontinuous sets is too coarse in general, see proposition 2.28.
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is a linear homeomorphism (for the canonical topology of L(E,F )) as soon as ϕ : E → EX and
ψ : F → EY are linear homeomorphisms: this holds by definition of the topology of L(E,F ). Of
course, K is an intrinsic Köthe space, and the topological vector spaces E′ and L(E,K) are equal.

We turn now the operation (E,F ) 7→ L(E,F ) into a functor. Let E1 and F1 be intrinsic Köthe
spaces, and let f : E1 → E and g : F → F1 be linear continuous maps. If h ∈ L(E,F ), then
g ◦ h ◦ f ∈ L(E1, F1), and we set

L(f, g)(h) = g ◦ h ◦ f .

Then the diagram

L(E,F )
L(f, g)

- L(E1, F1)

EX(Y

L̂(ϕ,ψ)

? (ϕ ◦ f ◦ ϕ1
−1) ( (ψ1 ◦ g ◦ ψ−1)

- EX1(Y1

L̂(ϕ1, ψ1)

?

(17)

(where ϕ1 : E1 → EX1 and ψ1 : F1 → EY1 are linear homeomorphisms) is commutative by
lemma 2.24, and therefore, in particular, L(f, g) is continuous. In particular, when F = F1 = K
and g = Id, one has of course L(f,K) = tf .

5.3 Tensor product

Due to the considerations above on topological duals of intrinsic Köthe spaces, L(E,F ) comes
equipped also with an intrinsic bornology which allows to define its topological dual as an intrinsic
Köthe space. Therefore, we define in general

E ⊗ F = L(E,F ′)′

and this is an intrinsic Köthe space: if ϕ : E → EX and ψ : F → EY are linear homeomorphisms
then ϕ ⊗̂ ψ = L̂(ϕ,ψ′)′ is a linear homeomorphism from E ⊗ F to EX⊗Y .

Let E1 and F1 be intrinsic Köthe spaces, and let f : E → E1 and g : F → F1 be linear
continuous maps. We define a map f ⊗ g : E ⊗F → E1 ⊗F1. So let t ∈ E ⊗F = L(E,F ′)′ and let
h ∈ L(E1, F

′
1), we set

〈(f ⊗ g)(t), h〉 = 〈t, tg ◦ h ◦ f〉 .

In other terms, we have set f ⊗ g = tL(f, tg), and so f ⊗ g takes its values in E1 ⊗ F1 and is a
linear continuous map. Let ϕ1 : E1 → EX1 and ψ1 : F1 → EY1 be linear homeomorphisms to some
Köthe spaces. Then the following diagram commutes; this is a consequence of the commutation of
diagram 17.

E ⊗ F
f ⊗ g

- E1 ⊗ F1

EX⊗Y

ϕ ⊗̂ ψ

? (ϕ1 ◦ f ◦ ϕ−1)⊗ (ψ1 ◦ g ◦ ψ−1)
- EX1⊗Y1

ϕ1 ⊗̂ ψ1

?

This diagram, together with the corresponding properties of the tensor product of Köthe spaces,
can be used for proving the various categorical properties of the tensor product (associativity,
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symmetry, Mac Lane pentagon). Given u ∈ E and v ∈ F , the element u⊗ v of E ⊗ F = L(E,F ′)′

is defined by 〈u⊗ v, h〉 = 〈h(u), v〉, and we have of course (f ⊗ g)(u⊗ v) = f(u)⊗ g(v).
One can also prove, using the diagram above, that the category of intrinsic Köthe spaces and

linear continuous maps is a ?-autonomous monoidal closed category.

5.4 Exponentials

Let E be an intrinsic Köthe space, and let h : E → K be a function. If ϕ : E → EX and
ψ : E → EY are linear homeomorphisms, and if h ◦ ϕ−1 is entire (that is, belongs to A(X)), then
h ◦ ψ−1 = h ◦ ϕ−1 ◦ (ϕ ◦ ψ−1) is also entire by proposition 3.5, since ϕ ◦ ψ−1 : EY → EX is linear
and continuous.

So it is reasonable to say that a function h : E → K is entire if, for some (and therefore for each)
linear homeomorphism ϕ : E → EX to a Köthe space, the function h ◦ ϕ−1 belongs to A(X). We
denote by A(E) the vector space of all entire functions from E to K. For any linear homeomorphism
ϕ : E → EX to a Köthe space, we have a linear isomorphism Â(ϕ) : A(E) → E(!X)⊥ given by

Â(ϕ)(h) = ΘX(h ◦ ϕ−1) .

Through this isomorphism, A(E) inherits from E(!X)⊥ a linear topology for which Â(ϕ) becomes a

linear homeomorphism (the inverse image by Â(ϕ) of the topology of E(!X)⊥). This topology does
not depend on the particular linear homeomorphism ϕ we have used. Indeed, let ψ : E → EY be
another linear homeomorphism and let θ = ϕ ◦ ψ−1 : EY → EX ; this is a linear homeomorphism,
and by proposition 3.5, the following diagram is commutative

E(!X)⊥

�
�

�
�

�
Â(ϕ)

�

A(E)

@
@

@
@

@
Â(ψ)

R

E(!Y )⊥

(!θ)⊥

?

where (!θ)⊥ is a linear homeomorphism. So A(E) has a canonical topology, and, endowed with
that topology, A(E) is an intrinsic Köthe space.

Let E and F be intrinsic Köthe spaces and let f : F → E be linear and continuous. If h ∈ A(E),
then h ◦ f ∈ A(F ), by proposition 3.5 again. The map A(f) : A(E) → A(F ) defined in that way
makes the following diagram commutative

A(E)
A(f)

- A(F )

E(!X)⊥

Â(ϕ)

? (!(ϕ ◦ f ◦ ψ−1))⊥
- E(!Y )⊥

Â(ψ)

?
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and so is a linear continuous map. Therefore E 7→ A(E) is a contravariant endofunctor on the
category of intrinsic Köthe spaces and linear continuous maps. The dual functor E 7→ A(E)′ (and
f 7→ tA(f)) will also be denoted by E 7→ !E and f 7→ !f .

The various structural maps of the exponential can also be defined in an intrinsic way. As an
example, we give an intrinsic version of the digging morphism pE : !E → !!E. Given ϕ : E → EX a
linear homeomorphism, we define pE as the dual of the unique map q making the following diagram
commutative:

A(A(E)′)
q

- A(E)

E(!!X)⊥

Â(Â(ϕ)′)

? (pX)⊥
- E(!X)⊥

Â(ϕ)

?

This map q, which, by definition, is linear and continuous (since A(Â(ϕ)′) and Â(ϕ) are linear
homeomorphisms), does not depend on ϕ: this results from the functoriality of the operation
X 7→ !X and from the naturality of X 7→ pX . Given Φ ∈ A(A(E)′), one can check that the entire
function q(Φ) : E → K is defined as follows. For u ∈ E, let δu ∈ A(E)′ be given by δu(h) = h(u)
(the Dirac functional). That δu indeed belongs to A(E)′ can be proved using a chart of E. Then,
for u ∈ E, we have q(Φ)(u) = Φ(δu).

We consider now the central isomorphism !(X & Y ) = !X ⊗ !Y and look for an intrinsic version
of this isomorphism. Given E and F , two intrinsic Köthe spaces, this isomorphism is the dual of a
function A(E × F ) → L(A(E)′,A(F )) which maps any entire map h : E×F → K to the linear and
continuous map Φh : A(E)′ → A(F ) given by Φh(S)(v) = 〈S, hv〉 where hv : E → K is the entire
map defined by hv(u) = h(u, v). That hv is entire is clear, therefore, for S ∈ A(E)′, 〈S, hv〉 ∈ K
is well defined. Moreover, the map v 7→ hv is entire by cartesian closeness of K!

K, and so the map
Φh(S) : F → K is entire for all S ∈ A(E)′. One can check that the diagram

A(E)′
Φh- A(F )

E!X

Â(ϕ)′

? k
- E(!Y )⊥

Â(ψ)

?

commutes, where ϕ : E → EX and ψ : F → EY are charts for E and F . In this diagram, the
map k is defined using h and the isomorphism between !(X & Y ) and !X ⊗ !Y (and of course the
charts ϕ and ψ), and so Φh is linear and continuous. Last one checks that the map h 7→ Φh is linear
and continuous using another diagram involving charts. Conversely, given Φ ∈ L(A(E)′,A(F )), one
defines an entire map h : E×F → K by h(u, v) = Φ(δu)(v) where δu ∈ A(E)′ is the Dirac functional
at u. This establishes the announced intrinsic isomorphism betweenA(E × F ) and L(A(E)′,A(F )),
this latter space being canonically isomorphic to (A(E)′ ⊗ A(F )′)′. Now let S ∈ !E and T ∈ !F ,
through this isomorphism, the action of S ⊗ T on an element h of A(E × F ) is given by

〈S ⊗ T , h〉 = 〈Φh(S), T 〉 (18)

with the notations above. Of course, a similar formula holds, where the rôles of S and T are
interchanged.
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Remember that !E is the topological dual of A(E), so it is similar to a space of distributions
where the space of smooth functions with compact support or of rapidly decreasing smooth functions
would have been replaced by a space of entire mappings (many very good texts are available on the
theory of distributions, let us just mention Schwartz’s famous book [Sch66]). With this intuition
in mind, we can adopt a more convenient notation for the application of an element S of A(E)′

to an element h of A(E): following the tradition, let us write Sx(h(x)) instead of 〈S, h〉. In this
notation, x is a bound variable “of type E”. Equation (18) can be written more conveniently

(S ⊗ T )(x,y)(h) = Ty(Sx(h(x, y)))

and of course we also have (S ⊗ T )(x,y)(h) = Sx(Ty(h(x, y))).
From this “distribution” viewpoint, the map mE : !E ⊗ !E → !E (the intrinsic version of the

map mX defined for Köthe spaces in section 3.4) can be seen as defining a convolution product.
Considering mE as a bilinear map !E × !E → !E, one can check that indeed

〈mE(S, T ), h〉 = 〈S ⊗ T , k〉 where k(u, v) = h(u+ v) ,

that is, with the notation above, mE(S, T )u(h(u)) = Sx(Ty(h(x + y))) (and also in the other way
round) and this is exactly the definition of a convolution product of distributions. The neutral
element for this operation is the inverse image of e0 ∈ E!X through the chart Â(ϕ)′ : !E → E!X

(where ϕ is a chart of E), which is easily seen to be the Dirac functional at 0, δ0 : h 7→ h(0), as
usual.
Example: Take K = R and E = K (the implicit chart of E is the obvious map E → E1 where 1
is defined by |1| = {∗}). Given a continuous map f : R → R with compact support, and h ∈ A(R),
we can set

f∨(h) =
∫
R
h(x)f(x)dx

defining a linear form f∨ : A(R) → R. Let M ∈ R+ be an upper bound of |f(x)| for x ∈ R and
let K ∈ R+ be such that the support of f is included in [−K,K]. Then∣∣∣∣∫

R
xnf(x)dx

∣∣∣∣ ≤ 2MK

n+ 1
Kn ≤ CKn

for a constant C ∈ R+, which depends only on f . So setting An =
∫
R x

nf(x)dx for each n ∈ N,
we define a family of real numbers (An)n∈N=|!1| which belongs to E!1. The corresponding element
of A(R)′ is easily seen to be f∨. Moreover, it results from Weierstrass theorem (on each compact
subset of R, any continuous map can be uniformly approximated by a sequence of polynomials)
that the map f 7→ f∨ is injective.

So one can say that !R contains the space of continuous functions with compact support as a
subspace8. Given now f and g two such functions, one can check that mR(f∨, g∨) = (f ∗ g)∨ where
f ∗ g is the usual convolution product of functions:

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy ,

which is a continuous function with compact support.

8This space !R contains actually all distributions with compact support: given a distribution T with compact
support K ⊆ R, we can define T∨(h) for h ∈ A(R) by T∨(h) = T (ϕh) where ϕ is any smooth map with compact
support which is constantly equal to 1 on K, and this mapping from the distributions with compact support into !R
is injective by Weierstrass theorem again.
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6 Some examples

The goal of this section is to give the interpretation of a few terms (proofs) as continuous linear or
as entire mappings, and to compute a few derivatives of the interpretations of these terms.

The space corresponding to the type of booleans is Bool = 1⊕ 1, so that EBool is (isomorphic
to) K2, its generic is xet + yef with x, y ∈ K, taking |Bool| = {t, f}. Consider the following term
of (e.g.) boolean PCF, with one boolean parameter b:

if b then (if b then t else f) else (if b then f else t) ,

the semantics of this term will be an entire (indeed, polynomial) map from EBool = K2 to itself. For
computing this semantics, one considers first the linearized version of this term, with two boolean
parameters b and c, which tests if its two arguments are equal:

if b then (if c then t else f) else (if c then f else t) ,

and which is interpreted by a linear map from EBool⊗Bool to EBool whose matrix A is given by

A(a1,a2),d =
{

1 if a1 = a2 and d = t, or a1 6= a2 and d = f
0 otherwise.

Then we compose this map with the contraction, or more precisely with the linear map C : !Bool →
(Bool ⊗ Bool) obtained by composing the contraction map !Bool → (!Bool ⊗ !Bool) with the
tensorisation of the dereliction !Bool → Bool with itself. This matrix is given by Cµ,(a1,a2) =
δ[a1,a2],µ. Therefore, the kernel of the linear map g defined by AC is spanned by the vectors eµ with
#µ 6= 2, and g is defined by

g(ue[t,t] + ve[f ,f ] + we[t,f ]) = (u+ v)et + 2wef .

The entire map f : EBool → EBool which interprets our initial program is then given by

f(uet + vef ) = g((uet + vef )
!) = (u2 + v2)et + 2uvef .

This computation can also be performed more simply. First, for a Köthe space X, we define a
conditional operator if : Bool ( !X ( !X ( X by the following matrix:

ifb,λ,ρ,a =


1 if b = t and λ = [a] and ρ = []
1 if b = f and λ = [] and ρ = [a]
0 otherwise

Then if can be seen as an entire map from EBool × EX × EX to EX , which is linear in its first
argument, and one checks easily that this map, still denoted by if, is given by

if(uet + vef , x, y) = ux+ vy ;

observe that this function is actually affine in its second and third argument. Then the function f
can be computed as follows:

f(uet + vef ) = if(uet + vef , if(uet + vef , et, ef ), if(uet + vef , ef , et))
= if(uet + vef , uet + vef , uef + vet)
= u(uet + vef ) + v(uef + vet)
= (u2 + v2)et + 2uvef
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It is noticeable that the interpretation of a perfectly standard syntactical object like the program
we have just considered (which actually can also be considered as a proof in linear logic) is a matrix
which has a coefficient different from 0 and 1. This is an effect of non-uniformity: observe that,
in this example, the coefficient 2 corresponds to a component of f which would not exist in a
uniform setting. It must be pointed out that this effect was already present in Girard’s work on
quantitative semantics [Gir88], since this model had no uniformity constraints, and Ryu Hasegawa
showed in [Has97] how to compute effectively the entire coefficients associated to the interpretations
of λ-terms using generating functions.

As a second example, we consider the map

2 : E(!1)⊥ → K

f 7→ f(f(0))

which is a version of the “2 Church numeral” (0 is the zero of the base field). In this definition, we
identify the space E(!1)⊥ with the space of entire functions defined on K with values in K. This

map 2 is entire by cartesian closeness of K!
K, and we want to compute its derivative. Let X = (!1)⊥,

if f ∈ EX is given on K by f(x) =
∑

nAnx
n, then 2(f) =

∑
nAn(A0)n.

Let T : EX&X → K be the “linearized” (this function actually is linear only in its first argument)
version of 2, given by T (f, g) = f(g(0)), which is the composite of the evaluation map ev : EX&1 →
E1 and H : EX&X → EX&1, this latter map being linear and given by H(f, g) = (f, g(0)). The
chain rule gives therefore, for f, h, g, k ∈ EX :

dT

d(f, g)
(f, g) · (h, k) =

dev
d(u, x)

(f, g(0)) ·H(h, k)

= h(g(0)) +
df

dx
(g(0)) · k(0)

by formulae (15) and (16), so

d2
df

(f) · h = h(f(0)) +
df

dx
(f(0)) · h(0)

by formula (14). For instance, when f(0) = 0, we have d2
df (f) · h = (1 + f ′(0))h(0) (here, the linear

application operation A · x is just scalar multiplication).
We leave to the reader the following computation. Let X be a Köthe space, and consider now

the “true” Church numeral 2, namely the functional

2 : E!X(X → E!X(X

f 7→ f ◦A f

So 2 is entire by cartesian closeness ofK!
K, and d2

df is an entire map from E!X(X to E(!X(X)((!X(X);
show that this map is given by(

d2
df

(f) · h
)

(x) = h(f(x)) +
df

dx
(f(x)) · h(x) .

For instance, d2
df (Id) maps any entire map h : EX → EX to 2h.
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An essential tool in programming is the iteration principle, which corresponds to the “for” loop
of Pascal. As already explained, the type of natural numbers can be considered as a N-indexed
sum of the space 1, that is |N | = N and EN = K(N). So in the present setting, a “natural number”
is a finite linear combination of standard natural numbers, with coefficients in K (we had the same
phenomenon with booleans, which were combinations of et and ef ). Given a Köthe space X, for
each k ∈ N, there is an entire map

Ik : E(!X(X)&!X → EX

(f, x) 7→ fk(x)

where fk = f ◦A · · · ◦A f (k times). That Ik is entire results from the cartesian closeness of K!
K. Of

course, Ĩk can be considered as a linear continuous map from E(!X(X)⊗!X to EX . By definition of
N as a direct sum, we can define a linear continuous map ItX : EN → E((!X(X)⊗!X)(X as follows:

ItX(n, f, x) =
∑
k∈N

nkf
k(x) ,

this sum being finite, since an element n of EN satisfies nk = 0 for almost all values of k ∈ N;
this is the iteration functional in KK. This iteration functional suggests to identify N with the
algebra K[ξ] of polynomials with one indeterminate ξ and coefficients in K. The successor function
corresponds to “multiplication by the indeterminate ξ”, and addition (defined with the above
iteration functional) corresponds to polynomial multiplication. Note however that N is not an
object of natural numbers in the usual categorical sense as it is not true in general (denoting
by S the successor function) that ItX(S(n), f, x) = f(ItX(n, f, x)); this equation holds only when
n is a “standard” natural number, that is n = ek for some k ∈ N. Nevertheless, the equation
ItX(S(n), f, x) = ItX(n, f, f(x)) always holds (“tail recursive” iteration).

Observe that a priori K!
K is not a model of PCF, as obviously entire functions do not always

have fix-points: consider the map x 7→ x+ 1 from K to K.
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Institut de Mathématiques de Luminy, 2001. Submitted for publication.
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